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Abstract

The ranking of agents based on other agents’ input is fundamental to multi-
agent systems. Moreover, it has become a central ingredient of a variety of
Internet sites, where perhaps the most famous examples are Google’s PageRank
algorithm and eBay’s reputation system.

The setting of ranking systems introduces a new social choice model. The
novel feature of this setting is that the set of agents and the set of alternatives
coincide. Therefore, in such setting one may need to consider the transitive
effects of voting. For example, if agent a reports on the importance of (i.e.
votes for) agent b then this may influence the credibility of a report by b on the
importance of agent c; these indirect effects should be considered when we wish
to aggregate the information provided by the agents into a social ranking.

A natural interpretation/application of this setting is the ranking of Internet
pages. In this case, the set of agents represents the set of Internet pages, and
the links from a page p to a set of pages Q can be viewed as a two-level ranking
where agents in Q are preferred by agent(page) p to the agents(pages) which are
not in Q. The problem of finding an appropriate social ranking in this case is in
fact the problem of (global) page ranking. Particular approaches for obtaining
a useful page ranking have been implemented by search engines such as Google.

Due to Arrow-like impossibility results and inspiration from the page ranking
setting above, we will limit ourselves to the discussion of ranking systems where
agents have dichotomous preferences. In these settings agents have only two
levels of preferences: either they vote for some agent, or they do not.

The theory of social choice consists of two complementary axiomatic per-
spectives:

• The descriptive perspective: given a particular rule r for the aggregation
of individual rankings into a social ranking, find a set of axioms that are
sound and complete for r. That is, find a set of requirements that r sat-
isfies; moreover, every social aggregation rule that satisfies these require-
ments should coincide with r. A result showing such an axiomatization is
termed a representation theorem and it captures the exact essence of (and
assumptions behind) the use of the particular rule.

• The normative perspective: devise a set of requirements that a social
aggregation rule should satisfy, and try to find whether there is a social
aggregation rule that satisfies these requirements.
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In this thesis, we apply both these approaches the the ranking systems setting.
We begin by applying the descriptive perspective and providing a representation
theorem for the well-known PageRank algorithm, which is the basis of Google’s
search technology. This theorem shows a set of five axioms which are uniquely
imply an idealized version of the PageRank ranking system.

In the normative perspective, we begin by defining two important properties
of ranking systems: Transitivity and Ranked Independence of Irrelevant Alter-
natives. We prove an impossibility result for satisfying both of these properties
together, but show that when the transitivity axiom is weakened, both can be
satisfied by an interesting ranking system. We formally define this recursive-in-
degree ranking system and provide an efficient algorithm for its computation.

Still in the normative approach to ranking systems, we tackle the issue of
incentives. We consider the case where a self-interested agent may try and
manipulate its outgoing votes in order to improve its position in the ranking.
We prove a full classification of the existence of incentive compatible ranking
systems under four very basic axioms, each with a weak and a strong version.
As this classification indicates that no reasonable ranking system can be fully
incentive compatible, we expand our discussion to quantifying the level of in-
centive compatibility of ranking systems. In that setting we prove positive as
well as negative results

Finally, we present a variation of ranking systems where a personalized rank-
ing is generated for every participant in the system. We adapt the transitivity,
IIA, and incentive compatibility axioms from the general ranking systems set-
ting and prove a surprisingly positive result — a representation theorem for the
systems which satisfy all of these axioms. We further show that all of the axioms
are required for this proof, while relaxing any axiom leads to new personalized
ranking systems.
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Notations

Symbol Meaning Page
AIIA Arrow’s Independence of Irrelevant Alternatives 42
AV Approval Voting 32
δF
G(v) Deviation magnitude of v in G under ranking system F 64

dG(v1, v2) Length of shortest path from v1 to v2 in G 73
Del(G, v) Delete vertex v with in and out-degree of 1 from graph G 17
Delete(G, v) Strong deletion operator 19
Duplicate(G, v, m) Duplication operator 20
FD The distance personalized ranking system 73
G1 Set of all directed graphs with out-degree of 1 34
GB Set of all bipartite directed graphs 36
GSC Set of all strongly connected directed graphs 36
GV Set of all directed graphs over vertex set V 8
IIA Independence of Irrelevant Alternatives 29
L(A) Set of all linear orderings on A 7
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PR PageRank 11
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RIIA Ranked Independence of Irrelevant Alternatives 32
SG(v) Successor set of vertex v in graph G 10
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SelfEdge−1(G, v) Graph G with self edge removed from v 12
valuer(v) Value function from recursive in-degree 37
vpr(v1, . . . , vm) Value of path v1, . . . , vm (recursive in-degree) 37
wlog without loss of generality 39
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Chapter 1

Introduction

The ranking of agents based on other agents’ input is fundamental to multi-
agent systems (see e.g. Resnick et al. (2000)). Moreover, it has become a central
ingredient of a variety of Internet sites, where perhaps the most famous examples
are Google’s PageRank algorithm (Page et al., 1998) and eBay’s reputation
system (Resnick and Zeckhauser, 2001).

In the classical theory of social choice, as manifested by Arrow(1963), a
set of agents/voters is called to rank a set of alternatives. Given the agents’
input, i.e. the agents’ individual rankings, a social ranking of the alternatives is
generated. The theory studies desired properties of the aggregation of agents’
rankings into a social ranking. In particular, Arrow’s celebrated impossibility
theorem(Arrow, 1963) shows that there is no aggregation rule that satisfies some
minimal requirements, while by relaxing any of these requirements appropriate
social aggregation rules can be defined.

The classical theory of social choice lay the foundations to large part of the
rigorous work on the design and analysis of social interactions. Indeed, the most
classical results in the theory of mechanism design (e.g. the Gibbard (1973);
Satterthwaite (1975) theorems) are applications of the theory of social choice.
While economic mechanism design had become an extensive line of study in
computer science (see e.g. Nisan and Ronen (1999)) and electronic commerce
(see e.g. Lehmann et al. (1999); Parkes (2001); Conitzer et al. (2003)), our work
introduces another connection between algorithms and Internet technologies to
the mathematical theory of social choice.

The setting of ranking systems introduces a new social choice model. The
novel feature of this setting is that the set of agents and the set of alternatives
coincide. Therefore, in such setting one may need to consider the transitive
effects of voting. For example, if agent a reports on the importance of (i.e.
votes for) agent b then this may influence the credibility of a report by b on the
importance of agent c; these indirect effects should be considered when we wish
to aggregate the information provided by the agents into a social ranking.

A natural interpretation/application of this setting is the ranking of Internet
pages. In this case, the set of agents represents the set of Internet pages, and
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the links from a page p to a set of pages Q can be viewed as a two-level ranking
where agents in Q are preferred by agent(page) p to the agents(pages) which are
not in Q. The problem of finding an appropriate social ranking in this case is in
fact the problem of (global) page ranking. Particular approaches for obtaining
a useful page ranking have been implemented by search engines such as Google
(Page et al., 1998).

Due to Arrow-like impossibility results and inspiration from the page rank-
ing setting above, we will limit ourselves to the discussion of ranking systems
where agents have dichotomous preferences (see Bogomolnaia et al. (2005) for
a discussion in the social choice setting). In these settings agents have only two
levels of preferences: either they vote for some agent, or they do not.

There has been some previous axiomatic work on the case where the agents
and alternatives coincide (Rubinstein and Kasher, 1998; Samet and Schmeidler,
1998), where the result of the system is also dichotomous, specifying a subset of
the agents that is qualified in some sense or has some property J . Our approach
differs in the fact the we generate a general ranking of the agents, and our
axioms specify criteria on this ranking that could not be easily formalized in
the dichotomous output setting.

Another relevant line of research is the ranking of players in tournaments
(Rubinstein, 1980; Slutzki and Volij, 2005). Although the mathematical model
of tournaments overlaps our model of ranking systems, the two models differ in
interpretation. While in our model we consider a link from agent a to b as a vote
from a to b that is under the full control of a, the tournament setting considers
this as an indication of a win (in a sports match, or in a pairwise election) of b
over a, which is of course out of the control of a.

The theory of social choice consists of two complementary axiomatic per-
spectives:

• The descriptive perspective: given a particular rule r for the aggregation
of individual rankings into a social ranking, find a set of axioms that are
sound and complete for r. That is, find a set of requirements that r sat-
isfies; moreover, every social aggregation rule that satisfies these require-
ments should coincide with r. A result showing such an axiomatization is
termed a representation theorem and it captures the exact essence of (and
assumptions behind) the use of the particular rule.

• The normative perspective: devise a set of requirements that a social
aggregation rule should satisfy, and try to find whether there is a social
aggregation rule that satisfies these requirements.

Many efforts have been invested in the descriptive approach in the framework
of the classical theory of social choice. In that setting, representation theorems
have been presented to major voting rules such as the majority rule (May (1952),
see Moulin (1991) for an overview).

An excellent example for the normative perspective is Arrow’s impossibil-
ity theorem mentioned above. Borodin et al. (2005) have compared various
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known ranking systems both experimentally and by various mathematical crite-
ria. However, they have not proven any representation theorems or impossibility
results. Tennenholtz (2004) has presented some preliminary results for ranking
systems where the set of voters and the set of alternatives coincide. However,
the axioms presented in that work consist of several very strong requirements
which naturally lead to an impossibility result.

In this thesis, we apply both these approaches to the ranking systems setting.
We begin by applying the descriptive perspective and providing a representation
theorem for the well-known PageRank algorithm, which is the basis of Google’s
search technology (Brin and Page, 1998). This theorem shows a set of five
axioms which are uniquely imply an idealized version of the PageRank ranking
system. This theorem is presented in Chapter 2.

In the normative perspective, we begin by defining two important properties
of ranking systems: Transitivity and Ranked Independence of Irrelevant Alter-
natives. We prove an impossibility result for satisfying both of these properties
together, but show that when the transitivity axiom is weakened, both can be
satisfied by an interesting ranking system. We formally define this recursive-in-
degree ranking system and provide an efficient algorithm for its computation.
These results are presented in Chapter 3.

Still in the normative approach to ranking systems, we tackle the issue of
incentives. We consider the case where a self-interested agent may try and
manipulate its outgoing votes in order to improve its position in the ranking.
We prove a full classification of the existence of incentive compatible ranking
systems under four very basic axioms, each with a weak and a strong version.
As this classification indicates that no reasonable ranking system can be fully
incentive compatible, we expand our discussion to quantifying the level of in-
centive compatibility of ranking systems. In that setting we prove positive as
well as negative results. These results are presented in Chapter 4.

Finally, we present a variation of ranking systems where a personalized rank-
ing is generated for every participant in the system. We adapt the transitivity,
IIA, and incentive compatibility axioms from the general ranking systems set-
ting and prove a surprisingly positive result — a representation theorem for the
systems which satisfy all of these axioms. We further show that all of the axioms
are required for this proof, while relaxing any axiom leads to new personalized
ranking systems. These results are presented in Chapter 5.

In Chapter 6, we provide concluding remarks for the entire thesis.

1.1 Ranking Systems

Before describing our results regarding ranking systems, we must first formally
define what we mean by the words “ranking system” in terms of graphs and
linear orderings:

Definition 1.1: Let A be some set. A relation R ⊆ A × A is called a linear
ordering on A if it is reflexive, transitive, antisymmetric, and complete. Let
L(A) denote the set of all linear orderings on A.

7



Notation: Let � be a linear ordering, then ≃ is the equality predicate of �,
and ≺ is the strict order induced by �. Formally, a ≃ b if and only if a � b and
b � a; and a ≺ b if and only if a � b but not b � a.

Given the above we can define what a ranking system is:

Definition 1.2: Let GV be the set of all directed graphs G = (V, E) with no
parallel edges, but possibly with self-loops. A ranking system F is a functional
that for every finite vertex set V maps graphs G ∈ GV to an ordering�F

G∈ L(V ).
If F is a partial function then it is called a partial ranking system, otherwise it
is called a general ranking system.

One can view this setting as a variation/extension of the classical theory of
social choice as modeled by Arrow (1963). The ranking systems setting differs
in two main properties. First, in this setting we assume that the set of voters
and the set of alternatives coincide, and second, we allow agents only two levels
of preference over the alternatives, as opposed to Arrow’s setting where agents
could rank alternatives arbitrarily.

8



Chapter 2

The PageRank Axioms

2.1 Introduction

An important set of ranking systems are page ranking systems. It is well known
that page ranking is fundamental for search technology, as well as for other
applications. A major problem therefore is the study of the rationale of using
a particular page ranking algorithm. What are the properties of a particular
page ranking algorithm that characterize and differentiate it from other page
ranking algorithms? In order to address this challenge we adapt the axiomatic
approach, adopted in the mathematical theory of social choice, into the context
of page ranking.

If we treat the Internet as a graph, where the nodes/pages are agents, and the
links originating from node/page p define the preferences of the corresponding
agent (i.e. a page that p links to is preferable to a page that p does not link to)
then the page ranking problem becomes the problem of aggregating individual
rankings into a global (social) ranking.

In this chapter we address the above challenge by introducing a representa-
tion theorem for PageRank. Needless to say that PageRank (Page et al., 1998)
is the most famous page ranking procedure. In particular, PageRank is the basis
for Google’s search technology1 (Brin and Page, 1998). If we treat the Internet
as a strongly connected graph, where the nodes are the pages and the edges
are links between pages, then PageRank can be defined as the limit probability
distribution reached in a random walk on that graph. Roughly speaking, page
p1 will be ranked higher than page p2 if the probability of reaching p1 is greater
than the probability of reaching p2. We will show several simple properties
(called axioms) one may require a page ranking algorithm to satisfy and prove
that the PageRank algorithm does satisfy these axioms. Then, we prove our
main result: any page ranking algorithm that does satisfy these axioms must
coincide with PageRank!

1In fact, ranking based on similar ideas can be found in other contexts as well. See Pinski
and Narin (1976) for the use of PageRank-like procedure in the comparison of journals’ impact.
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The only previous work that we are familiar with which deals with a re-
lated axiomatization is a recent work on the axiomatization of citation indexes
by Palacios-Huerta and Volij (2004). This work deals however with the case
of numeric inputs (e.g. the inputs are not only graphs, as in page ranking,
but include also numeric measures for the number of citations by each node,
and by each node for each other node), and (most importantly) the axioms
considered are numeric as well (e.g. when defining the axioms we are allowed
for computations such as division or matrix multiplication). Our aim is quite
different: we are after ordinal, graph-theoretic requirements that will provide
sound and complete axiomatization for PageRank. This creates a most signif-
icant challenge: while the PageRank algorithm is numeric and is based on the
computation of eigenvectors, we are after simple graph-theoretic properties that
will fully characterize the related ranking procedure.

In the next section we define some preliminaries, including the PageRank
ranking system. In Section 2.3 we introduce five axioms one may require to
hold for any page ranking procedure, and claim that PageRank does satisfy
these axioms. In Section 2.4 we show some useful properties implied by the
axioms. In Section 2.5 we use these properties for proving that any page ranking
procedure that does satisfy the axioms should coincide with PageRank. Further
discussion of the approach taken in this chapter is presented in Section 2.6.

2.2 Page Ranking

The current practice of the ranking of Internet pages is based on the idea of
computing the limit stationary probability distribution of a random walk on the
Internet graph, where the nodes are pages, and the edges are links among the
pages. In order for the result of that process will be well defined, we restrict
our attention to strongly connected graphs:

Definition 2.1: A directed graph G = (V, E) is called strongly connected if
for all vertices v1,v2 ∈ V there exists a path from v1 to v2 in E.

In order to define the PageRank ranking system, we first recall the following
standard definitions:

Definition 2.2: Let G = (V, E) be a directed graph, and let v ∈ V be a
vertex in G. Then: The successor set of v is SG(v) = {u|(v, u) ∈ E}, and the
predecessor set of v is PG(v) = {u|(u, v) ∈ E}.

We now define the PageRank matrix which is the matrix which captures the
random walk created by the PageRank procedure. Namely, in this process we
start in a random page, and iteratively move to one of the pages that are linked
to by the current page, assigning equal probabilities to each such page.

Definition 2.3 : Let G = (V, E) be a directed graph, and assume V =
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{v1, v2, . . . , vn}. the PageRank Matrix AG (of dimension n× n) is defined as:

[AG]i,j =

{

1/|SG(vj)| (vj , vi) ∈ E

0 Otherwise.

The PageRank procedure will rank pages according to the stationary prob-
ability distribution obtained in the limit of the above random walk; this is
formally defined as follows:

Definition 2.4: Let G = (V, E) be some strongly connected graph, and assume
V = {v1, v2, . . . , vn}. Let r be the unique solution of the system AG ·r = r where
r1 = 1. The PageRank PRG(vi) of a vertex vi ∈ V is defined as PRG(vi) = ri.
The PageRank ranking system is a ranking system that for the vertex set V
maps G to �PR

G , where �PR
G is defined as: for all vi, vj ∈ V : vi �PR

G vj if and
only if PRG(vi) ≤ PRG(vj).

The above defines a powerful heuristic for the ranking of Internet pages,
as adopted by search engines (Page et al., 1998). This is however a partic-
ular numeric procedure, and our aim is to treat it from an axiomatic social
choice perspective, providing graph-theoretic, ordinal representation theorem
for PageRank.

2.3 The Axioms

From the perspective of the theory of social choice, each page in the Internet
graph is viewed as an agent, where this agent prefers the pages (i.e. agents)
it links to upon pages it does not link to. The problem of finding a social
aggregation rule will become therefore the problem of page ranking. The idea is
to search for simple axioms, i.e. requirements we wish the page ranking system
to satisfy. Most of these requirements will have the following structure: page a
is preferable to page b when the graph is G if and only if a is preferable to b
when the graph is G′. Our aim is to search for a small set of axioms that can
be shown to be satisfied by PageRank. The axioms need to be simple graph-
theoretic, ordinal properties, which do not refer to numeric computations.

In explaining some of the axioms we will refer to Figure 2.1. For simplicity,
while the axioms are stated as ”if and only if” statements, we will sometimes
emphasize in the intuitive explanation of an axiom only one of the directions
(in all cases similar intuitions hold for the other direction).

The first axiom is straightforward:

Axiom 2.5: (Isomorphism) A ranking system F satisfies isomorphism if for
every isomorphism function ϕ : V1 7→ V2, and two isomorphic graphs G ∈
GV1

, ϕ(G) ∈ GV2
: �F

ϕ(G)= ϕ(�F
G).

The isomorphism axiom tells us that the ranking procedure should be inde-
pendent of the names we choose for the vertices.
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Figure 2.1: Sketch of several axioms

The second axiom is also quite intuitive. It tells us that if a is ranked at
least as high as b if the graph is G, where in G a does not link to itself, then a
should be ranked higher than b if all that we add to G is a link from a to itself.
Moreover, the relative ranking of other vertices in the new graph should remain
as before. Formally, we have the following notation and axiom:2

Notation: Let G = (V, E) ∈ GV be a graph s.t. (v, v) /∈ E. Let G′ =
(V, E ∪{(v, v)}). Let us denote SelfEdge(G, v) = G′ and SelfEdge−1(G′, v) =
G. Note that SelfEdge−1(G′, v) is well defined.

Axiom 2.6: (Self edge) Let F be a ranking system. F satisfies the self
edge axiom if for every vertex set V and for every vertex v ∈ V and for every
graph G = (V, E) ∈ GV s.t. (v, v) /∈ E, and for every v1, v2 ∈ V \ {v}: Let
G′ = SelfEdge(G, v). If v1 �F

G v then v 6�F
G′ v1; and v1 �F

G v2 iff v1 �F
G′ v2.

The following third axiom (titled Vote by committee) captures the following
idea, which is illustrated in Figure 2.1(a). If page a links to pages b and c, then

2One may claim that this axiom makes no sense if we do not allow self loops. This is
however only a simple technical issue. If we do not allow self loops then the axiom should be
replaced by a new one, where the addition of self-loop to a is replaced by the addition of a
new page, a′, where a links to a′ and where a′ links only to a. Our results will remain similar.

12



the relative ranking of all pages should be the same as in the case where the
direct links from a to b and c are replaced by links from a to a new set of pages,
which link (only) to b and c. The idea here is that the amount of importance a
provides to b and c by linking to them, should not change due to the fact that
a assigns its power through a committee of (new) representatives, all of which
behave as a. More generally, and more formally, we have the following:

Axiom 2.7: (Vote by committee) Let F be a ranking system. F satisfies
vote by committee if for every vertex set V , for every vertex v ∈ V , for every
graph G = (V, E) ∈ GV , for every v1, v2 ∈ V , and for every m ∈ N: Let
G′ = (V ∪ {u1, u2, . . . , um}, E \ {(v, x)|x ∈ SG(v)} ∪ {(v, ui)|i = 1, . . . , m} ∪
{(ui, x)|x ∈ SG(v), i = 1, . . . , m}), where {u1, u2, . . . , um} ∩ V = ∅. Then,
v1 �F

G v2 iff v1 �F
G′ v2.

The 4th axiom, termed collapsing is illustrated in Figure 2.1(b). The idea
of this axiom is that if there is a pair of pages, say a and b, where both a and
b link to the same set of pages, but the sets of pages that link to a and b are
disjoint, then if we collapse a and b into a singleton, say a, where all links to b
become now links to a, then the relative ranking of all pages, excluding a and
b of course, should remain as before. The intuition here is that if there are two
voters (i.e. pages), a and b, who vote similarly (i.e. have the same outgoing
links), and the power of each one of them stems from the fact a set of other
voters have voted for him, where the sets of voters for a and for b are disjoint,
then if all voters for a and b would vote only for a (dropping b) then a should
provide the same importance to other agents as a and b did together. This of
course relies on having a and b voting for the same individuals. As a result, the
following axiom is quite intuitive:

Axiom 2.8: (collapsing) Let F be a ranking system. F satisfies collapsing if
for every vertex set V , for every v, v′ ∈ V , for every v1, v2 ∈ V \ {v, v′}, and for
every graph G = (V, E) ∈ GV for which SG(v) = SG(v′), PG(v) ∩ PG(v′) = ∅,
and [PG(v)∪PG(v′)]∩{v, v′} = ∅: Let G′ = (V \ {v′}, E \ {(v′, x)|x ∈ SG(v′)} \
{(x, v′)|x ∈ PG(v′)} ∪ {(x, v)|x ∈ PG(v′)}). Then, v1 �

F
G v2 iff v1 �

F
G′ v2.

The last axiom we introduce, termed the proxy axiom, is illustrated in Figure
2.1(c). Roughly speaking, this axiom tells us that if there is a set of k pages,
all having the same importance, which link to a, where a itself links to k pages,
then if we drop a and connect directly, and in a 1-1 fashion, the pages which
linked to a to the pages that a linked to, then the relative ranking of all pages
(excluding a) should remain the same. This axiom captures equal distribution
of importance. The importance of a is received from k pages, all with the same
power, and is split among k pages; alternatively, the pages that link to a could
pass directly the importance to pages that a link to, without using a as a proxy
for distribution. More formally, and more generally, we have the following:

Axiom 2.9: (proxy) Let F be a ranking system. F satisfies proxy if for every
vertex set V , for every vertex v ∈ V , for every v1, v2 ∈ V \ {v}, and for every

13



graph G = (V, E) ∈ GV for which |PG(v)| = |SG(v)|, for all p ∈ PG(v): SG(p) =
{v}, and for all p, p′ ∈ PG(v): p ≃F

G p′: Assume PG(v) = {p1, p2, . . . , pm}
and SG(v) = {s1, s2, . . . , sm}. Let G′ = (V \ {v}, E \ {(x, v), (v, x)|x ∈ V } ∪
{(pi, si)|i ∈ {1, . . . , m}}). Then, v1 �F

G v2 iff v1 �F
G′ v2.

2.3.1 Soundness

Although we have provided some intuitive explanation for the axioms, one may
argue that particular axiom(s) are not that reasonable. As it turns out however,
all the above axioms are satisfied by the PageRank procedure. The proof of the
basic soundness proposition is provided below. In Section 2.5 we show that
the above axioms are not only satisfied by PageRank, but also completely and
uniquely characterize the PageRank procedure.

Proposition 2.1: The PageRank ranking system PR satisfies isomorphism,
self edge, vote by committee, collapsing, and proxy.

Proof: The isomorphism axiom is satisfied directly from the definition by
the assumption that V = {v1, v2, . . . , vn}.

For the vote by committee axiom, let V = {v1, v2, . . . , vn} be a vertex set,
let G = (V, E) ∈ GV be a graph, and let vs, vt ∈ V be vertices and let m ∈ N

be a natural number. Assume vs �PR
G vt.

Let G′ = (V ∪{vn+1, vn+2, . . . , vn+m}, E\{(v1, x)|x ∈ SG(v1)}∪{(v1, vn+j)|j =
1, . . . , m} ∪ {(vn+j , x)|x ∈ SG(v1), j = 1, . . . , m}). Let r be the solution of
AG · r = r, where r1 = 1. Let r′ be the following vector:

r′ =













r1

...
rn

r1/m
...

r1/m













We will now prove that AG′r′ = r′. Note that by definition of G′, the matrix
AG′ is

AG′ =













0 a1,2 · · · a1,n a1,1 · · · a1,1

...
...

. . .
...

...
. . .

...
0 an,2 · · · an,n an,1 · · · an,1

1/m
... 0

1/m













If we multiply, we get: for i ∈ {1, . . . n}:

[AG′r′]i =
n∑

j=2

ai,jrj + mai,1 · r1/m =
n∑

j=1

ai,jrj = ri,
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and for i ∈ {n+1, . . . n+m}, [AG′r′]i = 1/m ·r1, as required. Also r′1 = r1 = 1,
so PRG′(vj) = r′j for all j ∈ {1, . . . , n + m}. Now, PRG′(vs) = r′s = rs =
PRG(vs) ≤ PRG(vt) = rt = r′t = PRG′(vt), as required.

For the collapsing axiom, let V = {v1, v2, . . . , vn}, and let G = (V, E) ∈ GV .
Assume S(vn) = S(vn−1) and P (vn) ∩ P (vn−1) = ∅. Let vk, vl ∈ V be vertices
(k, l < n− 1). Assume vk �

PR
G vl.

Let G′ = (V \ {vn}, E \ {(vn, x)|x ∈ SG(vn)} \ {(x, vn)|x ∈ PG(vn)} ∪
{(x, vn−1)|x ∈ PG(vn)}). Let r be the solution of AG · r = r, where r1 = 1. Let
r′ be the following vector:

r′ =








r1

...
rn−2

rn−1 + rn








We will now prove that AG′r′ = r′. Note that by definition of G′, the matrix
AG′ is

AG′ =








a1,1 a1,2 · · · a1,n−1

...
...

. . .
...

an−2,1 an−2,2 · · · an−2,n−1

an−1,1 + an,1 an−1,2 + an,2 · · · 0








If we multiply, we get for i ∈ {1, . . . n− 2}:

[AG′r′]i = ai,n−1(rn + rn−1) +

n−2∑

j=1

ai,jrj = ai,n−1rn + ai,n−1rn−1 +

n−2∑

j=1

ai,jrj

Note that ai,n = ai,n−1 = 1
|S(vn)| , so

[AG′r′]i =
n−2∑

j=1

ai,jrj + ai,n−1rn−1 + ai,nrn =
n∑

j=1

ai,jrj = ri.

[AG′r′]n−1 =

n−2∑

j=1

(an−1,j + an,j)rj =

n−2∑

j=1

an−1,jrj +

n−2∑

j=1

an,jrj

Note that an−1,n−1 = an−1,n = an,n−1 = an,n = 0, so

[AG′r′]n−1 =

n∑

j=1

an−1,jrj +

n∑

j=1

an,jrj = rn−1 + rn

So, we get AG′r′ = r′ as required. Also r′1 = r1 = 1, so PRG′(vj) = r′j for all
j ∈ {1, . . . , n − 1}. Now, PRG′(vk) = r′k = rk = PRG(vk) ≤ PRG(vl) = rl =
r′l = PRG′(vl), as required.
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For the proxy axiom, let V = {v1, v2, . . . , vn}, and let G = (V, E) ∈ GV . As-
sume P (vn) = {v1, v2, . . . , vm}, v1 ≃ v2 ≃ · · · ≃ vm, and S(vn) = {vt+1, vt+2, . . . , vt+m},
where t ∈ {0, . . . , m}. Let vk, vl ∈ V be vertices (k, l < n). Assume vk �

PR
G vl.

Let G′ = (V \ {vn}, E \ {(x, vn), (vn, x)|x ∈ V }∪{(vi, vt+i)|i ∈ {1, . . . , m}}).
Let r be the solution of AG · r = r, where r1 = 1. Since v1 ≃ v2 ≃ · · · ≃ vm, we
have r1 = r2 = · · · = rm, and note that because PG(vn) = {v1, v2, . . . , vm} and
S(vi) = {vn} for all i ∈ {1, . . . , m}:

rn =

n∑

i=1

an,iri = r1 + r2 + · · ·+ rm = mr1 = m.

Let r′ = r−n. By definition of G′, the matrix AG′ is

AG′ =






















0 0 · · · 0 a1,m+1 a1,m+2 · · · a1,n−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 at,m+1 at,m+2 · · · at,n−1

1 0 · · · 0 at+1,m+1 at+1,m+2 · · · at+1,n−1

0 1 · · · 0 at+2,m+1 at+2,m+2 · · · at+2,n−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 at+m,m+1 at+m,m+2 · · · at+m,n−1

0 0 · · · 0 at+m+1,m+1 at+m+1,m+2 · · · at+m+1,n−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 an−1,m+1 an−1,m+2 · · · an−1,n−1






















We multiply can now multiply, and since ai,n = 0 for all i ∈ {1, . . . t, t + m +
1, . . . , n − 1} (because S(vn) = {t + 1, . . . , t + m}) and ai,j = 0 for all i ∈
{1, . . . , n − 1} and j ∈ {1, . . . , m} (because S(vj) = {vn}), we get for i ∈
{1, . . . t, t + m + 1, . . . , n− 1}:

[AG′r′]i =

n−1∑

j=m+1

ai,jrj =

n∑

j=1

ai,jrj = ri

and for i ∈ {t + 1, . . . , t + m}:

[AG′r′]i =

n−1∑

j=m+1

ai,jrj + ri−t =

n−1∑

j=1

ai,jrj + 1 =

n−1∑

j=1

ai,jrj +
1

m
rn =

=
n−1∑

j=1

ai,jrj + ai,nrn =
n∑

j=1

ai,jrj = ri

So, we get AG′r′ = r′ as required. Also r′1 = r1 = 1, so PRG′(vj) = r′j for all
j ∈ {1, . . . , n − 1}. Now, PRG′(vk) = r′k = rk = PRG(vk) ≤ PRG(vl) = rl =
r′l = PRG′(vl), as required.
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For the self edge axiom, let V = {v1, v2, . . . , vn}, and let G = (V, E) ∈ GV .
Assume (v1, v1) /∈ E. Let r be the solution of AG · r = r, where r1 = 1. Let
G′ = (V, E ∪ {(v1, v1)}) and let m = |SG(v1)|. Let r′ be the following vector:

r′ =








r1
m

m+1r2

...
m

m+1rn








We will now prove that AG′r′ = r′. Note that by definition of G′, the matrix
AG′ is

AG′ =








1
m+1 a1,2 · · · a1,n

m
m+1a2,1 a2,2 · · · a2,n

...
...

. . .
...

m
m+1an,1 an,2 · · · an,n








If we multiply, we get: for i ∈ {2, . . . n}:

[AG′r′]1 =
1

m + 1
r1 +

n∑

j=2

a1,j

m

m + 1
rj =

1

m + 1
r1 +

m

m + 1

n∑

j=2

a1,jrj =

=
1

m + 1
r1 +

m

m + 1

n∑

j=1

a1,jrj =
1

m + 1
r1 +

m

m + 1
r1 = r1

[AG′r′]i =
m

m + 1
ai,1r1 +

n∑

j=2

ai,j

m

m + 1
rj =

m

m + 1

n∑

j=1

ai,jrj =
m

m + 1
ri

So, we get AG′r′ = r′ as required. Also r′1 = r1 = 1, so PRG′(vj) = r′j for all
j ∈ {1, . . . , n− 1}.

Assume v2 �PR
G v1. Then, PRG′(v2) = r′2 < r2 = PRG(v2) ≤ PRG(v1) =

r1 = r′1 = PRG′(v1), as required.
Now assume v2 �PR

G v3. Then, PRG′(v2) = r′2 = r2 = PRG(v2) ≤
PRG(v3) = r3 = r′3 = PRG′(v3), as required.

2.4 Several Useful Properties

In this section we prove three technical properties which are implied by our
axioms. As a result, these three properties are satisfied by the PageRank ranking
system. The purpose of presenting them is rather technical: they will be used
in the next section, when we show that the PageRank ranking system is the
only one that satisfies our axioms.
Notation: Let V be a vertex set and let v ∈ V be a vertex. Let G =
(V, E) ∈ GV be a graph where S(v) = {s}, P (v) = {p}, and (s, p) /∈ E. We will
use Del(G, v) to denote the graph G′ = (V ′, E′) defined by:

V ′ = V \ {v}

E′ = E \ {(p, v), (v, s)} ∪ {(p, s)}.
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The Del(·, ·) operator simply removes a vertex from the graph that has an
in-degree and out-degree of 1, replacing it by an edge from its predecessor to its
successor. The following lemma says that when our axioms are satisfied then
this operator does not change the relative ranking of all (remaining) pages.

Definition 2.10: Let F be a ranking system. F has the weak deletion property
if for every vertex set V , for every vertex v ∈ V and for all vertices v1, v2 ∈
V \ {v}, and for every graph G = (V, E) ∈ GV s.t. S(v) = {s}, P (v) = {p}, and
(s, p) /∈ E: Let G′ = Del(G, v). Then, v1 �F

G v2 iff v1 �F
G′ v2.

Lemma 2.2: Let F be a ranking system that satisfies isomorphism, vote by
committee and proxy. Then, F has the weak deletion property.

Proof: Let V be a vertex set, let v ∈ V ; v1, v2 ∈ V \ {v} be vertices and
let G = (V, E) ∈ GV be a graph s.t. S(v) = {s}, P (v) = {p}, and (s, p) /∈ E.
Assume v1 �F

G v2. Let s0 = v and S(p) = {s0, s1, s2, . . . , sm}.

• Let G1 = (V1, E1), where

V1 = V ∪ {p′}

E1 = E \ {(p, si)|i = 0, . . . , m} ∪ {p, p′} ∪

∪{(p′, si)|i = 0, . . . , m}.

By the vote by committee axiom with parameter 1, v1 �F
G1

v2.

• Let G2 = (V2, E2), where

V2 = V1 ∪ {ui|i = 0, . . . , m}

E2 = E1 \ {(p, p′)} ∪

∪{(p, ui), (ui, p
′)|i = 0, . . . , m}.

By the vote by committee axiom with parameter m + 1, v1 �F
G2

v2.

• Let G3 = (V3, E3), where

V3 = V2 \ {p
′}

E3 = E2 \ {(ui, p
′), (p′, si)|i = 0, . . . , m}.

∪{(ui, si)|i = 0, . . . , m}.

By the isomorphism axiom, ui ≃G2
uj for all i, j ∈ {0, . . . , m}. By the

proxy axiom, v1 �F
G3

v2.

• Let G4 = (V4, E4), where

V4 = V3 \ {v}

E4 = E3 \ {(u0, v), (v, s)} ∪ {(u0, s)}.

By the vote by committee axiom with parameter 1, v1 �F
G4

v2.
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Figure 2.2: Sketch of Delete(G, x)

• Let G′ = Del(G, v). By the vote by committee, isomorphism, and proxy
axioms, as between G and G3 above, v1 �F

G′ v2 ⇔ v1 �F
G4

v2. Thus,

v1 �F
G′ v2 as required.

We now move to a second deletion property satisfied by the axioms.
Notation: Let V be a vertex set and let v ∈ V be a vertex. Let G = (V, E) ∈
GV be a graph where S(v) = {s1, s2, . . . , st} and P (v) = {pi

j|j = 1, . . . , t; i =

0, . . . , m}, and S(pi
j) = {v} for all j ∈ {1, . . . t} and i ∈ {0, . . . , m}. We will use

Delete(G, v, {(s1, {p
i
1|i = 0, . . .m}), . . . , (st, {p

i
t|i = 0, . . .m})}) to denote the

graph G′ = (V ′, E′) defined by:

V ′ = V \ {v}

E′ = E \ {(pi
j , v), (v, sj)|i = 0, . . . , m; j = 1, . . . , t} ∪

∪{(pi
j , sj)|i = 0, . . . , m; j = 1, . . . , t}.

When the grouping of the predecessors is trivial or understood from context,
we will sloppily use Delete(G, v).

A sketch of the Delete operator can be found in Figure 2.2. In this figure
we see that node x which links to three other nodes, and has two sets of three
predecessors, where the nodes in each such set are of the same importance. The
Delete operator will drop x and connect exactly one element from each of the
predecessor sets to exactly one node in the successor set. The following lemma
says that when our axioms are satisfied then this operator does not change the
relative ranking of all (remaining) pages.

Definition 2.11: Let F be a ranking system. F has the strong deletion
property if for every vertex set V , for every vertex v ∈ V , for all v1, v2 ∈
V \ {v}, and for every graph G = (V, E) ∈ GV s.t. S(v) = {s1, s2, . . . , st},
P (v) = {pi

j|j = 1, . . . , t; i = 0, . . . , m}, S(pi
j) = {v} for all j ∈ {1, . . . t} and

i ∈ {0, . . . , m}, and pi
j ≃

F
G pi

k for all i ∈ {0, . . . , m} and j, k ∈ {1, . . . t}: Let

G′ = Delete(G, v, {(s1, {pi
1|i = 0, . . .m}), . . . (st, {pi

t|i = 0, . . .m})}). Then,
v1 �F

G v2 iff v1 �F
G′ v2.
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Lemma 2.3: Let F be a ranking system that satisfies collapsing and proxy.
Then, F has the strong deletion property.

Proof: Let V be a vertex set, let v ∈ V ; v1, v2 ∈ V \ {v} be vertices and
let G = (V, E) ∈ GV be a graph s.t. S(v) = {s1, s2, . . . , st}, P (v) = {pi

j |j =

1, . . . , t; i = 0, . . . , m}, S(pi
j) = {v} for all j ∈ {1, . . . t} and i ∈ {0, . . . , m}, and

pi
j = pk

j for all j ∈ {1, . . . t} and i, k ∈ {0, . . . , m}. Assume v1 �F
G v2. Denote

u0 = v.

• Let G1 = (V1, E1), where

V1 = V ∪ {ui|i = 1, . . . , m}

E1 = E \ {(pi
j , v)|i = 1, . . . , m; j = 1, . . . , t} ∪

∪{(pi
j , u

i), (ui, sj)|i = 1, . . . , m; j = 1, . . . , t}

By the collapsing axiom applied in the reverse direction a total of m times
for {(ui−1, ui)|i = 1, . . . , m}, v1 �

F
G1

v2.

• Let G2 = (V2, E2), where

V2 = V1 \ {u
i|i = 0, . . . , m}

E2 = E1 \ {(p
i
j, u

i), (ui, sj)|i = 0, . . . , m; j = 1, . . . , t} ∪

∪{(pi
j , sj)|i = 0, . . . , m; j = 1, . . . , t}.

By the proxy axiom applied a total of m + 1 times for {ui|i = 0, . . . , m},
v1 �F

G2
v2.

Note that G2 is exactly G′ = Delete(G, v, {(s1, {pi
1|i = 0, . . .m}), . . . (st, {pi

t|i =
0, . . .m})}), so v1 �

F
G′ v2 as required.

We conclude with a third property which is also satisfied by the axioms.
Notation: Let V be a vertex set and let G = (V, E) ∈ GV be a graph. Let
S(v) = {s0

1, s
0
2, . . . , s

0
t}. We will use Duplicate(G, v, m) to denote the graph

G′ = (V ′, E′) defined by:

V ′ = V ∪ {si
j|i = 1, . . . , m− 1; j = 1, . . . t}

E′ = E ∪ {(v, si
j)|i = 1, . . . , m− 1; j = 1, . . . t} ∪

∪{(si
j , u)|i = 1, . . . , m− 1; j = 1, . . . t; u ∈ SG(s0

j)}.

A sketch of the Duplicate operator can be found in Figure 2.3. In this figure
we see that a links to two nodes, each of which has its own successor set. Then,
each node in the successor set of a is duplicated by a factor of three, i.e. for
each node a′ in the successor set of a we add two new nodes to the successor
set of a, each of which with the same successor set as a′. The following lemma
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Figure 2.3: Sketch of Duplicate(G, a, 3)

says that when our axioms are satisfied then this operator does not change the
relative ranking of the pages, excluding the ones which have been duplicated.
The proof appears in the Appendix.

Definition 2.12: Let F be a ranking system. F has the edge duplication
property if for every vertex set V , for all vertices v, v1, v2 ∈ V , for every m ∈ N,
and for every graph G = (V, E) ∈ GV : Let S(v) = {s0

1, s
0
2, . . . , s

0
t}, and let

G′ = Duplicate(G, v, m). Then, v1 �F
G v2 iff v1 �F

G′ v2.

Lemma 2.4: Let F be a ranking system that satisfies isomorphism, vote by
committee, collapsing, and proxy. Then, F has the edge duplication property.

Proof: Let V be a vertex set, let v, v1, v2 ∈ V be vertices, and let m′ ∈ N be
a natural number. Assume m′ > 1 (otherwise G′ = G), and let m = m′−1. Let
G = (V, E) ∈ GV be a graph. Assume v1 �

F
G v2, and let S(v) = {s0

1, s
0
2, . . . , s

0
t}.

• Let G1 = (V1, E1), where

V1 = V ∪ {ui
j|i = 0, . . . , m; j = 1, . . . t}

E1 = E \ {(v, x)|x ∈ SG(v)} ∪ {(v, ui
j)|i = 0, . . . , m; j = 1, . . . t} ∪

∪{(ui
j , x)|x ∈ SG(v), i = 0, . . . , m; j = 1, . . . t}.

By the vote by committee axiom with parameter (m + 1)t, v1 �F
G1

v2.

• Let G2 = (V2, E2), where

V2 = V1 ∪ {w
i
j |i = 0, . . . , m; j = 1, . . . t}

E2 = E1 \ {(v, ui
j)|i = 0, . . . , m; j = 1, . . . t} ∪

∪{(v, wi
j), (w

i
j , u

i
j)|i = 0, . . . , m; j = 1, . . . t}

By the vote by committee axiom (applied (m− 1)t times) with parameter
1, v1 �F

G2
v2.
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• Let G3 = (V3, E3), where

V3 = V2 \ {u
i
j|i = 0, . . . , m; j = 2, . . . , t}

E3 = E2 \ {(u
i
j , x|x ∈ SG(v); i = 0, . . . , m; j = 2, . . . , t} \

\{(wi
j, u

i
j)|i = 0, . . . , m; j = 2, . . . , t} ∪

∪{(wi
j , u

i
1)|i = 0, . . . , m; j = 2, . . . , t}.

By the collapsing axiom applied a total of (m+1)(t−1) times for {(ui
j−1, u

i
j)|j =

2, . . . , t; i = 0, . . .m}, v1 �F
G3

v2.

• Let G4 = (V4, E4), where

V4 = V3 \ {u
i
1|i = 0, . . . , m}

E4 = E3 \ {(u
i
1, x)|i = 0, . . . , m; x ∈ SG(v)} \

\{(wi
j, u

i
1)|i = 0, . . . , m; j = 1, . . . , t} ∪

∪{(wi
j , s

0
j)|i = 0, . . . , m; j = 1, . . . , t}.

By the isomorphism axiom, wi
j ≃ wi

k for all i ∈ {0, . . . , m} and j, k ∈

{1, . . . , t}. By the proxy axiom (applied a total of m+1 times for {ui
1|i =

0, . . . m}), v1 �
F
G4

v2.

• Let G5 = (V5, E5), where

V5 = V4 ∪ {s
i
j |i = 1, . . . , m; j = 1, . . . , t}

E5 = E4 \ {(w
i
j , s

0
j)|i = 1, . . . , m; j = 1, . . . , t} ∪

∪{(wi
j , s

i
j)|i = 1, . . . , m; j = 1, . . . , t} ∪

∪{(si
j , x)|x ∈ S(s0

j); i = 1, . . . , m}.

By the collapsing axiom applied in the reverse direction a total of m · t
times for {(si−1

j , si
j)|i = 1, . . . , m; j = 1, . . . , t}, v1 �F

G5
v2.

• Let G6 = (V6, E6), where

V6 = V5 \ {w
i
j |i = 0, . . . , m; j = 1, . . . t}

E6 = E5 \ {(v, wi
j), (w

i
j , s

i
j)|i = 0, . . . , m; j = 1, . . . t} ∪

∪{(v, si
j)|i = 0, . . . , m; j = 1, . . . t}.

By the vote by committee axiom applied in the reverse direction a total
of (m + 1) · t times for {wi

j |i = 0, . . . , m; j = 1, . . . t}, v1 �F
G6

v2.

Note that G6 is exactly Duplicate(G, v, m + 1) = Duplicate(G, v, m′) = G′,
so v1 �F

G′ v2 as required.
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2.5 Completeness

We are now ready to show that that our axioms fully characterize the PageRank
ranking system. We can prove:

Theorem 2.5: A ranking system F satisfies isomorphism, self edge, vote
by committee, collapsing, and proxy if and only if F is the PageRank ranking
system.

Given Proposition 2.1, it is enough to prove the following:

Proposition 2.6: Let F1 and F2 be a ranking systems that have the weak
deletion, strong deletion, and edge duplication properties, and satisfy the self
edge and isomorphism axioms. Then, F1 and F2 are the same ranking system
(notation: F1 ≡ F2).

We shall now describe a sketch of the proof. The basic idea of the proof
is to begin with a graph G = (V, E) and two arbitrary vertices a and b in
V , and manipulate G by applying Del(·, ·), Delete(·, ·, ·), Duplicate(·, ·, ·),
and SelfEdge(·, ·) to achieve a new graph Gn for which F1 and F2 rank a
and b the same as in G (Formally a �F

Gn
b ⇔ a �F

G b for F ∈ {F1, F2}).

Afterwards, Gn is further manipulated to generate Gn+δ for which a ≃F
Gn+δ

b,

but a �F
Gn

b⇒ b 6�F
Gn+δ

a for F ∈ {F1, F2} or vice versa (with a and b replaced).

So, we conclude that a �F1

Gn
b⇔ a �F2

Gn
b, and thus a �F1

G b⇔ a �F2

G b.
The steps required to generate Gn from G, and then Gn+δ from Gn may be

described algorithmically. These steps are illustrated in Figure 2.4:

1. Add a new vertex on every edge on the initial graph (Figure 2.4b), thus
splitting each original edge into two new edges. These vertices do not
change the relative ranking of a and b due to the weak deletion property.

2. If no original vertices exist in the graph except a and b, go to step 8.
Otherwise, select an original vertex x /∈ {a, b} (in Figure 2.4 we start by
selecting c).

3. Remove all vertices that are both predecessors and successors of x and
all edges connected to these vertices. All of these are new vertices, which
have an in-degree and out-degree of 1.

Basically, this step removes all self-edges of x (with an added vertex on
them). These deletions do not change the relative ranking of a and b due
to the weak deletion property and the self edge axiom.

4. Duplicate all predecessors of predecessors of x by x’s out-degree. This
does not change the relative ranking of a and b due to the duplication
property (Figure 2.4c).
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(f) After deletion of d
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(g) After duplication of b

a

b

(h) Final isomorphic graph

Conclusion: a 6� b.

Figure 2.4: Example run of the completeness algorithm
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Note that all the vertices we duplicate are original ones (possibly a or b,
but not x), so to add additional in-between vertices before x, making the
in-degree of x a multiple of its out degree, split into groups of isomorphic,
and thus equally ranked, vertices.

5. Delete x using Delete(G, x) (Figure 2.4d).

6. Delete the successors of x (new vertices) to retain the state of one new
vertex between each pair of original vertices (Figure 2.4e). These deletions
do not change the relative ranking of a and b due to the strong deletion
property.

7. Go to step 2 (Figure 2.4f illustrates the second iteration, where d is se-
lected).

8. Now, a and b are the only original vertices remaining in the graph, and
the graph could be defined by the number of vertices (with edges) between
a and b, between b and a, between a and a, and between b and b.

9. Duplicate a by the number of edges with vertices from b to a and vice
versa, thus equalizing the number of edges with vertices from a to b the
number from b to a (Figure 2.4g). This relative ranking between a and b
is retained due to the duplication property.

10. Now, add self edges (with vertices) to the vertex v ∈ {a, b} with fewer
self-edges (with vertices), until the number of self edges is equal between
a and b (Figure 2.4h). Let v′ = {a, b} \ {v}. By the self edge axiom and
the weak deletion property, if v′ �F v before adding the self edges, then
now v 6�F v′ for F ∈ {F1, F2}.

11. By the isomorphism axiom, in this graph, a ≃ b, therefore in the graph
after step 9, v′ �F v for F ∈ {F1, F2}. But as the relative ranking of a
and b did not change until step 10, v′ �F

G v for F ∈ {F1, F2}, and thus
a �F1

G b⇔ a �F2

G b.

We shall now present the complete and general proof in full detail.
Proof: Let V be a vertex set and let G = (V, E) ∈ GV be some graph. If
|V | = 1, then there exists only one ordering on V , so trivially�F1

G ≡�
F2

G . Assume

V = {v1, v2, . . . , vn}. We will show that v1 �
F1

G v2 ⇔ v1 �
F2

G v2. Without loss
of generality we can show only one direction. Let F ∈ {F1, F2}.

Let G2 = (V2, E2) be the following graph (G with a vertex added on every
edge):

V2 = V ∪ {ui,j|(vi, vj) ∈ E}

E2 = {(vi, ui,j), (ui,j , vj)|(vi, vj) ∈ E}.

Note that
G = Del(Del(· · ·Del(G2, u1) · · · , u|E|−1), u|E|)
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where {u1, . . . , u|E|} = {ui,j|(vi, vj) ∈ E} and that G2 satisfies the conditions
of weak deletion property for the vertices {ui,j|(vi, vj) ∈ E}, thus v1 �F

G v2 ⇔
v1 �

F
G2

v2.
For all strongly connected directed graphs G′ such that for all v ∈ V and

for all v′ ∈ PG′(v) ∪ SG′(v) s.t. |SG′(v′)| = |PG′(v′)| = 1, let us denote for all
v ∈ V : S2

G(v) = {v′ ∈ V : x ∈ SG′(v), SG′(x) = {v′}} and P 2
G(v) = {v′ ∈ V :

x ∈ PG′(v), PG′ (x) = {v′}}.
For, i = 3, . . . , n, we recursively define Gi as follows: Let {q1, q2, . . . , qm} =

SGi−1
(vi) ∩ PGi−1

(vi). Let G′
i−1 be the graph

G′
i−1 = SelfEdge−1(Del(· · ·SelfEdge−1(Del(Gi−1, q1), vi) · · · , qm), vi).

Now, let P 2
G′

i−1
(v) = {p1, . . . , pk}. and let SG′

i−1
(vi) = {s1, s2, . . . , sl}. Let G′′

i−1

be defined as:

G′′
i−1 = Duplicate(· · ·Duplicate(G′

i−1, p1, l) · · · , pk, l)

Let {pi
j |i = 1, . . . , l} = SG′′

i−1
(pj) be the duplicated successors of pj for j =

1 . . . k. Now let Gi = (Vi, Ei) be defined as:

G′′′
i−1 = Delete(G′

i−1, vi, {(s1, {p
1
j |j = 1, . . . , k}), . . . , (sl, {p

l
j|j = 1, . . . , k})})

Gi = Delete(· · ·Delete(Delete(G′′′
i−1, s1), s2) · · · , sl).

By the edge duplication and strong deletion properties and the self edge axiom,
v1 �F

Gi
v2 for all i ∈ {2, . . . , n}.

We will now prove that for all i ∈ {2, . . . , n} and for all v ∈ Vi\V : |PGi
(v)| =

|SGi
(v)| = 1 and PGi

(v)∪SGi
(v) ⊆ V and for all v ∈ V : (PGi

(v)∪SGi
(v))∩V =

∅. Proof by induction: G2 trivially satisfies both requirements. Now assume
that for all v ∈ Vi \ V : |PGi

(v)| = |SGi
(v)| = 1 and PGi

(v) ∪ SGi
(v) ⊆ V and

for all v ∈ V : (PGi
(v) ∪ SGi

(v)) ∩ V = ∅. Clearly, G′
i satisfies the conditions,

because we only removed elements from Vi, and not changed the predecessors
or successors of any v ∈ V \ Vi. Also, all edges added between vertices in V
were removed. The Duplicate(·, ·, ·) operation adds vertices with in-degree 1
and out-degree equal to the out degree of the successors of v, which is also 1.
So, the new vertices added in G′′

i satisfy the conditions. Furthermore, no edges
were added between elements of V . Thus, G′′

i satisfies the conditions. In Gi+1,
we removed v and all its successors. The predecessors of v in G′′

i keep their out-
degree 1, and point to elements of S2

G′′
i

(v), and thus still meet the requirements.

Other elements of V ′′
i \ V have not changed their edges, and thus still meet the

requirements. Still, no edges were added between elements of V . Therefore, for
all v ∈ Vi+1 \ V : |PGi+1

(v)| = |SGi+1
(v)| = 1 and PGi+1

(v) ∪ SGi+1
(v) ⊆ V and

for all v ∈ V : (PGi+1
(v) ∪ SGi+1

(v)) ∩ V = ∅.
Specifically, this is true for Gn = (Vn, En). Furthermore, Vn ∩ V = {v1, v2}.

Thus, Gn could be described as:

Vn = {v1, v2} ∪ {v
i
jk|j, k ∈ {1, 2}; i = 1, . . . , njk}

En = {(vj , v
i
jk), (vi

jk , vk)|j, k ∈ {1, 2}; i = 1, . . . , njk}.
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The only parameters which affect the structure of Gn are njk (j, k ∈ {1, 2}), so
we can denote Gn = G[n11, n12, n21, n22]. Now, let

G′
n = Duplicate(Duplicate(Gn, v1, n21), v2, n12)

= G[n21n11, n21n12, n12n21, n12n22].

By the edge duplication property, v1 �F
G v2 ⇔ v1 �F

G′
n

v2.
Consider the following 3 cases:

• If n21n11 = n12n22, then the graph is isomorphic to itself, replacing v1 with
v2 and vi

jk with vi
kj . In this case, by the isomorphism axiom, v1 ≃F

G′
n

v2

and thus v1 ≃F
G v2, and therefore v1 �F

G v2 for F ∈ {F1, F2}.

• If n21n11 > n12n22, let δ = n21n11 − n12n22 > 0. Now we define for
i = n + 1, . . . n + δ:

G′
i = SelfEdge(Gi−1, v2)

Gi = G[n21n11, n21n12, n12n21, n12n22 + i− n].

Note that G′
i = Del(Gi, v

n12n22+i−n
22 ). Thus, by the self-edge axiom

and the weak deletion property, v1 �F
G v2 ⇒ v2 6�F

Gn+δ
v1. Now, note

that Gn+δ = G[n21n11, n12n21, n12n21, n21n11], thus as before, by iso-
morphism, v1 ≃F

Gn+δ
v2. Therefore we conclude that v1 6�F

G v2 for F ∈

{F1, F2}.

• If n21n11 < n12n22, we can similarly conclude that v2 6�F
G v1, and therefore

v1 �F
G v2 for F ∈ {F1, F2}.

We have shown that for every vertex set V , for all G = (V, E) ∈ GV , and for
every v1, v2 ∈ V : v1 �

F1

G v2 ⇔ v1 �
F2

G v2. Thus, F1 ≡ F2, concluding the proof
of the proposition.

2.6 Discussion

Representation theorems are the formal mathematical tool for the justification
of decision and choice rules. We have already mentioned the formal theory of
social choice, but representation theorems also lay mathematical foundations
for other branches of decision and choice theory. For example, the crowning
achievement of the theory of (single-agent) choice is Savage’s representation
theorem (1954), which provides sound and complete axiomatization for the ex-
pected utility maximization decision criterion. Here also one looks for ordinal
requirements, which do not refer to numeric computations, under which an agent
can be viewed as an expected utility maximizer. This is similar to our work,
where we considered only graph-theoretic ordinal axioms to justify the numeric
computations done by PageRank.

Although PageRank is probably the most popular page ranking procedure,
it may be interesting to attempt and provide axiomatization for other page
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ranking procedures, such as Hubs and Authorities Kleinberg (1999). Once such
axiomatization is found the different axiomatic systems can be compared as a
basis for rigorous evaluation.

We believe that the problem of ranking of Internet pages is indeed a fun-
damental problem. We see the fact that this central problem is a new type
of social choice problem as especially intriguing. In order to provide mathe-
matical foundations to page ranking systems we therefore need to search for
basic representation theorems that will provide ordinal, graph theoretic axiom-
atizations for basic heuristics and approaches for page ranking. Representation
theorems isolate the ”essence” of particular ranking systems, and provide means
for the evaluation (and potentially comparison) of such systems. In this chap-
ter we initiated work on this topic by introducing such representation theorem
for PageRank. We hope that others will join us in exploring the connections
between page ranking algorithms and the mathematical theory of social choice.
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Chapter 3

The Normative Approach

3.1 Introduction

In this chapter we provide an extensive normative study of ranking systems. We
introduce two fundamental axioms. One of these axioms captures the transitive
effects of voting in ranking systems, and the other adapts Arrow’s well-known
independence of irrelevant alternatives(IIA) axiom to the context of ranking
systems. Surprisingly, we find that no general ranking system can simultane-
ously satisfy these two axioms! We further show that our impossibility result
holds under various restrictions on the class of ranking problems considered.
On the other hand, we show a positive result for the case when the transitivity
axiom is relaxed. This new ranking system is practical and useful. Finally, we
use our IIA axiom to present a positive result in the form of a representation
theorem for the well-known approval voting ranking system, which ranks the
agents based on the number of votes received. This axiomatization shows that
when ignoring transitive effects, there is only one ranking system that satisfies
our IIA axiom.

This chapter is structured as follows: Sections 3.2 and 3.3 introduce our
axioms of Transitivity and Ranked Independence of Irrelevant Alternatives re-
spectively. Our main impossibility result is presented in Section 3.4, and further
strengthened in Section 3.5. Our main positive result, in the form of a ranking
system satisfying a weaker version of transitivity is given in Section 3.6. Fi-
nally, an axiomatization for the Approval Voting ranking system in presented
in Section 3.7.

3.2 Transitivity

A basic property one would assume of ranking systems is that if an agent a’s
voters are ranked higher than those of agent b, then agent a should be ranked
higher than agent b. This notion is formally captured below:
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cd

Figure 3.1: Example of Transitivity

Definition 3.1: Let F be a ranking system. We say that F satisfies strong
transitivity if for all graphs G = (V, E) and for all vertices v1, v2 ∈ V : Assume
there is a 1-1 mapping f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v).
Further assume that either f is not onto or for some v ∈ P (v1): v ≺ f(v).
Then, v1 ≺ v2.

Example 3.1: Consider the graph G in Figure 3.1 and any ranking system F
that satisfies strong transitivity. F must rank vertex d below all other vertices, as
it has no predecessors, unlike all other vertices. If we assume that a �F

G b, then
by strong transitivity we must conclude that b �F

G c as well. But then we must
conclude that b ≺F

G a (as b’s predecessor a is ranked lower than a’s predecessor
c, and a has an additional predecessor d), which leads to a contradiction. Given
b ≺F

G a, again by transitivity, we must conclude that c ≺F
G b, so the only ranking

for the graph G that satisfies strong transitivity is d ≺F
G c ≺F

G b ≺F
G a.

Tennenholtz (2004) has suggested an algorithm that defines a ranking system
that satisfies strong transitivity by iteratively refining an ordering of the vertices.

Note that the PageRank ranking system defined in Section 2.2 above does
not satisfy strong transitivity. This is due to the fact that PageRank reduces
the weight of links (or votes) from nodes which have a higher out-degree. Thus,
assuming Yahoo! and Microsoft are equally ranked, a link from Yahoo! means
less than a link from Microsoft, because Yahoo! links to more external pages
than does Microsoft. Noting this fact, we can weaken the definition of tran-
sitivity to require that the predecessors of the compared agents have an equal
out-degree:

Definition 3.2: Let F be a ranking system. We say that F satisfies weak
transitivity if for all graphs G = (V, E) and for all vertices v1, v2 ∈ V : Assume
there is a 1-1 mapping f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1): v � f(v)
and |S(v)| = |S(f(v))|. Further assume that either f is not onto or for some
v ∈ P (v1): v ≺ f(v). Then, v1 ≺ v2.

Indeed, our idealized version of the PageRank ranking system satisfies this
weakened version of transitivity. Furthermore, the result in the example above
does not change when we consider weak transitivity in place of strong transi-
tivity.
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Figure 3.2: Example of Ranked Independence of Irrelevant Alternatives

3.3 Ranked Independence of Irrelevant Alterna-

tives

A standard assumption in social choice settings is that a pair of agents’ relative
rank should only depend on (some property of) their immediate predecessors.
Such axioms are usually called independence of irrelevant alternatives(IIA) ax-
ioms.

In our setting, we require the relative ranking of two agents must only depend
on the pairwise comparisons of the ranks of their predecessors, and not on their
identity or cardinal value. Our IIA axiom, called ranked IIA, differs from the
one suggested by Arrow (1963) in the fact that we do not consider the identity
of the voters, but rather their relative rank.

Example 3.2: Consider the graph in Figure 3.2. Furthermore, assume a
ranking system F has ranked the vertices of this graph as following: a ≃ b ≺
c ≃ d ≺ e ≃ f . Now look at the comparison between c and d. c’s predecessors,
a and b, are both ranked equally, and both ranked lower than d’s predecessor f .
This is also true when considering e and f – e’s predecessors c and d are both
ranked equally, and both ranked lower than f ’s predecessor e. Therefore, if we
agree with ranked IIA, the relation between c and d, and the relation between
e and f must be the same, which indeed it is – both c ≃ d and e ≃ f . However,
this same situation also occurs when comparing c and f (c’s predecessors a and
b are equally ranked and ranked lower than f ’s predecessor e), but in this case
c ≺ f . So, we can conclude that the ranking system F which produced these
rankings does not satisfy ranked IIA.

To formally define this condition, one must consider all possibilities of com-
paring two nodes in a graph based only on ordinal comparisons of their prede-
cessors. We call these possibilities comparison profiles:

Definition 3.3: A comparison profile is a pair 〈a,b〉 where a = (a1, . . . , an),
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b = (b1, . . . , bm), a1, . . . , an, b1, . . . , bm ∈ N, a1 ≤ a2 ≤ · · · ≤ an, and b1 ≤ b2 ≤
· · · ≤ bm. Let P be the set of all such profiles.

A ranking system F , a graph G = (V, E), and a pair of vertices v1, v2 ∈ V
are said to satisfy such a comparison profile 〈a,b〉 if there exist 1-1 mappings
f1 : P (v1) 7→ {1 . . . n} and f2 : P (v2) 7→ {1 . . .m} such that given f : ({1} ×
P (v1)) ∪ ({2} × P (v2)) 7→ N defined as:

f(1, v) = af1(v)

f(2, u) = bf2(u),

f(i, x) ≤ f(j, y)⇔ x �F
G y for all (i, x), (j, y) ∈ ({1} × P (v1)) ∪ ({2} × P (v2)).

Example 3.2 (cont.): In the example considered above, all of the pairs (c, d),
(c, f), and (e, f) satisfy the comparison profile 〈(1, 1), (2)〉.

We now require that for every such profile the ranking system ranks the
nodes consistently:

Definition 3.4: Let F be a ranking system. We say that F satisfies ranked
independence of irrelevant alternatives (RIIA) if there exists a mapping f :
P 7→ {0, 1} such that for every graph G = (V, E) and for every pair of vertices
v1, v2 ∈ V and for every comparison profile p ∈ P that v1 and v2 satisfy,
v1 �F

G v2 ⇔ f(p) = 1.

As RIIA is an independence property, the ranking system F=, that ranks all
agents equally, satisfies RIIA. A more interesting ranking system that satisfies
RIIA is the approval voting ranking system, defined below.

Definition 3.5: The approval voting ranking system AV is the ranking system
defined by:

v1 �
AV
G v2 ⇔ |P (v1)| ≤ |P (v2)|

A full axiomatization of the approval voting ranking system is given in sec-
tion 3.7. Another ranking system satisfying RIIA will be presented in section
3.6.

3.4 Impossibility

Our main result illustrates the impossibility of satisfying (weak) transitivity and
RIIA simultaneously.

Theorem 3.1: There is no general ranking system that satisfies weak transi-
tivity and RIIA.
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Figure 3.3: Graphs for the proof of Theorem 3.1

Proof: Assume for contradiction that there exists a ranking system F that
satisfies weak transitivity and RIIA. Consider first the graph G1 in Figure 3.3(a).
First, note that a1 and a2 satisfy some comparison profile pa = ((x, y), (x, y))
because they have identical predecessors. Thus, by RIIA, a1 �F

G1
a2 ⇔ a2 �F

G1

a1, and therefore a1 ≃F
G1

a2. By weak transitivity, it is easy to see that c ≺F
G1

a1

and c ≺F
G1

b. If we assume b �F
G1

a1, then by weak transitivity, a1 ≺F
G1

b which

contradicts our assumption. So we conclude that c ≺F
G1

a1 ≺F
G1

b.

Now consider the graph G2 in Figure 3.3(b). Again, by RIIA, a1 ≃F
G2

a2.

By weak transitivity, it is easy to see that a1 ≺F
G2

c and b ≺F
G2

c. If we assume

a1 �F
G2

b, then by weak transitivity, b ≺F
G2

a1 which contradicts our assumption.

So we conclude that b ≺F
G2

a1 ≺
F
G2

c.

Consider the comparison profile p = ((1, 3), (2, 2)). Given F , a1 and b satisfy
p in G1 (because c ≺F

G1
a1 ≃F

G1
a2 ≺F

G1
b) and in G2 (because b ≺F

G2
a1 ≃F

G2

a2 ≺F
G2

c). Thus, by RIIA, a1 �F
G1

b ⇔ a1 �F
G2

b, which is a contradiction to

the fact that a1 ≺F
G1

b but b ≺F
G2

a1.

This result is quite a surprise, as it means that every reasonable definition of a
ranking system must either consider cardinal values for nodes and/or edges (like
Page et al. (1998)), or operate ordinally on a global scale (like the axiomatization
presented in Chapter 2).
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3.5 Relaxing Generality

A hidden assumption in our impossibility result is the fact that we considered
only general ranking systems. In this section we analyze several special classes
of graphs that relate to common ranking scenarios.

3.5.1 Small Graphs

A natural limitation on a preference graph is a cap on the number of vertices
(agents) that participate in the ranking. Indeed, when there are three or less
agents involved in the ranking, strong transitivity and RIIA can be simulta-
neously satisfied. An appropriate ranking algorithm for this case is the one
suggested in Tennenholtz (2004).

However, when there are four or more agents, strong transitivity and RIIA
cannot be simultaneously satisfied (the proof is similar to that of Theorem 3.1,
but with vertex d removed in both graphs). When five or more agents are
involved, even weak transitivity and RIIA cannot be simultaneously satisfied,
as implied by the proof of Theorem 3.1.

3.5.2 Single Vote Setting

Another natural limitation on the domain of graphs that we might be inter-
ested in is the restriction of each agent(vertex) to exactly one vote(successor).
For example, in the voting paradigm this could be viewed as a setting where
every agent votes for exactly one agent. The following proposition shows that
even in this simple setting weak transitivity and RIIA cannot be simultaneously
satisfied.

Proposition 3.2: Let G1 be the set of all graphs G = (V, E) such that
|S(v)| = 1 for all v ∈ V . There is no partial ranking system over G1 that
satisfies weak transitivity and RIIA.

Proof: Assume for contradiction that there is a partial ranking system F
over G1 that satisfies weak transitivity and RIIA. Let f : P 7→ {0, 1} be the
mapping from the definition of RIIA for F .

Let G1 ∈ G1 be the graph in Figure 3.4a. By weak transitivity, x1 ≃F
G1

x2 ≺F
G1

b ≺F
G1

a. (a, b) satisfies the comparison profile 〈(1, 1, 2), (3)〉, so we must
have f〈(1, 1, 2), (3)〉 = 0. Now let G2 ∈ G1 be the graph in Figure 3.4b. By
weak transitivity x1 ≃F

G2
x2 ≺F

G2
y ≺F

G2
a ≺F

G2
b. (b, a) satisfies the comparison

profile 〈(2, 3), (1, 4)〉, so we must have f〈(2, 3), (1, 4)〉 = 0.
Let G3 ∈ G1 be the graph in Figure 3.4c. By weak transitivity it is easy

to see that x1 ≃
F
G3
· · · ≃F

G3
x7 ≺

F
G3

y1 ≃
F
G3

y2 ≺
F
G3

c ≺F
G3

d. Furthermore,

by weak transitivity we conclude that a ≺F
G3

b and a′ ≺F
G3

b′ from c ≺F
G3

d;

and y1 ≺F
G3

b from x3 ≺F
G3

d. Now consider the vertex pair (c, b′). We have

shown that x1 ≃F
G3

x2 ≺F
G3

y1 ≺F
G3

b. So, (c, b′) satisfies the comparison profile
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(c) Graph G3

Figure 3.4: Graphs for the proof of proposition 3.2

〈(1, 1, 2), (3)〉, thus by RIIA b′ ≺F
G3

c. Now consider the vertex pair (b, a).

We have already shown that a′ ≺F
G3

b′ ≺F
G3

c ≺F
G3

d. So, (a, b) satisfies the

comparison profile 〈(2, 3), (1, 4)〉, thus by RIIA b ≺F
G3

a. However, we have

already shown that a ≺F
G3

b – a contradiction. Thus, the ranking system F
cannot exist.

3.5.3 Bipartite Setting

In the world of reputation systems (Resnick et al., 2000), we frequently observe
a distinction between two types of agents such that each type of agent only
ranks agents of the other type. For example buyers only interact with sellers
and vice versa. This type of limitation is captured by requiring the preference
graphs to be bipartite, as defined below.

Definition 3.6: A graph G = (V, E) is called bipartite if there exist V1, V2
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such that V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ (V1 × V2) ∪ (V2 × V1). Let GB be
the set of all bipartite graphs.

Our impossibility result extends to the limited domain of bipartite graphs.

Proposition 3.3: There is no partial ranking system over GB ∩ G1 that
satisfies weak transitivity and RIIA.

Proof: The proof is exactly the same as for G1, considering that all graphs
in Figure 3.4 are bipartite.

3.5.4 Strongly Connected Graphs

The well-known PageRank ranking system is (ideally) defined on the set of
strongly connected graphs. That is, the set of graphs where there exists a
directed path between any two vertices.

Let us denote the set of all strongly connected graphs by GSC . The following
proposition extends our impossibility result to strongly connected graphs.

Proposition 3.4: There is no partial ranking system over GSC that satisfies
weak transitivity and RIIA.

Proof: The proof is similar to the proof of Theorem 3.1, but with an ad-
ditional vertex e in both graphs that has edges to and from all other vertices.

3.6 Relaxing Transitivity

Our impossibility result becomes a possibility result when we relax the transi-
tivity requirement. Instead of comparing only vertices with similar out-degree
as in the weak transitivity axiom above, we weaken the requirement for strict
preference to hold only in the case where the matching predecessors of one agent
are preferred to the all predecessors of the other.

Definition 3.7: Let F be a ranking system. We say that F satisfies strong
quasi-transitivity if for all graphs G = (V, E) and for all vertices v1, v2 ∈ V :
Assume there is a 1-1 mapping f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1):v � f(v).
Then, v1 � v2. And, if P (v1) 6= ∅ and for all v ∈ P (v1): v ≺ f(v), then v1 ≺ v2.

When we only require strong quasi-transitivity and RIIA, we find an interest-
ing family of ranking systems that rank the agents according to their in-degree,
breaking ties by comparing the ranks of the strongest predecessors. These re-
cursive in-degree systems work by assigning a rational value for every vertex,
that is based on the following idea: rank first based on the in-degree. If there
is a tie, rank based on the strongest predecessor’s value, and so on. Loops are
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a

0

b

0.1

h

0.3112123

i

0.3212

c

0.2321

d

0.1232

e

0.2123
f

0.12123

g

0.112123

Figure 3.5: Values assigned by the recursive in-degree algorithm

ranked as periodical rational numbers in base (n + 1) with a period the length
of the loop, in the case that continuing on the loop is the maximally ranked
option.

The recursive in-degree systems differ in the way different in-degrees are
compared. Any monotone increasing mapping of the in-degrees could be used
for the initial ranking. To show these systems are well-defined and that the
values can be calculated we define these systems algorithmically as follows:

Definition 3.8: Let r : N 7→ N be a monotone nondecreasing function such
that r(i) ≤ i for all i ∈ N. The recursive in-degree ranking system with rank
function r is defined as follows: Given a graph G = (V, E),

v1 �
RIDr

G v2 ⇔ valuer(v1) ≤ valuer(v2),

where value is defined as:

valuer(v) = max
a∈Path(v)

vpr(a), (3.1)

where the maximum is over the set of almost-simple reverse paths to v:

Path(v) = { (v = a1, a2, . . . , am)|

(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple}

and valuation the function vpr : V ∗ 7→ Q is defined as:

vpr(a1, a2, . . . , am) =
1

n + 1







r(|P (a1)|)+





0 m = 1
vpr(a2, . . . , am, a2) a1 = am ∧m > 1
vpr(a2, . . . , am) Otherwise.







(3.2)

Note that vpr(a1, a2, . . . , am) is infinitely recursive in the case when a1 =
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am ∧m > 1. For computation sake we can redefine this case finitely as:

vpr(a1, . . . , am, a1) =

∞∑

i=0

1

(n + 1)mi

m∑

j=1

r(|P (aj)|)

(n + 1)j
=

=
(n + 1)m

(n + 1)m − 1
vpr(a1, . . . , am).

Example 3.3 : An example of the values assigned for a particular graph
when r is the identity function is given in Figure 3.5. As n = 9, the values are
decimal. Note that the loop (c, d, e, i) generates a periodical decimal valuer(c) =
vpr(c, i, e, d, c) = 0.2321 by the infinite recursion in (3.2).

The recursive in-degree system satisfies an interesting fixed point property
that can be used to facilitate its efficient computation:

Proposition 3.5: Let r : N 7→ N be a monotone nondecreasing function such
that r(i) ≤ i for all i ∈ N and define r(0) = 0. The value function for the
recursive in-degree ranking system satisfies:

valuer(v) =

{
1

n+1

[
r(|P (v)|) + maxp∈P (v) valuer(p)

]
P (v) 6= ∅

0 Otherwise
(3.3)

Proof: Denote Path′(p, v) as the set of almost-simple directed paths to p
which do not pass through v unless immediately looping back to p:

Path′(p, v) = { (p = a1, a2, . . . , am)|

(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple ∧

∀i ∈ {1, . . . , m− 2, m} : ai 6= v ∧

am−1 = v ⇔ am = p}.

Let v ∈ V be some vertex. Then,

valuer(v) = max
a∈Path(v)

vpr(a) =

=
1

n + 1





r(|P (v)|) + max(v=a1,...,am)∈Path(v){
vpr(a2, . . . , am, a2) a1 = am ∧m > 1
vpr(a2, . . . , am) Otherwise.



 =(3.4)

=
1

n + 1

[

r(|P (v)|) + max
p∈P (v)

max
a∈Path′(p,v)

vpr(a)

]

= (3.5)

=
1

n + 1

[

r(|P (v)|) + max
p∈P (v)

max
a∈Path(p)

vpr(a)

]

=

=
1

n + 1

[

r(|P (v)|) + max
p∈P (v)

valuer(p)

]

.
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v

x

p’ p

a = (p, x, v, p′, x)

b = (p, x, v, p)

c = (p′, x, v, p′)

Figure 3.6: Example paths from the proof of Proposition 3.6.

Note that (3.4) is equal to zero 0 if P (v) = ∅, as required. To show that the
equality (3.5) holds, assume for contradiction that there exists p ∈ P (v) and
a ∈ Path(p) such that

vpr(a) > max
p′∈P (v)

max
a′∈Path′(p′,v)

vpr(a
′). (3.6)

From a ∈ Path(p) \ Path′(p, v), we know that ai = v for some i ∈ {1, . . . , m}.
Assume wlog that i is minimal. Let b denote the path (p = a1, a2, . . . , ai, p) and
let c denote the path (p′ = ai+1, . . . , am, aj+1, . . . , ai+1) if am = aj for some
j < i or (p′ = ai+1, . . . , am) otherwise. An example of such paths is given in
Figure 3.6. Note that b ∈ Path′(p, v) and c ∈ Path′(p′, v), where p, p′ ∈ P (v).
Now, note that

vpr(a) =
(n + 1)j − 1

(n + 1)j
vpr(b) +

1

(n + 1)j
vpr(c),

and thus vpr(a) must be between vpr(b) and vpr(c), in contradiction to as-
sumption (3.6).

We shall now show this ranking system does in fact satisfy RIIA and our
weakened version of transitivity.

Proposition 3.6: Let r : N 7→ N be a monotone nondecreasing function such
that r(i) ≤ i for all i ∈ N and define r(0) = 0. The recursive in-degree ranking
system with rank function r satisfies strong quasi-transitivity and RIIA.

Proof: The fixed point result in Proposition 3.5 further implies 0 ≤ valuer(v) <
1, and thus vertices are ordered first by r(|P (v)|) and then by maxp∈P (v) valuer(p).
Therefore, every comparison profile 〈a,b〉 where a = (a1, . . . , ak), b = (b1, . . . , bl)
is ranked as follows:

f〈a,b〉 = 1 ⇔ (k = 0) ∨ (r(k) < r(l)) ∨ [(r(k) = r(l)) ∧ (ak ≤ bl)] .
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Algorithm 1 Efficient algorithm for recursive in-degree

1. Initialize valuer(v) ← 1
n+1r(|P (v)|) for all v ∈ V , where r(0) is assumed

to be 0.

2. Let V ′ be the set of vertices with incoming edges.

3. Iterate |V | times:

(a) For every vertex v ∈ V ′:

i. Update valuer(v)← 1
n+1

[
r(|P (v)|) + maxp∈P (v) valuer(p)

]
.

4. Sort V ′ by valuer(·).

5. Output all vertices in V \ V ′ as weakest, followed by the vertices in V ′

sorted by valuer(·) in ascending order.

This ranking of profiles trivially yields strong quasi-transitivity as required.

We now provide an equivalent recursive definition for value:

valuer(v) = pvr((), v) (3.7)

pvr(a, v) =







(v) P (v) = ∅
(
v, maxp∈P (v) pvr(a, v, p)

)
v /∈ a

(ak, . . . , am, v) a = (a1, . . . , ak = v, . . . , am),
(3.8)

where the maximum on the paths is taken over vpr(pvr(a, v, p)).
In Algorithm 1, we present an efficient algorithm for ranking all vertices in

a graph simultaneously by recursive-in-degree. Algorithm 1 works in O(|V | ·
|E|) time. A simple heuristic for improving the efficiency of the algorithm for
practical purposes is to reduce the number of iterations, like in other fixed
point algorithms such as PageRank. We shall now prove the correctness and
complexity of this algorithm.

Proposition 3.7: Algorithm 1 outputs vertices in V in the order of �RID as
defined in Definition 3.8 and works in O(|V | · |E|) time.

Proof: Let us first denote

vp′
r(a1, a2, . . . , am, . . .) =

1

n + 1
[r(|P (a1)|+ vp′

r(a2, . . . , am, . . .)]

vp′
r() = 0.

Note that for all v ∈ V and for all a1, . . . , am ∈ Path(v): If a1, . . . , am is simple,
vp′

r(a1, . . . , am) = vpr(a1, . . . , am). Otherwise if an = ai, then vpr(a1 . . . , am) =
vp′

r(a1, . . . am, ai+1, . . . , am, . . .). Let P(v) be the set of all reverse paths to v in
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G, simple or otherwise. We then have for all v ∈ V :

valuer(v) = max
p∈Path(v)

vpr(p) = max
p∈P(v)

vp′
r(p),

because the first loop in p ∈ P(v) can be replaced with the one maximizing
vpr(·), thus increasing value.

The iteration in step 3 of the algorithm calculates for all v:

1

n + 1

[

r0 + max
p1∈P (v)

[

· · ·
1

n + 1

[

r|V |−1 + max
p|V |∈P (p|V |−1)

1

n + 1
r|V |

]

· · ·

]]

,

where ri = r(|P (pi)|) and p0 = v. This value is equal to

max
p1∈P (v)

max
p2∈P (p1)

· · · max
p|V |∈P (p|V |−1)

|V |
∑

i=0

ri

(n + 1)i+1
=

= max
(p1,...,p|V |+1)∈P|V |(v)

|V |+1
∑

i=1

ri

(n + 1)i
=

= max
p∈P|V |+1(v)

vp′
r(v), (3.9)

where Pm(v) is the set of all reverse paths of length ≤ m to v, simple or oth-
erwise.As there are only |V | vertices, any two vertices that differ in the value
assigned by the value function from (3.1) must also differ the value (3.9) calcu-
lated by the algorithm and in the same direction.

We shall now prove the time complexity of the algorithm, by tracing each
step. Steps 1 and 2 take O(|V |) time. The iteration in step 3 is repeated
|V | times, and for every vertex in V ′ performs O(|P (v)|) calculations, so each
iteration takes O(|E|) time and thus the total time is O(|V | · |E|). Step 4 takes
O(|V ′| log |V ′|) ≤ O(|V | log |E|) ≤ O(|V | · |E|). Finally, the output step 5 takes
O(|V |) time. As every step takes no more than O(|V | · |E|) time, so does the
entire algorithm.

3.7 Axiomatization of Approval Voting

In Sections 3.4 and 3.5 we have seen mostly negative results which arise when
trying to accommodate (weak) transitivity and RIIA. We have shown that al-
though each of the axioms can be satisfied separately, there exists no general
ranking system that satisfies both axioms.

Tennenholtz (2004) has previously shown a non-trivial ranking system that
satisfies (weak) transitivity, and in the previous section we have seen such a
system for RIIA. However, we have not provided a representation theorem for
our new system.

In this section we provide a representation theorem for a ranking system
that satisfies RIIA but not weak transitivity — the approval voting ranking
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system. This system ranks the agents based on the number of votes each agent
received, with no regard to the rank of the voters. The axiomatization we
provide in this section shows the power of RIIA, as it shows that there exists only
one (interesting) ranking system that satisfies it without introducing transitive
effects.

In order to specify our axiomatization, we recall several classical definitions
from the theory of social choice.

The strong positive response axiom essentially means that if an agent receives
additional votes, its rank must improve:

Definition 3.9: Let F be a ranking system. F satisfies strong positive response
if for all graphs G = (V, E) and for all (v1, v2) ∈ (V ×V )\E, and for all v3 ∈ V :
Let G′ = (V, E ∪ (v1, v2)). If v3 �F

G v2, then v3 ≺F
G′ v2.

The anonymity and neutrality axioms mean that the names of the voters
and alternatives respectively do not matter for the ranking:

Definition 3.10: A ranking system F satisfies anonymity if for all G =
(V, E), for all permutations π : V 7→ V , and for all v1, v2 ∈ V : Let E′ =
{(π(v1), v2)|(v1, v2) ∈ E}. Then, v1 �F

(V,E) v2 ⇔ v1 �F
(V,E′) v2.

Definition 3.11 : A ranking system F satisfies neutrality if for all G =
(V, E), for all permutations π : V 7→ V , and for all v1, v2 ∈ V : Let E′ =
{(v1, π(v2))|(v1, v2) ∈ E}. Then, v1 �F

(V,E) v2 ⇔ v1 �F
(V,E′) v2.

Arrow’s classical Independence of Irrelevant Alternatives axiom requires that
the relative rank of two agents be dependant only on the set of agents that
preferred one over the other.

Definition 3.12: A ranking system F satisfies Arrow’s Independence of Ir-
relevant Alternatives (AIIA) if for all G = (V, E), for all G′ = (V, E′), and for
all v1, v2 ∈ V : Let PG(v1) \ PG(v2) = PG′(v1) \ PG′(v2) and PG(v2) \ PG(v1) =
PG′(v2) \ PG′(v1). Then, v1 �F

G v2 ⇔ v1 �F
G′ v2.

Our representation theorem states that together with positive response and
RIIA, any one of the three independence conditions above (anonymity, neutral-
ity, and AIIA) are essential and sufficient for a ranking system being AV 1. In
addition, we show that as in the classical social choice setting when only consid-
ering two-level preferences, positive response, anonymity, neutrality, and AIIA
are an essential and sufficient representation of approval voting. This result
extends the well known axiomatization of the majority rule due to May (1952):

Proposition 3.8 (May’s Theorem): A social welfare functional over two
alternatives is a majority social welfare functional if and only if it satisfies
anonymity, neutrality, and positive response.

1In fact, an even weaker condition of decoupling, that in essence allows us to permute the
graph structure while keeping the edges’ names is sufficient in this case.
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We can now formally state our theorem:

Theorem 3.9: Let F be a general ranking system. Then, the following
statements are equivalent:

1. F is the approval voting ranking system (F = AV )

2. F satisfies positive response, anonymity, neutrality, and AIIA

3. F satisfies positive response, RIIA, and either one of anonymity, neutrality,
and AIIA

Proof: It is easy to see that AV satisfies positive response, RIIA, anonymity,
neutrality, and AIIA. It remains to show that (2) and (3) entail (1) above.

To prove (2) entails (1), assume that F satisfies positive response, anonymity,
neutrality, and AIIA. Let G = (V, E) be some graph and let v1, v2 ∈ V be
some agents. By AIIA, the relative ranking of v1 and v2 depends only on
the sets PG(v1) \ PG(v2) and PG(v2) \ PG(v1). We have now narrowed our
consideration to a set of agents with preferences over two alternatives, so we
can apply Proposition 3.8 to complete our proof.

To prove (3) entails (1), assume that F satisfies positive response, RIIA and
either anonymity or neutrality or AIIA. As F satisfies RIIA we can limit our
discussion to comparison profiles. Let f : P 7→ {0, 1} be the function from the
definition of RIIA. We will use the notation a � b to mean f〈a,b〉 = 1, a ≺ b
to mean f〈b,a〉 = 0, and a ≃ b to mean a � b and b � a.

By the definition of RIIA, it is easy to see that a ≃ a for all a. By positive
response it is also easy to see that (1, 1, . . . , 1

︸ ︷︷ ︸

n

) � (1, 1, . . . , 1
︸ ︷︷ ︸

m

) iff n ≤ m. Let

P = 〈(a1, . . . , an), (b1, . . . , bm)〉 be a comparison profile. Let G = (V, E) be the
following graph (an example of such graph for the profile 〈(1, 3, 3), (2, 4)〉 is in
Figure 3.7):

V = {x1, . . . , xmax{an,bm}} ∪

∪{v1, . . . , vn, v′1, . . . , v
′
n, v} ∪

∪{u1, . . . , um, u′
1, . . . , u

′
m, u}

E = {(xi, vj)|i ≤ aj} ∪ {(xi, uj)|i ≤ bj} ∪

∪{(vi, v)|i = 1, . . . , n} ∪ {(ui, u)|i = 1, . . . , m}.

It is easy to see that in the graph G, v and u satisfy the profile P . Let π be the
following permutation:

π(x) =







v′i x = vi

vi x = v′i
u′

i x = ui

ui x = u′
i

x Otherwise.
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x

v

u

Figure 3.7: Example graph G for the profile 〈(1, 3, 3), (2, 4)〉

The remainder of the proof depends on which additional axiom F satisfies:

• If F satisfies anonymity, let E′ = {(π(x), y)|(x, y) ∈ E}. Note that in the
graph (V, E′) v and u satisfy the profile 〈(1, 1, . . . , 1

︸ ︷︷ ︸

n

), (1, 1, . . . , 1
︸ ︷︷ ︸

m

)〉, and

thus v �F
(V,E′) u⇔ n ≤ m. By anonymity, u �F

(V,E) v ⇔ u �F
(V,E′) v, thus

proving that f(P ) = 1 ⇔ n ≤ m for an arbitrary comparison profile P ,
and thus F = AV .

• If F satisfies neutrality, let E′ = {(x, π(y))|(x, y) ∈ E}. Note that in the
graph (V, E′) v and u satisfy the profile 〈(1, 1, . . . , 1

︸ ︷︷ ︸

n

), (1, 1, . . . , 1
︸ ︷︷ ︸

m

)〉, and

thus v �F
(V,E′) u⇔ n ≤ m. By neutrality, u �F

(V,E) v ⇔ u �F
(V,E′) v, again

showing that f(P ) = 1 ⇔ n ≤ m for an arbitrary comparison profile P ,
and thus F = AV .

• If F satisfies AIIA, let E′ = {(x, π(y))|(x, y) ∈ E} as before. So, also
v �F

(V,E′) u ⇔ n ≤ m. Note that PG(v) = P(V,E′)(v) and PG(u) =

P(V,E′)(u), so by AIIA, u �F
(V,E) v ⇔ u �F

(V,E′) v, and thus as before,
F = AV .
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Chapter 4

Incentive Compatible

Ranking Systems

4.1 Introduction

Ranking systems to not exist in empty space. Many ranking systems systems
settings involve self-interested agents who try and manipulate the ranking sys-
tem in order to improve their own position in the resulting ranking. It is of great
importance to design ranking systems that are resistant to such manipulations,
and to study the conditions for their existence.

The issue of incentives has been extensively studied in the classical social
choice literature. The Gibbard–Satterthwaite theorem (Gibbard, 1973; Sat-
terthwaite, 1975) shows that in the classical social welfare setting, it is impos-
sible to aggregate the rankings in a strategy-proof fashion under some basic
conditions. The incentives of the candidates themselves were considered in the
context of elections (Dutta et al., 2001), where a related impossibility result
is presented. Another notion of incentives was considered in the case where a
single agent may create duplicates of itself (Cheng and Friedman, 2005). Fur-
thermore, the computation of equilibria in the more abstract context of ranking
games was also discussed (Brandt et al., 2006).

In this chapter we present our research on the issue of incentives in ranking
systems. We define two notions of incentive compatibility, where the agent
is concerned with its expected position in the ranking under affine or general
utility functions.

We then consider some very basic properties of ranking systems, which are
satisfied by almost all known ranking systems, and prove that these proper-
ties cannot be all satisfied by an incentive compatible ranking system. This
finding is far from trivial, as different ranking systems may require different
manipulations by an agent in order to increase its rank in different situations.
Furthermore, we show that when we assume only a subset of the basic prop-
erties, some artificial incentive compatible ranking systems can be constructed.

45



Together, these results form a complete characterization of incentive compatible
ranking systems under these basic properties.

Our results expose some surprising and illuminating effects of some basic
properties one may require a ranking system to satisfy on the existence of in-
centive compatible ranking systems.

Next, we consider non imposing ranking systems, i.e. systems in which
any strict ordering of the agents is feasible. We show that there are no fully
incentive compatible general non imposing ranking systems, and provide a full
axiomatization of a non-imposing incentive compatible ranking system for the
setting with exactly three agents. We then briefly discuss the strong fairness
axiom of isomorphism.

As full incentive compatibility is shown to be practically impossible, we
proceed to define three notions of limited incentive compatibility. We use these
notions to quantify the incentive compatibility of known ranking systems and to
prove general bounds. Specifically, we quantify the incentive compatibility of the
Approval Voting and PageRank ranking systems and prove a significant lower
bound on the incentive compatibility of any ranking system satisfying the basic
strong monotonicity property, which is satisfied by almost all practical ranking
systems. When non-imposition is considered, we show a ranking system that is
incentive compatible up to a deviation by one agent by at most one rank. This
sets a tight bound as no such fully incentive compatible ranking system exists.

This chapter is structured as follows: In Section 4.2 we define some basic
properties of ranking systems. In Section 4.3 we introduce our two notions of
incentive compatibility. We then show a strong possibility result in Section 4.4,
when we do not assume the minimal fairness property. In Section 4.5 we provide
a full classification of the existence of incentive compatible ranking systems when
we do assume minimal fairness. Section 4.6 provides some illuminating lessons
learned from this classification. In section 4.7 we define the non-imposition
property and show that although no general incentive compatible non-imposing
ranking system exists, one does exist for exactly three agents. In Section 4.8 we
introduce the isomorphism property and briefly discuss to the classification of
incentive compatibility under isomorphism. In Section 4.9 we define our weaker
notions of incentive compatibility, quantify the incentive compatibility some
existing and new ranking systems, and prove some upper and lower bounds on
incentive compatibility.

4.2 Basic Properties of Ranking Systems

As this chapter deals with incentives, we find it best to assume that self edges
are not allowed in the input to the ranking systems.

In order to classify the incentive compatibility features of ranking systems,
we must first define the criteria for the classification. We define some very
basic properties that are satisfied by almost all known ranking systems. Most
properties have two versions – one weak and one strong, both satisfied by almost
all known ranking systems.
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First of all, we define the notion of a trivial ranking system, which ranks any
two vertices the same way in all graphs.

Definition 4.1: A ranking system F is called trivial if for all vertices v1, v2

and for all graphs G, G′ which include these vertices: v1 �F
G v2 ⇔ v1 �F

G′ v2. A
ranking system F is called nontrivial if it is not trivial.

A ranking system F is called infinitely nontrivial if there exist vertices v1, v2

such that for all N ∈ N there exists n > N and graphs G = (V, E) and G′ =
(V ′, E′) s.t. |V | = |V ′| = n, v1 �F

G v2, but v2 ≺F
G′ v1.

A basic requirement from a ranking system is that when there are no votes
(or all votes) in the system, all agents must be ranked equally. We call this
requirement minimal fairness1.

Definition 4.2: A ranking system F is minimally fair if for every graph
G = (V, ∅) with no edges, and for every v1, v2 ∈ V : v1 ≃

F
G v2. It further satisfies

strong minimal fairness if for every graph G⊤ = (V, V × V \ {(v, v)|v ∈ V })
with all edges and for every v1, v2 ∈ V : v1 ≃F

G⊤
v2.

Another basic requirement from a ranking system is that as agents gain ad-
ditional votes, their rank must improve, or at least not worsen. Surprisingly,
this vague notion can be formalized in (at least) two distinct ways: the mono-
tonicity property considers the situation where one agent has a superset of the
votes another has in the same graph, while the positive response2 property con-
siders the addition of a vote for an agent between graphs. This distinction is
important because, as we will see, the two properties are neither equivalent, nor
imply each other.

Definition 4.3: Let F be a ranking system. F satisfies weak positive response
if for all graphs G = (V, E) and for all (v1, v2) ∈ (V × V ) \ {(v, v)|v ∈ V } \ E,
and for all v3 ∈ V \ {v2}: Let G′ = (V, E ∪ (v1, v2)). Then, v3 �F

G v2 implies
v3 �F

G′ v2 and v3 ≺F
G v2 implies v3 ≺F

G′ v2. F furthermore satisfies strong
positive response if v3 �

F
G v2 implies v3 ≺

F
G′ v2.

Definition 4.4: A ranking system F satisfies weak monotonicity if for all
G = (V, E) and for all v1, v2 ∈ V : If P (v1) ⊆ P (v2) then v1 �F

G v2. F
furthermore satisfies strong monotonicity if P (v1) ( P (v2) additionally implies
v1 ≺

F
G v2.

Example 4.1: Consider the graphs G1 and G2 in Figure 4.1. Assume a
ranking system F ranks a ≃F

G1
d in graph G1. Then, if F satisfies weak positive

1A stronger notion of fairness, the isomorphism property, will be considered in Section 4.8.
2We have previously defined strong positive response in the context of the axiomatization

of Approval Voting in Section 3.7 on page 41. We expand this definition below.
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Figure 4.1: Example graphs for the basic properties of ranking systems

response, it must also rank a �F
G2

d in G2. If F satisfies the strong positive

response, then it must strictly rank a ≺F
G2

d in G2. However, if we do not

assume a �F
G1

d, F may rank a and d arbitrarily in G2.
Now consider the graph G1, and note that P (a) = {c} ( {c, d} = P (b). This

is the requirement of the weak (and strong) monotonicity property, and thus
any ranking system F that satisfies weak monotonicity must rank a �F

G1
b, and

if it satisfies strong monotonicity, it must strictly rank a ≺F
G1

b.

Note that the weak monotonicity property implies minimal fairness. This is
due to the fact that when no votes are cast, all vertices have exactly the same
predecessor sets and thus must be ranked equally.

Yet another simple requirement from a ranking system is that it does not
behave arbitrarily differently when two sets of agents with their respective votes
are considered one set.

Definition 4.5: Let F be a ranking system and let G1 = (V1, E1) and G2 =
(V2, E2) be graphs s.t. V1 ∩ V2 = ∅ and let v1, v2 ∈ V1 be two vertices. Let
G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). F satisfies the weak union condition if v1 �F

G1

v2 ⇔ v1 �F
G1∪G2

v2. Let G′ = (V1 ∪ V2, E1 ∪ E2 ∪ E), where E ⊆ V1 × V2 is in
an arbitrary set of edges from V1 to V2. F satisfies the strong union condition
if v1 �F

G1
v2 ⇔ v1 �F

G′ v2.

Surprisingly, we will see that even the weak union condition has great sig-
nificance towards the existence of a ranking system or lack thereof. One reason
for this effect, is that a ranking system satisfying this condition cannot behave
differently depending on the size of the graph.
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4.2.1 Satisfiability

As we have mentioned above, these properties are very basic and, with the
exception of the strong union condition, all the properties above are satisfied
by almost all known ranking systems such as the PageRank ranking system
(with a damping factor) and the authority ranking by the Hubs&Authorities
algorithm (Kleinberg, 1999). These ranking systems do not satisfy the strong
union condition, as in both systems outgoing links outside an agent’s strongly
connected component may affect ranks inside the strongly connected component,
either by dividing the importance (in PageRank) or by affecting the hubbiness
score in Hubs&Authorities.

Furthermore, the simple approval voting ranking system (see definition 3.5 on
page 32) satisfies all the strong properties mentioned above including the strong
union condition.

Fact 4.1: The approval voting ranking system AV satisfies strong minimal
fairness, strong monotonicity, strong positive response, the strong union condi-
tion, and infinite nontriviality.

These facts lead us to believe that the properties defined above (perhaps
with the exception of the strong union condition), should all be satisfied by any
reasonable ranking system, at least in their weak form. We will soon show that
this is not possible when requiring incentive compatibility.

4.3 Incentive Compatibility

Ranking systems do not exist in empty space. The results given by ranking
systems frequently have implications for the agents being ranked, which are the
same agents that are involved in the ranking. Therefore, the incentives of these
agents should in many cases be taken into consideration.

In our approach, we require that our ranking system will not rank agents
better for stating untrue preferences, but we assume that the agents are in-
terested only in their own ranking (and not, say, in the ranking of those they
prefer).

We assume that for strict rankings (with no ties), for every agent count n,
there exists a utility function un : N 7→ R that maps an agent’s rank (i.e. the
number of agents ranked below it) to a utility value for being ranked that way.
We assume un is nondecreasing, that is every agent weakly prefers to be ranked
higher.

This utility function can be extended to the case of ties, by treating these
as a uniform randomization over the matching strict orders. Thus the utility of
an agent with k agents strictly below it and m agents tied is

E[un] = u∗
n(k, m) =

1

m

k+m−1∑

i=k

un(i).
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We can now define the utility of a ranking for an agent as follows:

Definition 4.6: The utility uF
G(v) of a vertex v in graph G = (V, E) under

the ranking system F and utility function u is defined as

uF
G(v) = u∗

|V |(|{v
′ : v′ ≺ v}| , |{v′ : v′ ≃ v}|) =

=
1

|{v′ : v′ ≃ v}|

|{v′:v′≤v}|−1
∑

i=|{v′:v′≺v}|

un(i).

This definition allows us to define a preference relation over rankings for
each agent. Using this preference relation, we can now define the general notion
of incentive compatibility as immunity of utility to manipulation of outgoing
edges3:

Definition 4.7: Let F be a ranking system. F is called incentive compatible
under utility function u if for all graphs G1 = (V, E1) and G2 = (V, E2) s.t. for
some v ∈ V , and for all v′ ∈ V \ {v}, v′′ ∈ V : (v′, v′′) ∈ E1 ⇔ (v′, v′′) ∈ E2:
uF

G1
(v) = uF

G2
(v).

A strong notion of incentive compatibility is compatibility under any utility
function:

Definition 4.8: Let F be a ranking system. F satisfies strong incentive
compatibility if for any nondecreasing utility function u : N × N 7→ R, F is
incentive compatible under u.

A simple utility function one may consider is the identity function un(k) ≡
k. This basic utility function means that any change in rank has the same
significance. The utility of a ranking with k weaker agents and m equal agents
under this function is:

u∗
n(k, m) =

1

m

k+m−1∑

i=k

un(i) = k +
m− 1

2
.

It turns out that the preference relation over rankings produced by the identity
utility function is the same as the one produced by any affine utility function
u(k) = a ·k+ b, as u∗

n(k, m) in this case is simply a · (k+ m−1
2 )+ b. Therefore, it

is interesting to look at incentive compatibility under an affine utility function
u:

Definition 4.9: Let F be a ranking system and let. F is called weakly incentive
compatible if for every utility function u : N×N 7→ R such that un(k) = a ·k + b
for some constants a, b ∈ R: F is incentive compatible under u.

3A more general discussion of manipulations in personalized ranking systems is available
in Section 5.3.1.
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Figure 4.2: Example graph for ranking system F

Notation: In order to prevent ambiguity, in the remainder of this chapter we
will use rF

G(v) (“rank”) to denote uF
G(v) under the utility function un(k) = k+ 1

2 .
So that

rF
G(v) = |{v′ : v′ ≺ v}|+

1

2
|{v′ : v′ ≃ v}| .

Note that due to the fact that all affine ranking functions give the same
ordering over u∗(k, m), we can, wlog, consider only un(k) = k+ 1

2 when proving
weak incentive compatibility or lack thereof.

Interestingly, we will see in the remainder of this chapter that these incentive
compatibility properties are very hard to satisfy, and no common nontrivial
ranking system satisfies them. In particular, the PageRank, Hubs&Authorities,
and Approval Voting ranking systems mentioned above are not weakly incentive
compatible.

Example 4.2: One may think that under positive response, impossibility of
weak incentive compatibility is a direct result of an alleged dominant strategy
not to vote for any agent.

However, this is not true, as sometimes the best response does involve voting
for some agent. Consider the ranking system F defined by:

v1 �
F
G v2 ⇔ |P (v1)|+

1
3 |S(v1)| ≤ |P (v2)|+

1
3 |S(v2)|.

This ranking system satisfies strong positive response, but is not weakly incen-
tive compatible. For example, in the graph depicted in Figure 4.2, the agent a
can improve its rank either by not voting for b, or by voting for both x1 and x2.
The maximal increase in a’s rank is achieved by doing both.

Note that under this ranking system, agents do not have a dominant strategy
that maximizes their rank, and thus there is no general dominant deviation that
demonstrates lack of incentive compatibility.
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4.4 Possibility without Minimal Fairness

To begin our classification of the existence of incentive compatible ranking sys-
tems, we first consider ranking systems which do not satisfy minimal fairness.
We have already seen that minimal fairness is implied by weak monotonicity, so
we cannot hope to satisfy weak monotonicity without minimal fairness. As it
turns out, the strong versions of all the remaining properties considered above
can, in fact, be satisfied simultaneously.

Proposition 4.2: There exists a ranking system F1 that satisfies strong incen-
tive compatibility, strong positive response, infinite nontriviality, and the strong
union condition.
Proof: Assume a lexicographic order < over vertex names, and assume three
consecutive vertices v1 < v2 < v3. Then, F1 is defined as follows (let G = (V, E)
be some graph):

v �F1

G u ⇔ [v ≤ u ∧ (v 6= v2 ∨ u 6= v3)] ∨

[v = v2 ∧ u = v3 ∧ (v1, v2) /∈ E] ∨

[v = v3 ∧ u = v2 ∧ (v1, v2) ∈ E].

That is, vertices are ranked strictly according to their lexicographic order, except
when (v1, v2) ∈ E, whereas the ranking of v2 and v3 is reversed.

F1 is infinitely nontrivial because graphs with the vertices v1, v2, v3 are
ranked differently depending on the existence of the edge (v1, v2), and these
exist for any |V | ≥ 3.

F1 satisfies strong incentive compatibility because the only vertex that can
make any change in the ranking is v1 and it cannot ever change its own position
in the ranking at all.

F1 satisfies strong positive response because the ordering of the vertices
remains unchanged by anything but the (v1, v2) edge, and is always strict. The
addition of the (v1, v2) edge only increases the relative rank of v2 as required.

Assume for contradiction that F1 does not satisfy the strong union condition.
Then, there exist two disjoint graphs G1 = (V1, E1), G2 = (V2, E2) and an edge
set E ⊆ V1×V2 such that the ranking �F1

G of graph G = (V1∪V2, E1∪E2∪E) is

inconsistent with �F1

G1
. First note that the only inconsistency that may arise is

with the ranking of v2 compared to v3. Therefore, {v2, v3} ⊆ V1. Furthermore,
for the ranking to be inconsistent (v1, v2) /∈ E1 and (v1, v2) ∈ E1 ∪E2 ∪E (the
opposite is impossible due to inclusion). Furthermore, v2 ∈ V1 ⇒ v2 /∈ V2 ⇒
(v1, v2) /∈ V1 × V2 ⇒ (v1, v2) /∈ E. Thus we conclude that (v1, v2) ∈ E2, and
thus v2 ∈ V2, in contradiction to the fact that v2 ∈ V1.

4.5 Full Classification under Minimal Fairness

We are now ready to state our main results:
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Theorem 4.3: There exist weakly incentive compatible, infinitely nontrivial,
minimally fair ranking systems F2, F3, F4 that satisfy weak monotonicity; weak
positive response; and the weak union condition respectively. However, there is
no weakly incentive compatible, nontrivial, minimally fair ranking system that
satisfies any two of those three properties.

Theorem 4.4: There is no weakly incentive compatible, nontrivial, mini-
mally fair ranking system that satisfies either one the four properties: strong
monotonicity, strong positive response, the strong union condition and strong
incentive compatibility.

The proof of these two theorems is split into ten different cases that must
be considered – three possibility proofs for F2, F3. and F4, three impossibility
results with pairs of weak properties, and four impossibility results with each of
the strong properties. We will now prove each of these cases.

4.5.1 Possibility Proofs

Proposition 4.5: There exists a weakly incentive compatible ranking system
F2 that satisfies minimal fairness, weak positive response, and infinite nontrivi-
ality.

Proof: Let v1, v2, v3 be some vertices and let G = (V, E) be some graph,
then F2 is defined as follows:

v � u ⇔ [v 6= v3 ∧ u 6= v2] ∨ v = u ∨

(v1, v3) /∈ E ∨ v2 /∈ V.

That is, F2 ranks all vertices equally, except when the edge (v1, v3) exists. Then,
F2 ranks v2 ≺ v ≃ u ≺ v3 for all v, u ∈ V \ {v2, v3}.

F2 satisfies minimal fairness because when no edges exist, the clause (v1, v3) /∈
E always matches, and thus all vertices are ranked equally, as required. F2 sat-
isfies infinite nontriviality, because for all |V | ≥ 3 there exists a graph which
includes the vertices v1, v2, v3 and the edge (v1, v3), which is ranked nontrivially.

F2 satisfies weak positive response because the only edge addition that
changes the ranks of the vertices in the graph (the addition of (v1, v3)) indeed
doesn’t weaken the target vertex v3.

F2 is weakly incentive compatible because only v1 can affect the ranking of

the vertices in the graph (by voting for v3 or not), but r(v1) is always |V |
2 .
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Proposition 4.6: There exists a weakly incentive compatible ranking sys-
tem F3 that satisfies minimal fairness, the weak union condition, and infinite
nontriviality.
Proof: Let v1, v2, v3 be some vertices and let G = (V, E) be some graph,
then F3 is defined as follows:

v � u ⇔ [v 6= v3 ∧ u 6= v2] ∨ v = u ∨

{(v1, v2), (v1, v3)} 6⊆ E.

That is, F3 ranks all vertices equally, except when the edges (v1, v2), (v1, v3)
exist. Then, F3 ranks v2 ≺ v ≃ u ≺ v3 for all v, u ∈ V \ {v2, v3}.

F3 satisfies minimal fairness because when no edges exist, the clause {(v1, v2), (v1, v3)} 6⊆
E always matches, as required. F3 satisfies infinite nontriviality, because for all
|V | ≥ 3 there exists a graph which includes the vertices v1, v2, v3 and the edges
{(v1, v2), (v1, v3)}, which is ranked nontrivially.

To prove F3 satisfies the weak union condition, let G1 = (V1, E1) and G2 =
(V2, E2) be some graphs such that V1 ∩ V2 = ∅, and let G = G1 ∪ G2. If
{(v1, v2), (v1, v3)} 6⊆ E1 ∪ E2 then by the definition of F3, it must rank all
vertices in all graphs G1, G2, G equally, as required. Otherwise, for all v, u ∈
(V1 ∪ V2) \ {v2, v3}: v2 ≺

F3

G v ≃F3

G u ≺F3

G v3. Assume wlog that (v1, v2) ∈ E1

and thus v1, v2 ∈ V1. But then also (v1, v3) ∈ E1 and thus also v3 ∈ V1. By
the definition of F3, for all v, u ∈ V1 \ {v2, v3}: v2 ≺

F3

G1
v ≃F3

G1
u ≺F3

G1
v3. As

v1, v2, v3 /∈ G2, trivially for all v, u ∈ V2: v ≃F3

G2
u, as required.

F3 is weakly incentive compatible because only v1 (if at all) can affect the
ranking of the vertices in the graph (by voting for v2 and v3 or not), but r(v1)

is always |V |
2 .

Proposition 4.7: There exists a weakly incentive compatible ranking system
F4 that satisfies minimal fairness, weak monotonicity, and infinite nontriviality.
Proof: The ranking system F4 ranks all vertices equally, except for graphs
G = (V, E) for which |V | ≥ 7, where V = {w, s, m0, . . . , mn−1}, and for all
i ∈ {0, . . . , n − 1}: (mi, s) ∈ E, (mi, w) /∈ E, and for all j ∈ {0, . . . , n − 1}:
(mi, mj) ∈ E if and only if j = (i + 1) mod n or j = (i + 2) mod n. Figure 4.3
includes an example graph that satisfies these conditions. In such graphs, F4

ranks w ≺F4

G m1 ≃
F4

G · · · ≃
F4

G mn ≺
F4

G s.
F4 is minimally fair by definition, as when there are no edges, all vertices

are ranked equally. F4 satisfies infinite nontriviality because such nontrivially
ranked graphs G exist for all |V | ≥ 7.

F4 satisfies weak monotonicity because in the graphs that it doesn’t rank
all vertices equally we see that P (w) 6⊇ P (mi) 6⊇ P (s) for all i ∈ {0, . . . n− 1},
which is consistent with the ordering F4 specifies.

To prove F4 is weakly incentive compatible, we let G1, G2 be two graphs that
differ only in the outgoing edges of a single vertex v, and show that rF4

G1
(v) =

rF4

G2
(v). Because all graphs in which not all vertices are ranked equally are of
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Figure 4.3: Nontrivially ranked graph for F4

the form defined above, at least one of the graphs G1, G2 must have this form.
Let us assume wlog that this graph is G1, and mark the vertices of this graph
as defined above.

Now consider two cases:

1. If v = w or v = s, then by the definition of F4, �
F4

G1
≡�F4

G2
, thus trivially,

rF4

G1
(v) = rF4

G2
(v), as required.

2. If v = mi for some i ∈ {0, . . . , n− 1}, then first note that rF4

G1
(v) = |V |

2 . If
G2 is not of the form defined above then all its vertices are ranked equally

and specifically rF4

G2
= |V |

2 , as required. Otherwise, G2 is of the form
defined above. Let w′ and s′ be the w and s vertices for G2 in the form
defined above. By the definition, 2 ≤ |PG1

(v)| ≤ 4, while |PG2
(w′)| ≤ 1

and |PG2
(s′)| ≥ 5. Therefore, v /∈ {w′, s′}. By the definition of F4,

rF4

G2
(v) = |V |

2 , as required.
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4.5.2 Impossibility proofs with pairs of weak properties

We prove the impossibility results with pairs of weak properties, by assuming
existence of a ranking system and analyzing the minimal graph in which the
ranking system does not rank all agents equally. This is done in the following
lemma:

Lemma 4.8: Let F be a weakly incentive compatible minimally fair nontrivial
ranking system. Then, there exists a graph G = (V, E) and vertices v⊥, v⊤, v ∈
V such that:

1. For all graphs G′ = (V ′, E′) where |E′| < |E| or |E′| = |E| and |V ′| < |V |,
v1 ≃F

G′ v2 for all v1, v2 ∈ V ′.

2. rF
G(v) = |V |

2

3. v⊥ ≺
F
G v ≺F

G v⊤

4. For all v′ ∈ V : v⊥ �F
G v′ �F

G v⊤.

5. S(v) 6= ∅ and for all v′ ∈ V such that S(v′) 6= ∅: v′ ≃F
G v.

Proof: Let G = (V, E) be a minimal (in edges, then vertices) graph such that
there exist v1, v2 where v1 ≺F

G v2. Such a graph exists because F is nontrivial.
This graph immediately satisfies condition 1. Let v⊥, v⊤ be vertices such that
for all v′ ∈ V : v⊥ �

F
G v′ �F

G v⊤ (such vertices exist because � is an ordering).
Note that these vertices satisfy condition 4.

E 6= ∅ because minimal fairness will force v1 ≃ v2. Let (v, v′) ∈ E be

some edge. From minimallity, rF
(V,E\{(v,v′)})(v) = |V |

2 . From weak incentive

compatibility, rF
G(v) = |V |

2 , satisfying condition 2. Therefore,

1
2 |{v

′|v′ ≺ v}|+ 1
2 |{v

′|v′ � v}| = 1
2 |V |

|{v′|v′ ≺ v}|+ |{v′|v′ � v}| = |{v′|v′ � v}|+

+ |{v′|v′ ≻ v}|

|{v′|v′ ≺ v}| = |{v′|v′ ≻ v}| .

From the assumption that v1 ≺F
G v2: v⊥ �F

G v1 ≺F
G v2 �F

G v⊤. Therefore,
v⊥ ≺ v or v ≺ v⊤. But as |{v′|v′ ≺ v}| = |{v′|v′ ≻ v}|, and at least one is
nonempty, both v⊥ ≺ v ≺ v⊤, satisfying condition 3.

Condition 5 is satisfied by noting that for all v′ such that S(v) 6= ∅, rF
G(v′) =

|V |
2 = rF

G(v), and thus v′ ≃F
G v.

Now we can prove the impossibility results for any pair of weak properties:

Proposition 4.9: There exists no weakly incentive compatible nontrivial
ranking system that satisfies the weak monotonicity and weak positive response
conditions.
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Proof: Assume for contradiction a ranking system F that satisfies the condi-
tions. First note that F is minimally fair, because in a graph with no edges, all
vertices have exactly the same predecessor set. Thus, the conditions of Lemma
4.8 are satisfied, so we can let G = (V, E) and v, v⊥, v⊤ ∈ V be the graph and
the vertices from the lemma.

Now, let (v1, v2) ∈ E be some edge. Let G′ = (V, E \ {(v1, v2)}). By
condition 1, v2 ≃F

G′ v⊤. By weak positive response, v⊤ �F
G v2. Since this is

true for all v2 ∈ V with P (v2) = ∅, and v⊥ ≺F
G v ≺F

G v⊤, we conclude that
PG(v⊥) = PG(v) = ∅. Now, by weak monotonicity v⊥ ≃F

G v, in contradiction to
the fact that v⊥ ≺F

G v.

Proposition 4.10: There exists no weakly incentive compatible nontrivial
ranking system that satisfies the weak monotonicity and weak union conditions.

Proof: Assume for contradiction a ranking system F that satisfies the condi-
tions. First note that F is minimally fair, because in a graph with no edges, all
vertices have exactly the same predecessor set. Thus, the conditions of Lemma
4.8 are satisfied, so we can let G = (V, E) and v, v⊥, v⊤ ∈ V be the graph and
the vertices from the lemma.

Now let G′ = (V ∪ {x}, E) be a graph with an additional vertex x /∈ V .
By the weak union condition, v⊥ ≺F

G′ v. By weak monotonicity, x �F
G′ v⊥.

Therefore, by the weak union condition, rF
G′(v) = rF

G(v) + 1 = |V |
2 + 1. Let

G′′ = (V ∪{x}, E\{(v′, v)|v′ ∈ V }). By condition 1 and the fact that SG′(v) 6= ∅,

rF
G′′(v) = |V |+1

2 . From weak incentive compatibility, rF
G′′(v) = rF

G′(v), which is
a contradiction.

Proposition 4.11: There exists no weakly incentive compatible nontrivial
minimally fair ranking system that satisfies the weak union and weak positive
response conditions.

Proof: Assume for contradiction a ranking system F that satisfies the
conditions. As the conditions of Lemma 4.8 are satisfied, let G = (V, E)
and v, v⊥, v⊤ ∈ V be the graph and the vertices from the lemma. Now let
G1 = (V \{v⊥}, E) and let G2 = ({v⊥}, ∅). From conditions 3 and 5, S(v⊥) = ∅.
If PG(v⊥) 6= ∅, then by condition 1 in the graph G′ = (V, E \ {(x, v⊥)}) where
x ∈ PG(v⊥), v⊤ �

F
G′ v⊥. But then by weak positive response v⊤ �

F
G v⊥ in

contradiction to condition 3.

Therefore, PG(v⊥) = SG(v⊥) = ∅. Thus, G1 and G2 satisfy the conditions
of the weak union condition with regard to G. Therefore, v ≺F

G v⊤ ⇒ v ≺F
G1

v⊤,
in contradiction to condition 1, because the edge set is the same and |V1| < |V |.
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4.5.3 Impossibility proofs with the strong properties

Proposition 4.12: There exists no weakly incentive compatible minimally
fair ranking system that satisfies strong positive response.
Proof: Assume for contradiction a ranking system F that satisfies the con-
ditions. Assume a graph G with two vertices V = {v1, v2} and no edges. By
minimal fairness, v1 ≃F

G v2. Now assume a graph G′ = (V, {(v1, v2)}) with an
added edge between v1 and v2. By strong positive response, v1 ≺F

G v2. How-
ever, by weak incentive compatibility, 1 = rF

G(v1) = rF
G′(v1) = 1

2 , which is a
contradiction.

Proposition 4.13: There exists no weakly incentive compatible ranking sys-
tem that satisfies strong monotonicity.
Proof: Assume for contradiction a ranking system F that satisfies the con-
ditions. Assume a graph G with two vertices V = {v1, v2} and no edges. As
PG(v1) = PG(v2), by strong monotonicity, v1 ≃F

G v2. Now assume a graph G′ =
(V, {(v1, v2)}) with an added edge between v1 and v2. As PG′(v1) ( PG′(v2),
v1 ≺F

G v2. However, by weak incentive compatibility, 1 = rF
G(v1) = rF

G′(v1) = 1
2 ,

which is a contradiction.

Proposition 4.14: There exists no nontrivial strongly incentive compatible
minimally fair ranking system..
Proof: We will prove that for any G = (V, E), and for any v1, v2 ∈ V :
v1 �F

G v2. We will use the incentive function un(k) = nk, which gives a different
value for each u∗

n(k, m). The proof is by induction on |E|.
Induction Base: Assume E = ∅, and let v1, v2 ∈ V be vertices. By minimal

fairness, v1 � v2.
Inductive Step: Assume correctness for |E| ≤ n and prove for |E| =

n + 1. Assume for contradiction that for some v1, v2 ∈ V : v2 ≺ v1. Let
v ∈ V be a vertex such that S(v) 6= ∅ (such a vertex exists because |E| > 0).
Note that |{x ∈ V |v ≃F

G x}| < |V |, because otherwise v1 �F
G x �F

G v2. Let
E′ = E \ {(v, x)|x ∈ V } and G′ = (V, E′). By the assumption of induction,
|{x ∈ V |v ≃F

G′ x}| = |V |. Thus, |{x ∈ V |v ≺F
G′ x}| = 0. By strong incentive

compatibility, 0 ≤ |{x ∈ V |v ≺F
G x}| ≤ |{x ∈ V |v ≺F

G′ x}| = 0, thus |V | = |{x ∈
V |v ≃F

G′ x}| ≤ |{x ∈ V |v ≃F
G x}| < |V | which yields a contradiction.

Proposition 4.15: There exists no weakly incentive compatible nontrivial
minimally fair ranking system that satisfies the strong union condition.
Proof: Assume for contradiction a ranking system F that satisfies the
conditions. As the conditions of Lemma 4.8 are satisfied, let G = (V, E)
and v, v⊥, v⊤ ∈ V be the graph and the vertices from the lemma. Now let
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G1 = (V \ {v⊤}, E \ {(v′, v⊤) ∈ E|v′ ∈ V }) and let G2 = ({v⊤}, ∅). From
conditions 3 and 5, S(v⊤) = ∅ and thus G1 and G2 satisfy the conditions of the
strong union condition with regard to G. Therefore, v⊥ ≺

F
G v ⇒ v⊥ ≺

F
G1

v, in
contradiction to condition 1, because |E1| ≤ |E| and |V1| < |V |.

4.6 Some Illuminating Lessons

Theorems 4.3 and 4.4 teach us some surprising lessons about the implications
of various versions of the basic properties.

4.6.1 Strong incentive compatibility is different than weak

incentive compatibility

We have seen in Proposition 4.14 that, as one would expect, strong incentive
compatibility is impossible when assuming minimal fairness. However, it turns
out that when we slightly weaken the requirement of incentive compatibility
to cover only the expected rank of the agent, Proposition 4.7 shows us this is
possible. This means that the level of incentive compatibility has an effect on
the existence of ranking systems.

4.6.2 Positive Response is not the same as Monotonicity

The Positive response and Monotonicity properties seem, at a glance, to be very
similar, as they both informally require that the more votes an agent has, the
higher it is ranked. However, looking more deeply, we see that the Positive
Response properties require this behavior to be manifested across graphs, while
the Monotonicity properties require that the effect be seen within a single graph.

This leads to interesting facts, such as not being able to nontrivially satisfy
both Weak Monotonicity and Weak Positive response with incentive compat-
ibility (Proposition 4.9), while each of the properties could be satisfied sepa-
rately (Propositions 4.7 and 4.2). Furthermore, Strong Monotonicity cannot
be satisfied at all (Proposition 4.13) with weak incentive compatibility, while
Strong Positive Response can be satisfied even with strong incentive compati-
bility (Proposition 4.2).

4.6.3 The Weak Union property matters

Recall that the weak union property requires that when two disjoint graphs are
put together, the subgraphs must still be ranked as before.

This property might seem trivial, but the impossibility results in Theorem
4.3 imply that this property has a part in inducing impossibility. The reason
for this is twofold:
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• The combination of two graphs adds more options for the agents in both
subgraphs to vote for, which in order to preserve incentive compatibility,
must all preserve the agent’s relative rank in the combined graph.

• The weak union property further implies that the ranking system must
not rely on the number of vertices in the graph, and moreover, that the
minimal nontrivially ranked graph for a given ranking system must be
connected.

4.7 Non-imposing Ranking Systems

An important extension of nontriviality is non-imposition. Non-imposing rank-
ing systems are not only nontrivial, but can accommodate any strict order on
the vertices.

Definition 4.10: Let F be a ranking system, F satisfies non imposition if for
all V and for all strict linear orderings L ∈ L(V ): there exists some G ∈ GV

such that F (G) ≡ L.

We will now show that non-imposition cannot be satisfied when requiring
incentive compatibility.

Fact 4.16: There exists no non-imposing incentive compatible ranking system.

Proof: Assume the vertex set V = {v1, v2}. There are two potential edges
in this graph e1 = (v1, v2) and e2 = (v2, v1). Let G = (V, E) be a graph
s.t. v1 ≺G v2 and let G′ be a graph s.t. v2 ≺G′ v1. As rG′(v1) 6= rG(v1)
and rG(v2) 6= rG′(v2), from incentive compatibility, the symmetric difference
E ⊕ E′ = (E ∪ E′) \ (E ∩ E′) = {e1, e2}. Let E′′ = E ⊕ {e1} = E′ ⊕ {e2}.
From incentive compatibility rG′′(v1) = rG(v1) = 1

2 = rG′(v2) = rG′′(v2), but
this cannot be as if v1 ≃G′′ v2, rG′′(v1) = rG′′(v1) = 1.

4.7.1 A Fully Incentive Compatible Non-imposing Rank-

ing System for 3 Agents

We have just shown that there exists no general incentive compatible non-
imposing ranking system. However, if we limit our domain we may find that
there exist such ranking systems. In this section, we will provide a full axioma-
tization for non-imposing incentive compatible ranking systems when there are
exactly three agents.

Definition 4.11: A ranking system is called three-plurality if for every graph
G = (V, E) such that |V | = 3 there exists an ordering v0, v1, v2 of the vertices in
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v0 → v1 v0 → v2

v2 → v0 v1 → v2 ≃ v1 ≺ v0 ≺ v2

v1 → v0 v2 ≺ v1 ≺ v0 v1 ≺ v2 ≺ v0

v2 → v1 v1 → v2 v0 ≺ v2 ≺ v1 v0 ≺ v1 ≺ v2

v1 → v0 v2 ≺ v0 ≺ v1 ≃

Figure 4.4: Schematic representation of the three-plurality ranking systems

V such that F ranks u � v ⇔ f(u) ≤ f(v), where f(v) is one of the following:

f1(vi) = I [(vi−1, vi) ∈ E] + I [(vi+1, vi−1) /∈ E]

f2(vi) = I [(vi−1, vi) ∈ E ∧ (vi−1, vi+1) /∈ E] +

+I [(vi+1, vi) ∈ E ∨ (vi+1, vi−1) /∈ E] ,

where all the indices are calculated modulo 3, and I is the indicator function.

There are exactly four three-plurality ranking systems for graphs with V =
{v0, v1, v2}. These ranking systems all implement plurality voting when each
agent must vote, as illustrated in Figure 4.4, and differ in the interpretation of
the cases where agents cast no votes or both votes.

Theorem 4.17: Let F be a ranking system over the set of graphs with 3
vertices. F is three-plurality iff it satisfies all of the following criteria: incentive
compatibility, non-imposition, weak positive response, and minimal fairness.

Furthermore, these conditions are independent.
Proof: We must first show that any three-plurality ranking system F satisfies
these four criteria. Incentive compatibility and non-imposition can easily be
deduced from Figure 4.4. To show that F satisfies weak positive response, note
that any added edge (vi, vj) may only increase f(vj) and decrease f(vk) for
k 6= j, thus satisfying weak positive response. Minimal fairness is also satisfied
by noticing the symmetry in the definitions of f1, f2.

Now we need to prove that any ranking system F satisfying the four criteria
is three-plurality. By non-imposition, there exist graphs G1, G2, G3 such that:
v0 ≺F

G1
v1 ≺F

G1
v2, v2 ≺F

G2
v0 ≺F

G2
v1, and v1 ≺F

G3
v2 ≺F

G3
v0. The set of

allowable strategies for agent vi for i ∈ {0, 1, 2} is {si
1, s

i
2, s

i
3, s

i
4} = ℘(V \ {vi}).

We can use strategy vectors of the form (s0
i , s

1
j , s

2
k) to represent the graph (V, s0

i∪

s1
j ∪ s2

k).

Let s1, s2, s3 be the strategy vectors representing G1, G2, G3 respectively. By
incentive compatibility, s1 and s2 differ by the strategies of at least 2 agents.
Assume that s0

1 6= s0
2 ∧ s1

1 6= s1
2 ∧ s2

1 6= s2
2. By IC, in the graph (s0

2, s
1
1, s

2
1):

r(v0) = 0.5 and in the graph (s0
2, s

1
1, s

2
2): r(v1) = 2.5. As these two graphs

differ only in the outgoing edges of v2, its rank must be equal, thus must be
r(v2) = 1.5 in both. Therefore, in both (s0

2, s
1
1, s

2
1) and (s0

2, s
1
1, s

2
2), F ranks

v0 ≺ v2 ≺ v1. Again from IC, graph (s0
2, s

1
2, s

2
1) must be ranked v2 ≺ v0 ≺ v1
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and (s0
1, s

1
1, s

2
2) must be ranked v0 ≺ v1 ≺ v2 . We can now let G2 = (s0

2, s
1
2, s

2
1),

and thus differ from G1 by the strategies of only two agents.
It is easy to see we can always choose G2 such that G1 and G2 only differ

in the strategies of v0 and v1. Similarly, G3 can be chosen such that G1 and
G3 differ only by the strategies of v1 and v2. Assume now that s1

3 6= s1
2. By

IC, in graph (s0
1, s

1
3, s

2
1): r(v2) = r(v1) = 1.5 and thus v0 ≃ v1 ≃ v2. Now, in

graph (s0
1, s

1
2, s

2
1): r(v0) = r(v1) = 1.5 and thus v0 ≃ v1 ≃ v2. Now, in graph

(s0
1, s

1
2, s

2
3): r(v1) = 0.5 and r(v2) = 1.5, so v1 ≺ v2 ≺ v0. We now let G3 =

(s0
1, s

1
2, s

2
3) and thus now every pair of graphs from G1, G2, G3 differ by strategies

of two agents. After renaming strategies, we get a structure isomorphic to the
one described in Figure 4.4, but without any mapping between the names of the
strategies and actual edge selection by the agents.

We will first show that the additional strategies of the agents simply reflect
these existing strategies. In (s0

3, s
1
1, s

2
1), by IC, r(v0) = 1.5. So assume that F

ranks v2 ≺ v0 ≺ v1. However, in that case in (s0
3, s

1
2, s

2
1), r(v1) = r(v0) = 2.5,

which is impossible. However, in the two remaining cases it is easy to see that
s0
3 reflects s0

1 or s0
2. The same is true for all other agents. Therefore, we only

need to map the four strategies for each agent to one of the two options for that
agent.

Note that agent v2 is strengthened when agent v0 switches from s0
1 to s0

2 and
agent v1 is weakened. Assume S(v0) = {v1} maps to s0

2, then by weak positive
response, S(v0) = {v1, v2} and S(v0) = ∅ must also map to s0

2, and furthermore
then S(v0) = {v2} must also map to s0

2, in contradiction to the fact that s0
1

must be playable (by non-imposition). Similarly, in all cases where |S(v)| = 1,
S(v) maps to the relevant strategy in Figure 4.4.

By minimal fairness, when E = ∅, the strategy profile must be (s0
1, s

1
1, s

2
1)

or (s0
2, s

1
2, s

2
2), thus if S(v0) = ∅ maps to a strategy s0

i , then S(v1) = ∅ and
S(v2) = ∅ must map to strategies s1

i and s2
i respectively. The same goes for

S(v0) = {v1, v2) — if it maps to a strategy s0
i , then S(v1) = {v0, v2} and

S(v2) = {v0, v1} must map to strategies s1
i and s2

i respectively.
So, we are left with four mapping options:

• S(v0) = ∅ maps to s0
2 and S(v0) = {v1, v2} maps to s0

1 .

• S(v0) = ∅ maps to s0
1 and S(v0) = {v1, v2} maps to s0

2 .

• S(v0) = ∅ and S(v0) = {v1, v2} both map to s0
2 .

• S(v0) = ∅ and S(v0) = {v1, v2} both map to s0
1 .

These mapping options exactly correspond to the four three-plurality ranking
systems — The first two correspond to f1, and the second two to f2. Of each
pair, the first corresponds to the ordering v0, v1, v2 and the second corresponds
to v0, v2, v1.

We have shown any ranking system satisfying the four conditions must be
three-plurality.

To show that the conditions are independent we must show different ranking
systems satisfying all conditions except one:
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• Incentive compatibility — The approval voting ranking system satisfies all
aforementioned conditions except incentive compatibility.

• Non-imposition — The trivial ranking system that always ranks all ver-
tices equally satisfies IC, weak positive response and minimal fairness.

• Weak positive response — We can swap the meanings of si
1 and si

2 for
all agents and get a ranking system satisfying all conditions except weak
positive response.

• Minimal fairness — If we do not assume minimal fairness, we can assign
the strategies for S(v) = ∅ and S(v) = V \ {v} differently for each agent
v.

4.8 Isomorphism

Most of the ranking systems we have seen up to now in the possibility proofs
take advantage of the names of the vertices to determine the ranking. A natural
requirement from a ranking system is that the names assigned to the vertices will
not take part in determining the ranking. This is formalized by the isomorphism
property.

Definition 4.12: A ranking system F satisfies isomorphism if for every iso-
morphism function ϕ : V1 7→ V2, and two isomorphic graphs G ∈ GV1

, ϕ(G) ∈
GV2

: �F
ϕ(G)= ϕ(�F

G).

It turns out that the ranking system F4 from the possibility proof for weak
incentive compatibility and weak monotonicity (Proposition 4.7) satisfies iso-
morphism as well, and thus there exists a weakly incentive compatible rank-
ing system satisfying isomorphism and weak monotonicity. The existence of
weakly incentive compatible ranking systems satisfying isomorphism in con-
junction with either the weak union property or the weak positive response is
an open question.

4.9 Quantifying Incentive Compatibility

We have seen that there are no incentive compatible ranking systems satisfying
all of the basic properties we have outlined above. Therefore, it is essential to
weaken this requirement of incentive compatibility. This weakening would allow
ranking systems that permit manipulations up to a specific magnitude or by a
specific number of agents.

In order to define these limited manipulations we must first define the mag-
nitude of an agent’s best deviation:
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Definition 4.13: Let F be ranking system and let G = (V, E) be a graph for
which F is defined. The deviation magnitude δF

G(v) of v in G under ranking

system F is defined as max{rF
(V,E′)(v) − rF

G(v)
∣
∣
∣ F (V, E′) is defined, ∀v′ ∈ V \

{v}, v′′ ∈ V : (v′, v′′) ∈ E ⇔ (v′, v′′) ∈ E′}. That is, the maximum rank
difference v can obtain for itself by changing its outgoing vertices in G under F .

We can now define three different quantifications of the level of incentive
compatibility of a ranking system:

Definition 4.14: Let F be a ranking system. F is called k-worst case incentive
compatible over a set of graphs G if for all graphs G ∈ G and for all v ∈ V :
δF
G(v) ≤ k. We say that the worst case incentive compatibility of F is k if it is k-

worst case incentive compatible, but not (k−ε)-worst case incentive compatible
for all ε > 0.

Definition 4.15: Let F be a ranking system. F is called k-mean incentive
compatible over a set of graphs G if for all graphs G ∈ G:

∑

v∈V δF
G(v)/|V | ≤ k.

We say that the mean incentive compatibility of F is k if it is k-mean incentive
compatible, but not (k − ε)-mean incentive compatible for all ε > 0.

Definition 4.16: Let F be a ranking system. F is called k-agent incentive
compatible for a set of graphs G if for all graphs G ∈ G: |{v ∈ V |δF

G(v) > 0}| ≤ k.
We say that the agent incentive compatibility of F is k if it is k-agent incentive
compatible, but not (k − 1)-agent incentive compatible.

Notation: In this section we will use the term fully incentive compatible in
place of weakly incentive compatible for contrast with these weaker notions of
incentive compatibility.

Note that when k is zero, all of these definitions coincide with full incentive
compatibility.

Of the basic properties we defined above, we have shown that weak positive
response, weak monotonicity and minimal fairness could each be satisfied by
a fully incentive compatible ranking system. This leads us to concentrate on
the levels of incentive compatibility attainable under strong monotonicity and
non-imposition. In these fundamental cases, full incentive compatibility cannot
be obtained, and thus it is interesting to try and obtain a more limited degree
of incentive compatibility. In the sequel we show tight bounds for the levels of
incentive compatibility under these two conditions.

4.9.1 Incentive Compatibility Under Strong Monotonicity

When we study the incentive compatibility of ranking systems satisfying strong
monotonicity, it is helpful to keep in mind that this property is satisfied by al-
most all practical ranking systems, including Approval Voting, PageRank, and
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Hubs&Authorities. Specifically, we are going to quantify the incentive com-
patibility of the Approval Voting and PageRank ranking systems, when the
out-degree of each vertex is limited to some constant k.

First, we are going to prove a general negative result about ranking systems
that satisfy strong monotonicity.

Theorem 4.18: There exists no strongly monotone ranking system that is
(k
2−ε)-worst case incentive compatible on the set of graphs with max out-degree

k for all ε > 0. Furthermore, there exists no strongly minimally fair strongly
monotone ranking system that is (k

2 − ε)-mean incentive compatible on the set
of graphs with max out-degree k for all ε > 0.

Proof: Assume a strongly monotone ranking system F and assume a graph
G = (V, E) with k+1 vertices V = {v0, v1, . . . , vk} and edges E = {(v0, v1), (v0, v2), . . . , (v0, vk)}.
Assume a strongly monotone l-worst case incentive compatible ranking system
F . By strong monotonicity, F ranks

v0 ≺
F
G v1 ≃

F
G v2 ≃

F
G · · · ≃

F
G vk.

This gives rF
G(v0) = 1

2 . However, if v0 changes its votes to ∅, the rank will become

(by strong monotonicity) v0 ≃ v1 ≃ v2 ≃ · · · ≃ vk, and thus rF
G′(v0) = k+1

2 . We

have shown a manipulation of magnitude k
2 , in contradiction to the fact that F

is (k
2 − ε)-IC, where ε > 0.

Now assume a strongly minimally fair strongly monotone ranking system F ′.
We will show a graph G = (V, E) in which all agents have a deviation of mag-
nitude k

2 . The graph is the complete clique with k + 1 vertices: V = {0, . . . , k}
and E = V ×V \{(v, v)|v ∈ V }. Note that this graph has a maximal out-degree
of k and F ranks all agents equally (due to minimal fairness). However, if any
agent v removes all its outgoing edges to form a graph G′, then that agent will
be, by strong monotonicity, ranked above all other agents. Thus, rF ′

G (v) = k+1
2 ,

while rF ′

G′ (v) = k + 1
2 . Thus δF ′

G (v) = k
2 for all v ∈ V . Therefore, F ′ is not

(k
2 − ε)-mean incentive compatible for all ε > 0.

We can now quantify the incentive compatibility of the approval voting rank-
ing system, showing that the aforementioned lower bound is tight.

Proposition 4.19: The approval voting ranking system AV satisfies the
following over the set of graphs with max out-degree k:

• The worst case incentive compatibility of AV is k
2 .

• The mean incentive compatibility of AV is k
2 .

• The agent incentive compatibility of AV over the set of graphs with n
vertices (n > 1) is n.
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Proof: First we will prove that AVk is k
2 -worst case incentive compatible.

Let G = (V, E), G′ = (V, E′) ∈ G be graphs that differ in the outgoing edges
from v. Note that |PG(v)| = |PG′(v)| as neither G nor G′ include self-edges.
Let Sdel = {u ∈ SG(v) \ SG′(v)}. Note that |Sdel| ≤ k. For all u ∈ V \ Sdel:
|PG(u)| = |{w|(w, u) ∈ E}| ≤ |{w|(w, u) ∈ E′}| = |PG′(u)|, and thus |PG′(u)| <
|PG′(v)| ⇒ |PG(u)| < |PG(v)| and |PG′(u)| ≤ |PG′(v)| ⇒ |PG(u)| ≤ |PG(v)|.
Furthermore, for all u ∈ Sdel : |PG′(u)| = |PG(u)| + 1. Let Sa = {u ∈ Sdel :
|PG(u)| = |PG(v)|} and Sb = {u ∈ Sdel : |PG(u)|+ 1 = |PG(v)|} Now,

rAV
G′ (v) − rAV

G (v) = 1
2 |{v

′|v′ ≺G′ v}|

− 1
2 |{v

′|v′ ≺G v}|

+ 1
2 |{v

′|v′ �G′ v}|

− 1
2 |{v

′|v′ �G v}|

≤ 1
2 |Sa|+

1
2 |Sb| ≤

1
2 |Sdel| ≤

k
2 .

The k
2 -mean incentive compatibility immediately follows, and the n-agent in-

centive compatibility is trivial. AVk satisfies strong monotonicity and minimal
fairness, and thus it is not (k

2 − ε)-mean incentive compatible, and not (k
2 − ε)-

worst case incentive compatible for all ε > 0.
To show that AVk is not (n − 1)-agent incentive compatible over the set of

graphs with n vertices (n > 1), assume the full loop with n vertices G = (V, E)
defined as follows:

V = {0, . . . , n− 1}

E = {(i, i + 1 mod n), |i = 0 . . . n− 1}

Now, by removing all of its edges, each agent can improve its own relative rank
by 1

2 , and thus all n agents have a deviation, and thus AV is not (n− 1)-agent
incentive compatible.

We now shall define the PageRank procedure with damping factor d. Recall
the definition of the PageRank matrix (definition 2.3 on page 10) which is the
matrix which captures the random walk created by the PageRank procedure.
In this process we start in a random page, and iteratively move to one of the
pages that are linked to by the current page, assigning equal probabilities to
each such page. The damping factor d defines the probability of “teleporting”
to a random page at each step of the walk. The PageRank procedure will rank
pages according to the stationary probability distribution obtained in the limit
of the this random walk. This is formally defined as follows:

Definition 4.17: Let G = (V, E) be some strongly connected graph, and
assume V = {v1, v2, . . . , vn}. Let 0 < d < 1 be a damping factor. Let r be the
unique solution of the system (1− d) ·AG · r+ d · ( 1 1 · · · 1 )T = r where
∑

ri = n. The damped PageRank PRd
G(vi) of a vertex vi ∈ V is defined as

PRd
G(vi) = ri. The PageRank ranking system with damping factor d is a ranking
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system that for the vertex set V maps G to �PRd

G , where �PRd

G is defined as:

for all vi, vj ∈ V : vi �PRd

G vj if and only if PRd
G(vi) ≤ PRd

G(vj).

We will now quantify the incentive compatibility of the PageRank ranking
system:

Proposition 4.20: The PageRank ranking system PRd with damping factor d
is not (n

2 −2)-mean incentive compatible nor (n−1)-agent incentive compatible
on the set of graphs with n vertices (n > 2) and out-degree 1.
Proof: Consider the graph G = (V, E) where V = {0, . . . , n − 1} and
E = {(i, i + 1 mod n)|i = 0, . . . n − 1}. In this graph PRd ranks all agents
equally due to symmetry. Let v ∈ V be some agent. Assume wlog v = n − 1
and let G′ = (V, E′) be defined as E′ = E\{(n−1, 0)}∪{(n−1, n−2)}. Applying
linear algebra, we conclude that PRd ranks 0 ≺ 1 ≺ · · · ≺ n− 3 ≺ n− 1 ≺ n− 2

in G′ and thus rPRd

G′ (v) = rPRd

G′ (n − 1) = n− 1.5. However, rPRd

G (v) = n
2 , and

thus δPRd

G (v) ≥ n−3
2 . This is true for all v ∈ V , so we see that PRd is not

(n
2 − 2)-mean incentive compatible nor (n − 1)-agent incentive compatible for

an arbitrary graph G with n vertices.

A similar lower bound showing deviations of magnitude O(n) by all agents
can be shown for the Hubs&Authorities ranking system as presented by Klein-
berg (1999).

4.9.2 Non-imposing Ranking Systems

Recall that non-imposing ranking systems are those that accommodate any
strict order on the vertices, and that no such fully incentive compatible ranking
systems exist. We will now show a 1-worst case incentive compatible ranking
system satisfying non-imposition. This ranking system is also 1-agent incentive
compatible, which sets a tight bound.

Theorem 4.21: There exists a ranking system F that satisfies non-imposition,
1-worst case incentive compatibility, 1

n
-mean incentive compatibility on graphs

with n vertices, 1-agent incentive compatibility, and weak positive response.
Proof: The ranking system F is defined as follows: Assume a graph G =
(V, E) with V = {v1, v2, . . . , vn}. For each v 6= v1 we define

p(v) =

{

|P (v) \ S(v1)|+ n v ∈ S(v1)

|P (v) ∩ S(v1)| v /∈ S(v1)
.

Now we define a strict ordering �∗ on V \ {v1}:

vi �
∗ vj ⇔ [p(vi) < p(vj)] ∨

∨[p(vi) = p(vj) ∧ i ≤ j].
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Given this ordering we can finally define �F
G:

vi �
F
G vj ⇔ (i 6= 1 ∧ j 6= 1 ∧ vi �

∗ vj) ∨

∨(i = 1 ∧ |{u|u �∗ vj}| ≥ |P (v1)|) ∨

∨(j = 1 ∧ |{u|u �∗ vi}| < |P (v1)|).

The weak positive response property is satisfied because addition of an edge
(u, v) either weakly increases p(v) if v 6= v1, increasing the relative rank of v, or
increases |P (v1)| if v = v1, and thus again increases the relative rank of v.

To prove F satisfies non-imposition, assume a vertex set V = {v1, . . . , vn}
and strict ordering �′ on V . Let u1, u2, . . . , un−1 be the vertices in V \ {v1}
ordered according to �′ and let k = |{v ∈ V : v �′ v1}|. Let G = (V, E) be the
graph defined as follows:

E = {(v1, ui)|i > n−1
2 } ∪ {(ui, v1)|i < k} ∪

{(ui, uj)|
n−1

2 < i < j − 1 + n
2 } ∪

{(ui, uj)|i < j − n−1
2 }.

First note that for all ui ∈ V \ {v1}:

p(ui) =

{

i +
⌊

n
2

⌋
i > n−1

2

i− 1 Otherwise

Thus, u1 ≺∗ u2 ≺∗ · · · ≺∗ un−1. As |P (v1)| = k − 1, u1 ≺F
G · · · ≺

F
G uk−1 ≺F

G

v1 ≺F
G uk ≺F

G · · · ≺
F
G un−1, and thus �F

G≡�
′, as required.

We will now prove the incentive compatibility features of this ranking system.
Let G = (V, E) be some graph. Note that both �∗ and �F

G are strict orderings.
The deviation magnitude of agent v1 is 0, as its rank is dependent only on its
in-degree, which it cannot manipulate:

δF
G(v1) = max{rF

(V,E′)(v)− rF
G(v)} =

= max{(|P(V,E′)(v1)|+
1
2 )− (|PG(v1)|+

1
2 )} =

= max{|PG(v1)| − |PG(v1)|} = 0.

Let vi ∈ V \ {v1} be an agent. The rank rF
G(vi) is:

rF
G(vj) = 1

2

∣
∣{v′ : v′ ≺F

G vi}
∣
∣ + 1

2

∣
∣{v′ : v′ �F

G vi}
∣
∣ =

=
∣
∣{v′ : v′ ≺F

G vi}
∣
∣ + 1

2 =

=

{

|{v′ : v′ ≺∗ vi}|+ 1.5 |{v′|v′ �∗ vi}| ≥ |P (v1)|

|{v′ : v′ ≺∗ vi}|+
1
2 Otherwise.

Now, |{v′ : v′ ≺∗ vi}| is independent of the outgoing edges of vi given S(v1), as
vi ∈ S(v1) iff its outgoing edges are used to rank agents /∈ S(v1). Thus, the
only manipulation vi might do is to change |P (v1)|, and thus increase its rank
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by 1. In order to increase its rank, vi must decrease |P (v1)|. vi can do so by
at most 1, by removing an edge (vi, v1) if it exists. This manipulation can only
be done if |{v′|v′ �∗ vi}| = |PG(v1)|. As �∗ is strict and 0 ≤ |PG(v1)| ≤ n− 1,
there exists exactly one agent vi satisfying this condition.

Thus, for some vi ∈ V : δF
G(vi) ≤ 1, and for all vj ∈ V \ {vi}: δF

G(vi) = 0.
So we conclude that F is 1-worst case incentive compatible, 1

n
-mean incentive

compatible on graphs with n vertices, and 1-agent incentive compatible.
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Chapter 5

Personalized Ranking

Systems

5.1 Introduction

Personalized ranking systems and trust systems are an essential tool for col-
laboration in a multi-agent environment. In these systems, agents report on
their peers’ performance, and these reports are aggregated to form a ranking of
the agents. In the previous chapters, we have discussed global ranking systems,
where all agents see the same ranking. In this chapter, we consider personal-
ized ranking systems, where each agent is provided with her own ranking of the
agents.

Examples of personalized ranking systems include the personalized version of
PageRank(Haveliwala et al., 2003) and the MoleTrust ranking system (Avesani
et al., 2005). Furthermore, trust systems which provide each agent with a set
of agents he or she can trust can be viewed as personalized ranking systems
which supply a two-level ranking over the agents. Many of these systems can be
easily adapted to provide a full ranking of the agents. Examples of trust systems
include OpenPGP(Pretty Good Privacy)’s trust system (Callas et al., 1998), the
ranking system employed by Advogato (Levien, 2002), and the epinions.com web
of trust.

A central challenge in the study of ranking systems, is to provide means and
rigorous tools for the evaluation of these systems. This challenge equally ap-
plies to both global and personalized ranking systems. A central approach to the
evaluation of such systems is the experimental approach. In the general ranking
systems setting, this approach was successfully applied to Hubs&Authorities
(Kleinberg, 1999) and to various other ranking systems (Borodin et al., 2005).
In the trust systems setting, Massa and Avesani (2005) suggest a similar exper-
imental approach.

In the previous chapters we have suggested the axiomatic approach to the
evaluation of ranking systems. Cheng and Friedman (2005) discuss a specific
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sybilproofness property, and have proven that a personalized ranking system
must be applied in order to satisfy this property. While the axiomatic approach
has been extensively applied to the global ranking systems setting, no general
attempt has been made to apply such an approach to the context of personalized
ranking systems.

In this chapter, we introduce an extensive axiomatic study of the personal-
ized ranking system setting, by adapting axioms that have been applied to global
ranking systems earlier in this thesis. We compare several existing personalized
ranking systems in the light of these axioms, and provide novel ranking systems
that satisfy various sets of axioms. Moreover, we prove a full characterization
of the personalized ranking systems satisfying all suggested axioms.

We consider four basic axioms. The first axiom, self confidence, requires that
an agent would be ranked at the top of his own personalized rank. The second
axiom, transitivity, captures the idea that an agent preferred by more highly
trusted agents, should be ranked higher than an agent preferred by less trusted
agents. The third axiom, Ranked Independence of Irrelevant Alternatives, re-
quires that under the perspective of any agent, the relative ranking of two other
agents would depend only on the pairwise comparisons between the rank of the
agents that prefer them. The last axiom, strong incentive compatibility, cap-
tures the idea that an agent cannot gain trust by any agent’s perspective by
manipulating its reported trust preference.

We fully characterize the set of ranking systems satisfying all four axioms,
and show ranking systems satisfying every three of the four axioms (but not the
fourth).

This chapter is organized as follows. Section 5.2 introduces the setting of
personalized ranking systems and discusses some known systems. In section 5.3
we present our axioms, and classify the ranking systems shown according to
these axioms. In section 5.4 we provide a full characterization of the ranking
systems satisfying all of our axioms, and in section 5.5 we study ranking systems
satisfying every three of the four axioms. Section 5.6 presents some concluding
remarks and suggestions for future research.

5.2 Personalized Ranking Systems

5.2.1 The Setting

We define a personalized ranking system as a slight variation of a general system:

Definition 5.1: Let GV be the set of all directed graphs G = (V, E) with
no parallel edges, but possibly with self-loops1. A personalized ranking sys-
tem(PRS) F is a functional that for every finite vertex set V and for every
source s ∈ V maps every graph G ∈ GV to an ordering �F

G,s∈ L(V ).

Note that our definition of a personalized ranking system considers only the
ordinal ranking of the vertices and does not assign cardinal values to vertices.

1Unless otherwise noted, all our results still apply when self loops are not allowed.
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Also note that our definition does not assume the existence of a path from s
to every vertex. However, in some settings this may be considered a useful
assumption. Therefore, we shall use these kind of graphs in all examples and
counter-examples, but prove our results for the more general case defined above.

5.2.2 Some personalized ranking systems

We shall now give examples of some known PRSs. A basic ranking system that
is at the basis of many trust systems ranks the agents based on the minimal
distance of the agents from the source.
Notation: Let G = (V, E) be some directed graph and v1, v2 ∈ V be some
vertices, we will use dG(v1, v2) to denote the length of the shortest directed path
in G between v1 and v2. If no such path exists, dG(v1, v2) ,∞.

Definition 5.2: The distance PRS FD is defined as follows: Given a graph
G = (V, E) and a source s, v1 �

FD

G,s v2 ⇔ dG(s, v1) ≥ dG(s, v2)

Another family of PRSs can be derived from the well-known PageRank rank-
ing system by modifying the so-called teleportation vector in the definition of
PageRank (Haveliwala et al., 2003). The Personalized PageRank procedure
ranks pages according to the stationary probability distribution obtained in
the limit of a random walk with a random teleportation to the source s with
probability d. This is formally defined as follows:

Definition 5.3: Let G = (V, E) be some graph, and assume V = {s, v2, . . . , vn}.
Let r be the unique solution of the system (1− d) ·AG · r+ d · (1, 0, . . . , 0)T = r.
The Personalized PageRank with damping factor d of a vertex vi ∈ V is defined
as PPRd

G,s(vi) = ri. The Personalized PageRank Ranking System with damp-
ing factor d is a PRS that for the vertex set V and source s ∈ V maps G to
�PPRd

G,s , where �PPRd

G,s is defined as: for all vi, vj ∈ V : vi �
PPRd

G,s vj if and only

if PPRd
G,s(vi) ≤ PPRd

G,s(vj).

We now suggest a variant of the Personalized PageRank system, which, as
we will later show, has more positive properties than Personalized PageRank.

Definition 5.4: Let G = (V, E) be some graph and assume V = {s, v2, . . . , vn}.
Let BG be the link matrix for G. That is, [BG]i,j = 1⇔ (j, i) ∈ E. Let α = 1/n2

and let a be the unique solution of the system α ·BG ·a+ (1, αn, . . . , αn)T = a.
The α-Rank of a vertex vi ∈ V is defined as rG,s(vi) = ai. The α-Rank PRS is
a PRS that for the vertex set V and source s ∈ V maps G to �αR

G,s, where �αR
G,s

is defined as: for all vi, vj ∈ V : vi �αR
G,s vj if and only if rG,s(vi) ≤ rG,s(vj).

The α-Rank system ranks the agents based on their distance from s, breaking
ties by the summing of the trust values of the predecessors. By selecting α =
1/n2, it is ensured that a slight difference in rank of nodes closer to s will be
more significant than a major difference in rank of nodes further from s.

Additional personalized ranking systems are presented in Section 5.5 as part
of our axiomatic study.
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5.3 Some Axioms

A basic requirement of a PRS is that the source — the agent under whose
perspective we define the ranking system — must be ranked strictly at the top
of the trust ranking, as each agent implicitly trusts herself. We refer to this
property as self confidence.

Definition 5.5: Let F be a PRS. We say that F satisfies self confidence if
for all graphs G = (V, E), for all sources s ∈ V and for all vertices v ∈ V \ {s}:
v ≺F

G,s s.

Recall the notions of strong transitivity and strong quasi transitivity (defi-
nitions 3.1 on page 30 and 3.7 on page 36), which require that if an agent a’s
voters are ranked higher than those of agent b, then agent a should be ranked
higher than agent b. We adapt these notions to the personalized setting, and
introduce a new weaker version of transitivity as follows:

Definition 5.6: Let F be a PRS. We say that F satisfies quasi transitivity if for
all graphs G = (V, E), for all sources s ∈ V and for all vertices v1, v2 ∈ V \ {s}:
Assume there is a 1-1 mapping f : P (v1) 7→ P (v2) s.t. for all v ∈ P (v1):v � f(v).
Then, v1 � v2. F further satisfies strong quasi transitivity if when P (v1) 6= ∅
and for all v ∈ P (v1): v ≺ f(v), then v1 ≺ v2. F further satisfies strong
transitivity if when either f is not onto or for some v ∈ P (v1): v ≺ f(v), then
v1 ≺ v2.

The new notion of quasi transitivity requires that agents with stronger
matching predecessors be ranked at least as strong as agents with weaker pre-
decessors without any requirement for strict preference.

Recall the Ranked IIA axiom (definition 3.4 on page 32), which intuitively
means that the relative ranking of agents must be consistent across all compar-
isons with the same rank relations. We now adapt this axiom to the setting of
PRSs, by requiring this independence for all vertices reachable from from the
source, except for the source itself.

Notation: We will use V G
s to denote the set of vertices that have a directed

path from s in a graph G. We will sloppily use Vs when G is understood from
context.

Definition 5.7: Let F be a PRS. We say that F satisfies ranked independence
of irrelevant alternatives (RIIA) if there exists a mapping f : P 7→ {0, 1} such
that for every graph G = (V, E), for every source s ∈ V and for every pair of
vertices v1, v2 ∈ V G

s \ {s} and for every comparison profile p ∈ P that v1 and v2

satisfy, v1 �F
G,s v2 ⇔ f(p) = 1.

Notation: We will sloppily use the notation a 4 b to denote f〈a,b〉 = 1.
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5.3.1 Incentive Compatibility

The issue of incentives has been extensively studied in classical social choice
(Gibbard, 1973; Satterthwaite, 1975; Dutta et al., 2001). We have further stud-
ied the issue of incentives in ranking systems in Chapter 4. As with global
ranking systems, agents ranked by personalized ranking systems may wish to
manipulate their reported preferences in order to improve their trustworthiness
in the eyes of a specific agent. Therefore, the incentives of these agents should
in many cases be taken into consideration.

We would like our ranking systems to stand against various types of ma-
nipulations. It is important to formally define what a manipulation is, and the
types of manipulations we would like to defend against.

Definition 5.8: A manipulation is a function M that maps every graph
G = (V, E) ∈ G and every vertex v ∈ V in that graph to a set of graphs M ⊆ G

such that G ∈M and v ∈ G′ for all G′ ∈M .

That is, a manipulation defines for every vertex in any graph, what different
graphs can that agent cause to be presented to the ranking system as a result
of a manipulation.

Our standard for incentive compatibility is strong incentive compatibility,
which requires that agents will not improve their rank in the terms of the number
of agents ranked above them and the number or agents ranked the same as
them2:

Definition 5.9: Let F be a PRS. F satisfies strong incentive compatibility
under manipulation M if for all true preference graphs G = (V, E), for all
sources s ∈ V , for all vertices v ∈ V , and for all manipulations G′ ∈ M(G, v):
|{x ∈ V ′|v ≺F

G′ x}| ≥ |{x ∈ V |v ≺F
G x}|; and if |{x ∈ V ′|v ≺F

G′ x}| = |{x ∈
V |v ≺F

G x}| then |{x ∈ V ′|v ≃F
G′ x}| ≥ |{x ∈ V |v ≃F

G x}|.

In chapter 4, we considered manipulation by modification of an agent’s out-
going links. Such outgoing link manipulation can be defined as:

Mout(V, E, v) = {(V, E′)|∀u ∈ V \ {v} : ∀u′ ∈ V : (u, u′) ∈ E ⇔ (u, u′) ∈ E′}.

The outgoing link manipulationMout is actually a special kind of manipulation
in the sense that the agent can perform the manipulation in both directions.

Definition 5.10: A manipulationM is called reversible if for all G = (V, E) ∈
G, for all v ∈ V , and for all G′ ∈M(G, v): G ∈ M(G′, v).

Reversible manipulations are important due to the following simple fact:

2In chapter 4, we have defined the notion of a utility function un : N 7→ R that for every
graph size n maps the number of agents ranked below a specific agent in a strict ranking to a
utility value, and we assumed such utility functions are nondecreasing. If we further assume
that un(i) = um(i + n − m) for all 0 < i < m < n, that is, an agent’s utility in a strict
ranking depends only on the number of agents ranked above it, we can show that our current
definition of strong incentive compatibility is equivalent to the one in Chapter 4.
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Fact 5.1 : Let M be a reversible manipulation and let F be a PRS . F
satisfies strong incentive compatibility under M if and only if for all graphs
G = (V, E), for all sources s ∈ V , for all vertices v ∈ V , and for all manipulations
G′ ∈ M(G, v): |{x ∈ V ′|v ≺F

G′ x}| = |{x ∈ V |v ≺F
G x}| and |{x ∈ V ′|v ≃F

G′

x}| = |{x ∈ V |v ≃F
G x}|.

Therefore, in a PRS that is incentive compatible under a reversible manip-
ulation an agent cannot change its rank at all by performing a manipulation.

Another type of manipulation, considered by Cheng and Friedman (2005)
is concerned with the generation of fraudulent identities in order to manipu-
late one’s rank. Their setting considered weighted edges, as opposed to our
setting where the edges are binary. However, we can adapt their sybil form of
manipulation by simply removing these weights.

A sybil manipulation, or sybling strategy is a manipulation in which an
agent controlling one vertex v in the graph can create any number of fraudulent
identities (or sybils) and freely manipulate the links among these sybils, while
maintaining the same set of incoming and outgoing links (possibly duplicated)
among the sybil group as a whole.

Thus, we can define the sybil manipulation as:

Msybil(V, E, v) = {(V ′, E′)|

V ⊆ V ′ ∧ ∀u, u′ ∈ V \ {v} : (u, u′) ∈ E ⇔ (u, u′) ∈ E′ ∧

PG(v) \ {v} = (V \ {v}) ∩
⋃

u∈V ′\V ∪{v}

PG′(u) ∧

SG(v) \ {v} = (V \ {v}) ∩
⋃

u∈V ′\V ∪{v}

SG′(u)}.

We can also consider the combined manipulation of the two, which is not
the same as the simple union of these manipulations:

Mboth(V, E, v) = {(V ′, E′)|

V ⊆ V ′ ∧ ∀u, u′ ∈ V \ {v} : (u, u′) ∈ E ⇔ (u, u′) ∈ E′ ∧

PG(v) \ {v} = (V \ {v}) ∩
⋃

u∈V ′\V ∪{v}

PG′(u).

It turns out that strong incentive compatibility under both outgoing edge and
sybling manipulations is equivalent to strong incentive compatibility under the
combined manipulation:

Fact 5.2: Let F be a PRS. F satisfies strong incentive compatibility under
Mout and underMsybil if and only if it satisfies strong incentive compatibility
underMboth.
Proof: The “if” direction is trivial. For the “only if” direction, let G = (V, E)
be a graph and v ∈ V . Consider a manipulation (V ′, E′) ∈ Mboth(V, E, v). Let
U = {x|∃u ∈ V ′\V ∪{v} : (u, x) ∈ E′}. Let E′′ = E\{(v, x)|x ∈ V }∪{(v, x)|x ∈

76



U}. Now (V, E′′) ∈ Mout(V, E, v) and (V ′, E′) ∈ Msybil(V, E′′, v), and due
to strong incentive compatibility under these manipulations, F also satisfies
strong incentive compatibility under manipulation (V ′, E′) and indeed under
any manipulation inMboth.

5.3.2 Satisfication

We will now demonstrate the aforementioned axioms by showing which axioms
are satisfied by the PRSs mentioned in Section 5.2.2.

Proposition 5.3: The distance PRS FD satisfies self confidence, ranked IIA,
transitivity, and strong incentive compatibility under Mboth, but does not sat-
isfy strong transitivity.
Proof: Self-confidence is satisfied by definition of FD. FD satisfies RIIA,
because it ranks every comparison profile in the connected section consistently
according to the following rule:

(a1, a2, . . . , an) 4 (b1, b2, . . . , bm)⇔ an ≤ bm.

That is, any two vertices are compared according to their strongest predecessor.
FD satisfies strong quasi transitivity, because the ranking of the profiles above
is consistent with strong quasi transitivity. The unconnected vertices are all
equal to each other and weaker than the connected vertices which is also true
for their predecessors, and thus strong quasi transitivity is satisfied.

To prove that FD satisfies strong incentive compatibility, note the fact that
an agent x cannot modify the shortest path from s to x by changing its outgoing
links or adding sybils since any such shortest path necessarily does not include
x or its sybils (except as target). Moreover, x or its sybils cannot change the
shortest path to any agent y with d(s, y) ≤ d(s, x), because x and its sybils
are necessarily not on the shortest path from s to y. Therefore, the amount of
agents ranked above x and its sybils and the amount of agents ranked equal to
x or its sybils cannot decrease due to x’s manipulations.

To prove FD does not satisfy strong transitivity, consider the graph in Figure
5.1a. In this graph, x and y are ranked the same, even though P (x) ( P (y), in
contradiction to strong transitivity.

Proposition 5.4: The Personalized PageRank ranking systems satisfy self
confidence if and only if the damping factor is set to more than one half3.
Moreover, Personalized PageRank does not satisfy weak transitivity, ranked
IIA or strong incentive compatibility under Mout or Msybil for any damping
factor.

3If we do not allow self-loops this bound becomes (
√

5 − 1)/2 ≈ 0.618.
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Proof: To prove the that PPR does not satisfy self-confidence for d ≤ 1
2 ,

consider the graph in Figure 5.1b. For any damping factor d, the PPR will be
PPR(s) = d and PPR(x) = 1− d. If d ≤ 1

2 then PPR(s) ≤ PPR(x) and thus
s �PPRd x, in contradiction to the self confidence axiom.

PPR satisfies self-confidence for d > 1
2 because then PPR(s) ≥ d > 1

2 , while
for all v ∈ V \ {s}, PPR(v) ≤ 1− d < 1

2 .
To prove that PPR does not satisfy strong quasi transitivity and ranked IIA,

consider the graph in Figure 5.1c. The PPR of this graph for any damping factor

d is as follows: PPR(s) = d; PPR(a) = d(1−d)
2 ; PPR(b) = d(1−d)2

4 ; PPR(c) =
d(1−d)2

2 . Therefore, the ranking of this graph is: b ≺ c ≺ a ≺ s. Quasi transitiv-
ity is violated because b ≺ c even though P (b) = P (c) = a. This also violates
ranked IIA because the ranking profile 〈(1), (1)〉 must be ranked as equal due
to trivial comparisons such as a and a.

Strong incentive compatibility under Mout is not satisfied, because in the
graph in Figure 5.1c, if any of the b agents b′ would have voted for themselves,
they would have been ranked b ≺ b′ ≺ c ≺ a ≺ s, which is a strict increase in b′

rank.
To show that strong incentive compatibility under Msybil is not satisfied,

consider the graph in Figure 5.1d. Note that a ≃ b ≺ s in this graph. Con-
sider the manipulation by a where a sybil a′ is added along with the edges
{(s, a′), (a′, a)}. In this case, the PageRank value of b would be 1

3 (1− d)d while

the PageRank value of a will be (1−d)+1
3 (1 − d)d. Therefore, b ≺ a ≺ s in the

manipulated graph, and thus strong incentive compatibility is not satisfied.

It is interesting to note that although Personalized Pagerank does not satisfy
strong incentive compatibility underMsybil, a weighted version of Personalized
PageRank is in fact sybilproof with regard to the weighted definition of sybil-
proofness presented in Cheng and Friedman (2005).

Strong transitivity is also satisfied by a natural PRS — the α-Rank system:

Proposition 5.5: The α-Rank system satisfies self confidence and strong
transitivity, but does not satisfy ranked IIA or strong incentive compatibility
underMout orMsybil.
Proof: To show α-Rank satisfies self confidence, note that by definition
rG,s(s) ≥ 1. Assume for contradiction that maxv 6=s rG,s(v) ≥ 1. Then,

rG,i(s) ≤ 1 + α
∑

v∈V

rG,s(v)

≤ 1 + α

[

(n− 1)max
v 6=s

rG,s(v) + rG,i(s)

]

rG,i(s) ≤
1

1− α
+

α

1− α
(n− 1)max

v 6=s
rG,s(v) ≤

≤ 2 + max
v 6=s

rG,s(v)
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max
v 6=s

rG,s(v) ≤ αn + α
∑

v∈V

rG,s(v)

≤ αn + α

[

n ·max
v 6=s

rG,s(v) + 2

]

[

1−
n

n2

]

max
v 6=s

rG,s(v) ≤
2

n2
+

1

n2n

n2 − n ≤ 2 + 1/n2n−2

n2 − n− 1/n2n−2 ≤ 2

2 ≤ n(n− 1) < 2

To prove α-Rank satisfies strong transitivity, consider two vertices a, b ∈
V \ {s} and a function f : P (a) 7→ P (b) such that v � f(v) for all v ∈ P (a).
Then,

rG,s(a)/α− αn =
∑

v∈P (a)

rG,s(v) ≤
∑

v∈f(P (a))

rG,s(v) ≤

≤
∑

v∈P (b)

rG,s(v) = rG,s(b)/α− αn, (5.1)

which implies a � b. If for some v ∈ P (a): v ≺ f(v) , or if f is not onto,
then the first or the second inequality respectively in (5.1) above is strict, which
implies a ≺ b, as required.

To prove α-Rank does not satisfy strong incentive compatibility underMout,
consider the graph in Figure 5.1e. In this graph α-Rank ranks d ≺ b. However,
if d removes the link to b they will be ranked equally and thus reducing the
number of agents stronger than d. To prove α-Rank does not satisfy strong
incentive compatibility under Msybil, consider again the graph in Figure 5.1e.
Agent c is ranked below agent b in this graph. However, she can duplicate
herself and add edges (c, c′) and (c′, c) to be ranked above b thus decreasing the
number of agents ranked better than herself.

To prove α-Rank does not satisfy RIIA, consider the graph in Figure 5.1f.
It is easy to calculate the following α-Rank values:

r(s) = 1

r(i) = r(h) = α + α10

r(d) = r(e) = α2 + α10 + α11

r(f) = 2α2 + α3 + α10 + 3α11 + α12

r(g) = α2 + α3 + α10 + 2α11 + α12

r(a) = 2α3 + α10 + 2α11 + 2α12

r(b) = 2α3 + α4 + α10 + α11 + 3α12 + α13

r(c) = α3 + α4 + α10 + α11 + 2α12 + α13.
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Therefore, this graph is ranked c ≺ a ≺ b ≺ d ≃ e ≺ g ≺ f ≺ i ≃ h ≺ s.
Note that (a, b) and (a, c) both satisfy the profile 〈(1, 1), (2)〉, however a ≺ b
and c ≺ a in contradiction to RIIA.

5.4 A Characterization Theorem

Our main result is a full characterization of the PRSs that satisfy the axioms
above. We will see that these systems are the generalized strong count systems.
Strong count ranks agents based on their strongest predecessors, breaking ties
according to the number of equal strongest predecessors the agents have. The
function r below determines how such ties are broken. As s is stronger than all
other agents, the strongest predecessor of each agent in Vs \ {s} must be closer
to s.

The strong count systems are formally defined as follows:

Definition 5.11: Let r : N 7→ N be a monotone nondecreasing function
such that r(i) ≤ i for all i ∈ N. The strong count system SCr is recursively
defined as follows: First of all, y ≃ y′ ≺ x ≺ s for all x ∈ Vs \ {s} and
y, y′ ∈ V \ Vs. For x ∈ Vs \ {s}, denote P ′(x) = P (x) ∩ {y|d(s, y) < d(s, x)},
and Pmax(x) = {y|y ∈ P ′(x), ∀z ∈ P ′(x) : z �SCr y}. Now for a, b ∈ Vs \ {s}:

a �SCr b ⇔ (∃x ∈ Pmax(a), y ∈ Pmax(b) : x ≺SCr y) ∨

∨[ (∀x ∈ Pmax(a), y ∈ Pmax(b) : x ≃SCr y) ∧

∧((r(|Pmax(a)|) ≤ r(|Pmax(b)|))].

The strong count systems rank based on the strongest predecessor’s rank and
then break ties based on the number of strongest predecessors. Unconnected
vertices are equally ranked at the bottom. Note that for r ≡ 1, the Strong
Count PRS is exactly the distance system.

Our main result claims that these strong count systems are the only systems
that satisfy all aforementioned axioms.

Theorem 5.6: Let F be a PRS. The following three statements are equivalent:

1. F is a strong count system for some r.

2. F satisfies self confidence, strong quasi transitivity, ranked IIA and strong
incentive compatibility under Mout.

3. F satisfies self confidence, strong quasi transitivity, ranked IIA and strong
incentive compatibility under Mboth.

We begin our proof by showing that the strong count systems do in fact
satisfy all these axioms.
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Proof: (1 ⇒ 3): Let r be a monotone nondecreasing function such that
r(x) ≤ x. SCr satisfies self confidence by definition.

To show that SCr satisfies RIIA and strong quasi transitivity on elements
of Vs, we will show that it ranks any profile p = 〈(a1, . . . , an); (b1, . . . , bm)〉 as
follows: Let ca = max{i ∈ N|an−i = an−i+1 = · · · = an} and cb = max{i ∈
N|bm−i = bm−i+1 = · · · = bm}.

f(p) = 1 ⇔ (an < bm) ∨

∨ [(an = bm) ∧ (r(ca) ≤ r(cb))]

This almost follows from the recursive definition of SCr, however it remains to
show that ∀x, y ∈ V : d(s, x) < d(s, y) ⇒ x ≺SC y. This can be proven by
induction on d(s, y). If y = s this is trivial by definition. Otherwise, by the
assumption of induction, ∃x′ ∈ Pmax(x), y′ ∈ Pmax(y) : x′ ≺SC y′ and thus by
the recursive definition, x ≺SC y.

Strong quasi transitivity involving elements in V \Vs and elements either in
V \ Vs or in Vs \ {s} is satisfied because for all x ∈ V \ Vs and y ∈ V \ {s} we
have x � y (by definition) and if x ≺ y then y ∈ Vs \ {s} and thus there is some
y′ ∈ P (y) such that for all x′ ∈ P (x): x′ � y′.

With regard to the strong incentive compatibility under Mboth, due to the
distance feature proven above, all sybils of v will be strictly weaker than the
vertices with smaller distance from s. Furthermore, any other vertices that were
stronger than v in the original graph will be stronger than any of v’s sybils,
due to the fact that the relative rank of two vertices is determined only based
on incoming links from vertices closer to s, and more incoming edges cannot
decrease an agent’s rank. By the same logic, vertices which were equal to v
in the original graph, will either be stronger or equal to v in the manipulated
graph.

In order to prove the hard direction of Theorem 5.6 (2 ⇒ 1), we will first
show that a strong notion of transitivity is implied by the axioms:

Definition 5.12: Let F be a PRS. We say that F satisfies weak maximum
transitivity if for all graphs G = (V, E), for all sources s ∈ V and for all ver-
tices v1, v2 ∈ Vs: Let m1, m2 be the maximally ranked vertices in P (v1), P (v2)
respectively. Assume m1 ≺ m2. Then, v1 ≺ v2.

Lemma 5.7: Let F be a PRS that satisfies self confidence, strong quasi
transitivity, RIIA and strong incentive compatibility. Then, F satisfies weak
maximum transitivity.

Proof: In order to show that F satisfies weak maximum transitivity, we will
show that for every comparison profile the ranking must be consistent with weak
maximum transitivity. Let p = 〈(a1, a2, . . . , ak), (b1, b2, . . . , bl)〉 be a comparison
profile where ak 6= bl. Assume wlog that bl < ak and assume for contradiction
that 〈(a1, a2, . . . , ak) � (b1, b2, . . . , bl)〉. Consider the graph G = (V, E) defined
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as follows:

V = {s, a, b} ∪ {uj
i |i ∈ {1, . . . , max(k, l)}; j ∈ {0, . . . , ak}}

E = {(uj
i , u

j−1
i )|i ∈ {1, . . . , max(k, l)}; j ∈ {1, . . . , ak}} ∪

∪{(s, ubl

i )|i ∈ {1, . . . , max(k, l)}} ∪

∪{(uj
i , a)|ai = j} ∪ {(uj

i , b)|bi = j}.

Figure 5.2 contains such a graph for the profile 〈(1, 4), (2, 2, 3)〉.
Note that by strong quasi transitivity and self confidence, for all i, i′, j, j′:

uj
i � uj′

i′ iff , j ≤ j′. Therefore, we will use uj to denote any uj
i . By the

construction of G, a and b satisfy p. Thus, from our assumption, a � b.
By strong quasi transitivity, a � ubl , and thus from our assumption also

b � ubl . Now consider the point of view of agent ubl

l . She can perform a
manipulation by not voting for b. This manipulation must not change her
relative rank, as it is in Mout. As the relative ranks of the uj

i agents and s are
unaffected by this manipulation, it cannot affect the ranks of a and b relative
to ubl

l , and thus after the edge (ubl

l , b) is removed, we still have b � ubl

l . We
can repeat this process for all i = bl, . . . , 2, with the result that in the graph G′

for the profile 〈(a1, a2, . . . , ak), (b1)〉, b � ub2 � ub1 . However, by strong quasi
transitivity, b ≃G′ ub1−1 ≺G′ ub1 �G′ b, which is a contradiction.

We can now prove the hard direction of Theorem 5.6.
Proof: (Theorem 5.6: 2⇒ 1) Given Lemma 5.7, it remains to look at profiles
〈(a1, a2, . . . , ak), (b1, b2, . . . , bl)〉 where ak = bl. Denote M = ak = bl. Let p be
such a profile. Denote xa = |{n|an = M}| and similarly xb = |{n|bn = M}|.
These values denote the number of strongest predecessors a and b have in profile
p.

We will now prove by induction on k + l− xa − xb that F ranks p the same
as it ranks 〈(1, . . . , 1

︸ ︷︷ ︸

xa times

), (1, . . . , 1
︸ ︷︷ ︸

xb times

)〉. If k + l−xa−xb = 0, then a1 = ak = b1 = bl,

and thus the requirement is trivially satisfied. Otherwise, we assume correctness
for k + l − xa − xb − 1. Further assume wlog that a1 6= ak. Denote r = ak−xa

and ya = |{n|an = r}|.
We shall now consider two cases:

• If b1 = bl or ak−xa
6= bl−xb

. If b1 6= bl, then further assume wlog that
ak−xa

> bl−xb
. Consider the graph G = (V, E) defined as follows:

V = {s, a} ∪ {b1, . . . , bya} ∪

∪{uj
i |i ∈ {1, . . . , max(k, l)}; j ∈ {0, . . . , M}}

E = {(uj
i , u

j−1
i )|i ∈ {1, . . . , max(k, l)}; j ∈ {1, . . . , M}} ∪

∪{(s, uM
i )|i ∈ {1, . . . , max(k, l)}} ∪ {(uj

i , a)|ai = j 6= r} ∪

∪{(uj
i , b

n)|bi = j, n = 1, . . . , ya} ∪ {(b
n, a)|n = 1, . . . , ya}.
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Figure 5.3 contains such a graph for the profile 〈(1, 3, 3, 4), (1, 2, 4, 4)〉.
Note that by strong quasi transitivity and self confidence, for all i, i′, j, j′:

uj
i � uj′

i′ iff , j ≤ j′. Therefore, we will use uj to denote any uj
i . Simi-

larly, all bn are equal to each other, and by weak maximum transitivity
(Lemma 5.7), uM−1 � a, b ≺ uM (we will similarly use b to denote any bn).
Therefore, a and b satisfy p. Now consider the following manipulation by
b1: Removing the outgoing edge to a. This manipulation is in Mout and
thus should not change the relative rank of b1. Note that b1’s predecessors
remain the same and equal to the ones of b2, . . . , bya , and all bn remain
equal. We must now show that for every allowable relative ranking of
uM−1, a, and b the manipulation cannot change a and b’s relative rank.
We will do this by considering all cases:

Ordering # Vertices equal to b # Vertices stronger than b

uM−1 ≃ b ≺ a ya + max(k, l) (M − r) ·max(k, l) + 2
uM−1 ≺ b ≺ a ya (M − r) ·max(k, l) + 2
uM−1 ≃ a ≃ b ya + max(k, l) + 1 (M − r) ·max(k, l) + 1
uM−1 ≺ a ≃ b ya + 1 (M − r) ·max(k, l) + 1
uM−1 ≃ a ≺ b ya (M − r) ·max(k, l) + 1
uM−1 ≺ a ≺ b ya (M − r) ·max(k, l) + 1

We see that any change in the relation between a and b will surely change
b’s rank in a way that is not strategyproof.

We have shown that profile p must be ranked the same as the profile

〈(a1, a2, . . . , ak−xa−1, ak−xa+1, . . . , ak), (b1, b2, . . . , bl)〉,

which by the assumption of induction gives us the desired result.

• Otherwise, ak−xa
= bl−xb

. Denote yb = |{n|bn = r}| and assume wlog
that yb ≥ ya. Consider the graph G = (V, E) defined as follows:

V = {s, a} ∪ {b0, . . . , byb} ∪

∪{uj
i |i ∈ {1, . . . , max(k, l)}; j ∈ {0, . . . , M}}

E = {(uj
i , u

j−1
i )|i ∈ {1, . . . , max(k, l)}; j ∈ {1, . . . , M}} ∪

∪{(s, uM
i )|i ∈ {1, . . . , max(k, l)}} ∪ {(uj

i , a)|ai = j 6= r} ∪

∪{(uj
i , b

n)|bi = j 6= r, n = 0, . . . , y} ∪

∪{(bn, a)|n = 1, . . . , ya} ∪ {(b
n, bm)|n 6= m ∈ {0, . . . , yb}}.

Figure 5.4 contains such a graph for the profile 〈(1, 1, 2, 2), (1, 1, 1, 2)〉.

As before, for all i, i′, j, j′: uj
i � uj′

i′ iff , j ≤ j′ and we will use uj to

denote any uj
i . All bn are equal to each other because if wlog b1 ≺ b2

then b1’s predecessors will be stronger than b2’s predecessors and thus by
strong quasi transitivity b2 � b1. Again, by weak maximum transitivity,
uM−1 � a, b ≺ uM and we will use b to denote any bn. Therefore, a and b
satisfy p. We can again consider a manipulation by b1 removing an edge
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to a, again all bn remain equal and as before the manipulation cannot
change a and b’s relative rank, and when again applying the assumption
of induction we get the desired result.

By strong quasi transitivity, profiles where all predecessors are equal are ranked
〈1〉 � 〈1, 1〉 � · · · . When considering the result above, we conclude any two ver-
tices should be weakly ranked according to the number of strongest predecessors
they have, and by RIIA the tie-breaking rule must be universal.

It remains to show that vertices in V \Vs will be ranked equally and strictly
weaker than those in Vs. Let m ∈ Vs be a minimally ranked vertex in Vs.
Consider a manipulation by m adding edges to all vertices in V \ Vs. By the
above proof, all vertices in V \ Vs will be equally ranked weaker than m. As m
does not worsen its position by performing this manipulation and the internal
ranking in Vs does not change we conclude that in any graph all vertices in
V \ Vs must be ranked strictly weaker than those in Vs.

We can show the vertices in V \ Vs are ranked equally by induction on the
number of edges between them. If there are no such edges, then by strong quasi
transitivity, the requirement is satisfied. Otherwise, consider an edge (v1, v2)
such that v1, v2 ∈ V \ Vs. A manipulation by v1 adding this edge must retain
its position and thus all agents in V \ Vs must be ranked equally.

We have shown that all vertices must be ranked according to strong count
and thus the system must be a strong count system.

5.5 Relaxing the Axioms

We shall now prove the conditions in Lemma 5.7 (and thus also in Theorem
5.6(2)) are all necessary by showing PRSs that satisfy each three of the four
conditions, but do not satisfy weak maximum transitivity. Some of these systems
are quite artificial, while others are interesting and useful.

Proposition 5.8: There exists a PRS that satisfies strong quasi transitiv-
ity, RIIA and strong incentive compatibility, but not self confidence nor weak
maximum transitivity.
Proof: Let F−

D be the PRS that ranks strictly the opposite of the distance

system FD. That is, v1 �
F−

D

G,s v2 ⇔ v2 �
FD

G,s v1. The proof F−
D satisfies strong

quasi transitivity, RIIA and strong incentive compatibility follows the proof of
Proposition 5.3, with the following rule for ranking comparison profiles:

(a1, a2, . . . , an) 4 (b1, b2, . . . , bm)⇔ a1 ≤ b1.

F−
D does not satisfy self confidence, because, by definition s is weaker than

all other agents, and does not satisfy weak maximum transitivity because in
graph from Figure 5.1a, F−

D ranks x and y equally even though the strongest
predecessor of y, which is x, is stronger than the strongest predecessor of x,
which is s.
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This PRS is highly unintuitive, as the most trusted agents are the ones
furthest from the source, which is by itself the least trusted.

Relaxing strong quasi transitivity leads to a PRS that is almost trivial:

Proposition 5.9: There exists a PRS that satisfies self confidence, ranked IIA
and strong incentive compatibility, but not strong quasi transitivity nor weak
maximum transitivity.
Proof: Let F be the PRS which ranks for every G = (V, E), for every source
s ∈ V , and for every v1, v2 ∈ V \ {s}: v1 ≃ v2 ≺ s. That is, F ranks s on the
top, and all of the other agents equally. F trivially satisfies self confidence,
RIIA and strong incentive compatibility, as s is indeed stronger than all other
agents and every comparison profile is ranked equally. F does not satisfy strong
quasi transitivity or weak maximum transitivity, because in a chain of vertices
starting from s all except s will be ranked equally,

5.5.1 Relaxing Ranked IIA

When Ranked IIA is relaxed, we find a new ranking system that ranks according
to the distance from s, breaking ties according to the number of shortest paths
from s.
Notation: Let G = (V, E) be some directed graph and v1, v2 ∈ V be
some vertices, we will use nG(v1, v2) to denote the number of directed paths of
minimum length between v1 and v2 in G. We will sloppily use the notations
d(v) and n(v) to denote dG(s, v) and nG(s, v) respectively.

Definition 5.13: The Path Count PRS FP is defined as follows: Given a
graph G = (V, E) and a source s, for all v1, v2 ∈ V \ {s}:

v1 �
FP

G,s v2 ⇔ dG(s, v1) > dG(s, v2) ∨

(dG(s, v1) = dG(s, v2) ∧

∧nG(s, v1) ≤ nG(s, v2))

Proposition 5.10: The path count PRS FP satisfies self confidence, strong
quasi transitivity and strong incentive compatibility under Mboth , but not
ranked IIA nor weak maximum transitivity.

Proof: Self confidence is trivial as d(s) = 0 < d(v) for all v 6= s.
To prove FP satisfies quasi transitivity consider a graph G = (V, E), a source

s ∈ V and two vertices v1, v2 ∈ V \ {s}. Assume for contradiction that v2 ≺ v1

and there exists a 1-1 function f : P (v1) 7→ P (v2) such that v � f(v) for all
v ∈ P (v1). By the definition of FP : d(v1) ≤ d(v2), but

d(v1) = min
v∈P (v1)

d(v) + 1 ≥ min
v∈f(P (v1))

d(v) + 1 ≥ min
v∈P (v2)

d(v) + 1 = d(v2),
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and thus d(v1) = d(v2). Now,

n(v1) =
∑

v∈P (v1)∧d(v)+1=d(v1)

n(v) ≤

≤
∑

v∈f(P (v1))∧d(f−1(v))+1=d(v1)

n(v) ≤

≤
∑

v∈P (v2)∧d(v)+1=d(v2)

n(v) = n(v2).

Therefore, v1 � v2 in contradiction to our assumption.
For strong quasi transitivity, assume now that v2 � v1, P (v1) 6= ∅, and there

exists a 1-1 function f : P (v1) 7→ P (v2) such that v ≺ f(v) for all v ∈ P (v1).
As above we find that d(v1) = d(v2). Now,

n(v1) =
∑

v∈P (v1)∧d(v)+1=d(v1)

n(v) <

<
∑

v∈f(P (v1))∧d(f−1(v))+1=d(v1)

n(v) ≤ n(v2),

which yields v1 ≺ v2 in contradiction to our assumption.
To show FP satisfies strong incentive compatibility under Mboth, note that

a manipulation by v cannot change d(v) or d(v′) ∀v′ : d(v′) < d(v). Moreover, v
and its sybils cannot gain any new edges from vertices closer to v or change their
internal edges. For this reason, n(v) cannot increase and n(v′) cannot decrease
for all v′ s.t. d(v′) ≤ d(v). Thus, FP does indeed satisfy strong incentive
compatibility under Mboth.

To show FP does not satisfy ranked IIA nor weak maximum transitivity,
consider the graph in Figure 5.5. FP ranks this graph as follows: a ≺ b ≺
y ≺ z ≺ x ≺ s. Consider the profile 〈(2); (1, 1)〉. If we compare x and y we
get (1, 1) ≺ (2), but if we compare a and b we get (2) ≺ (1, 1), in violation of
ranked IIA. Furthermore, the latter comparison is in violation of weak maximum
transitivity, as required.

5.5.2 Relaxing incentive compatibility

When we relax incentive compatibility we find that the familiar Recursive In-
degree ranking systems from section 3.6 on page 36 can be easily adapted to the
personalized setting as well. The only difference from the previous definition is
that we use base (n + 2) and assign a maximal strength of n+1

n+2 to the source
vertex s.

Definition 5.14: Let r : N 7→ N be a monotone nondecreasing function such
that r(i) ≤ i for all i ∈ N. The recursive in-degree PRS with rank function r is
defined as follows: Given a graph G = (V, E) and source s,

v1 �
RIDr

G,s v2 ⇔ valuer,s(v1) ≤ valuer,s(v2),
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where value is defined as:

valuer,s(v) = max
a∈Paths(v)

vpr,s(a) (5.2)

where the maximum is over the set of almost-simple paths to v not passing
through s (but which may start at s):

Paths(v) = { (v = a1, a2, . . . , am)|

(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple ∧

∀i ∈ {1 . . .m− 1} : ai 6= s}.

and valuation function vp : V ∗ 7→ Q is defined as:

vpr,s(a1, a2, . . . , am) =
1

n + 2











{
n + 1 a1 = s
r(|P (a1)|) Otherwise

+






0 m = 1
vpr,s(a2, . . . , am, a2) a1 = am ∧m > 1
vpr,s(a2, . . . , am) Otherwise.











(5.3)

Note that vpr,s(a1, a2, . . . , am) is infinitely recursive in the case when a1 =
am ∧m > 1. For computation sake we can redefine this case finitely as:

vpr,s(a1, . . . , am, a1) =

∞∑

i=0

1

(n + 2)mi

m∑

j=1

r(|P (aj)|)

(n + 2)j
=

=
(n + 2)m

(n + 2)m − 1
vpr,s(a1, . . . , am).

Further note that when the r function is constant (r ≡ 1), then the recursive
in-degree system becomes the distance system on Vs, where the vertices in V \Vs

are ranked weaker, and the ordering among them is set according to the length
of the longest path (simple or not) leading to the vertex.

Example 5.1 : An example of the values assigned for a particular graph
when r is the identity function is given in Figure 5.6. As n = 8, the trust
values are decimal. Note that the loop (b, d) generates a periodical decimal
valuer,s(b) = vpr,s(b, d) = 0.32 by the infinite recursion in (5.3).

These systems satisfy the axioms as required:

Proposition 5.11: Let r : N 7→ N be a monotone nondecreasing function such
that r(i) ≤ i for all i ∈ N and define r(0) = 0. The recursive in-degree ranking
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system with rank function r satisfies self-confidence, strong quasi-transitivity
and RIIA. If r is not constant4 then the recursive in-degree system further does
not satisfy weak maximum transitivity nor strong incentive compatibility under
eitherMout orMsybil.

Proof: We will prove that in the entire graph (not just Vs) every comparison
profile 〈a,b〉 where a = (a1, . . . , ak), b = (b1, . . . , bl) is ranked as follows:

f〈a,b〉 = 1 ⇔ (k = 0) ∨ (r(k) < r(l)) ∨ [(r(k) = r(l)) ∧ (ak ≤ bl)] .

Note that this ranking of comparison profiles also implies strong quasi transi-
tivity. To show comparison profiles are ranked as such, we will prove that

valuer,s(v) =







0 v 6= s ∧ P (v) = ∅
n+1
n+2 v = s

1
n+2

[
r(|P (v)|) + maxp∈P (v) valuer,s(p)

]
Otherwise

(5.4)

and note that 0 ≤ valuer,s(v) ≤ n+1
n+2 , and thus vertices other than s are ordered

first by r(|P (v)|) and then by maxp∈P (v) valuer,s(p), as required. Moreover, self

confidence is satisfied because for all v 6= s: valuer,s(v) < n+1
n+2 .

The two edge cases are trivial, we shall now concentrate on the primary case
in (5.4). Let v ∈ V \ {s} be some vertex where P (v) 6= ∅. Denote Path′

s(p, v)
as the set of almost-simple directed paths to p stopping at s which do not pass
through v unless immediately looping back to p:

Path′
s(p, v) = { (p = a1, a2, . . . , am)|

(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple ∧

∀i ∈ {1 . . .m− 1} : ai 6= s ∧

∀i ∈ {1, . . . , m− 2, m} : ai 6= v ∧ am−1 = v ⇔ am = p}.

Now we see that:

valuer,s(v) = max
a∈Paths(v)

vpr,s(a) =

=
1

n + 2





r(|P (v)|) + max(v=a1,...,am)∈Paths(v){
vpr,s(a2, . . . , am, a2) a1 = am ∧m > 1
vpr,s(a2, . . . , am) Otherwise.



 =(5.5)

=
1

n + 2

[

r(|P (v)|) + max
p∈P (v)

max
a∈Path′

s
(p,v)

vpr,s(a)

]

= (5.6)

=
1

n + 2

[

r(|P (v)|) + max
p∈P (v)

max
a∈Paths(p)

vpr,s(a)

]

=

=
1

n + 2

[

r(|P (v)|) + max
p∈P (v)

valuer,s(p)

]

.

4If r is constant, the system still does not satisfy strong incentive compatibility under
either Mout or Msybil, but only if we allow vertices that have no path from s.
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To show that the equality (5.6) holds, assume for contradiction that there exists
p ∈ P (v) and a ∈ Paths(p) such that

vpr,s(a) > max
p′∈P (v)

max
a′∈Path′

s
(p′,v)

vpr,s(a
′). (5.7)

From a ∈ Paths(p) \ Path′
s(p, v), we know that ai = v for some i ∈ {1, . . . , m}.

Assume wlog that i is minimal. Let b denote the path (p = a1, a2, . . . , ai, p) and
let c denote the path (p′ = ai+1, . . . , am, aj+1, . . . , ai+1) if am = aj for some
j < i or (p′ = ai+1, . . . , am) otherwise. An example of such paths is given in
Figure 5.7. Note that b ∈ Path′

s(p, v) and c ∈ Path′
s(p

′, v), where p, p′ ∈ P (v).
Now, note that

vpr,s(a) =
(n + 2)j − 1

(n + 2)j
vpr,s(b) +

1

(n + 2)j
vpr,s(c),

and thus vpr,s(a) must be between vpr,s(b) and vpr,s(c), in contradiction to
assumption (5.7).

We shall now prove that recursive in-degree is not incentive compatible under
Mout orMsybil and does not satisfy weak maximum transitivity. Let i ∈ N be
the minimum number such that r(i) > 1. Consider the graph G in Figure 5.8,
where there are i vertices labeled x. This graph is ranked x ≺ t ≺ s, where
x refers to all vertices labeled x. Weak maximum transitivity is not satisfied
because x ≺ t even though s ≻ x. Let x′ be one of the vertices labeled x. It can
perform a manipulation in Mout by removing its edge to t, and thus changing
the ranking to x ≃ x′ ≃ t ≺ s. It can also perform a manipulation in Msybil

by creating i additional sybils of themselves and create a complete clique thus
changing the ranking to x ≺ v ≃ x′ ≃ t ≺ s, where v are the new vertices
involved from the manipulation.

For an extensive study of the recursive in-degree system in the context of
general ranking systems see Section 3.6.

5.6 Concluding Remarks

We have presented a method for the evaluation of personalized ranking systems
by using axioms adapted from general ranking systems, and evaluated existing
and new personalized ranking systems according to these axioms. As most
existing PRSs do not satisfy these axioms, we have presented several new and
practical personalized ranking systems that satisfy subsets, or indeed all, of these
axioms. We argue that these new ranking systems have a more solid theoretical
basis, and thus may very well be successful in practice. Furthermore, we have
proven a representation theorem for the Strong Count ranking systems, which
are the only systems that satisfy all axioms.

This study is far from exhaustive. Further research is due in formulating new
axioms, and proving representation theorems for the various PRSs suggested in
this chapter. An additional avenue for research is modifying the setting in order
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to accommodate for more elaborate input such as trust/distrust relations or
numerical trust ratings, as seen in some existing personalized ranking systems
used in practice.
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Figure 5.1: Graphs proving PRS do not satisfy axioms.
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Figure 5.2: Example graph from proof of Lemma 5.7.
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Figure 5.3: Example graph from the proof of Theorem 5.6 case 1.
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Figure 5.6: Values assigned by the personalized recursive in-degree algorithm
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Figure 5.7: Example paths from the proof of Proposition 5.11.
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Chapter 6

Conclusions

Reasoning about preferences and preference aggregation is a fundamental task in
reasoning about multi-agent systems (see e.g. Boutilier et al. (2004); Conitzer
and Sandholm (2002); LaMura and Shoham (1998)). A typical instance of
preference aggregation is the setting of ranking systems. Ranking systems are
fundamental ingredients of some of the most famous tools/techniques in the
Internet (e.g. Google’s page rank and eBay’s reputation systems, among many
others).

Moreover, the task of building successful and effective on-line trading envi-
ronments has become a central challenge to the AI community (Boutilier et al.,
1997; Monderer et al., 2000; Sandholm, 2003). Ranking systems are believed
to be fundamental for the establishment of such environments. Although repu-
tation has always been a major issue in economics (see e.g. Kreps and Wilson
(1982); Milgrom and Roberts (1982)), reputation systems have become so cen-
tral recently due to the fact that some of the most influential and powerful
Internet sites and companies have put reputation systems in the core of their
business.

Our aim in this thesis was to treat ranking systems from an axiomatic per-
spective. The classical theory of social choice lay the foundations to a large
part of the rigorous work on multi-agent systems. Indeed, the most classical
results in the theory of mechanism design, such as the Gibbard-Satterthwaite
Theorem (Gibbard, 1973; Satterthwaite, 1975))are applications of the theory of
social choice. Moreover, previous work in AI has employed the theory of social
choice for obtaining foundations for reasoning tasks (Doyle and Wellman, 1989)
and multi-agent coordination (Kfir-Dahav and Tennenholtz, 1996). It is how-
ever interesting to note that ranking systems suggest a novel and new type of
theory of social choice. We see this point as especially attractive, and as a main
reason for concentrating on the study of the axiomatic foundations of ranking
systems.
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G `ln ylg xq qgil G ∈ GV sxb lk V ziteq mieww zveaw.V miewwdmipkeqd da (Approval Voting) xeyi` zravd `id bex zkxrnl dheyt dnbe.miriavnd zedfl qgiizdl ilan ,elaiw mdy zeravdd xtqn itl mibxen:zenilyn zeihneiqw` zeyib izyl zizxag dxiga ly dixe`zd z` wlgl ozipzeneiqw` zveaw `evnl dqpn r mieqn bex llk ozpida da ,zixe`izd dyibd •sqepae ,zniiwn r -y zeyix ly dveaw `evnl ,xnelk .r xear zenlye zeze`pd`xnd d`vez .r mr klzdl aiig l"pd zeyixd z` miiwnd bex llk lk
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