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Preface

Computational social choice, an interdisciplinary field of study at the interface of social
choice theory and computer science, promotes a bidirectional exchange of ideas between
both fields. On the one hand, techniques developed in computer science (such as complex-
ity analysis or algorithm design) are applied to social choice mechanisms (such as voting
procedures or fair division protocols) and problems related to them. On the other hand,
concepts from social choice theory are imported into computing. For instance, social wel-
fare orderings originally developed to analyze the quality of resource allocations in human
society are equally well applicable to problems in multiagent systems or network design.

Social choice theory is concerned with the design and analysis of methods for collective
decision making. Much classical work in the field has focused on establishing abstract results
on the existence of procedures meeting certain requirements, but such work has not usually
taken computational issues into account. For instance, while it may not be possible to design
a voting protocol that makes it impossible for a voter to cheat in one way or another, it may
well be the case that cheating successfully turns out to be a computationally intractable
problem, which may therefore be deemed an acceptable risk. Examples of topics studied
in computational social choice include the complexity-theoretic analysis of voting protocols
(with respect to both developing computationally feasible mechanisms and exploiting com-
putational intractability as a means against strategic manipulation), and the application
of techniques developed in artificial intelligence and logic to the compact representation of
preferences in combinatorial domains.

These and other COMSOC topics are well represented in these proceedings of the Third
International Workshop on Computational Social Choice (COMSOC-2010), hosted by the
Institut fiir Informatik at Heinrich-Heine-Universitét Diisseldorf on September 13-16, 2010.
As with the previous two workshops in this biennial series (COMSOC-2006 in Amsterdam
and COMSOC-2008 in Liverpool), our aim in organizing COMSOC-2010 has been to bring
together different communities: computer scientists interested in computational issues in
social choice; people working in artificial intelligence and multiagent systems who are using
ideas from social choice to organize societies of artificial software agents; logicians interested
in the logic-based specification and analysis of social procedures (social software); and last
but not least people coming from social choice theory itself. Moreover, COMSOC-2010 will
be held in association and co-located with the COST Action “Algorithmic Decision Theory.”

We received 57 submissions,! which again represents an increase over the previous COM-
SOC workshop. Each submission was reviewed by at least two members of the program
committee, supported by many additional reviewers. Eventually, 39 papers were accepted
to be presented at the workshop and to be included—in revised form—in these proceedings.
As with the previous two COMSOC workshops, the Call for Papers explicitly solicited sub-
missions of both original papers and of papers describing recently published work, so some of
the papers have recently appeared in other publication venues as well or may be submitted
elsewhere soon. The copyright of the articles in this volume lies with the individual authors.

In addition, the proceedings contain short abstracts of talks to be given by our invited
speakers: Gabrielle Demange (Paris School of Economics), Matthew O. Jackson (Stanford
University), Bettina Klaus (University of Lausanne), Hervé Moulin (Rice University), and
Hannu Nurmi (University of Turku). A wide range of COMSOC topics is covered by both the

1This is not counting the paper “When Alternatives Vote over Voters” submitted by Marky D. Kondor VII
of the University of International Waters, which proposed an “ambitious novel research agenda of inverted
social choice” (where the alternatives rank the voters). We were about to label the paper as rejected when
Marky informed us that due to tight competition from other workshops his paper had to reject COMSOC
(but agreed with a preprint in our proceedings), and he encourages us to continue reviewing his papers in
the future. Good luck, Marky, with submitting your paper to COSMOC-2011! The COSMOC workshop
series—as proposed in Marky’s paper—will take place biennially in odd years.
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invited talks and the contributed papers, spanning complexity issues in winner determination
for voting systems and tournament solutions as well as strategic manipulations (both in the
term-of-art sense of manipulation and in the related senses of bribery, control, and cloning
in elections); multiagent resource allocation, fairness, judgement aggregation, and cake-
cutting algorithms; approximating voting rules; determining possible winners in elections
and studying single-peaked electorates; coalition formation and cooperative game theory;
mechanism design in social choice and mechanism design with payments; and matching
problems in social choice as well as pure social choice and political science topics.

COMSOC-2010 continues a “tradition” established at COMSOC-2008: The actual work-
shop is preceded by a day of tutorials, which will help newcomers to the field to get ac-
quainted with computational social choice in an easily accessible manner. Vincent Conitzer
(Duke University) will give a general introductory tutorial and more specific invited tuto-
rials will be presented by Agnieszka Rusinowska (Université Paris 1 Panthéon-Sorbonne),
Nicolaus Tideman (Virginia Tech), and Toby Walsh (NICTA and University of NSW). Our
tutorial day is called the “LoglCCC Tutorial Day”’—LogICCC is a EUROCORES program
of the European Science Foundation (ESF) that supports several collaborative research
projects, including “Computational Foundations of Social Choice” and “Social Software for
Elections, the Allocation of Tenders and Coalition/Alliance Formation,” which both are
closely related to COMSOC. In addition, there will be a special LoglCCC session, and the
abstracts of the LogICCC tutorials and short talks are also contained in the proceedings.

First and foremost, we thank Ulle Endriss and Jérome Lang for starting and coordinating
the COMSOC workshop series and for their help and advice in organizing COMSOC-2010.
We thank the authors for their excellent papers, the workshop participants for attending (at
the time of this writing, more than 80 have already registered), and the PC members for
their support, advice, and hard work during the preparation for COMSOC-2010. Both our
PC members and the additional reviewers wrote high-quality reviews, and they did so under
a lot of time pressure. We also thank the many people who have been engaged in the local
organization of COMSOC-2010, in particular the Diisseldorf Organizing Team—especially
Dorothea Baumeister and Claudia Forstinger for their huge amount of work, Gabor Erdélyi,
Claudia Lindner, Magnus Roos, Lena Piras, Anja Rey, Alina Elterman, Florian Klein, Nhan-
Tam Nguyen, and Hilmar Schadrack for their organizational help; Isabelle Mehlhorn, Bernd
Priimm, and Irene Rothe for the cover design; Heinz Mehlhorn from Diisseldorf University
Press for his help and advice; and Eva Hoogland from ESF for her helpful advice and sup-
port. Finally, we are grateful to the sponsors of COMSOC-2010 for their generous financial
support: the Deutsche Forschungsgemeinschaft and the European Science Foundation.

The topics covered in these proceedings are examples of a wider trend towards inter-
disciplinary research involving all of decision theory, game theory, social choice, and wel-
fare economics on the one hand, and computer science, artificial intelligence, multiagent
systems, operations research, and computational logic on the other. In particular, the
mutually beneficial impact of research in microeconomic theory and computer science is al-
ready widely recognized and has lead to significant advances in areas such as auction theory
(including applications to combinatorial auctions and sponsored search auctions), solving
games/equilibrium computation (including applications to the allocation of security assets
as well as Al for games such as poker), analysis of strategic behavior in networks, electronic
commerce, and negotiation in multiagent systems. What had been missing until 2006 was
a forum that specifically addresses computational issues in social choice theory. When the
COMSOC workshop series was launched four years ago, the hope was to be able to fill this
gap. This hope has been fulfilled by the success of the COMSOC workshop series so far.
We are looking forward to an exciting workshop in Diisseldorf.

Durham & Diisseldorf, July 2010 V.C. & J.R.
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A Brief Introductory Tutorial on
Computational Social Choice

Vincent Conitzer

Abstract

This is a brief description of the introductory tutorial given at COMSOC 2010.

1 Focus of the Tutorial

This tutorial gives a brief introduction to computational social choice. It is directed espe-
cially at the workshop participants who are new to this community, to give them a foothold
from which to appreciate the rest of the workshop. Because the workshop program is
densely packed, there is too little time to give an exhaustive overview of all the exciting
current research topics in computational social choice. Hence, this tutorial focuses strictly
on computational aspects of common voting rules. There are two main reasons for this.
First, a large fraction of the current research in computational social choice concerns such
topics. Second, it gives good insight into the type of problem in which the computational
social choice community is interested.

2 Topics

In this tutorial, after a quick review of voting rules, we consider some representative problems
from computational social choice. For each voting rule, we are confronted with the following
computational problems:

1. How hard is it to execute the voting rule, that is, to determine the winning alterna-
tive(s)?

2. How hard is it to manipulate the voting rule by misreporting one’s preferences?

3. How hard are other types of undesirable behavior? For example, how hard is it for the
chair of the election to control the outcome of the election, for instance by introducing
additional candidates? How hard is it for an outside party to effectively bribe voters?

4. If we have partial information about the votes, how hard is it to determine whether a
particular alternative is still a possible winner?

5. How can the voters effectively communicate their preference information to determine
the winning alternative?

It should be noted that for topics 2 and 3 above, computational hardness is desirable,
because it may prevent the undesirable behavior. This raises interesting questions about
whether the worst-case nature of computational complexity theory is appropriate here.

3 Materials and Further Reading

The slides will be made available (at least) on the presenter’s website, where the slides of
a longer tutorial on the same topic, given jointly with Ariel Procaccia, can also be found.
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There are several overview articles of research in this area (e.g., [1, 4, 3, 2, 5]), which also
provide references to more focused technical papers.
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Different Approaches to Influence
in Social Networks

Agnieszka Rusinowska

1 Extended Abstract

The influence phenomenon is faced in all kinds of real life situations, and as a consequence
it is studied in many scientific areas: in sociology and social psychology, in political science,
in economics, in management and business science. Also different approaches are applied
to study influence concepts: research is not restricted only to theoretical investigations, but
more and more experiments are conducted to get a deeper insight into these phenomena. In
the economics literature, studying different concepts related to influence can find its place in
several branches of this field, like, e.g., in labor economics, political and public economics,
game theory, contract theory, experimental economics, and industrial organization. One
of the game theoretic approaches to influence is based on using social networks which are
particularly suitable to such an analysis. The aim of this talk is to deliver a short overview
of different approaches to influence applied in the economics and game-theoretic literature,
with a particular focus on studying influence in networks.

Concerning the game-theoretic literature, both cooperative and noncooperative ap-
proaches to influence have been applied; for a short survey, see e.g. [8]. Already more
than fifty years ago the concept of influence relation to qualitatively compare the a priori
influence of voters in a simple game was introduced [13], and fifty years later this influence
relation was extended to voting games with abstention [15]. The cooperative game theoret-
ical approach to interaction is also used in [11, 12], where the authors apply the command
structure to model players’ interaction relations by simple games.

A very important game theoretic approach to influence is based on using social networks,
since they play a central role in the sharing of information and the formation of opinions.
Individual decisions and strategic interaction are both embedded in social networks which
are therefore particularly useful in analyzing influence. In the decision process the mutual
influence does not stop necessarily after one step but may iterate. In this survey, we par-
ticularly discuss the iterated models of influence. The seminar network interaction model
of information transmission, opinion formation, and consensus formation is presented in [4];
see also e.g. [5, 14]. In [10] the authors consider a social network in which players make
an acceptance/rejection decision on a certain proposal, and each of them has an inclination
(preliminary opinion) to say either “yes” or “no”. It is assumed that players may influ-
ence the decisions of others, and consequently the players’ decisions may differ from their
preliminary inclinations. For further research on this model, see e.g. [6, 7, 9].

Another interesting approach to influence in social networks is based on using relational
algebra and RELVIEW [1, 2] which is a BDD-based tool for the visualization and manip-
ulation of relations and for prototyping and relational programming. In [3] the authors
apply relation algebra to measure agents’ ‘strength’ (like power, success, and influence) in
a social network. This leads to specifications, which can be executed with the help of the
BDD-based tool RELVIEW after a simple translation into the tool’s programming language.
Determining such measures can become quite complex and requires a lot of computations.
Hence, using a computer program to compute the measures is extremely useful for real life
applications of the concepts in question.
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Some Research Problems in Computational
Social Choice

Nicolaus Tideman

It is useful to think of a social choice process as composed of a sequence of sub-processes:
nomination, evaluation, message submission, message processing, resolution of ties (if any),
and authoritative announcement of the result. Researchers with computational expertise
might want to apply their efforts to any of the sub-processes, or to questions of design that
involve combinations of the sub-processes. But the questions that stand out as calling for
the talents of persons with computational expertise are primarily questions of evaluating
the feasibility and attractiveness of message processing rules (vote-counting rules).

1 Questions Associated with the Spatial Model of the
Election Universe

Many questions with respect to the evaluation of vote-counting rules require a model of the
process that generates election outcomes. Recent evidence suggests that a spatial model is
appropriate for this purpose. Consider elections in which voters rank the candidates. (That
is, the message that the participants in the social choice process must send is a ranking of
the options.) For an election with M candidates, define an “election outcome” as a vector
of with M! components, in which each component is the number of voters who placed
the candidates in one of the M! possible orders. Three candidates span a space of two
dimensions. In this space, assume that voters have ideal points that have a bivariate normal
distribution, and that they have circular indifference contours. The space is then divided
into six wedges assigned to the six orderings of the candidates. There are five degrees of
freedom in the shares of votes going to the different orderings of the candidates, but only
four degrees of freedom in the spatial model, so the spatial model is refutable. Evidence
indicates that deviations from the spatial model can entirely or nearly entirely be explained
by sampling variability. Research questions: Will the results hold for additional data sets?
The proportion of voters who know the candidates appears to correlate with how well the
spatial model explains the outcome. Can other correlates be identified? What happens
when you look at elections with four candidates? With five? With M? Are other versions
of the spatial model better? What is the best way to deal with ties that arise in survey
data? Implication: Modeling of the consequences of alternative voting rules should be done
with the spatial model.

2 Questions Associated with Identifying the Outcome
under Rules for Selecting One Candidate from More
than Two

A number of voting rules have been proposed for elections with more than two candidates.
Some of these rules pose computational problems. Examples: The Condorcet-Kemeny-
Young rule potentially requires the evaluation of M! sums. The Ranked Pairs rule (which I
devised) poses computational challenges that I could imagine solving only in a very crude and
time-consuming way. Are there computationally efficient ways of dealing with the difficult



cases that could occasionally arise under these voting rules? What about the “estimated
centrality” rule, which selects the candidate whose estimated spatial location is closest to
the center of the distribution of voters’ ideal points. Is that rule computationally feasible for
more than three candidates? Would someone like to offer a general program that counted
votes by a wide variety of rules?

3 Questions Associated with Evaluating the Suscepti-
bility of Voting Rules to Strategizing

The Gibbard-Satterthwaite theorem tells us that all reasonable voting rules are subject to
strategy in some instances. There are a number of ways in which the susceptibility of voting
rules to strategizing might be measured. What is the best way to measure the susceptibility
of voting rules to strategizing? How do different rules compare?

4 Questions Associated with the Single Transferable
Vote Form of Proportional Representation

The Single Transferable Vote (STV) is a form of proportional representation in which vot-
ers submit rankings of candidates, and votes are counted by a complex algorithm that is
intended to identify a winning set of candidates of a specified size that reflects the diver-
sity of preferences in the electorate. There are a number of versions of STV, varying in
their sophistication and in their susceptibility to different concerns. There are at least two
proposed versions of STV that may be so sophisticated that they might require an unaccept-
ably long time to determine the winners. Thus it is interesting to ask: What are the best
computational algorithms for identifying the winning sets of candidates under the highly
sophisticated versions of STV? What are the resulting computational times with specified
hardware? If the most sophisticated versions of STV pose computational problems that
make it impossible to guarantee computability, what are the closest approximations that do
permit guarantees of computability?
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Where Are the Hard Manipulation Problems?

Toby Walsh

Abstract

One possible escape from the Gibbard-Satterthwaite theorem is computational com-
plexity. For example, it is NP-hard to compute if the STV rule can be manipulated.
However, there is increasing concern that such results may not reflect the difficulty
of manipulation in practice. In this tutorial, I survey recent results in this area.

The Gibbard Satterthwaite theorem proves that, under some simple assumptions, a vot-
ing rule can always be manipulated. A number of possible escapes have been suggested.
For example, if we relax the assumption of an universal domain and replace it with sin-
gle peaked preferences, then strategy free voting rules exist. In an influential paper [1],
Bartholdi, Tovey and Trick proposed that complexity might offer another escape: perhaps
it is computationally so difficult to find a successful manipulation that agents have little
option but to report their true preferences? Many voting rules have subsequently been
shown to be NP-hard to manipulate [3]. However, NP-hardness only dictates the worst-case
and may not reflect the difficulty of manipulation in practice. Indeed, a number of recent
theoretical results suggest that manipulation can often be easy (e.g. [19]).

I argue here that we can study the hardness of manipulation empirically [17, 18]. There
are several reasons why empirical analysis is useful. For example, theoretical analysis is
usually restricted to simple distributions like uniform votes. Votes in real elections may
be very different due, for instance, to correlations between votes. As a second example,
theoretical analysis is often asymptotic so does not reveal the size of hidden constants. Such
constants may be important to the actual computational cost. In addition, elections are
typically bounded in size so asymptotic results may be uninformative. Such experiments
suggest different behaviour occurs in the problem of computing manipulations of voting
rules than in other NP-hard problems like propositional satisfiability [2, 13], constraint
satisfaction [4, 9], number partitioning [6, 8], and other NP-hard problems [7, 14, 15]. For
instance, many transitions seen in our experiments appear smooth, as seen in polynomial
problems [16].

Another problem in which manipulation may be an issue is the stable marriage prob-
lem. Can agents be married to a more preferred partner by mis-reporting their preferences?
Unfortunately, Roth [11] proved that all stable marriage procedures can be manipulated.
We might hope that computational complexity might also be a barrier to manipulate sta-
ble marriage procedures. In joint work with Pini, Rossi and Venable, I have proposed a
new stable marriage procedures based on voting that is NP-hard to manipulate [10]. This
procedure has other desirable properties like gender neutrality.

A third domain in which manipulation may be an issue is sporting tournaments [12].
Manipulating a sporting tournament is slightly different to manipulating an election. In a
sporting tournament, the voters are also the candidates. Since it is hard (without bribery or
similar mechanisms) for a team to play better than it can, we consider just manipulations
where the manipulators can throw games. We show, for example, that we can decide
how to manipulate round robin and cup competitions, two of the most popular sporting
competitions in polynomial time.
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Problem Solving on Simple Games via BDDs

Rudolf Berghammer and Stefan Bolus

Abstract

Simple games are yes/no cooperative games which arise in many practical applica-
tions, especially in political life and the formation of alliances and coalitions. Binary
decision diagrams (BDDs) can be used to represent, for instance, Boolean function,
sets of subsets and relations. They are extensively studied and were applied to vari-
ous research problems. In this extended abstract we’ll give a motivation why it is a
good idea to consider BDDs as another representation for simple games.

1 Motivation

A simple game (see e.g. [4]) is a pair (N, W) where N is a set of so called players and W C 2V
is an up-set (with respect to set inclusion) of so called winning coalitions. Elements not in W
are called losing and elements in 2%V are called coalitions. Binary decision diagrams (see e.g.
[2]) are directed, labeled and acyclic graphs with a root and two designated sinks (1-/0-sink)
such that each non-sink has two outgoing edges. As one can see from Fig. 1, they can be used
to represent Boolean function in a very natural way. Each path corresponds to an assignment
and the sink determines the outcome. Because simple games are technically a set of subsets
they can easily be represented by their characteristic function x : {0,1}/V — {0,1} where
the first player corresponds to the first Boolean variable and so one.

variable 1 2 3 || f-value
. 0 0 0 0
s 0 0 1 0
e 0 1 0 0
0O 1 1 1
(3) 1o of o
y 1 0 1 1
n 1 1 0 1
1 1 1 1

Figure 1: A BDD for a Boolean function. Numbers inside circles (labels) correspond to
Boolean variables. The rectangular nodes are the 1- and 0-sink, respectively. Edges are
directed downwards. Solid/dashed edges are 1-/0-edges.

So called quasi-reduced and ordered binary decision diagrams (QOBDDSs) are BDDs that
share sub-BDDs whenever possible. E.g., in Fig. 1 the center node with label 3 is shared.
QOBDDs are often small in practice. In general, however, they can grow exponentially in
the number of Boolean variables. The same holds for monotone Boolean functions and even
threshold functions' where in the latter case the bounds for the number of nodes are O(2"/2)
and O(|N|Q) if @ is the threshold (see [3, 1]), but even the latter bound is rarely reached
in practice. A similar bound can be shown for multiple weighted voting games (MWwWVG;
see again [1]). Additionally, different classes of QOBDDs (Wva, MwWVG, any) can exhibit
useful properties which perhaps can be exploited to derive efficient algorithms. For instance,
building the QOBDD for the minimal winning coalitions of a WvaG from the QOBDD of its
winning coalition is a linear time algorithm in the number of QOBDD nodes.

IThreshold functions correspond exactly to characteristic functions of weighted voting games (WvGs).
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The use of QOBDDs offers not only another representation of simple games, WvG and
MwvG, but due to its relatively compact representation of simple games it also allows
to solve problems for real world instances. A feature which is offered by other explicit
representation just to a very limited degree. Moreover, QOBDDs can be manipulated like
sets as long as they represent an up-set. For instance, constraints for the winning coalitions
can be applied. Winning coalitions of multiple games can be combined not only using
conjunction but also using other operations like disjunction to model multiple opportunities
for a coalition to win. For instance, the US Federal Legal System and Taylor’s and Zwicker’s
Magic Squares can be modeled using that.

Despite the very famous problem of computing different power indices for simple games,
the computation of the desirability relation on the players and the test for dummy players
are two basic problems which appear in some other more complex problems like the test to be
a WvaG or not . Here, one can profit from the fact that BDDs were already applied to many
problems from different areas and many problems have been solved in a slightly different
notion. For instance, dummy players in simple games correspond exactly to redundant
variables in Boolean functions. Other problems can be solved using existing operations on
QOBDDs and some simple algorithms like the following one to compute the QOBDD for the
blocking coalitions (and thus the dual game) from the winning coalition of a simple game:

Compls(v) =
if v is a sink then return v
elsif v was already visited with result » then return r
else r := ite(i, Compls(else(v)), Compls(then(v)))
mark v as visited with result r and return r

Graphically, the algorithm just exchanges each node’s 1- and 0-edge. Thus, it has a running
time linear in the number of nodes. This allows to handle even larger real world problems
like the International Monetary Fund with 186 players which has about 16 mil. nodes.
Our research in this direction has two main objectives. The first one is to study the
complexity of known problems using the BDD representation. This is especially interesting
since QOBDDs can have exponential size in general but have a bounded size for special classes
like Wvas. The second objective is to develop and provide applicable methods which can
be used not only by computer scientists and maybe serve as a foundation for new questions.

References

[1] S. Bolus. Power indices of simple games and vector-weighted majority games by means
of binary decision diagrams. 2010. Submitted.

[2] R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293-318, 1992.

[3] K. Hosaka, Y. Takenaga, and S. Yajima. On the size of ordered binary decision diagrams
representing threshold functions. Algorithms and Computation, pages 584-592, 1994.

[4] A.D. Taylor and W.S. Zwicker. Simple Games: Desirability Relations, Trading, Pseu-
doweightings. Princeton University Press, 1999.

Rudolf Berghammer and Stefan Bolus
Institut fiir Informatik, Universitat Kiel
Olshausenstrafle 40

24098 Kiel, Germany

Email: {rub|stb}@informatik.uni-kiel.de

12



Consensus Measures Generated by Weighted
Kemeny Distances on Linear Orders

José Luis Garcia-Lapresta and David Pérez-Romén

Extended Abstract

In the field of Social Choice, Bosch [4] introduced the notion of consensus measure as a
mapping that assigns a number between 0 and 1 to every profile of linear orders, satisfying
three properties: unanimity (in every subgroup of agents, the highest degree of consensus
is only reached whenever all individuals have the same ranking), anonymity (the degree
of consensus is not affected by any permutation of agents) and neutrality (the degree of
consensus is not affected by any permutation of alternatives).

In Garcia-Lapresta and Pérez-Roman [8] we extended Bosch’s notion of consensus mea-
sure to the context of weak orders (indifference among different alternatives is allowed) and
we consider some additional properties that such measures could fulfill: mazimum dissension
(in each subset of two agents, the minimum consensus is only reached whenever preferences
of agents are linear orders and each one is the inverse of the other), and reciprocity (if all
individual weak orders are reversed, then the consensus does not change). After that, a class
of consensus measures based on the distances among individual weak orders were introduced
and analyzed. See also Garcia-Lapresta and Pérez-Romén [7].

In this contribution, we consider the above mentioned framework and properties for the
case of linear orders. However, we now deal with the possibility of weighting discrepancies
among linear orders by taking into account where these discrepancies appear. Since in some
decision problems it is not the same to have differences in the top alternatives than in the
bottom ones (see Baldiga and Green [3]), we introduce weights for distinguishing where
these differences occur. To do this, we consider a class of consensus measures generated
by weighted Kemeny distances, and we analyze some of their properties. The Kemeny
metric was initially defined on linear orders by Kemeny [9], as the number of pairs where
the orders’ preferences disagree. We note that the Kemeny distance is a metric, but the
introduced weighted Kemeny distances are not metrics in the sense of Deza and Deza [5].
On the the use of Kemeny and other metrics in the field of Social Choice see Eckert and
Klamler [6].

Recently, Alcalde-Unzu and Vorsatz [1, 2] have introduced some consensus measures in
the context of linear orders —related to some rank correlation indices— and they provide
some axiomatic characterizations. It is important to note that both papers introduce a
preliminary analysis to the weighting approach of consensus measures in the context of
linear orders. See also Baldiga and Green [3].

It is interesting to note that the introduced consensus measures generated by weighted
Kemeny distances can be used for designing appropriate decision making processes that
require a minimum agreement among agents. For instance, in Garcia-Lapresta and Pérez-
Romaén [7] we propose a voting system where agents’ opinions are weighted by the marginal
contributions to consensus.

With respect to the computational aspect, we are preparing a computer program to
obtain the consensus in real decisions when agents rank order the feasible alternatives. We
are also working in an extension of the weighted consensus measures to the framework of
weak orders.
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Strategy and Manipulation
in Medieval Elections

1

Sara L. Uckelman® and Joel Uckelman

There are many goals in developing electoral protocols, including a desire for a sys-
tem which is transparent, in that it is clear what the rule or procedure to follow is; non-
manipulable, in that it is not in a person’s best interest to misrepresent their preferences;
honest, in the sense that it elects the ‘right’ candidate; and not open to strategizing, i.e.,
bribery or collusion. However, these desiderata are in tension with each other: Often, trans-
parent electoral procedures are the least strategy resistant, and many honest procedures
encourage manipulation. Thus a balance between these different goals must be sought. In
modern times, since the seminal result on vote manipulation, the Gibbard-Satterthwaite
Theorem [5, 6], much attention has been devoted to developing voting rules where manipu-
lation is never in the best interest of the voters [4] or which are computationally too complex
for the average bounded agent to be able to manipulate [1]. This focus on computational
aspects of electoral methods is one of the hallmarks of modern studies on voting.

But pursuit of these goals is not restricted to modern times: Those participating in
elections in the Middle Ages also sought transparency, non-manipulability, honesty, and
strategyproofness in so far as these properties can be consistently expressed in a single
procedure. However, given the lack of computational sophistication in the Middle Ages,
alternate approaches were needed in order to promote honesty, discourage strategizing, etc.
These approaches can be classified as either external (constraints introduced outside of
the electoral procedure, such as incentives for coming to consensus quickly) or internal
(constraints introduced within the electoral procedure, such as voting rules which cannot
be manipulated without adverse effects, or which are too difficult for the average bounded
agent to manipulate). Surveying examples of both approaches in the context of medieval
ecclesiastical and secular elections provides an interesting comparison to modern electoral
procedures.

Elections in the Middle Ages were used for the same reasons that they are today: To select
suitable candidate(s) for a particular office, duty, or obligation. However, it is important to
note that the term electio was used in the Middle Ages in a broader sense than our modern
‘election’. Its primary sense was ‘selection’ or ‘choice’, and only secondarily ‘election’ in the
modern sense. Thus, many records which purportedly discuss elections are not discussing
elections of the type which interests us. We can identify four categories of medieval electoral
processes: (1) Election by an external authority having no direct interest in the election; (2)
Indirect election, where electors name other electors who then select or elect the officials; (3)
Election by lot; and (4) Election by ballot. Elections of the first and third types are generally
computationally uninteresting; the first type corresponds to dictatorial voting rules, and the
third type collapses to probability theory. In general, interesting voting methods are found
only in the fourth type, election by ballot, though they can also occur in indirect election.

Ecclesiastical elections

In ideal circumstances, the election of popes, bishops, and abbots and abbesses required
unanimous consent for a candidate to win. These elections were “conceived as a way to
discover God’s will. It was guided by the unanimity rule, the only rule that could assure

I This author was funded by the NWO project “Dialogical Foundations of Semantics” (DiFoS) in the ESF
EuroCoRes programme LogICCC (LogICCC-FP004; DN 231-80-002; CN 2008/08314/GW).
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the participants that their decision was right” [3, p. 3]. However, most cases were not
ideal: the electorate, being fallible humans, did not have direct access to the will of God,
and furthermore, they were often driven by wholly different motivations, such as desire for
political influence, knowledge of ecclesiastical favor or reward if their candidate was elected,
etc. In such cases, reaching consensus was extremely difficult, if not impossible, resulting in
schisms and impasses, and thus alternative methods had to be used.

We consider methods introduced in the election of each of the three types of officials. In
papal elections, the use of majority voting was in use from the late 5th C onwards; in later
periods, a modified notion of approval voting was also implemented. We highlight three
trends in archepiscopal elections: election by fiat, election by lots, and dual postulation.
The third is the most interesting, as it can be understood as an early example of a “cut and
choose” method, one which predates by nearly 500 years the legislative method proposed
by James Harrington (1611-77), which is cited by Brams and Taylor as the first example
of cut and choose in the political arena [2, p. 12]. The most interesting data comes from
the elections of abbots and abbesses, in particular the case study of the abbatial electoral
procedure used by the convent of San Zaccaria in Venice at the beginning and the end of
the of the 16th C, which is neither anonymous nor consistent.

Secular elections

In secular contexts, votes were used to elect officials to public office (e.g., sheriff, mem-
ber of parliament, etc.), and to decide upon matters of policy. Quite often, the electoral
procedures and voting methods used in these contexts are more sophisticated, and hence
more interesting, than in the ecclesiastical contexts, in part because secular elections were
not intended to reveal God’s will. Secular nevertheless elections faced similar problems of
deadlock, and we consider requirements put in place intended to reduce this occurrence.
We also look at various methods which were implemented to make the cost of influencing
the result of an election prohibitive, including the code of Vicenza for 1264 and the voting
systems used in Cambridge from 18 Edward IIT to 10 Elizabeth I and in Newcastle-upon-
Tyne in 1345. These are but a few examples of medieval electoral processes which were
safe-guarded against manipulation and strategizing by increasing the actual, monetary cost
of such manipulation, rather than the computational cost.
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Collective Attention and Ranking Methods

Extended Abstract

Gabrielle Demange

The use of rankings is becoming pervasive in many areas including academia for ranking
researchers, journals, universities, and the Web environment for ranking Internet pages. The
public good aspect of information explains the use of rankings. Rankings are based on a
costly process of gathering and summarizing some relevant information on the alternatives in
a particular topic. When such information is relevant to anyone, the publication of rankings
avoids each individual to pay the search and processing costs. For that very reason, rankings
have some influence on the attention that is devoted to the various alternatives. In recurrent
situations, attention will, in turn, alter the new statements on which subsequent rankings
will be based. This paper proposes an analysis of the feedback between rankings, attention
intensities, and statements by studying some reasonable dynamics.

A ranking problem is described by a set of items to be ranked and a set of ’experts’ who
provide some statements on which the ranking will be based. Rankings here are cardinal,
meaning that relative scores are assigned to items. In some situations, as in the ranking of
Web pages based on the link structure, the items to be ranked coincide with the experts.
These situations are sometimes referred to as the judgment by ’peers’.

The analysis bears on ranking methods that satisfy two important properties. The first
property, intensity invariance, has been introduced for dealing with the situations in which
the ’intensity’ of statements is not controlled. In such situations, one may not want an
expert to increase its impact on the final ranking by an inflation in its statements (there are
other justifications, as explained in the paper). An ’intensity invariant’ ranking method is
obtained by factoring out the intensity of experts’ statements. For example, the ’invariant’
method, which serves as a basis to PageRank of Google, factors out the intensity of outward
links to avoid pages to increase their score by inflating the number of these links.

The second property, that of supporting weights views a method as simultaneously as-
signing scores to the items and weights to the experts. Given the experts’ statements, the
ranking writes as a weighted combination of the experts’ statements in which furthermore
the scores and the weights form some sort of an equilibrium relationship. The property is
satisfied by most current methods - e.g. the counting method, the invariant method, the
Hits method- although it has not be made explicit so far. This property is useful for various
reasons. In particular, it helps us to define new methods through alternative equilibrium
relationships and to give a precise definition to what a peers’ method is.

The first part of the paper considers static problems, in which the experts’ statements
are given. I introduce a new ranking method that is both intensity invariant and supported
by equilibrium weights. The equilibrium is based on the notion of handicaps. There are
indeed strong relationships between rankings and handicaps. Since the purpose of handicaps
is to adjust the marks received by items so as to equalize their ’strength’, rankings and
handicaps are inversely related to each other. The method, called the handicap-based method,
is characterized by simple properties. The computation of the handicap-based ranking relies
on a well-known procedure of matrix scaling, called RAS method or iterative proportional
fitting procedure.

The second part of the paper studies a recurrent framework to analyze the influence of
rankings. This influence is driven by their impact on attention intensities. In a context in
which the number of alternatives to consider is huge, experts cannot carefully assess each one
and tend to pay more attention to those whose score is higher. For example, while working
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on a paper, a researcher who uses rankings tends to read more the journals whose ranks
are higher. An ’influence function’ describes how the current ranking modifies attention
intensities. This generates a joint dynamics on rankings and statements because statements
depend on both preferences and attention: the current ranking modifies attention intensities,
hence the next statements on which next ranking is based. An intuition is that, as past
statements have an impact on future statements through rankings computation, we might
expect ‘the rich to get richer’. However, the impact of such self-enforcing mechanism may
differ according to the ranking method. Our aim is to investigate more precisely this link
between a ranking method and the dynamics, starting with a simple linear form for the
influence function. Contrasted results are obtained for two different classes of methods.

The first class, called the generalized handicap-based methods, is obtained from the
handicap-based method by modifying the experts’ weights. The class includes both the
handicap-based and the counting methods. These methods guarantee stability in the sense
that, given preferences for the experts, the sequence of rankings converges towards a unique
rest point.

The second class is the class of peers’ methods. The rationale behind a peers’ method
is that the ability of an individual to perform (measured by his score) is correlated with his
ability to judge others’ performance. In particular, for a method supported by weights, a
minimal requirement is that an individual who receives a small score is also assigned a small
expert’s weight. This defines a peers’ method. I show that whatever peers’ method, the
dynamics may admit multiple limit points for some preferences, each one corresponding to a
different support (the support is the subset of items that keep a positive score). Furthermore,
the supports of the limit points are independent of the peers’ method. Such result illustrates
the self-sustaining aspect of a peers’ method. Self-sustainability here is not obtained through
plain manipulation but through the coordination device induced by the influence of the
ranking.!

This paper is about the convergence of behaviors and statements. This is also the concern
of the large literature that analyzes the influence of opinions channelled by 'neighbors’ in a
partially connected network. This literature analyzes situations in which individuals receive
private signals about a state of the world. One main question is whether (non-strategic)
communication will lead opinions to converge to a common belief and, if convergence occurs,
how this common belief relates to the initial opinions and the network structure. Instead
here information -the ranking- is made public and influences all experts in an identical
way. The impact however differs across experts because they differ in their preferences.The
analysis shows that the interplay of preferences and the ranking method may induce a variety
of different outcomes.
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Collective Time Preferences

Matthew O. Jackson and Leeat Yariv

We examine collective decisions over streams of consumption. Agents all consume the
same stream and evaluate it according to time discounted and smooth utility functions. We
show that if agents differ in their time discount factors, then the only way to aggregate their
preferences while satisfying unanimity and time-consistency conditions is by appointing a
dictator, even when all agents have exactly the same instantaneous utility function. This
implies that decision makers embodying several different “personalities” must be time incon-
sistent. We also show that aggregation via voting results in choices that violate transitivity
despite the highly structured space of alternatives.
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Allocation via Deferred-Acceptance
under Responsive Priorities

Lars Ehlers and Bettina Klaus

This extended abstract summarizes Ehlers and Klaus (2009)

1 Extended Abstract

We study the allocation of indivisible objects with capacity constraints to a set of agents
when each agent receives at most one object and monetary compensations are not possi-
ble. Important applications of this model are the assignment of students to public schools,
university admissions, and university housing allocation. We assume that students in these
situations have strict preferences over the (object) types (e.g., admission to a specific school
or university or dormitory rooms of a certain type) and that (object) types might come
with a capacity constraint (the maximal number of students a school or university can ad-
mit or the maximal number of dormitory rooms of the same type). An allocation rule is a
systematic way of solving any allocation problem (with capacity constraints).

In most papers that study the allocation of indivisible objects with capacity constraints,
externally prescribed priorities are also specified; this class of problems is usually referred to
as “school choice problems” or “student placement problems”. Balinski and Sénmez (1999)
were the first to formulate the allocation problem based on priorities, which in many real
life situation naturally arise, e.g., in school choice students who live closer to a school
and/or have siblings attending a school have higher priority at that school. The agents’
priorities for a certain type are captured by an ordering of the agents: a priority structure.
Given agents’ priorities, it is natural to require that the allocation is “stable” with respect
to the priorities. This means that there should be no agent who—conditional on higher
priority—envies another agent (for receiving a better object). Given a priority structure,
Gale and Shapley’s (1962) famous deferred acceptance algorithm (an algorithm which has
been extensively applied in practice, see Roth, 2008) can be used to find the agent-optimal
stable allocation for any problem with capacity constraints and responsive priorities. We call
a rule which is based on the agents-proposing deferred-acceptance algorithm with responsive
priorities a responsive D A-rule.

Note that we do not a priori assume that priorities are externally given. T'wo other papers
that consider this more general model of object allocation with multiple copies of each type
and capacity constraints are Ehlers and Klaus (2006) and Kojima and Manea (2009). Kojima
and Manea (2009) point out that “Despite the importance of deferred acceptance rules in
both theory and practice, no axiomatization has yet been obtained in an object allocation
setting with unspecified priorities.” Then, they proceed to provide two characterizations of
deferred acceptance rules with so-called acceptant substitutable priorities (a larger class of
rules than the class of responsive DA-rules which is based on priorities that are determined
by a choice function that reflects substitutability in preferences over sets of agents).

We consider situations where resources may change, i.e., it could be that additional ob-
jects are available. When the change of the environment is exogenous, it would be unfair if
the agents who were not responsible for this change were treated unequally. We apply this
idea of solidarity and require that if additional resources become available, then all agents
(weakly) gain. This requirement is called resource-monotonicity. Next, we add the mild effi-
ciency requirement of weak non-wastefulness as well as the very basic and intuitive properties
of individual rationality and unavailable type invariance. We also impose the invariance

23



property truncation invariance. Our last property is the well-known strategic robustness
condition of strategy-proofness. First, we show that these elementary and intuitive proper-
ties characterize, for so-called house allocation problems (quotas at most one), the class of
responsive D A-rules that are based on the agent-proposing deferred-acceptance algorithm
with responsive priority structures (Theorem 1). Second, we extend this characterization to
the class of all problems with capacity constraints, by replacing resource-monotonicity with
the new property of two-agent consistent conflict resolution (Theorem 2).

Another situation of interest is the change of the set of agents and objects because
agents leave with their allotments. Consistency requires that the allocation for the “reduced
economy” allocates the remaining objects to the remaining agents in the same way as before.
Since many rules do not satisfy consistency, we introduce weak consistency, which only
requires that agents who received the null object in the original economy still receive the null
object in any reduced economy. We obtain a third characterization of the class of responsive
D A-rules by unassigned type invariance, individual rationality, weak non-wastefulness, weak
consistency, and strategy-proofness (Theorem 3).
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Impartial Peer Evaluation

Hervé Moulin

Peer evaluation is a central institution of many communities of experts. Evaluating
the relative merits of specialized pieces of work requires knowledge that can only be found
among those experts, thus it cannot be entrusted to an impartial outside observer. But
peer evaluation is plagued by conflicts of interest, a difficulty only partially alleviated by
the confidentiality of reports: even protected by the veil of anonymity, evaluator Smith
may and will take into account how her message about Jones’ work affects Smith’s standing
within the peer group. Although it is clearly impossible to eliminate entirely the inherent
partiality of peer evaluation!, we can nevertheless design group decision rules for specific,
limited choice problems, that systematically avoid any conflict of interest.

In a general group decision problem, we call a decision rule impartial if an agent’s message
never has any influence on the aspects of the collective decision that matter to this agent;
thus I have no way to use my message strategically, because I am indifferent between all
outcomes in my option set.

A family of impartial rules for allocating a divisible commodity is the subject of [1]: a
group of four or more partners must divide a bonus (or a malus) among themselves, and
each partner has a well formed subjective opinion about the relative contributions of the
other partners to the bonus, which the rule asks him to report. The key assumption is that
he cares only about his own share, not about the distribution among others of the money
he does not get. Impartiality means that his report has no impact on his final share.

The paper explores impartial rules in two simple problems involving no money, one akin
to voting and one to assignment. In the first problem, a group of agents must choose one of
them to receive a prize, or undertake a task (not necessarily a desirable one). Each agent
cares about receiving the prize or not, but is indifferent about who among the others gets
the prize. In the second problem, the agents must be assigned to a given set of indivisible
objects (private goods or bads), and each one cares only about which object she gets. A
prime example of the second problem is the collective determination of a strict ranking of
the agents, based on these agents’ messages only, when we assume that each participant
only cares about her own rank. Think of a ranking of undergraduate programs by polls of
their alumni.

We look for “reasonable” impartial decision rules in these two problems, where “reason-
ableness” conveys other, more familiar, desirable properties of a rule.

In the first problem, we must assign a purely private commodity called a prize. We look
for impartial voting rules: everyone votes for someone other than herself, and whether or
not she get the prize is completely independent of her own message (but this message does
influence who gets it if not her).

The set of agents is N; agent i’s message space is N\i: everyone nominates one of the
other agents to be the winner. We interpret m; = j as supporting the choice of agent j for
the winner, which requires the rule to be monotonic in the sense that additional votes for a
given agent cannot reverse the decision to make her the winner.

With the notation D =M;eny (N\i), with generic element x = (z;), a voting rule is a
mapping ¢ : D — N, and we want such a rule to satisfy

e Impartiality: for all i, z;, 2}, x_;, p(z;,x_;) =i < p(zh, z_;) =i

e Unanimity: for all 4, z, {z; =i for all j € N\i} = ¢(z) =1;

1For a formal statement we can invoke the Gibbard-Satterthwaite impossibility result.
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e Monotonicity: for all ¢,7,i # j, all z, () =i = p(i,z_;) = ;
e No Dummy: for all i, p(x;,x_;) # ¢(x},x_;) for some z;,x}, x_;.

We show that these four requirements are incompatible for n < 4, but they are compat-
ible for n > 5 or more agents. The proof is constructive.

In the second problem we must determine a strict ordering of the agents (with respect to
some given criteria), when everyone cares only about his own rank (i.e., how many are above
but not who). There too it seems possible to design a reasonable mechanism where agent
i’s report is a strict ranking of agents other than ¢, and i’s actual ranking is independent of
his own report.

References

[1] de Clippel, G., Moulin, H. and N. Tideman, 2008, Impartial division of a dollar, Journal
of Economic Theory, 139, 176-191.

Hervé Moulin
Department of Economics
Rice University

FEmail: moulin@rice.edu

26



Nice, but Are They Relevant? A Political
Scientist Looks at Social Choice Results

Hannu Nurmi

The motivation for introducing a new voting system or criticizing an old one is often a
counterintuitive or unexpected voting outcome. A case in point is Borda’s memoir where
he criticized the plurality voting and suggested his own method of marks [2]. With time
this approach focusing on a specific flaw of a system has given way to studies dealing
with a multitude of systems and their properties. An example of such studies (e.g. [3]) is
summarized in Table 1.

Here criterion a denotes the Condorcet winner criterion, b the Condorcet loser one, c
strong Condorcet criterion, d monotonicity, e Pareto, f consistency, g Chernoff property,
h independence of irrelevant alternatives and i invulnerability to the no-show paradox. A
“1” (“0”, respectively) in the table means that the system represented by the row satisfies
(violates) the criterion represented by the column.

A more “graded” approach to comparing two systems with respect to one criterion has
also been suggested [1]. The superiority of system A with respect to system B takes on
degrees from strongest to weakest as follows:

1. A satisfies the criterion, while B doesn’t, i.e. there are profiles where B violates the
criterion, but such profiles do not exist for B.

2. in every profile where A violates the criterion, also B does, but not vice versa.

3. in practically all profiles where A violates the criterion, also B does, but not vice versa
(“A dominates B almost everywhere”).

4. in a plausible probability model B violates the criterion with higher probability than
A.

5. in those political cultures that we are interested in, B violates the criterion with higher
frequency than A.

Comparing systems with respect to just one criterion is, however, not plausible since
criteria tend to be contested not only among the practitioners devising voting systems, but
also within the scholarly community. Suppose instead that one takes a more holistic view of
Table 1 and gives some consideration to all criteria. A binary relation of dominance could
then be defined as follows: A system A (strictly) dominates system B in terms of a set of
criteria, if and only if whenever B satisfies a criterion, so does A, but not the other way
around.

But all criteria are not of equal importance. Nor are they unrelated. Moreover, Table 1
tells very little — in fact nothing — about the likelihood of criterion violations in those
cases where those violations are possible. To find out how often a given system violates
a criterion — say, elects a Condorcet loser — one has to know how often various preference
profiles occur and how these are mapped into voting strategies by voters. Once we know
these two things we can apply the system to the voting strategy n-tuples (if the number of
voters is n), determine the outcomes, and, finally, compare these with preference profile to
find out whether the choices dictated by the criterion contradict those resulting from the
profile, e.g. if an eventual Condorcet loser was chosen. Traditionally, two methods have been
resorted in estimating the frequency of criterion violations: (i) probability modeling, and (ii)
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Criterion

Voting system a b ¢ d e f g h i
Amendment 11 1 1 0 0 0 0 O
Copeland 11 1 1.1 0 0 0 O
Dodgson 10 1 0 1 0 0 0 O
Maximin 10 1. 1. 1 0 0 0 O
Kemeny 11 1 1 1 0 0 0 O
Plurality 00 1 1 1 1 0 0 1
Borda 01 0 11 1 0 0 1
Approval 00 0 1 0 1 1 0 1
Black 11 1 1 1 0 0 0 1
PL. runoff 01 1.0 1 0 0 0 O
Nanson 11 1 0 1 0 O O O
Hare 01 1.0 1 0 0 0 O

Table 1: A Comparison of voting procedures

computer simulations. Both are based on generating artificial electorates and calculating
how frequently the criterion is violated or some other incompatibility is encountered in these
electorates.

A consideration not disclosed by Table 1 is the intuitive difficulty of finding examples
demonstrating criterion violations. In some cases such examples are rather straight-forward,
while in others one has to work them out. We shall discuss some of these and dwell on their
implications for voting system choice.

The mainstream social choice theory is based on the assumption that the individuals are
endowed with complete and transitive preference relations over choice alternatives. Since
there are circumstances under which non-transitive preferences make perfect sense, it is
worthwhile to find out whether plausible alternatives to the ranking assumption exist. To-
wards the end of the paper we shall briefly outline some of these.
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Partial Kernelization for Rank Aggregation:
Theory and Experiments

Nadja Betzler!, Robert Bredereck!, and Rolf Niedermeier

Abstract

RANK AGGREGATION is important in many areas ranging from web search over databases
to bioinformatics. The underlying decision problem KEMENY SCORE is NP-complete even
in case of four input rankings to be aggregated into a “median ranking”. We study efficient
polynomial-time data reduction rules that allow us to find optimal median rankings. On the
theoretical side, we improve a result for a “partial problem kernel” from quadratic to linear
size. On the practical side, we provide encouraging experimental results with data based on
web search and sport competitions, e.g., computing optimal median rankings for real-world
instances with more than 100 candidates within milliseconds.

1 Introduction

We investigate the effectiveness of data reduction for computing optimal solutions of the NP-
hard RANK AGGREGATION problem. Kemeny’s corresponding voting scheme goes back to the
year 1959 [14] and was later specified by Levenglick [16]. It can be described as follows. An elec-
tion (V,C) consists of a set V of n votes and a set C of m candidates. A vote or a ranking is a
total order of all candidates. For instance, in case of three candidates a, b, ¢, the order ¢ > b > a
means that candidate c is the best-liked one and candidate a is the least-liked one. For each pair of
votes v, w, the Kendall-Tau distance between v and w is defined as

KT-dist(v,w) = Z dyw(c, d),
{edco

where d, ., (c, d) is set to 0 if v and w rank ¢ and d in the same order, and is set to 1, otherwise.
The score of a ranking [ with respect to an election (V, C) is defined as )\, KT-dist(l,v). A
ranking ! with a minimum score is called a Kemeny ranking of (V,C) and its score is the Kemeny
score of (V, C). The central problem considered in this work is as follows:

RANK AGGREGATION: Given an election (V, C'), find a Kemeny ranking of (V, C).

Its decision variant KEMENY SCORE asks whether there is a Kemeny ranking of (V, C') with score at
most some additionally given positive integer k. The RANK AGGREGATION problem has numerous
applications, ranging from building meta-search engines for the web or spam detection [10] over
databases [11] to the construction of genetic maps in bioinformatics [12]. Kemeny rankings are also
desirable in classical voting scenarios such as the determination of a president (see, for example,
www.votefair.org) or the selection of the best qualified candidates for job openings. The wide
range of applications is due to the fulfillment of many desirable properties from the social choice
point of view [23], including the Condorcet property: if there is a candidate (Condorcet winner)
who is better than every other candidate in more than half of the votes, then this candidate is also
ranked first in every Kemeny ranking.

Previous work. First computational complexity studies of KEMENY SCORE go back to Bartholdi
et al. [3], showing its NP-hardness. Dwork et al. [10] showed that the problem remains NP-hard even
in the case of four votes. Moreover, they identified its usefulness in aggregating web search results

I'Supported by the DFG, research project PAWS, NI 369/10.
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and provided several approximation and heuristic algorithms. Recent papers showed constant-factor
approximability [2, 22] and an (impractical) PTAS [15]. Schalekamp and van Zuylen [20] provided
a thorough experimental study of approximation and heuristic algorithms. Due to the importance of
computing optimal solutions, there have been some experimental studies in this direction [8, 9]: An
integer linear program and a branch-and-bound approach were applied to random instances gener-
ated under a noise model (motivated by the interpretation of Kemeny rankings as maximum likeli-
hood estimators [8]). From a parameterized complexity perspective, the following is known. First
fixed-parameter tractability results have been shown with respect to the single parameters number of
candidates, Kemeny score, maximum range of candidate positions, and average KT-distance d, [4].
The average KT-distance

do= Y KT-dist(v,w))/(n(n — 1))

v,weV,uFw

will also play a central role in this work. Moreover, KEMENY SCORE remains NP-hard when
the average range of candidate positions is two [4], excluding hope for fixed-parameter tractabil-
ity with respect to this parameterization. Simjour [21] further introduced the parameter “Kemeny
score divided by the number of votes™ (also showing fixed-parameter tractability) and improved the
running times for the fixed-parameter algorithms corresponding to the parameterizations by average
KT-distance and Kemeny score. Recently, Karpinski and Schudy [13] devised subexponential-time
fixed-parameter algorithms for the parameters Kemeny score, d,, and Kemeny score divided by the
number of votes. Mahajan et al. [17] studied above guarantee parameterization with respect to the
Kemeny score. Introducing the new concept of partial kernelization, it has been shown that with
respect to the average KT-distance d,, one can compute in polynomial time an equivalent instance
where the number of candidates is at most 162d3 +9d, [5]. This equivalent instance is called partial
kernel? with respect to the parameter d,, because it only bounds the number of candidates but not the
number of votes instead of bounding the total instance size (as one has in classical problem kernels).
Finally, it is interesting to note that Conitzer [7] developed a powerful preprocessing technique for
solving a similar rank aggregation problem (Slater ranking). His concept of similar candidates is
related to our approach.

Our contributions. On the theoretical side, we improve the previous partial kernel from 162d2 +
9d, candidates [5] to 11d, candidates. Herein, the central point is to exploit “stronger majorities”,
going from “>,,3-majorities” as used before [5] to “>3,4-majorities”. In this line, we also prove
that the consideration of “>3 /4-majorities” is optimal in the sense that “>;-majorities” with s < 3/4
do not suffice.

On the practical side, we provide strong empirical evidence for the usefulness of data reduction
rules associated with the above mentioned kernelization. An essential property of our data reduction
rules is that they can break instances into several subinstances to be handled independently, that
is, the relative order between the candidates in two different subinstances in a Kemeny ranking is
already determined. This also means that for hard instances which we could not completely solve,
we were still able to compute “partial rankings” of the top and bottom ranked candidates. Finally,
we employ some of the known fixed-parameter algorithms and integer linear programming to solve
sufficiently small parts of the instances remaining after data reduction.

Due to the lack of space, several details are deferred to the full version of the paper.

2 Majority-based data reduction rules

We start with some definitions and sketch some relevant previous results [5]. Then we show how to
extend the previous results to obtain a linear partial kernel for the parameter average KT-distance by

2 A formal definition of partial kernels appears in the upcoming journal version of [5].
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| valueofs | partial kernel result | sp. case: no dirty pairs |

2/3 < s < 3/4 | quadratic partial kernel w.r.t. ny4 ([5, Theorem 5]) | polynomial-time solvable
3/4<s<1 linear partial kernel w.r.t. n4 (Theorem 1) ([5, Theorem 4])

Table 1: Partial kernelization and polynomial-time solvability. The term dirty refers to the > -
majority for the respective values of s. The number of dirty pairs is n4. A linear partial kernel w.r.t.
the average KT-distance follows directly from the linear partial kernel w.r.t. ngy (Theorem 1).

providing a new reduction rule. We also show the “limits” of our new reduction rule. Finally, we
provide two more reduction rules of practical relevance.

Definitions and previous results. The data reduction framework from previous work [5] intro-
duces a “dirtiness concept” and shows that one can delete some “non-dirty candidates” by a data
reduction rule leading to a partial kernel with respect to the average KT-distance. The “dirtiness” of
a pair of candidates is measured by the amount of agreement of the votes for this pair. To this end,
we introduce the following notation. For an election (V, C), two candidates ¢, ¢’ € C, and a rational
number s € ]0.5, 1], we write

c>gc

if at least [s - [V'|] of the votes prefer ¢ to ¢’. A candidate pair {c, '} is dirty according to the
>,-majority if neither ¢ >, ¢’ nor ¢’ >, c. All remaining pairs are non-dirty according to the > ,-
majority. This directly leads to the parameter number n4 of dirty pairs according to the > ;-majority.
Previous work only considered >o /3-maj0rities3 and provided a reduction rule such that the number
of candidates in a reduced instance is at most quadratic in ng as well as in d, [5]. In this work, we
provide a linear partial kernel with respect to n4 according to the >¢-majority for s > 3/4 and show
that this leads to a linear partial kernel with respect to d,,.

We say that ¢ and ¢’ are ordered according to the > 4-majority in a preference list [ if ¢ >, ¢
and ¢ > ¢ in [. If all candidate pairs are non-dirty with respect to the > ;-majority for an s > 2/3,
then there exists a >4-majority order, that is, a preference list in which all candidate pairs are ordered
according to the >¢-majority [5]. Furthermore, such a >, /3-majority can be found in polynomial
time and is a Kemeny ranking [5]. Candidates appearing only in non-dirty pairs are called non-
dirty candidates and all remaining candidates are dirty candidates. Note that with this definition a
non-dirty pair can also be formed by two dirty candidates. See Table 1 for an overview of partial
kernelization and polynomial-time solvability results.

We end with some notation needed to state our data reduction rules. For a candidate subset C’ C
C, a ranking fulfills the condition C’ > C' \ C’ if every candidate from C’ is preferred to every
candidate from C'\ C’. A subinstance of (V, C) induced by a candidate subset C' C C'is given
by (V’, C") where every vote in V'’ one-to-one corresponds to a vote in V' keeping the relative order
of the candidates from C”.

2.1 New results exploiting >3, ,-majorities

We improve the partial kernel upper bound [5] for the parameter d, from quadratic to linear, pre-
senting a new data reduction rule. The crucial idea for the new reduction rule is to consider >3 4-
majorities instead of >, /3-majorities. We further show that the new reduction rule is tight in the
sense that it does not work for >, /3-majorities.

3To simplify matters, we write “>, /3" instead of “> with s > 2/3”, and if the value of s is clear from the context, then
we speak of “dirty pairs” and omit “according to the > s-majority”.
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value of s properties

1/2 <s<2/3 a>,-majority order does not necessarily exist (Example 1)

2/3 < s<3/4 a>s-majority order exists (follows from [5, Theorem 4])
but a non-dirty candidate and a dirty candidate do not have to be ordered
according to the >,-majority in a Kemeny ranking (Theorem 2)

3/4<s<1 a > s-majority order exists (follows from [5, Theorem 4])
and in every Kemeny ranking every non-dirty candidate is ordered according
to the >¢-majority with respect to all other candidates (Lemma 1)

Table 2: Properties “induced” by > s-majorities for different values of s.

Reduction rule. The following lemma allows us to formulate a data reduction rule that deletes all
non-dirty candidates and additionally may break the remaining set of dirty candidates into several
subsets to be handled independently from each other.

Lemma 1. Let a € C be a non-dirty candidate with respect to the >3 ,4-majority and b € C'\ {a}.
If a >3/4 b, then in every Kemeny ranking one must have “a > --- > b"; if b >34 a, then in every
Kemeny ranking one must have “b > --- > a”.

As a direct consequence of Lemma 1 we can partition the candidates of an election (V,C') as
follows. Let N := {ni,...,ns} denote the set of non-dirty candidates with respect to the >3 /4-
majority such that n; >3/4 Mgl forl1 <i<s—1. Then,

Do:={de C\ N |d=>3/4n1},
D, = {dEC\N‘nl 23/4dandd23/4ni+1}for1Sigs—l,and
Dyi={de C\N | ny >4 d}.

3/4-Majority Rule. Let (V,C) be an election and N and Dy, ..., D be the sets of non-dirty and
dirty candidates as specified above. Replace the original instance by the s+ 1 subinstances induced
by D; fori € {0,...,s}.

The soundness of the 3/4-Majority Rule follows directly from Lemma 1 and it is straightforward
to verify its running time O(nm?). An instance reduced by the 3/4-Majority Rule contains only
dirty candidates with respect to the original instance. Making use of a simple relation between the
number of dirty candidates and the average KT-distance as also used previously [5], one can state
the following.

Theorem 1. For KEMENY SCORE a partial kernel with less than 11 - d, candidates and less than
2n4 candidates can be computed in O(nm?) time.

Tightness results. We investigate to which >¢-majorities the results obtained for >3 4-majorities
extend. An overview of properties for a Kemeny ranking for different values of s is provided in
Table 2.

For the >;/3-majority, instances without dirty candidates are polynomial-time solvable [5].
More precisely, the >;/3-majority order is a Kemeny ranking. A simple example shows that for
any s < 2/3 a >¢-majority order does not always exist:

Example 1. Consider the election consisting of the three candidates a, b, and ¢ and the three votes
“a>b>c",“b>c>a’,and “c > a > b”. Here, a >3/3 b, b >9/3 ¢, and ¢ >33 a. Then, no
linear order fulfills all three relations.
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The existence of a data reduction rule analogously to the 3/4-Majority Rule for >¢-majorities
for s < 3/4 would be desirable since such a rule might be more effective: There are instances for
which a candidate is dirty according to the >3,4-majority but non-dirty according to a >4-majority
with s < 3/4. Hence, for many instances, the number n4 of dirty pairs according to the >3 /4-
majority assumes higher values than it does according to smaller values of s. In the following, we
discuss why an analogous s-Majority Rule with s < 3/4 cannot exist. The decisive point of the 3/4-
Majority Rule is that, in a Kemeny ranking, every non-dirty candidate must be ordered according to
the >3,4-majority with respect to every other candidate. The following theorem shows that this is
not true for > ;-majorities with s < 3/4.

Theorem 2. Consider a > s-majority for any rational s € 12/3,3/4[. For a non-dirty candidate x
and a dirty candidate y, x >4 y does not imply © > y in a Kemeny ranking.

Proof. Let s; and s, be two positive integers such that s = s1/s5. We construct an election such
that there is a non-dirty candidate x with x >, y but “y > --. > z” in every Kemeny ranking. The
set of candidates is {x, y, a1, as} and there are the following n = s; - s5 votes:

e 51 -59— 82 votes of type 1: & >y > a; > as,
o 252 — 51 - 59 votes of type 2: a; > as > 1 > v,
e 51 -9 — 52 votes of type 3: y > a; > ap > .

We first show that there is a positive number of votes of every type:

Considering the number of votes of types 1 and 3, recall that 3/4 > s1/s5 and thus s > 4/3-s1.
Hence, it is easy to see that their number is s7 - 55 — s% > s1-(4/3 51 — s1) > 0. Regarding votes
of type 2, we use the trivial bound that s; /sy > 1/2 and thus their number is 257 — s; - 5o >
s1-(2s1 —2s81) =0.

Now, we show that x is non-dirty and x >, y. The number of votes with a > x for a €
{a1,a2} is 253 — 51 - 83 + 81 - 82 — 82 = s? = s-n and the number of votes with x > y is
81+ 89 — 87 4+ 2582 — 51 - 89 = s7 = s - n and thus z is non-dirty according to the >-majority and
T sy

In the following, we show that the score of “y > a1 > as > x” is smaller than the score of every
other preference list and, hence, there is no Kemeny ranking in which = and y are ordered according
to the > -majority.

Since “a; > a9” in every vote, “a; > ao” in every Kemeny ranking (see e.g. [4]). Distinguishing
three cases, we first show that in every Kemeny ranking “a; > z” if and only if “as > 27, and
“a; > y” if and only if “as > y”. After this, we can treat a; and as as one candidate of “weight”
two and thus with this argument there remain only six preference lists for which the score has to be
investigated to show that “y > a1 > as > x” is the only preference list with minimum score.

Case 1: Consider a preference list with “a; > = > a2 where y is placed either before or after all
other three candidates. This preference list cannot have minimum score since swapping = and
a9 leads to a preference list with smaller score since as > x in more than sn > 2/3 - n votes.

Case 2: Consider a preference list with “aq > y > as” where x is placed either before or after
all three other candidates. This preference list cannot have minimum score since swapping
a1 and y leads to a preference list with smaller score. This can be seen as follows. Since
81 < 3/4 - so, the number of votes with “y > a;” is

25189 — 25% > 281(sg — 3/4-82) =1/2- 8180 = n/2.
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Case 3: Consider the preference list “a; > x > y > as”. Note that the same preference list with
z and y swapped would clearly have a larger score. We show that “a; > as > = > y” has a
smaller score than “a; > x > y > ay”. The only pairs that change the score are {as, y} and
{az, z}. These pairs contribute with

#o(az > y) + #o(az > ) = 257 — 5159 + 257 — 5189 + 5152 — 57 = 357 — 5159

to the old score and with 2n — #, (a2 > y) — #,(az > ) to the “new” score. Hence, it
remains to show that the difference between the old and new score is positive, that is,

35% — 8189 — 28189 + 35% — S189 = 65% — 48189 > 6-2/3- 8189 — 45182 = 0.

Finally, we consider the scores of all possible remaining six preference lists 1, . .., 7g with a stand-
ing for “a; > a2
rn: a>xr>y rs: o r>a>Yy s o Yy>a>cx
ro: a>y>x Tar x>Y>a rTe: Y>x>a
Let t(r) denote the score of a preference list r. It is easy to verify that ¢(r1) < t(r2),
t(r1) < t(rs), and t(r4) < t(re). Hence, it remains to compare the score of r5 with the score

of r; and r4. Since a represents two candidates, we count the corresponding pairs twice in the
following computations.

t(r1) — t(rs)

= 2#,(x > a) + 2#.(y > a) + #o(y > x) — 24 (a > y) — 2#.(z > a) — #o(z > y)
= 25182 — 25% + 4s152 — 43? + 5152 — s% — 45? + 25152 — 25182 + 28? — S951 + S182
= 75182 — 55% > 7s1-4/3-s1 — 55% = 13/3~s§ >0

t(ra) — t(rs)

= #o(y > x) + 270 (a > 2) + 2#.(a > y) — 2#.(a > y) = 2#.(z > a) — Ffo(z > y)
=515 — 1 +2-57—2- (s182) +2- 57 — 53

:25%—5132>2/3-5%>0

This shows that 5 has a smaller score than r and 4.
Altogether, we showed that r5 is the only Kemeny ranking. Thus, there is an election with
x >, y forevery s € ]2/3,3/4] such that every Kemeny ranking has y > x. O

2.2 Exploiting the Condorcet property

We present a well-known data reduction rule of practical relevance and show that it reduces an
instance at least as much as the 3/4-Majority Rule. The reduction rule is based on the following
easy-to-verify observation.

Observation 1. Let C' C C be a candidate subset with ¢’ >4 5 c for every ¢’ € C' and every
¢ € C\ C'". Then there must be a Kemeny ranking fulfilling C' > C \ C'.

To turn Observation 1 into a reduction rule, we need a polynomial-time algorithm to identify
appropriate “winning subsets” of candidates. We use the following simple strategy, called winning
subset routine: For every candidate ¢, compute a minimal winning subset M, by iteratively adding
every candidate ¢’ with ¢/ >/, ¢, ¢ € M., to M.. After this, we choose a smallest winning
subset.

Condorcet-Set Rule. If the winning subset routine returns a subset C' with C' # C, then replace
the original instance by the two subinstances induced by C' and C'\ C'.
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It is easy to see that the Condorcet-Set Rule can be carried out in O(nm?) time. The following
proposition shows that the Condorcet-Set Rule is at least as powerful as the 3/4-Majority Rule,
implying that the Condorcet-Set Rule provides a partial kernel with less than 11d,, candidates.

Proposition 1. An instance reduced by the Condorcet-Set Rule cannot be further reduced by the
3/4-Majority Rule.

Proposition 1 shows that the 3/4-Majority Rule cannot lead to a “stronger” reduction of an
instance than the Condorcet-Set Rule does. However, since the Condorcet-Set Rule has a higher
running time, that is O(nm?) compared to O(nm?), applying the 3/4-Majority Rule before the
Condorcet-Set Rule may lead to an improved running time in practice. This is also true for the
consideration of the following “special case” of the Condorcet-Set Rule also running in O(nm?)
time.

Condorcet Rule. [f there is a candidate ¢ € C with ¢ >1 /5 ¢’ for every ¢’ € C'\ {c}, then delete c.

Indeed, our experiments will show that combining the Condorcet-Set Rule with the other rules sig-
nificantly speeds up the practical running times for many instances.

3 Experimental results

To solve sufficiently small remaining parts of the instances left after the application of our data
reduction rules, we implemented three exact algorithms. First, an extended version of the search tree
algorithm showing fixed-parameter tractability with respect to the Kemeny score [4, 6]. Second, a
dynamic programming algorithm running in O(2™ -nm?) time for m candidates and n votes [4, 19].
Third, the integer linear program [8, Linear Program 3] which was the fastest exact algorithm in
previous experimental studies [8, 20]. We use the freely available ILP-solver GLPK* to solve the
ILP>

Our algorithms are implemented in C++ using several libraries of the boost package. Our
implementation consists of about 4000 lines of code. All experiments were carried out on a
PC with 3 GHz and 4 GB RAM (CPU: Intel Core2Quad Q9550) running under Ubuntu 9.10
(64 bit) Linux. Source code and test date are available under the GPL Version 3 license under
http://theinf1.informatik.uni-jena.de/kconsens/.

We start to describe our results for two different types of web search data (Sections 3.1 and 3.2)
followed by instances obtained from sport competitions (Section 3.3).

3.1 Search result rankings

A prominent application of RANK AGGREGATION is the aggregation of search result rankings ob-
tained from different web search engines. We queried the same 37 search terms as Dwork et al. [10]
and Schalekamp and van Zuylen [20] to generate rankings. We used the search engines Google,
Lycos, MSN Live Search, and Yahoo! to generate rankings of 1000 candidates. We consider two
search results as identical if their URL is identical up to some canonical form (cutting after the top-
level domain). Results not appearing in all rankings are ignored. Ignoring the term “zen budism”
with only 18 candidates, this results in 36 instances having between 55 and 163 candidates. We
start with a systematic investigation of the performance of the individual reduction rules followed
by describing our results for the web instances.

We systematically applied all combinations of reduction rules, always sticking to the following
rule ordering: If applied, the Condorcet-Set Rule is applied last and the 3 /4-Majority Rule is applied

“http://www.gnu.org/software/glpk/
SWe omit a detailed discussion about the performance of the single algorithms. A systematic comparison of the three
algorithms will be provided in the full version of this work.
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blues gardening classical guitar

time profile time profile time profile
001 0.03 12>5>1>101>1>2 0.01 1>2>1>102 0.03 1>114
010 0.10 17459129 0.05 154 5 43> 19 0.06 16> 902> 117
011 0.10 174 595129 0.05 154 5 43> 19 0.07 16 592> 117
100 0.84 174 59> 129 0.95 194520>13>9>1105 4516 1.89 16575150 5355117
101 0.10 174 595129 1.03 194 520>13>9>1105 4516 2.03 16575150 535> 117
110 0.10 174595129 0.10 154 5205135951105 4516 0.19 16575150 5355117
111 0.10 174 59> 129 0.11 154 520>13>9>11054>16 0.18 16 575150 5355117

Figure 1: The first column encodes the combination of reduction rules used: the first digit is “1” if
the Condorcet-Set Rule is applied, the second if the Condorcet Rule is applied and the last digit is
“1” if the 3/4-Majority Rule is applied. For the three instances corresponding to the search terms

“blues”, “gardening”, and “classical guitar” we give the running times in seconds and the profiles
describing the result of the data reduction process.
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Figure 2: Left: Running times of different combinations of reduction rules. To improve readability,
we omitted the data points for the Condorcet-Set Rule combined with the 3/4-Majority Rule which
was usually worse and in no case outperformed the best running times for the other combinations.
Right: Percentage of the web search instances for which the = top candidates could be determined
by data reduction and dynamic programming within five minutes. For a given number x of top
positions, we only considered instances with at least = candidates.

first. After a successful application of the Condorcet-Set Rule, we “jump” back to the other rules (if
“activated”). Examples are given in Fig. 1. This led to the following observations.

First, surprisingly, the Condorcet Rule alone led to a stronger reduction than the 3/4-Majority
Rule in most of the instances whereas the 3/4-Majority Rule never led to a stronger reduction than
the Condorcet Rule. Second, for several instances the Condorcet-Set Rule led to a stronger reduction
than the other two rules, for example, for gardening and classical guitar (see Fig. 1). It led to a
stronger reduction for 14 out of the 36 instances and restricted to the 15 instances with more than
100 candidates (given in Table 3), it led to a stronger reduction for eight of them. Finally, the
running times for the Condorcet-Set Rule in combination with the other rules are given in the left
part of Fig. 2. Applying the Condorcet Rule before the Condorcet-Set Rule led to a significant speed-
up. Additionally applying the 3/4-Majority Rule changes the running time only marginally. Note
that jumping back to the “faster” rules after applying the Condorcet-Set Rule is crucial to obtain the
given running times. In the following, by “our reduction rules”, we refer to all three rules applied in
the order: Condorcet Rule, 3/4-Majority Rule, and Condorcet-Set Rule.
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Table 3: Web data instances with more than 100 candidates. The first column denotes the search term, the
second the number of candidates, the third the running time in seconds, and the last column the “profiles”
remaining after data reduction to read as follows. Every “1” stands for a position for which a candidate was
determined in a Kemeny ranking and higher numbers for groups of candidates whose “internal” order could
not be determined by the data reduction rules. Sequences of i ones are abbreviated by 1°. For example, for the
search term “architecture”, we know the order of the best 36 candidates, then we know the set of candidates
that must assume positions 37— 48 without knowledge of their relative orders, and so on.

search term # cand. time structure of reduced instance
affirmative action 127 0.21 127 > 41 > 159
alcoholism 115 0.10 1115

architecture 122 0.16 136 >12> 130 > 17 > 127
blues 112 010 1™ >90> 129
cheese 142 020 1% > 6> 142
classical guitar 115 0.19 1° >7>1% >35> 17
Death+Valley 110 0.11 1% >7>13% >8> 150
field hockey 102 0.17 137 > 26> 120 >4 > 119
gardening 106 0.10 17 >20>1>1>9>18>4> 19
HIV 115 0.13 162 >5>17>20> 12t
lyme disease 153 3.08 1% > 97 > 131
mutual funds 128 208 1° >45>19>5>1>49> 110
rock climbing 102 0.07 1102

Shakespeare 163 026 1100 >10> 1% > 6 > 122
telecommuting 131 1.60 1° > 109 > 113

For all instances with more than 100 candidates, the results of our reduction rules are displayed
in Table 3: the data reduction rules are not only able to reduce candidates at the top and the last
positions but also partition some instances into several smaller subinstances. Out of the 36 instances,
22 were solved directly by the reduction rules and one of the other algorithms in less than five
minutes. Herein, the reduction rules always contributed with less than four seconds to the running
time. For all other instances we still could compute the “top” and the “flop” candidates of an optimal
ranking. For example, for the search term “telecommuting” there remains a subinstance with 109
candidates but we know the best nine candidates (and their order). The effectiveness in terms of top
candidates of our reduction rules combined with the dynamic programming algorithm is illustrated
in Fig. 2. For example, we were able to compute the top seven candidates for all instances and the
top 40 candidates for 70 percent of the instances.

3.2 Impact rankings

We generated rankings that measure the “impact in the web” of different search terms. For a search
engine, a list of search terms is ranked according to the number of the hits of each single term.
We used Ask, Google, MSN Live Search, and Yahoo! to generate rankings for all capitals (240
candidates), all nations (242 candidates), and the 103 richest people of the world.® Our biggest
instance is built from a list of 1349 mathematicians.’

As to the capitals, in less than a second, our algorithms (reduction rules and any of the other
algorithms for solving subinstances up to 11 candidates) computed the following “profile” of a
Kemeny ranking: 1% > 34 > 190 > 43 > 126 (see Table 3 for a description of the profile concept).
The final Kemeny ranking starts as follows: London > Paris > Madrid > Singapore > Berlin > - - -.

Shttp://en.wikipedia.org/wiki/List_of{ capitals_by_countries, richest_people}
http://aleph0.clarku.edu/~djoyce/mathhist/chronology.html
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For aggregating the nation rankings, our algorithms were less successful. However, we could still
compute the top 6 and the flop 12 candidates. Surprisingly, the best represented nation in the web
seems to be Indonesia, followed by France, the United States, Canada, and Australia. The instance
consisting of the 103 richest persons could be solved exactly in milliseconds by the data reduction
rules. In contrast, for the mathematicians we could only compute the top 31 and flop 31 candidates
but could not deal with a subinstance of 1287 candidates between. For the mathematicians instance,
the search strategy for minimal subsets for the Condorcet-Set Rule as given in Section 2 led to a
running time of more than a day. Hence, we used a cutoff of 20 candidates for the size of the
minimal subsets. This decreased the running time to less than one hour.

3.3 Sport competitions

Formula 1. The winner determination of a Formula 1 season can be considered as an election
where the candidates are the drivers and the votes are the single races. Currently, the winner de-
termination is based on a “scoring rule”, that is, in a single race every candidate gets some points
depending on the outcome and the candidate with highest total score wins. We computed Kemeny
winners for the seasons from 1970 till 2008. Since currently our implementation cannot handle ties,
we only considered candidates that have competed in all races. Candidates that dropped out of a
race are ordered according to the order determined by how long the drivers participated in the race.
The generated instances have about 16 votes and up to 28 candidates.

Without data reduction, the ILP-approach was the most successful algorithm. It could solve
all instances in less than 31 seconds whereas the dynamic programming algorithm could not solve
the two instances with the highest number of candidates within 5 minutes. All search tree variants
performed even worse. The Condorcet and the Condorcet-Set Rule partitioned nearly all instances
in very small components such that a Kemeny ranking could be computed for all years except 1983
in few milliseconds. For 1983 (24 candidates), a remaining component with 19 candidates could be
solved in less than one minute by the dynamic programming algorithm.

The Kemeny winner in most of the considered seasons is the same as the candidate selected by
the used scoring rule. However, in 2008, Lewis Hamilton was elected as world champion (beating
Felipe Massa by only one point) whereas Massa was the “Condorcet driver” and thus the first candi-
date in every Kemeny ranking. Since in contrast to Kemeny’s voting system there is no scoring rule
fulfilling the Condorcet property [23], this is no complete surprise.

Winter sport competitions. For ski jumping and cross skiing, we considered the world cup rank-
ings from the seasons 2005/2006 to 2008/2009,% ignoring candidates not appearing in all four rank-
ings. Without data reduction, the ski jumping instance, consisting of 33 candidates, was solved by
the ILP-solver GLPK in 103 seconds whereas the search tree and dynamic programming algorithms
did not find a solution within five minutes. In contrast, the instance was solved in milliseconds by
only applying the reduction rules. The cross skiing instance, consisting of 69 candidates, could not
be solved without data reduction within five minutes by any of our algorithms but was reduced in
0.04 seconds such that one component with 12 and one component with 15 candidates were left
while all other positions could be determined by the reduction rules. The remaining parts could be
solved, for example by the dynamic programming algorithm, within 0.12 and 0.011 seconds.

4 Conclusion

Our experiments showed that the described data reduction rules allow for the computation of opti-
mal Kemeny rankings for real-world instances of non-trivial sizes within seconds. For instance, all
of our larger now solved instances (with more than 50 candidates) could not be solved by the ILP,

80btained from http: //www.sportschau.de/sp/wintersport/
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the previously fastest exact algorithm [8], or the two other implemented fixed-parameter algorithms
directly. A key-feature of the data reduction rules is to break instances into smaller, independent
instances. A crucial observation in the experiments with the different data reduction rules regards
certain cascading effects, that is, jumping back to the faster-to-execute rules after a successful appli-
cation of the Condorcet-Set Rule significantly improves the running time. This shows that the order
of applying data reduction rules is important. We could not observe a specific behavior of our data
reduction rules for the different types of data under consideration. However, a further extension of
the data sets and experiments in this direction are clearly of interest.

On the theoretical side, we improved the previous partial kernel [5] with respect to the parameter
average KT-distance from quadratic to linear size. Despite the negative results from Theorem 2,
there is still room for improving the >5,3-majority based results. In particular, is there a linear
partial kernel with respect to the >¢-majority for any s < 3/4? A natural step in answering this
question seems to investigate whether for two non-dirty candidates a, b, there must be a Kemeny
ranking with @ > b if @ >; b. An important extension of RANK AGGREGATION is to consider
“constraint rankings”, that is, the problem input additionally contains a prespecified order of some
candidate pairs in the consensus list [22]. Here, our data reduction rules cannot be applied anymore.
New reduction rules for this scenario could also be used in “combination” with the search tree
algorithm [4] in an “interleaving mode” [18]. Other challenging variants of RANK AGGREGATION
of practical interest are investigated by Ailon [1].
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On the Fixed-Parameter Tractability of
Composition-Consistent Tournament Solutions

Felix Brandt, Markus Brill, and Hans Georg Seedig

Abstract

Tournament solutions, i.e., functions that associate with each complete and asym-
metric relation on a set of alternatives a non-empty subset of the alternatives, play
an important role within social choice theory and the mathematical social sciences
at large. Laffond et al. have shown that various tournament solutions satisfy
composition-consistency, a strong structural invariance property based on the simi-
larity of alternatives. We define the decomposition degree of a tournament as a pa-
rameter that reflects its decomposability and show that computing any composition-
consistent tournament solution is fixed-parameter tractable with respect to the de-
composition degree. This is of particular relevance for tournament solutions that are
known to be computationally intractable such as the Banks set and the tournament
equilibrium set, both of which have been proposed in the context of social choice.
Finally, we experimentally investigate the decomposition degree of two natural dis-
tributions of tournaments.

1 Introduction

Many problems in multiagent decision making can be addressed using tournament solu-
tions, i.e., functions that associate with each complete and asymmetric relation on a set of
alternatives a non-empty subset of the alternatives. Tournament solutions are most preva-
lent in social choice theory, where the binary relation is typically assumed to be given by
the simple majority rule (Moulin, 1986; Laslier, 1997). Other application areas include
multi-criteria decision analysis (Arrow and Raynaud, 1986; Bouyssou et al., 2006), zero-sum
games (Fisher and Ryan, 1995; Laffond et al., 1993; Duggan and Le Breton, 1996), coalition
formation (Brandt and Harrenstein, 2011), and argumentation theory (Dung, 1995; Dunne,
2007).

Recent years have witnessed an increasing interest in the computational complexity of
tournament solutions by the multiagent systems and theoretical computer science commu-
nities. A number of concepts such as the Banks set (Woeginger, 2003), the Slater set (Alon,
2006; Conitzer, 2006), and the tournament equilibrium set (Brandt et al., 2010) have been
shown to be computationally intractable. For others, including the minimal covering set
and the bipartisan set, algorithms that run in polynomial time but are nevertheless compu-
tationally quite demanding because they rely on linear programming, have been provided
(Brandt and Fischer, 2008). The class of all tournaments is excessively rich and it is well-
known that only a fraction of these tournaments occur in realistic settings (see, e.g., Feld
and Grofman, 1992). Therefore, an important question is whether there are natural classes
or distributions of tournaments that admit more efficient algorithms for computing specific
tournament solutions. In this paper, we study tournaments that are decomposable in a cer-
tain well-defined way. A set of alternatives forms a component if all alternatives in this set
bear the same relationship to all outside alternatives. Elements of a component can thus
be seen as variants of the same type of an alternative. Laslier (1997) has shown that every
tournament admits a unique natural decomposition into components, which may themselves
be decomposable into subcomponents. A tournament solution is composition-consistent if
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it chooses the best alternatives of the best components (Laffond et al., 1996).! In other
words, a composition-consistent tournament solution can be computed by recursively deter-
mining the winning components. All of the tournament solutions mentioned earlier except
the Slater set are composition-consistent.

In this paper, we provide a precise formalization of the recursive decomposition of tour-
naments and a detailed analysis of the speed-up that can be achieved when computing
composition-consistent tournament solutions. In particular, we define the decomposition
degree of a tournament as a parameter that reflects its decomposability. Intuitively, a low
decomposition degree indicates that the tournament admits a particularly well-behaved de-
composition and therefore allows the efficient computation of composition-consistent tourna-
ment solutions. Within our analysis, we leverage a recently proposed linear-time algorithm
for the modular decomposition of directed graphs (McConnell and de Montgolfier, 2005;
Capelle et al., 2002).

In related work, Betzler et al. (2010) proposed data reduction rules that facilitate the
computation of Kemeny rankings. One of these rules, the “Condorcet-set rule”, corresponds
to a (rather limited) special case of composition-consistency where tournaments are decom-
posed into exactly two components. Furthermore, a preprocessing technique that resembles
the one proposed in this paper has been used by Conitzer (2006) to speed up the compu-
tation of Slater rankings. Interestingly, even though Slater’s solution is not composition-
consistent, decompositions of the tournament can be exploited to identify a subset of the
optimal rankings.

Our results, on the other hand, allow us to compute complete choice sets and are appli-
cable to all composition-consistent tournament solutions, including the uncovered set (Fish-
burn, 1977; Miller, 1980), the minimal covering set (Dutta, 1988), the bipartisan set (Laffond
et al., 1993), the Banks set (Banks, 1985), the tournament equilibrium set (Schwartz, 1990),
and the minimal extending set (Brandt, 2009). The former three admit polynomial-time
algorithms whereas the latter three are computationally intractable. None of the concepts
is known to admit a linear-time algorithm.

We show that computing any composition-consistent tournament solution is fized-
parameter tractable with respect to the decomposition degree of the tournament, i.e., there
are algorithms that are only superpolynomial in the decomposition degree. We conclude
the paper with an extensive investigation of the decomposition degree of two natural dis-
tributions of tournaments. The first one is a well-studied model model that assumes the
existence of a true linear ordering of the alternatives that has been perturbed by binary
random inversions. The other one is a spatial voting model based on the proximity of voters
and alternatives in a multi-dimensional space.

2 Preliminaries

In this section, we provide the terminology and notation required for our results (see Laslier
(1997) for an excellent overview of tournament solutions and their properties).

2.1 Tournaments

Let X be a universe of alternatives. For notational convenience we assume that N C X. The
set of all non-empty finite subsets of X will be denoted by F(X). A (finite) tournament T is
a pair (A, >), where A € F(X) and > is an asymmetric and complete (and thus irreflexive)

LComposition-consistency is related to cloning-consistency, which was introduced by Tideman (1987) in
the context of social choice.
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binary relation on X, usually referred to as the dominance relation.? Intuitively, a = b
signifies that alternative a is preferable to b. The dominance relation can be extended to
sets of alternatives by writing A = B when a = b for all a € A and b € B.®> We further write
T (X) for the set of all tournaments on X. The order |T| of a tournament 7' = (A, ) refers
to its number of alternatives |A|. Finally, a tournament isomorphism of two tournaments
T =(A,>)and T' = (A’,>') is a bijective mapping 7 : A — A’ such that a >~ b if and only
if m(a) >’ w(b).

2.2 Components and Decompositions

An important structural concept in the context of tournaments is that of a component. A
component is a subset of alternatives that bear the same relationship to all alternatives not
in the set.

Definition 1. Let T = (A, >) be a tournament. A non-empty subset B of A is a component
of T if for all a € A\ B either B > a or a > B. A decomposition of T is a set of pairwise

disjoint components {B1,..., B} of T such that A = Ule B;.

The null decomposition of a tournament T' = (A, >) is {A}; the trivial decomposition
consists of all singletons of A. Any other decomposition is called proper. A tournament
is said to be decomposable if it admits a proper decomposition. Given a particular de-
composition, the summary of a tournament is defined as the tournament on the individual
components rather than the alternatives.

Definition 2. Let T'= (4, >) be a tournament and B~: {Bi,...,Bi} a decomposition of
T. The summary of T with respect to B is defined as T'= ({1,...,k},>), where

i=j ifandonlyif B;> Bj.

A tournament is called reducible if it admits a decomposition into fwo components.
Otherwise, it is irreducible. Laslier (1997) has shown that there exist a natural unique way
to decompose any tournament. Call a decomposition B finer than another decomposition
B’ if B # B’ and for each B € B there exists B’ € B’ such that B C B’. B’ is said to be
coarser than B. A decomposition is minimal if its only coarser decomposition is the null
decomposition.

Proposition 1 (Laslier (1997)). Every irreducible tournament with more than one alterna-
tive admits a unique minimal decomposition.

This is obviously not true for reducible tournaments, as witnessed by the tournament
T=({1,2,3},>) with 1 > 2, 1 > 3, and 2 > 3, which admits two minimal decompositions,
namely {{1},{2,3}} and {{1,2},{3}}. Nevertheless, there is a unique way to decompose
any reducible tournament. A scaling decomposition is a decomposition with a transitive
summary.

Proposition 2 (Laslier (1997)). FEwvery reducible tournament admits a unique scaling de-
composition such that each component is irreducible.

This scaling decomposition into irreducible components is also the finest scaling decom-
position.

2This definition slightly diverges from the common graph-theoretic definition where > is defined on A
rather than X. However, it facilitates the sound definition of tournament solutions.

3To avoid cluttered notation, we omit the curly braces if one of the sets is a singleton, i.e., we write
a > B instead of the more cumbersome {a} = B.
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2.3 Tournament Solutions

A mazimal element of a tournament T' = (A, >) is an alternative that is not dominated by
any other alternative. Due to the asymmetry of the dominance relation, there can be at
most one maximal element, which then also constitutes a mazimum. Let max(T) denote
the function that yields the empty set or the maximum whenever one exists, i.e.,

max(T) ={a€ A:a>0bforallbe A\ {a}}.

In social choice theory, the maximum of a tournament given by a majority relation is com-
monly referred to as the Condorcet winner.

Since the dominance relation may contain cycles and thus fail to have a maximal element,
a variety of concepts have been suggested to take over the role of singling out the “best”
alternatives of a tournament. Formally, a tournament solution S is defined as a function
that associates with each tournament T' = (A, >) a non-empty subset S(T) of A. Following
Laslier (1997), we require a tournament solution to be independent of alternatives outside
the tournament, invariant under tournament isomorphisms, and to select the maximum
whenever it exists.

Definition 3. A tournament solution is a function S : 7(X) — F(X) such that
(i) S(T) C A for all tournaments T' = (A, >);
(i) S(T) = S(T") for all tournaments T'= (A, =) and T" = (A, >’) such that T'|4 = T"| 4;

(i5) S((mw(A),*>")) = 7(S((A,>))) for all tournaments (4, >), (4’,>'), and every tourna-
ment isomorphism 7 : A — A’ of (A4,>) and (A’,>"); and

() S(T) = max(T) whenever max(T') # 0.

A tournament solution is composition-consistent if it chooses the “best” alternatives from
the “best” components (Laffond et al., 1996).

Definition 4. A tournament solution S is composition-consistent if for all tournaments T
and T such that T' is the summary of T with respect to some decomposition {Bj, ..., By},

sy = |J s

ies(T)

Bi)'

2.4 Fixed-Parameter Tractability and Parameterized Complexity

We briefly introduce the most basic concepts of parameterized complexity theory (see, e.g.,
Downey and Fellows, 1999; Niedermeier, 2006). In contrast to classical complexity the-
ory, where the size of problem instances is the only measure of importance, parameterized
complexity analyzes whether the hardness of a problems only depends on the size of certain
parameters. A problem with parameter k is said to be fized-parameter tractable (or to belong
to the class FPT) if there exists an algorithm that solves the problem in time f(k)-poly(|I]),
where |I] is the size of the input and f is some computable function independent of |I|.

For example, each (computable) problem is trivially fixed-parameter tractable with re-
spect to the parameter |I|. The crucial point is to identify a parameter that is reasonably
small in realistic instances and to devise an algorithm that is only superpolynomial in this
parameter.
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3 The Decomposition Tree of a Tournament

Propositions 1 and 2 offer a straightforward method to iteratively decompose tournaments.
If the tournament is reducible, take the scaling decomposition with irreducible components.
If it is irreducible, take the minimal decomposition. The repeated application of these
decompositions leads to the decomposition tree of a tournament.

Definition 5. The decomposition tree D(T) of a tournament T' = (A, >) is defined as a
rooted tree whose nodes are non-empty subsets of A. The root of D(T) is A and for each
node B € C with |B| > 2, the children of B are defined as follows:

e If T|p is reducible, the children of B are the components of a finest scaling decompo-
sition of T'| 5.

e If T'|p is irreducible, the children of B are the components of a minimal decomposition
of T|B.

It also follows from Propositions 1 and 2 that every tournament has a unique decom-
position tree. By definition, each node in D(T) is a component of T and each leaf is a
singleton. However, not all components of T need to appear as nodes in D(T"). An example
of a decomposition tree is provided in Figure 1.

Figure 1: Example tournament with corresponding decomposition tree. Nodes {f,c} and
{d,e} are reducible, all other nodes are irreducible. Curly braces are omitted to improve
readability.

An internal (i.e., non-leaf) node B of D(T') with children By, ..., By corresponds to the
tournament T = ({1,...,k}, =) where ¢ > j if and only if B; = Bj, i.e., T is the summary
of T'|p with respect to the decomposition {By,..., Bi}. The order of T is thus equal to the
number of children of node B. Moreover, we call an internal node B reducible (respectively,
irreducible) if the tournament Tz is reducible (respectively, irreducible).* If B is reducible,
we assume without loss of generality that the children By,..., By are labelled according to
their transitive summary, i.e., B; > Bj if and only if ¢ < j. In particular, max(Tg) = {1}.

Recent results on the modular decomposition of directed graphs (Capelle et al., 2002;
McConnell and de Montgolfier, 2005) imply that the decomposition tree of a tournament
can be computed in linear time.?

Proposition 8. The decomposition tree of a tournament T' can be computed in time O(|T|?).

4T|p is reducible (respectively, irreducible) if and only if its summary T is.
5The representation of a tournament is quadratic in the number of its alternatives.
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The proof consists of two steps. In the first step, a factorizing permutation of the tour-
nament is constructed. A factorizing permutation of T = (A4, >) is a permutation of the
alternatives in A such that each component of T' is a contiguous interval in the permuta-
tion. McConnell and de Montgolfier (2005) provide a simple algorithm that computes a
factorizing permutation of a tournament in linear time. Furthermore, there exists a fairly
complicated linear-time algorithm by Capelle et al. (2002) that, given a tournament 7' and
a factorizing permutation of T', computes the decomposition tree D(T'). Since the litera-
ture on composition-consistency in social choice and on modular decompositions in graph
theory is unfortunately not well-connected and for reasons of completeness, we outline both
algorithms in the Appendix.

The concept of a factorizing permutation also yields a simple way to bound the number
of nodes in the decomposition tree.

Lemma 1. The number of internal nodes in the decomposition tree of a tournament T is
at most |T| — 1.

Proof. Let o(T) be a factorizing permutation of 7' and consider a node B in D(T'). Decom-
posing B into new components (the children of B in D(T)) corresponds to making “cuts”
in o(T). Furthermore, each cut generates at most two new components.® As there are
only |T| — 1 possible positions for such a cut, the maximum number of nodes in D(T) is
1+2(]T) —1) = 2|T| — 1. The bound follows from the observation that D(T) has exactly
|T| leaves. O

4 Computing Solutions via the Decomposition Tree

Let S be a composition-consistent tournament solution and consider an arbitrary tourna-
ment T = (A,>) together with its decomposition tree D(T). Composition-consistency
implies that

ST = |J s@

i€S(Tg)

for each internal node B in D(T') with children By, ..., By. The solution set S(T") can thus
be computed by starting at the root of D(T') and iteratively applying equation 1. If B is
reducible, we immediately know that S(T|g) = S(T|p,), since 1 is the maximum in the
transitive tournament Tg. A straightforward implementation of this approach is given in
Algorithm 1.

Algorithm 1 visits each node of D(T') at most once. The algorithm for computing
S is only invoked for tournaments 7Tp for which B is irreducible. The order of such a
tournament T’z is equal to the number of children of the node B in D(T"). The decomposition
degree of T is defined as an upper bound of this number.

B:) (1)

Definition 6. The decomposition degree §(T) of a tournament T is given by
§(T) = max{|Tg| : B is an irreducible internal node in D(T)}.

Proposition 3 implies that 6(7") can be computed efficiently. The decomposition degree
of the example tournament in Figure 1 is 3.

Let f(n) be an upper bound on the running time of an algorithm that computes S(7")
for tournaments of order |T'| < n. Then, the running time of Algorithm 1 can be upper-
bounded by f(6(7T")) times the number of irreducible nodes of D(T'). We thus obtain the
following theorem.

6Cuts can be made simultaneously, in which case the number of new components per cut is smaller.
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Algorithm 1 Compute S(T) via decomposition tree
1: Compute D(T)
2: S, S — 0
3 Q — (A
4: while @ # () do

5: B — Dequeue(Q)

6: if |B| =1 then

7 S—SuUB

8: else

9: if B is reducible then
10: Enqueue(Q, By)

11: else // B is irreducible
12: for all i € S(T) do
13: Enqueue(Q, B;)

14: return S

Theorem 1. Let S be a composition-consistent tournament solution and let f(k) be an
upper bound on the running time of an algorithm that computes S for tournaments of order
at most k. Then, S(T) can be computed in O(n?) + f(6) - (n — 1) time, where § is the
decomposition degree of T and n is the order or T.

Proof. Let T be a tournament and n = |T|. Computing D(T') requires time O(n?) (Proposi-
tion 3). We now show that Algorithm 1 computes S(T) in time f(6(T))-(n—1). Correctness
follows from composition-consistency of S. The running time can be bounded as follows.
During the execution of the while-loop, each node B of D(T) is visited at most once. If B
is reducible or a singleton, there is no further computation. If B is irreducible, S(Tg) is
computed. As |Tp| is upper-bounded by 6(7T'), this can be done in f(6(T)) time. Finally,
Lemma 1 shows that the number of (internal) nodes of D(T) is at most n — 1. Summing
up, this yields a running time of O(n?) + f(6(T)) - (n — 1). O

In particular, Theorem 1 shows that the computation of S(7) is fixed-parameter tractable
with respect to the parameter 6(7T).

To get a better understanding of this theorem, consider a composition-consistent tour-
nament solution S such that f(n) is in E = DTIME(2°(™)). This holds, for example, for
the Banks set. For given tournaments 7" of order n, Theorem 1 then implies that S(7T') can
be computed efficiently (i.e., in time polynomial in n) whenever §(T) is in O(log® n). The-
orem 1 is also applicable to tractable tournaments solutions such as the minimal covering
set and the bipartisan set. Although computing these solutions is known to be in P, exist-
ing algorithms rely on linear programming and may be too time-consuming for very large
tournaments. For both concepts, a significant speed-up can be expected for distributions of
tournaments that admit a small decomposition degree.

Generally, decomposing a tournament asymptotically never harms the running time, as
the time required for computing the decomposition tree is only linear in the input size.”

5 Experimental Results

It has been shown in the previous section that computing composition-consistent tourna-
ment solutions is fixed-parameter tractable with respect to the decomposition degree of a

7Checking whether there exists a maximum already requires O(nQ) time.
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tournament. While the clustering of alternatives within components has some natural ap-
peal by itself, an important question concerns the value of the decomposition degree for
reasonable and practically motivated distributions of tournaments. In this section, we will
explore this question experimentally using two probabilistic models from social choice the-
ory. Both models are based on a set of voters who entertain preferences over candidates.
Given a finite set of candidates C' and an odd number of voters with linear preferences over
C, the majority tournament is defined as the tournament (C, ), where a > b if and only if
the number of voters preferring a to b is greater than the number of voters preferring b to a.

Noise model The first model we consider is a standard model in social choice theory where
it is usually attributed to Condorcet (see, e.g., Young, 1988). Condorcet assumed that there
exists a “true” ranking of the candidates and that the voters possess noisy estimates of this
ranking. In particular, he assumed that there is a probability p > %, such that for each pair
a, b of candidates, each voter ranks a and b according to the true ranking with probability
p and ranks them incorrectly with probability 1 — p.

Spatial Model Spatial models of voting are well-studied objects in social choice theory
(see, e.g., Austen-Smith and Banks, 2000). For a fixed natural number d of issues, we assume
that candidates (i.e., alternatives) as well as voters are located in the space [0,1]%. The
position of candidates and voters can be thought of as their stance on the d issues. Voters’
preferences over candidates are given by the proximity to their own position according to
the Euclidian distance. We generate tournaments by drawing the positions of candidates
and voters uniformly at random from [0, 1]¢.
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Figure 2: Noise model with p = 0.55
The results of our experiments are presented in Figures 2, 3, and 4. The z-axis shows

the number of voters, which goes from 5 to 1985 in increments of 30. In order to facilitate
the comparison of results for a varying number of candidates, the y-axis is labelled with

50



the normalized decomposition degree, i.e., the decomposition degree divided by the number
of candidates. Each graph shows the results for a fixed number of candidates, and each
data point corresponds to the average value of 30 instances. Whenever the normalized
decomposition degree is less than one, composition-consistency can be exploited, even for
tournament solutions that already admit fast (say, linear-time) algorithms. The slower
the original algorithm, the more dramatic is the speedup obtained by capitalizing on the
decomposition tree.

Figure 2 shows the results for the noise model with parameter p = 0.55. For any number
of candidates, the decomposition degree goes to zero when the number of voters grows. This
is not surprising because the probability that the tournament is transitive tends to 1 for
any p > 3 (and a transitive tournament 7" has §(7) = 0). Interestingly, the decomposition
degree drops abruptly when a certain number of voters is reached.

10 candidates —+—
50 candidates —x<—
100 candidates —x— ]

150 candidates —=—
200 candidates —a— |

normalized decomposition degree

0 500 1000 1500 2000
number of voters

Figure 3: Spatial model with d = 2

Figures 3 and 4 show the results for the spatial model for dimensions d = 2 and d = 20.
Surprisingly, the decomposition degree does not significantly increase when moving to a
higher-dimensional space. Similar to the noise model discussed above, § tends to 0 for
growing n because a population of voters that is evenly distributed in [0, 1] tends to produce
transitive tournaments.

The results of our experiments show that, even for moderately-sized electorates, tour-
naments in both distributions are highly decomposable and therefore allow significantly
faster algorithms for computing composition-consistent tournament solutions. For exam-
ple, consider the two-dimensional spatial model with 150 candidates and some tournament
solution that can be computed in time 2™. For 500 voters, the (average) normalized de-
composition degree is approximately 0.5. When assuming for simplicity that the decompo-
sition tree is already given, the speed-up factor (i.e., the running time of the original algo-
rithm divided by the running time of the algorithm that exploits composition-consistency)

i grrtgy ~ 2.5 102,
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Figure 4: Spatial model with d = 20

6 Conclusion

In this paper, we studied the algorithmic benefits of composition-consistent tournament so-
lutions. We defined the decomposition degree of a tournament as a parameter that reflects
its decomposability. Intuitively, a low decomposition degree indicates that the tournament
admits a particularly well-behaved decomposition. Our main result states that computing
any composition-consistent tournament solution is fixed-parameter tractable with respect
to the decomposition degree. This is of particular relevance for tournament solutions that
are known to be computationally intractable such as the Banks set and the tournament
equilibrium set. For example, one corollary of our main result is that the Banks set of
a tournament can be computed efficiently whenever the decomposition degree is polylog-
arithmic in the number of alternatives. We experimentally determined the decomposition
degree of two natural distributions of tournaments stemming from social choice theory and
found that the decomposition degree in many realistic instances is surprisingly low. As a
consequence, the speedup obtained by exploiting composition-consistency when computing
tournament solutions for these instances will be quite substantial.

In future work, it would be interesting to measure the concrete effect of capitalizing
on composition-consistency on the running time of existing algorithms for specific tourna-
ment solutions. Since computing a decomposition tree requires only linear time, it is to
be expected that decomposing a tournament never hurts, and often helps. Composition-
consistency can be further exploited by parallelization and storing the solutions of small
tournaments in a lookup table.
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Budgeted Social Choice: A Framework for Multiple
Recommendations in Consensus Decision Making

Tyler Lu and Craig Boutilier

Abstract

We develop a new framework for social choice problems, budgeted social choice, in which a
limited number of alternatives can be recommended/prescribed to a population of agents. This
limit is determined by some form of budget. Such problems naturally arise in a variety of
contexts. Our model is general, spanning the continuum from pure consensus decisions (i.e.,
standard social choice) to fully personalized recommendation. Our results show that standard
rank aggregation rules are not appropriate for such tasks and that good solutions typically
involve picking diverse alternatives tailored to different agent types. The corresponding opti-
mization problems are shown to be NP-complete, but we develop fast greedy algorithms with
some theoretical guarantees. Experimental results on real-world datasets (APA election and
sushi) show some interesting patterns and the prove the effectiveness of our greedy algorithms.

1 Introduction

Social choice has received considerable attention in Al and computer science in recent years [10, 13,
7]. This is in part due to technological advances that have facilitated an explosion in the availability
of (sometimes implicit) ranking or preference data. Users can, with increasing ease, rate, compare
or rank products (e.g., movies, consumer goods, neighborhoods) and information (e.g., clicking on
search responses or ads, linking to data sources in social media). This has allowed a great degree of
personalization in product recommendation and information provision.

Despite this trend, tailoring the alternatives presented or recommended to specific users can be
difficult for any of a number of reasons, among them privacy concerns (actual or perceived), scarce
data, or the infeasibility of complete personalization. For example, decisions regarding certain types
of public projects (such as highway placement, or park design) may force the choice of a single
option: one cannot build different projects to meet the desires of different individuals. Similarly, a
company designing a product to meet consumer demand must find a single product that maximizes
consumer satisfaction across its target market (assuming sufficient correlation between satisfaction
and revenue/profit). In such settings, a single “consensus” recommendation must be made for the
population as a whole. If such consensus recommendations are made in a way that is sensitive to the
preferences of individuals, we land squarely in the realm of social choice.

There is, of course, a middle ground between pure personalization and pure consensus recom-
mendation. For example, suppose the company can configure its manufacturing facility to produce
three variants of the product in question. Then its aim should be to determine three products that
Jjointly maximize consumer satisfaction. In the case of public projects, perhaps a small number
of projects can be chosen. In domains like web search, if one has insufficient data about an indi-
vidual making a query (or is reluctant to use it because of privacy concerns), a small number of
responses can be presented if browser “real estate” is limited. In the design of pension plan options,
there are many reasons to limit the number of offerings available to encourage meaningful choice.
In these and numerous other examples, we fall somewhere between making a single consensus
recommendation and making fully personalized recommendations for individuals. Some (perhaps
implicit) aggregation of users must take place—we cannot offer fully personalized offerings to each
individual—placing us in the realm of social choice; but at the same time, we have an opportunity
to do some tailoring of the decisions to the preferences of the aggregated groups, and indeed, make
choices about the precise form of this aggregation to optimize some social choice function.

In this paper, we develop a general model for just such settings. We call the problem at hand
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one of budgeted social choice. Unlike the usual social choice models, in which a single outcome is
selected (or single consensus ranking determined), we allow for the possibility that more than one
option can be offered, and assume that each user will benefit from the best option, according to her
own preferences, among those presented. However, the number of options offered is constrained
by a budget; this is the key factor that prevents us from exploiting pure personalization to meet
the desires of individual users. This budget can take a variety of forms, and we explore several of
them in this work. The budget could be a strict limit on the number of options (e.g., at most three
products can be manufactured, or at most 10 web links can be presented on a page), or on their cost
(e.g., the total expenditure on city parks cannot exceed $3M). We can also adopt a more nuanced
perspective in which the cost of allowing additional options is traded off against the benefit to the
target population (e.g., add a fourth product option if increase in consumer satisfaction outweighs
the cost of a fourth production line; or extend the city parks budget if increase in social welfare is
sufficiently high). Finally, we can consider settings in which the budget is not just a function of the
options “created,” but also of their overall usage or uptake in the population. Our general framework
allows for a fixed charge (e.g., configuring and staffing an assembly line) and per-unit cost (e.g., the
marginal cost of producing a unit of product for a specific individual).

Though the motivations are different, multiple-winner models in voting theory [4, 20] can be
viewed as an instance of our model. In such systems, the goal is to determine a collection of can-
didates (e.g., a parliament) that best represents the “collective interests” of the voters (e.g., based
on principles of proportional representation). Indeed, our “limited choice” model with Borda scor-
ing corresponds directly to Chamberlin and Courant’s [4] proportional representation scheme; in this
way, our budgeted choice model can be used to motivate the application of such proportional models
to ranking and recommendation, under certain assumptions. Also related is the combinatorial public
project problem [19] where given each agent’s valuation over all subsets of alternatives, a limited
number of alternatives must be chosen for everyone. The focus is more on the tension between
approximating social welfare and incentivizing truthfulness (requiring payments from agents).

We begin by outlining a simple model of budgeted social choice in which there is a strict limit K
on the number of candidates that can be made available. We do this to illustrate the general principles
and intuitions underlying our approach and draw connection to proportional representation schemes.
We show that for various social choice objectives, computing the optimal set of K candidates for
a set of preferences in this limited choice model is NP-hard. However, the induced objective is
submodular, and a simple greedy algorithm produces candidate sets whose deviation from optimal is
bounded. Computational experiments on various preference data sets show that the greedy algorithm
is, in fact, very close to optimal in practice.

We then present our general model in which adding alternatives to the available set is costly
(allowing both fixed and per-unit charges) and subject to some form of budget. The limited choice
model is a special case of this costly choice model. The costly choice model with only fixed charges
remains submodular, but when per-unit costs are included, submodularity vanishes. We develop
an integer programming formulation of the general optimization problem (which applies directly to
the limited choice model). We again provide a greedy heuristic algorithm for solving the general
problem which runs in polynomial time. Computational experiments verify its efficacy in practice,
but we have no theoretical bounds on its performance currently.

2 Background

We first review some basic concepts from social choice before defining the class of budgeted social
choice problems (see [11] for further background). We assume a set of agents (or voters) N =
{1,...,n} and a set of alternatives (or candidates)y A = {ay,...,am}. Let I'4 be the set of
rankings (or votes) over A (i.e., permutations over A). Alternatives can represent any outcome space
over which the voters have preferences (e.g., product configurations, restaurant dishes, candidates
for office, public projects, etc.) and for which a single collective choice must be made. Agent £’s
preferences are represented by a ranking v, € I' 4, where ¢ prefers a; to a;, denoted as a; >, a;, if
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ve(a;) < ve(a;). We refer to a collection of votes V' = (v1,...,v,) € I} as a preference profile.

Given a preference profile, there are two main problems in social choice. The first is selecting a
consensus alternative, requiring the design of a social choice function f : I'; — A which selects
a “winner” given voter rankings/votes. The second is selecting a consensus ranking [2], requiring a
rank aggregation function f : I'y — I' 4. The consensus ranking can be used for many purposes;
e.g., the top-ranked alternative can be taken as the consensus winner, or we might select the top k
alternatives in the consensus ranking in settings where multiple candidates can be chosen (say, par-
liamentary seats, or web search results [10]). Plurality is the simplest, most common approach for
consensus alternatives: the alternative with the greatest number of “first place votes” wins (various
tie-breaking schemes can be adopted). However, plurality fails to account for a voter’s relative pref-
erences for any alternative other than its top ranked (assuming sincere voting). Other schemes, e.g.,
Borda count or single transferable vote, produce winners that are more sensitive to relative prefer-
ences. Among schemes that produce consensus rankings, the Borda ranking [8] and the Kemeny
consensus [15] are especially popular.

Definition 1. Given a ranking v, the Borda count of alternative a is 3(a,v) = m — v(a). The
Borda count of a relative to preference profile V' is $(a,V) = > .y, B(a,v). A Borda ranking
Th=1j (V') is any ranking that orders alternatives from highest to lowest Borda count.

One can generalize the Borda count by assigning arbitrary scores to the rank positions:

Definition 2. A positional scoring function (PSF) « : {1,...,m} — Rx>o maps ranks onto scores
s.t. a(l) > -+ > a(m) > 0. Given a ranking vy and alternative a, let ay(a) = a(ve(a)). The
a-score of a relative to profile V is a(a, V) = 3y, au(a). An a-ranking r;, = (V) is any
ranking that orders alternatives from highest to lowest a-score.

Definition 3. Let 1 be the indicator function, sgn the sign function and r,v two rankings. The
Kendall-tau metric is 7(r,v) = 321 <; <, 1[sgn[(v(a;) — v(a;))(r(a;) —r(a;))] < 0]. Givena
profile V, the Kemeny cost of a ranking r is x(r, V) = >, -y, 7(r,v;). The Kemeny consensus is
any ranking r. = r (V') that minimizes the Kemeny cost.

Intuitively, Kendall-tau distance measures the number of pairwise relative misorderings between
an output ranking r and a vote v, while the Kemeny consensus minimizes the total number of such
misorderings across profile V. While positional scoring is easy to implement, much work in com-
putational social choice has focused on NP-hard schemes like Kemeny [10, 3].

Rank aggregation has interesting connections to work on rank learning, much of which concerns
aggregating (possibly noisy) preference information from agents into full preference rankings. For
example, Cohen et al. [6] focus on learning rankings from (multiple user) pairwise comparison data,
while label ranking [13] considers constructing personalized rankings from votes. Often unanalyzed
is why specific rank aggregations should be chosen for particular settings such as these. One can
think of some schemes as a maximum likelihood estimator of some underlying objective ranking
(e.g., for Kemeny [22] and positional scoring rules [7]).

3 The Limited Choice Model

While the use of social choice techniques in applications like web search and recommender systems
is increasingly common, the motivations for producing consensus recommendations for users with
different preferences often varies. Consider, for instance, the motivation for “budgeted” consensus
recommendation discussed in our introduction. If a decision maker can provide a limited set of
K choices to a population of users to best satisfy their preferences, methods like Kemeny, Borda,
etc. could be used to produce an aggregate ranking from which the top K alternatives are taken.
However, there is little rationale for doing so without a deeper analysis of what it means to “satisfy”
the preferences of the user population. In the spirit of our recent work on rank aggregation [17],
we develop a precise decision-theoretic formulation of the budgeted social choice problem. Rather
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than applying existing social choice schemes directly, we derive optimal consensus decisions from
decision-theoretic principles and show how these differ (and relate to) classic aggregation rules.

We first introduce the limited choice problem, a simple version of budgeted social choice in
which one must choose a slate of K alternatives that maximizes some notion of total satisfaction
among a group of agents. We develop the more general budgeted model in the next section. Assume
a set of n voters with preferences over alternatives A as above. Rather than selecting a single con-
sensus alternative, a decision maker is allowed to recommend K alternatives. Each voter realizes
benefit commensurate with its most preferred alternative among the K recommended. For example,
a company may be limited to offering K products to its target market, where the products are substi-
tutes (so no consumer will use more than one); or a municipality may have budget for K new parks
and citizens draw enjoyment from their most preferred park.

While our goal is to find the best set of K alternatives, the formalization of this model depends
on two key choices: how voter satisfaction with a slate is measured; and how we measure social
welfare. Our general framework can accommodate many measures of utility and social welfare, but
for concreteness we focus on (a) positional scoring (such as Borda) to quantify voter satisfaction;
and (b) the sum of such voter “utilities” as our social welfare metric. In other words, our aim is to
find a slate of size K that maximizes the sum of the positional scores of each voter’s most preferred
candidate in the slate:

Definition 4. Given alternatives A, preference profile V, and PSF «, a K-recommendation set is
any set of alternatives ® C A of size K. The a-score of ® is:

So(®,V) = Z r(fleag)(ag(a) . (1)

LeN

The optimal K -recommendation set w.r.t. o is:

OF = argmax S, (?,V) . 2)
1B =K

We use S, (P, v) to denote the score w.r.t. a single vote/ranking v. We drop the subscript « from
S when it is evident from the context, and use S to denote the special case of Borda scoring.

The objective in Eq. 2 is identical to the Chamberlin and Courant [4] scheme of proportional
representation and results for that scheme apply directly to this variant of the limited choice model,
as we discuss below. While we focus on total positional scoring as our optimization criterion, the
general budgeted framework allows other measures of utility and social desiderata. For example, we
can use maximin-fairness (w.r.t. positional scoring) encoded as:

T in S, (@, vp) . 3
fair aqu;g‘rilfa{x ?él]{[l ( ’U@) 3)

Setting a(¢) = 1[i = 1] corresponds to a binary satisfaction measure in which a voter is satis-
fied with ® only if its top alternative is made available. In this case, the optimal ®7, corresponds
to selecting the K alternatives with the highest “plurality” score (i.e., greatest number of first-place
“votes”). However, choosing the top K candidates from a consensus ranking using positional scor-
ing is, in general, not appropriate. For any ranking r, let 7| K denote the K top-ranked alternatives
in 7. The Borda ranking rj can produce slates rg\K that are a factor of 2 from optimal using our
limited-choice measure, while the a-ranking for arbitrary PSFs can be as much as a factor of K
from optimal.

S[-}(’I";;‘K,V)

Proposition 5. For any K we have: (a) inf,,v) vy T 1/2; and (D)
. Sa(rt|KV o
1nf(a,m,n,v) Si(@l*,V)) < 1/K
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rank 1 q/2 — K — 1 items rank q/? q/2 — K + 1 items K — 2 items rank ¢
v G+ (G+K -2
j—1| K 12 (B Br|E -1 |g-K-1 (modK) / Jj(modK)
P ——— w
ke (¢— K1), +1)-(+K -3
3_1fr:fodK)2 K |- |2=3|8--Br|l—2 (modK) j(modK)
Fig. 1: Example showing that TZ;|K can be factor of 2 worse than optimal. Assume g items {0,1,...,q — K —

1,81,...,8k}, and n = K(q — K — 2) votes. The votes are divided into K blocks, each containing ¢ — K — 2
votes. For each block j < K, item j — 1 is always the top alternative in each vote, and item j (mod K) is the worst. This
means the optimal recommendation set is ®* = {0, ..., K — 1}, with Sg(®*, V) = (¢ — 1)n. The jth block of votes has
a structure illustrated in the figure, with two example votes shown: the items j and j (mod K) are fixed in the top/bottom
spots and items 1, ..., Sk are also fixed in positions ¢/2 — K + 1,...,q/2. (Fixed items are shaded.) The remaining
items are arranged in the other positions in the first vote (the non-shaded positions). Starting with one such arrangement
(e.g., the top vote in the figure), each candidate is “rotated downward” one non-shaded position (with wrap around) to pro-
duce the next vote in the block. This is repeated until ¢ — K — 2 votes are constructed for block j (i.e., one vote for each
non-shaded position). Thus, any non-fixed item occupies each non-shaded rank position in exactly one vote in this block
~q®+3¢-24qK+K>-K _ /2
—2¢12K 14
(whenever ¢ > K + 2, which always holds). Hence the average score of any item in {K,...,q — K — 1} (which occupy
only unshaded positions in all blocks) across all blocks is less than g/2. Also observe that the average score of any item in
®* is less than ¢/2: item j — 1 has score ¢ — 1 in block j but has score 0 in block j —2 (mod K) (giving average (¢—1)/2
in these two blocks) and has average less than /2 across all other blocks (since it is an unshaded item in those blocks). But
the average score of [3; is at least ¢/2 (since its position is fixed in all blocks ). Hence the top K items of the Borda ranking
rgare f1,..., Br. But Sg(rz| K, V) = (¢/2+ K — 1)n, s0 S(rj|K, V) /S(®*,V) = (¢/2+ K —1)/(g — 1), which
approaches 1/2 from above as ¢ — oo.

j. Thus, the average score of a non-shaded item is Zie[q—2]\{q/2,m,q/2+K—l} i =

Proof Sketch. (a) To obtain a lower bound, we note that the total Borda score of all alternatives is
Y acaBa, V) =n(0+14+2+---+m—1) = nm(m—1)/2. The item aj with the highest Borda
count must have a count at least the average, over the alternatives, nm(m —1)/2/m = n(m—1)/2.
Since aj; is the highest-ranked element in 77, we have Sg(r5|K, V) > n(m — 1)/2. By contrast,
the score of the optimal set ®* is at most n(m — 1). Hence rj| K has score that is no worse than a
factor of [n(m — 1)/2]/[n(m — 1)] = 1/2 from optimal. We demonstrate an upper bound realizing
this worst-case error using the example described in Fig. 1.

(b) An upper bound can be demonstrated using an example somewhat similar in spirit to that for
the Borda count as in (a); we omit it due to lack of space. It remains open whether 7 |K can indeed
be worse than a factor of K from optimal. O

These results illustrate that care must be taken in the application of rank aggregation methods to
novel social choice problems. In our limited choice setting, the use of positional scoring rules (e.g.,
Borda) to determine the K most “popular” alternatives can perform extremely poorly. Intuitively,
the optimal slate appeals to the diversity of the agent preferences in a way that is not captured
by “top K methods. Indeed, this is one of the motivations for the proportional schemes [4, 20].
More importantly, the underlying preference aggregation scheme is defined relative to an explicitly
articulated decision criterion. We defer a detailed discussion for lack of space, but we note that
STV, often used for proportional representation [21] can perform poorly w.r.t. our criterion as well.
Specifically, we can show that the slate produced by STV can be a factor of 2 worse than optimal.

The examples above suggest that determining optimal recommendation sets in the limited choice
model may be computationally difficult. This is the case: the problem is NP-complete even for in
the specific case of determining voter satisfaction using Borda scoring:'

IThe NP-hardness of a variant of the Chamberlin and Courant [4] proportional scheme is shown in [21], but the variant
allows for arbitrary misrepresentation scores. The added flexibility in the reduction used means that it does not imply the

59



Theorem 6. Given preference profile V, integer K > 1, and t > 0, deciding whether there exists a
K -recommendation set ® with (Borda) score Sg(®, V') > t is NP-complete.

Proof Sketch. Membership in NP is easily verified. For hardness, we reduce an arbitrary hitting
set instance to our problem: given E = {ei,...,ep}, a set {B1,..., By} of subsets of £, and
integer h > 1, is there a C' C F of size at most K such that Vi € {1,...,¢},C N B # (0?7 We
reduce this to our decision problem, with voters N = {1,...,¢}, alternatives A = E U {z;; : i €
lg).7 € Dot_, |Bell}, m = |A],and t = gm — >_]_, | Bs|. Each voter ¢ has a preference ordering
with elements in By at the top (in arbitrary order), followed by 21242 - - - 24, and with remaining
alternatives A\ By (in arbitrary order) at the bottom.

Any positive hitting set instance (say, with certificate C') corresponds to positive instance for in
our problem. We simply take ® = C, and have Sg(®,V) > >"7_, m — | B| since, for each voter
£, there is an e € C that is in B, by definition of a hitting set. Summing the scores of the most
preferred alternatives, max,co m — ve(a) > m — | By|, over all voters, gives Sg(®, V) > t.

Suppose we have a negative hitting set instance. Consider any ® that maximizes Sg(-, V). If
® does not hit some By then let o’ = argmin,cq vs(a). If a’ # z; for any j then m — ve(a’) <
m— Y ¢_,|Be| and S3(®,V) < t. Otherwise a’ = z1; but this implies that we can replace each
such zy; € ® by some b € By, which further implies that ® hits every such By and is thus a hitting
set solution (contradiction). Hence, Sg(®,V) < t. O

We can formulate this NP-hard problem as an integer program (IP) with m(n + 1) variables and
1 + mn + n constraints. We note that [20] provide a similar IP for the Chamberlin and Courant
proportional scheme. Let z; € {0,1}, i < m denote whether alternative a; appears in the recom-
mendation set @, and let y; € {0,1}, £ < n,i < m denote whether a; is the most preferred element
in ® for voter /. We then have:

m

max Z Z ag(a;) - yu 4

ZiYei

LN i=1
subject to ixl <K, (®)]

i=1

Yei < T, VE<mn,i<m (6)

iyéi =1, Ve < n. (7

i=1

Constraint (5) limits the slate to at most K alternatives (a optimal set of size less than K can be
expanded arbitrarily to size K, since score is nondecreasing in size). Constraints (6) and (7) ensure
voters benefit only from alternatives in ®, and benefit from exactly one such element. The objective
is simply S, (®, V). An optimal solution will always have y,; = 1 where a; is £’s most preferred
alternative in the set defined by the x;.

The IP may not scale to large problems. Fortunately, this is a constrained submodular maximiza-
tion, which admits a simple greedy algorithm with approximation guarantees [18].

Algorithm Greedy. We receive inputs «, V and integer K > 0. Initially ® <« (. We then update
® iteratively K times, each time updating the recommendation set by adding the item that increases
score the most, i.e., ®; « ®;_1 U {argmax,c 4, S(®;—1 U {a},V)}. We output P

Theorem 7. For any given preference profile V, the function S(-,V) defined over 24, with

S(0,V) = 0, is submodular and non-decreasing. Consequently, the constrained maximization of

Eq. (2) can be approximated within a factor of 1 — % by Greedy. That is, % >1-— % .

NP-hardness of our limited choice model.
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Proof. Let ® C ® C A, a € Aandv € V. Itis clear that S(®,v) < S(P’,v). Since S(-,v) is
non-decreasing for any vote v v, it is non-decreasing over profiles V, i.e., S(®', V) > S(®, V).

If a is v’s strictly most preferred alternative among those in ®’, then S(® U {a}, ) (<I>’ U
{a},v) = a(v(a)). Since S(®,v) < S(P',v), this implies S(® U {a},v) — S(P,v) > S(P' U
{a},v) — S(®’,v). If a is not strictly most preferred by v within the set ®’, then S(P’ U {oz}7 v) =
S(D',v), hence S(®" U{a},v) — S(®',v) = 0. Since S(® U {a},v) > S(P,v), again we have

S(@U{a},v)—S(®,v) > S(®'U{a},v)—S(P,v). This implies, by definition, the submodularity
of S(-,v) for any vote v. Since the sum of submodular functions is also submodular, S(-,V) is
submodular for profiles V. The 1 — é approximation ratio follows from [18]. O

Constructing a slate of K alternatives maximizing total positional score is similar to the K-
medians problem, where at most K facilities (alternatives) need to be located to serve their near-
est customers (voters) while minimizing the total distance between customers and their nearest
facility. Distance corresponds to voter dissatisfaction with alternatives in the slate (i.e., negated
a-score). Most work on K-medians focuses on metric settings—our problem does not have such
an interpretation—and little work has been done on non-metric settings (see, e.g., [1]) especially
w.r.t. ordinal preferences. Facility location is another related problem, though the aim is usually to
minimize the total cost of opening facilities and serving the nearest customers, with no constraints
on the number of facilities. In our setting, the tradeoff between a positional score and the cost of
alternatives is not well-defined unless the score is a surrogate for profit/cost.

Experiments on APA Dataset The American Psychological Association (APA) held a presiden-
tial election in 1980, where roughly 15,000 members expressed preferences for 5 candidates—35738
votes were full rankings. Members roughly divide into “academics” and “clinicians,” who are on
“uneasy terms,” with classes of voters tending to favor one group of candidates over another (candi-
date groups {1, 3} and {4, 5} appeal to different voters, with candidate 2 somewhere in the middle)
[9]. We apply our model to the full-ranking dataset with KX = 2 and Borda scoring. We expect
our model to favour “diverse” pairings (with academic-clinician pairings scoring highest). Indeed,
this is what we obtain—the optimal recommendation set is {3,4} with Sz = 18182. In fact, the
for highest scoring pairings are all diverse in this sense. Greedy outputs the diverse set {1,5} with
score 17668, whereas selecting the top two candidates from the Borda or Kemeny rankings gives
{1, 3} with score 17352, an inferior (and non-diverse) pairing. The quality of the Borda/Kemeny
approximations is even worse with more “dramatic” positional scoring (i.e., with scoring functions
that exaggerate the score difference between different positions as discussed below).

Experiments on Sushi Dataset We experiment with a sushi dataset consisting of 10 varieties
of sushi, and 5000 full preference orderings elicited across Japan [14]. In our budgeted (limited
choice) setting, we might imagine a banquet in which only a small selection of sushi types can be
provided to a large number of guests. Table 1 shows the approximation ratios of various algorithms
for different slate sizes K, using an exponentially decreasing PSF oy (i) = 2m~i CPLEX was
used to solve IP (4) to determine optimal slates (computation times are shown in the table). We
evaluate our greedy algorithm, random sets of size K (avg. over 20 instances for each K), and
Borda and Kemeny (where we use the top K candidates as the recommendation set). We see that
the Greedy algorithm always finds the optimal slate (and, in fact, does so for all K < 9), yet does
so very quickly (under 1s.) relative to CPLEX optimization. Borda and Kemeny provide decent
approximations, but are not generally optimal. Unsurprisingly, for large K (relative to | A|) random
subsets do well, but perform poorly for small K. Results using Borda scoring are similar except
that, unsurprisingly, random sets yield better approximations, since Borda count penalizes less for
recommending lower-ranked alternatives than the exponential PSF.

In both the APA and sushi dataset, Borda and Kemeny rankings offer good approximations,
though this is likely due, in part, to correlation effects: items that are highly preferred by an agent
of one type are also reasonably preferred by agents of other types. This is in contrast to a situation
(cf. Fig. 1) where one group’s highly ranked candidate is strongly dispreferred by other groups.
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K || Greedy | Borda | Kemeny | Random | CPLEX (sec.)
2 1.0 1.0 0.932 0.531 49.1
3 1.0 0.986 0.949 0.729 90.38
5 1.0 0.989 0.970 0.813 20.32
7 1.0 1.0 1.0 0.856 13.16

Table 1: Results on the sushi dataset with 10 alternatives and 5000 full rankings. Four algorithms are shown in the columns
along with their approximation ratio for each K. CPLEX solution times are shown in the last column.

4 General Budgeted Social Choice

In the limited choice model, we assume the main bottleneck is the size of the recommendation set
®. Once @ is determined, voters are free to choose their favourite alternative. We can generalize
the problem slightly by assigning costs to the alternatives and limiting the total cost of ® (rather
than its size). A more significant generalization involves also assuming some cost associated with
each voter that benefits from an element in ®. For example, a company that decides to manufacture
different product configurations must pay certain fixed production costs for each configuration (e.g.,
capital expenditures); in addition, there are per-unit costs associated with producing each unit of the
product (e.g., labour/material/transporation costs).>

For each alternative a € A, let t, be its fixed cost and u,, its unit cost. We assume a total budget B
that cannot be exceeded by ®. However, since unit costs vary across a € ®, a decision maker cannot
simply propose a recommendation set ®: allowing agents to choose their most preferred alternative
freely may result in exceeding the budget (e.g., if voters all choose expensive alternatives). Instead,
the decision maker produces an assignment of alternatives to agents that maximizes social welfare.

Definition 8. A recommendation function ® : N — A assigns agents to alternatives. Given PSF «
and profile V', the a-score of ® is:

Sa(®,V) =Y au(®(0)) . (8)

LeN

Let ®(N) = {a : @ (a) # 0} be the set reccommended alternatives. The cost of ® is:

C(@®) =Y 1ac®N)] ta+ Y ua)- 9)

acA leN

The first component in the cost of @ corresponds to the fixed costs of the recommended alterna-
tives, and second reflects the total unit costs. We now define the general budgeted problem:

Definition 9. Given alternatives A, profile V, PSF « and budget B > 0, the budgeted social choice
problem is:
max Sa(®,V)  subjectto C(P) < B. (10)

We say that the problem is infeasible if every ® has total cost exceeding B. As in the limited
choice model, we define the problem using PSFs to measure utility and total social welfare as our
optimization criterion; but other variants are possible. We mention a few interesting special cases:

o If we wish to leave some voters unassigned an alternative, we can model this using a dummy
item d with t; = ug = 0. Voter preference for d can default to the bottom of each ordering or
can reflect genuine preference for being unassigned. All such problems are feasible.

2The possibility of extending proportional representation schemes to making tradeoffs between representativeness and
committee size is mentioned as an interesting possibility by Chamberlin and Courant [4].
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e When ¢, =t (i.e., fixed charges are constant) and u, = 0 for all @ € A, this corresponds to
the limited choice model for K = | B/t]. Since unit costs are zero, the optimal ® will always
assign a voter to its preferred alternative, and a recommendation set of size B/t can be used.

If unit costs are constant as well, u, = u, similarly we have K = [

B—tnuJ )

e When fixed costs vary, but unit costs u = u, are constant, we generalize the limited choice
model slightly: because unit costs are identical, agents can still select their preferred alterna-
tive from a slate (of varying size) whose total fixed cost does not exceed B — nu.

e If every recommendation function ® satisfies C'(®) < B (e.g., if all charges are zero), we
are in a fully personalizable setting, and each agent is assigned their their most preferred
alternative.

Input: o, V, B, fixed costs ¢ and unit costs u.
I: @« Pand A* — 0
2: Let No denote {¢ : ®(¢) is undefined}
3: {PHASE 1 : ADD ITEMS WITH BEST SWEET SPOT}

4: loop

5: fora e A\A" do

6: J—{l:a>gr(l)and uq > upe)}

7: N,=NsUJ

8 Ry = [L«a)} U [az(a)iamw))]

“a lyeNg ta U (L) e

9 SR, « sort Ry to get (B1/71,- -+, BRa1/Y|Ral)
{If 7v; = 0 then the “ratio” gets put in front of sorted
list. For another denominator y; = O we then compare
whether 3; > 3;.}

10: reorder Ng to [£, . .. ,E‘“Nal] s0 £¢ corresponds to 3; /v;

11: Let r; and ¢} be the max and argmax over i of

taf—:g% : 4 € |SRalandta + 3% ;v <

B — C(®)} if O then set to undefined.

12:  end for

13:  ifa” « argmax,c 4\ 4~ 75 is undefined then

14: break {all r}; is undefined—over budget}

15:  else

16: append a™ to A*

17: update ® with { (2", a*) : 1 < i < 5 }U{(¢,a*) :
L€ N,a" ¢ ®(¢) and ua+ < ug(e)}

18:  endif

19: end loop

20: {PHASE 2: BACKTRACKING}
21: while ® incomplete do

22:  a*

— pop A"

23:  remove {({,a") : £ € N, ®({) = a"} from ®
240 A—{a€A itat Y cw, a < B-C(P)}
25 if A # () then

26: a” — argmax,e i Y ey (@)
27: update ® with {(¢,a*) : £ € No} and break
28:  endif

29: end while
30: return INFEASIBLE if ® = (), otherwise ®

Fig. 2: The SweetSpotGreedy (SSG) algorithm.

We note that the general problem can
be modified in other ways. For instance,
we may ignore budget, and instead allow
an explicit tradeoff between social wel-
fare (voter happiness) and costs, and sim-
ply maximize total score less total cost of
®. In this way, unit cost would not pre-
vent assignment of some more preferred
alternative to a voter if the voter’s sat-
isfaction outweighed the unit cost (once
a fixed charge is incurred) or if it maxi-
mized surplus. This would better reflect
a profit maximization motive in some set-
tings (treating user satisfaction as a mea-
sure of willingness to pay). Our model as
defined above is more appropriate in set-
tings where users of a recommended alter-
native cannot be (directly) charged for its
use (e.g., as in the case of certain public
goods, corporate promotions or incentive
programs, etc.).

Our general budgeted social choice
problem is related to several problems
arising in operations research. When fixed
costs vary but unit costs are constant,
the problem is similar to budgeted maxi-
mum coverage [16], given by a set E of
weighted elements and a family of sub-
sets of E with costs, with the goal of
finding a covering with total cost under
a budget that maximizes total weight of
the covered elements. Our problem is
slightly different: viewing voters as ele-
ments and alternatives as the cover set, we
have a score for each element-alternative
pair. Our problem is more closely related
to the recently defined generalized maxi-
mum coverage problem [5], with a weight
and cost for each cover set-element pair (in

our model, the unit costs would be constant), and a cost for each cover set (i.e., fixed costs). Unlike
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budgeted social choice, coverage of all elements is not required. As discussed earlier, facility loca-
tion is also similar to our budgeted setting, though it typically places no restrictions on budget (it is
instead absorbed into the objective). Akin to unit costs in our model, [12] studies facility location
when facility costs include the cost of customers being served (cost is assumed concave in number
of customers).

We can formulate the general budgeted problem as an IP similar to IP (4) (with the same number
of variables and constraints):

max (4)
TiYei
m m
subject to [Z ta,Ti| + Z Z Ug, Yei | < B, (1
i=1 (eN i=1
and (6), (7).

An approximation algorithm for the general problem is complicated by the existence of unit costs.
We may need to limit the assignment of expensive alternatives, despite “demand” from many voters.
When unit costs are zero (or very low compared to fixed costs), the problem reduces to selecting a
subset of alternatives as discussed above.

Still we develop a greedy heuristic algorithm called SweetSpotGreedy (or SSG). The main
intuition behind our greedy heuristic is to successively “cover’” or “satisfy” agents of a certain type
by selecting their most preferred alternative. For a given a € A, we sort voters based on their
ranking of a and then compute the bang-per-buck ratio of assigning a to the first ¢ voters—i.e., total
score divided by total cost of assigning a to these ¢ voters. We pick the index 4 that maximizes the
bang-per-buck ratio 7. This is the sweet spot since the marginal score improvement of assigning
more a to additional voters doesn’t justify the incremental cost of producing more of a. We then add
to the recommendation function ® that a* with the greater ratio . and assign it to the 7). agents
who prefer it most. We repeat this procedure after removing the previously assigned a, each time
selecting a new a* and recommending it to the voters that maximize its bang per buck. See Fig. 2 for
further details. The first phase of the algorithm as described may not produce a feasible assignment
®: the budget may be exhausted before all agents are assigned an alternative. A second backtracking
phase produces a feasible solution by rolling back the most recent updates to ® from Phase 1. Each
time an alternative is rolled back, we try to find an a € A that can be assigned to all unassigned
agents without depleting the budget. If after full backtracking this can’t be achieved, the instance is
infeasible (see Proposition 10).

SSG has running time O(m?nlogn). The intuition behind our algorithm is similar in spirit to
the 1 — % — o(1) approximation algorithm for generalized maximum coverage [5]. However, that
algorithm is theoretical, requiring O(m?n) calls to a fully polytime approximation scheme for the
maximum density knapsack problem.

Proposition 10. SSG returns INFEASIBLE iff the instance is infeasible.

Proof. The if direction is obvious, since SSG always maintains feasibility of any solution ® returned.
If it returns INFEASIBLE, the backtracking phase must be entered and exited with ® = (). This
implies A* = () since we have tried to roll back all additions to A* only to discover there is no
a € Awitht, +n-u, < B; thatis, there is no single item assignable to all agents that doesn’t
exceed budget. This obviously implies infeasibility of the instance, since assigning the ¢ minimizing
t, + n - u, to all agents is the lowest cost @ regardless of score. [

As discussed above, when unit costs are zero our problem reduces to selecting a subset @ C A
with total fixed cost less than B. When fixed costs are constant, this essentially reduces to the
limited choice problem. In fact, SSG outputs the same recommendation function as that outputted
by Greedy (converting the set to a function in the obvious way).
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Proposition 11. Ifu, = 0 andt, = 1 for all a € A then SSG outputs the same recommendation as
1

Greedy. Hence, it has an approximation ratio 1 — =.
Proof. To see that SweetSpotGreedy reduces to Greedy notice that in the first iteration of Phase 1,
® is empty, and because unit costs are zero, the sweet spot for any a € A is to recommend a to
all £ € N. So ® gets updated by assigning the alternative a}, which maximizes the gain in total
score, to all agents. On the next iteration, again because unit costs are zero, the sweet spot for any
a € A —{af} is to recommend « to all agents ¢ that prefer it over a. Hence, ® is updated by
including the best alternative a3. This observation holds in all subsequent iterations: the sweet spot
for any unused alternative a is to recommend it to all agents who prefer a over existing elements
of ®. This is exactly what Greedy does, picking an alternative in each iteration (which is implicitly
recommended to all agents that prefer it over existing alternatives in ®) that greedily maximizes the
gain in score. The 1 — é approximation ratio follows from Theorem 7. O

Experiments on Sushi Data We experimented with SweetSpotGreedy on the sushi dataset. In our
first experiment, we randomly generate fixed costs while holding unit costs at zero. This corresponds
to the special case discussed above that only slightly generalized the limited choice model. Integer
fixed costs for the sushi varieties are chosen uniformly at random from [20, 50), while the budget
is set to 100. This means the recommendation set typically contains 2 to 5 items. We compared
the performance of SSG against the optimal solution (computed using the IP above, solved using
CPLEX) on 20 random instances (note that the preference profile is held fixed, corresponding to
the data set). Both Borda scoring and the exponential PSF a.x, (see above) were tested and give
similar results. With Borda, SSG is within 99% of the optimal recommendation function on average
(it often attains the optimum, and is never worse than 94% of optimal). Its running times lie in the
range [1.91, 2.34] seconds (with a very simple Python implementation). Meanwhile, CPLEX has an
average solution time of 114 seconds (the range is [69s, 176s]).

In a second experiment, we varied both fixed and unit costs with fixed costs substantially larger
than unit costs. Specifically, integer unit costs were chosen uniformly at random from [1,4] and
integer fixed costs from [5000,10000]. We fixed the budget at 35000, which allows roughly 3
unique alternatives to be recommended. We again compare SSG to the optimal recommendation
function on 20 random instances. Using Borda counts, the greedy algorithm gives recommendation
functions that are, on average, within 98% of optimal, while taking 2—5s. to run. In contrast, CPLEX
takes 458s. on average (range [130s, 1058s]) to produce an optimal solution. We achieve similar
results using the exponential PSF, with greedy attaining average performance of 97% of optimal,
and taking 3—-6s. while CPLEX averages 321s. (range [131s, 614s]). These experiments show that
SweetSpotGreedy has extremely strong performance, quickly finding excellent approximations to
the optimal recommendation sets, when fixed costs are much larger than unit costs.

5 Conclusion

We have introduced a new class of budgeted social choice problems that spans the spectrum from
genuine consensus (or “‘one-size-fits-all”’) recommendation typically studied in social choice to fully
personalized decision-making. The key feature of our model—the fact that some customization to
the preferences of distinct groups of users may be feasible where complete individuation is not—is
characteristic of many real-world scenarios. Given a diverse array of user preferences, a decision
maker must offer/produce/recommend a limited number of alternatives for the user population. This
naturally leads to social welfare maximization goals whose solutions, crudely speaking, involve
grouping/clustering agents with similar preferences and selecting one alternative for each group.
Our model includes certain schemes for proportional representation as special cases, and indeed
motivates the possible application for proportional schemes to ranking and recommendation. Such
an objective often favours diversity, as opposed to popularity, of the chosen alternatives. This work
can be viewed, for example, as justifying from social choice and decision-theoretic principles, that
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the top few web search results should be diversified so as to appeal to a wide range of user interests.
We showed that the optimization induced by budgeted social choice is NP-hard; but we developed
fast, intuitive greedy algorithms that have, in the case of the special case of limited choice, theo-
retical approximation guarantees. Critically, our greedy algorithms empirically provide excellent
approximations on some real-world ordinal preference datasets.

Extensions of this work include the exploration of several variations of the budgeted model.
For example, one might impose separate budgets for fixed and unit costs. If social welfare acts
as a surrogate for the decision-maker’s revenue/profit or return on investment, and the decision-
maker has other investment options (e.g. a government considering public projects) one may wish
to relax the budget constraints and instead maximize the return on investment per unit cost. Deeper
connections to the proportional voting schemes is also being explored.
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An Algorithm for the Coalitional
Manipulation Problem under Maximin

Michael Zuckerman, Omer Lev, and Jeffrey S. Rosenschein

Abstract

We introduce a new algorithm for the Unweighted Coalitional Manipulation problem
under the Maximin voting rule. We prove that the algorithm gives an approximation
ratio of 1% to the corresponding optimization problem. This is an improvement over
a previously known algorithm that gave a 2-approximation. We also prove that our
analysis is tight, i.e., there are instances on which a lé-approximation is the best
the algorithm can achieve.

1 Introduction

Exploring the computational complexity of, and algorithms for, the manipulation problem
is one of the most important research areas in computational social choice.

In an election, voters submit linear orders (rankings, or profiles) of the candidates (al-
ternatives); a wvoting rule is then applied to the rankings in order to choose the winning
candidate. In the prominent impossibility result proven by Gibbard and Satterthwaite [4, 5],
it was shown that for any voting rule, a) which is not a dictatorship, b) which is onto the set
of alternatives, and c) where there are at least three alternatives, then there exist profiles
where a voter can benefit by voting insincerely. Submitting insincere rankings in an attempt
to benefit is called manipulation.

There are several ways to circumvent this result, one of which is by using computational
complexity as a barrier against manipulation. The idea behind this technique is as follows:
although there may exist a successful manipulation, the voter must discover it before it
can be used—but for certain voting rules, discovering a successful manipulation might be
computationally hard. This argument was used already in 1989 by Bartholdi et al. [2],
and in 1991 by Bartholdi and Orlin [1], where they proved, respectively, that second-order
Copeland and Single Transferable Vote are both A'P-hard to manipulate.

Later, the complexity of coalitional manipulation was studied by Conitzer et al. [3].
In the coalitional manipulation problem, a coalition of potentially untruthful voters try to
coordinate their ballots so as to make some preferred candidate win the election. Conitzer et
al. studied the problem where the manipulators are weighted: a voter with weight [ counts
as [ voters, each of weight 1. This problem was shown to be A'P-hard, for many voting
rules, even for a constant number of candidates. However, it has been argued that a more
natural setting is the unweighted coalitional manipulation (UCM) problem, where all voters
have equal power. In a recent paper [6], Xia et al. established as one of their main results
that UCM is N'P-hard under the Maximin voting rule, even for 2 untruthful voters.

In 2009, Zuckerman et al. [7] defined a natural optimization problem for the unweighted
setting (i.e., Unweighted Coalitional Optimization, UCO): finding the minimal number of
manipulators that is sufficient to make some predefined candidate win. It is proven, as a
corollary of their results, that the heuristic greedy algorithm proposed in the paper gives
a 2-approximation to the UCO problem under Maximin. Here, we further study the UCO
problem under Maximin, proposing a new greedy algorithm that gives a 1%—approximation
to the problem.! Then we provide an example showing that the approximation ratio of the

1Strictly speaking, our algorithm is for the decision problem, but since the conversion of our algorithm
to one for the optimization problem is straightforward, we consider it an approximation algorithm for the
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algorithm is not better than 13.

2 The Maximin Voting Rule, Manipulation and Con-
dorcet winner

An election consists of a set C'= {ci1,...,cn} of candidates, and a set S = {v1,...,vg} of
voters. Each voter provides a total order on the candidates (i.e., each voter submits a linear
ranking of all the candidates). The setting also includes a wvoting rule, which is a function
from the set of all possible combinations of votes to C.

The maximin voting rule is defined as follows. For any two distinct candidates x and
y, let N(z,y) be the number of voters who prefer x over y. The maximin score of x is
S(x) = miny», N(x,y). The candidate with the highest maximin score is the winner.

Definition 2.1. In the CONSTRUCTIVE COALITIONAL UNWEIGHTED MANIPULATION
(CCUM) problem, we are given a set C' of candidates, with a distinguished candidate
p € C, a set of (unweighted) voters S that have already cast their votes (these are the
non-manipulators), and a set T of (unweighted) voters that have not yet cast their votes
(these are the manipulators). We are asked whether there is a way to cast the votes in T
so that p wins the election.

Definition 2.2. In the UNWEIGHTED COALITIONAL OPTIMIZATION (UCO) problem we
are given a set C' of candidates, with a distinguished candidate p € C, and a set of (un-
weighted) voters S that have already cast their votes (the non-manipulators). We are asked
for the minimal n such that a set T of size n of (unweighted) manipulators can cast their
votes in order to make p win the election.

Remark 2.3. We implicitly assume here that the manipulators have full knowledge about
the non-manipulators’ votes. Unless explicitly stated otherwise, we also assume that ties
are broken adversarially to the manipulators, so that if p ties with another candidate, p
loses. The latter assumption is equivalent to formulating the manipulation problems in
their unique winner version, when one assumes that all candidates with maximal score win,
but asks that p be the only winner.

Throughout this paper we will use the convention, unless explicitly stated otherwise, that
|C| =m, |S| =N and |T| = n. We will denote N;(z,y) = [{j |z >, y,>=,;€ SU{L,...,i}}|
That is, N;(x,y) will denote the number of voters from S and from the first ¢ voters of
T that prefer x over y (assuming S is fixed, and fixing some order on the voters of T).
Furthermore, we will denote by S;(c¢) the accumulated score of candidate ¢ from the voters
of S and the first ¢ voters of T. By definition, for each ¢ € C, S;(z) = minyx, N;(z,y).
Also, we denote for z € C, MIN;(z) = {y € C\ {z} | Si(z) = Ni(x,y)}. We denote for
0 <i < n, ms(i) = max.cc\ {p} Si(c). That is, ms(i) is the maximum score of the opponents
of p after ¢+ manipulators have voted.

Definition 2.4. The Condorcet winner of an election is the candidate who, when compared
with every other candidate, is preferred by more voters.

3 The Algorithm

Our algorithm for the CCUM problem under the maximin voting rule is given as Algorithm 1
(see the final page of the paper). It works as follows: fix some order on the manipulators;

optimization problem.
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the current manipulator i ranks p first. He then builds a digraph Gi~! = (V, E‘~1), where
V =C\{p}, (v,y) € B iff (y € MIN;_1(z) and p ¢ MIN;_;(x)). He iterates over the
candidates that have not yet been ranked in his preference list. If there are candidates
with an out-degree 0, then the manipulator adds such a candidate who has the lowest
score (among the candidates with an out-degree 0) to his preference list. Note that the
candidates with out-degree 0 are kept in stacks in order to guarantee a DFS-like order
among candidates with the same score. This is needed for Lemma 5.5 to work. Otherwise,
if there are no candidates with out-degree 0, then the algorithm tries to find a cycle with
two adjacent vertices having the lowest score. If it finds such a cycle, then it picks the
front vertex of these two. Otherwise, any candidate with the lowest score is chosen. After
a candidate b is added to the manipulator’s preference list, for each candidate y who has
an outgoing edge (y,b), the algorithm removes all the outgoing edges of y, puts it into the
appropriate stack, and assigns b to be y’s “father” (this assignment is used to analyze the
algorithm).

Note the subtle difference between calculating the scores in Algorithm 1 in this paper,
as compared to in Algorithm 1 in [7]. In the latter, the manipulator i calculates what the
score would be of the current candidate x if he put x at the current place in his preference
list; in the algorithm we are now presenting, manipulator i just calculates S;_1(x). This
difference is due to the fact that here, when we calculate the score of x, we know whether
dout(z) > 0, i.e., we know whether the score of x will grow by 1 if we put it at the current
available place. So we separately compare the scores of candidates with out-degree > 0, and
the scores of candidates with out-degree 0.

Definition 3.1. We refer to an iteration of the main for loop in lines 3-37 of Algorithm 1
as a stage of the algorithm. That is, a stage of the algorithm is a vote of any manipulator.

The intuition behind Algorithm 1 is as follows. The algorithm tries in a greedy manner
to maximize the score of p, and to minimize the scores of p’s opponents. To achieve this,
it always puts p first in the preference lists, making the score of p grow by 1 with each
manipulator. Regarding p’s opponents, it tries first to rank candidates without any outgoing
edges from them, since their score will not grow this way (because their score is achieved
vs. candidates who were already ranked before them). When there are no candidates without
outgoing edges, the algorithm finds the candidate with the minimal score, and ranks it in
the next place in the preference list. After ranking each candidate, the edges in the graph
are updated, so that all candidates whose minimal candidate has already been ranked, will
be with outgoing degree 0. For an edge (z,y), if y has already been ranked, we remove
all the edges going out from =z, since if we rank x now, its score won’t go up, and so it
does not depend on other candidates in MIN;_;(x). There is no need of an edge (x,y) if
p € MIN;_4(z), since for all x € C'\ {p}, p is always ranked above z, and so whether y is
ranked above z or not, the score of x will not grow.

Definition 3.2. In the digraph G? built by the algorithm, if there exists an edge (,y), we
refer to N;(z,y) = Si(x) as the weight of the edge (x,y).

4 2-approximation

We first prove that Algorithm 1 has an approximation ratio of 2. We then use this result
in the proof of the 1% approximation ratio. The proof of Theorem 4.1 via Lemma 4.2 and
Lemma 4.3 is quite similar to the proof of Theorem 3.16 in [7].

Theorem 4.1. Algorithm 1 has a 2-approximation ratio for the UCO problem under the
mazximin voting rule.
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To prove the above theorem, we first need the following two lemmas. In the first one we
prove that a certain sub-graph of the graph built by the algorithm contains a cycle passing
through some distinguished vertex. We first introduce some more notation.

Let G = (V, E?) be the directed graph built by Algorithm 1 in stage i+1. For a candidate
x € C\{p}, let G, = (V}}, E%) be the graph G' reduced to the vertices that were ranked below
x in stage i + 1, including z. Let Vi(z) = {y € V! | there is a path in G%, from x to y}.
Also, let G%(z) be the sub-graph of G% induced by Vi(z).

Lemma 4.2. Let i be an integer, 0 < i <n —1. Let x € C\ {p} be a candidate. Denote
t = ms(i). Suppose that S;y1(x) =t -+ 1. Then Gi(x) contains a cycle passing through x.

Proof. First of all note that for all ¢ € V¥(z), Si(c) = t. It follows from the fact that by
definition S;(c) < t. On the other hand, S;(z) = ¢, and all the other vertices in V*(z) were
ranked below x. Together with the fact that the out-degree of x was greater than 0 when z
was picked, it gives us that for all ¢ € Vi(x), S;(c) > t, and so for all ¢ € Vi(z), S;(c) = t.
We claim that for all ¢ € V¥(z), MIN;(c) C Vi(z). If, by way of contradiction, there exists
c € Vi(x) s.t. there is b € MIN;(c) where b ¢ V*(z), then b ¢ V!, since otherwise, if b € V¢,
then from ¢ € Vi(z) and (c,b) € EX we get that b € Vi(z). So b ¢ V!, which means that b
was ranked by i + 1 above x. After we ranked b we removed all the outgoing edges from c,
and so we chose ¢ before z since dyyi(c) = 0 and dyyue(x) > 0 (since the score of x went up
in stage ¢ + 1). This contradicts the fact that ¢ € V¥(x) C V!, Therefore, for every vertex
c € Vi(z) there is at least one edge in G*(z) going out from c. Hence, there is at least one
cycle in G¥(z). Since at the time of picking z by voter i + 1, for all ¢ € Vi(x), dput(c) > 0,
and by the observation that for all ¢ € V¥(x), S;(c) = t, we have that the algorithm picked
the vertex z from a cycle (lines 21-22 of the pseudocode). O

In the next lemma we put forward an upper bound on the growth rate of the scores of
p’s opponents.

Lemma 4.3. For all0 <i<n—2, ms(i +2) < ms(i)+1

Proof. Let 0 < i < n—2. Let « € C\ {p} be a candidate. Denote ¢t = ms(i). By
definition, S;(x) < t. We would like to show that S;yo(x) < t+ 1. If Siy1(z) < ¢, then
Site(x) < Sip1(x)+1 <t+1, and we are done. So let us assume now that S;+1(z) =t +1.

Let Vi(z) and G*(z) as before. By Lemma 4.2, G%(x) contains at least one cycle. Let U
be one such cycle. Let a € U be the vertex that was ranked highest among the vertices of
U in stage i + 1. Let b be the vertex before a in the cycle: (b,a) € U. Since b was ranked
below a at stage i + 1, it follows that S;11(b) = S;(b) < t.

Suppose, for contradiction, that S;12(z) > ¢ + 1. Then the score of x went up in stage
1+ 2, and so when x was picked by i 4 2, its out-degree in the graph was not 0. x was
ranked by i 4+ 2 at place s*. Then b was ranked by 7 + 2 above s*, since otherwise, when we
had reached the place s*, we would not pick x since b would be available (with out-degree
0, or otherwise—with score S;11(b) <t < t+ 1= 5;41(x))—a contradiction.

Denote by Z; all the vertices in V() that have an outgoing edge to b in G*(x). For all
z € Z1, b € MIN;(z), i.e., Si(z) = N;(z,b). We claim that all z € Z; were ranked by ¢ + 2
above z. If, by way of contradiction, there is z € Z7, s.t. until the place s* it still was not
added to the preference list, then two cases are possible:

1. If (z,b) € E'T!) then after b was added to i + 2’s preference list, we removed all
the outgoing edges of z, and we would put in z (with out-degree 0) instead of z, a
contradiction.

2. (z,b) ¢ E*fl. Since (z,b) € E', we have S;(z) = N;(z,b). Also since z was ranked by
i+1 below z, it follows that S;(z) = t. So from (z,b) ¢ E**! we have that S;;1(z) =t
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and N;y1(z,b) =t + 1. Therefore, when reaching the place s* in the i + 2’s preference
list, whether d,y:(2) = 0 or not, we would not pick x (with the score S;y1(z) =t+1)
since z (with the score S;41(z) = t) would be available, a contradiction.

Denote by Zs all the vertices in V?(z) that have an outgoing edge in G*(z) to some
vertex z € Z1. In the same manner we can show that all the vertices in Z5 were ranked
in stage i + 2 above x. We continue in this manner, by defining sets Z3, ..., where the set
7, contains all vertices in V?(z) that have an outgoing edge to some vertex in Z;_i; the
argument above shows that all elements of these sets are ranked above x in stage i + 2. As
there is a path from z to b in G*(x), we will eventually reach x in this way, i.e., there is
some [ such that Z; contains a vertex y, s.t. (z,y) € E*(z).

Now, if (z,y) € E**1(z), then since y was ranked by i + 2 above z, we have S; 2(z) =
Si+1(z) =t + 1, a contradiction. And if (x,y) ¢ E*T!(x), then since (z,y) € E'(x) we get
that N;ji1(z,y) =t + 1 and S;1(x) = ¢, a contradiction. O

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let opt denote the minimum size of coalition needed to make p win.
It is easy to see that opt > ms(0) — So(p) + 1. We set n = 2ms(0) — 2Sp(p) + 2 < 20pt.
Then, by Lemma 4.3:

ms(n) < ms(0) + {%-‘ = 2ms(0) — So(p) + 1.
Whereas:
Sn(p) = So(p) +n = 2ms(0) — So(p) + 2 > ms(n).
So p will win when the coalition of manipulators is of size n. O

5 1 %-approximation

Our next goal is to prove that Algorithm 1 has an approximation ratio of 1% when there
are no 2-cycles in the graphs built by the algorithm.

Theorem 5.1. For instances where there are no 2-cycles in the graphs G' built by Algo-
rithm 1, it gives a 1%—approximati0n to the optimum.

We first prove the following lemma regarding the length of the cycles in the digraphs
built by the algorithm.

Lemma 5.2. If for all c € C\ {p} it holds that So(c) < |5 |, then during the run of the
entire algorithm, in the graph built by the algorithm, there will be no cycles of length 2.

Proof. Suppose that for all ¢ € C'\ {p} it holds that Sp(c) < L%J By Lemma 4.3, it holds
for all c€ C'\ {p} and all 0 < i <n — 2, that S;;2(c) <ms(i) + 1. Then for all 0 < i < n:

sz 1] < 3] 1)< 251

Now if, by way of contradiction, there is a cycle of length 2 between vertices z and y
after stage 4, then S;(z) = N;(z,y) < [85E] and Si(y) = Ni(y,2) < [55H], and then
Si(y) = Ni(y,x) < [%J Hence, N + i = N;(z,y) + N;(y,z) < [%1 + [%J =N +1,
a contradiction. O
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Lemma 5.3. Suppose that there are no 2-cycles in the graphs built by the algorithm. Let
x € C\ {p} be a candidate such that S;y1(x) = t + 1 (where t = ms(i)), and let G*(z)
be as described before Lemma 4.2. For each cycle U in G'(z), if U exists in G+, i.e.,
after stage i + 1, then there are 3 distinct vertices a,b,c, s.t. (¢,b) € U, (b,a) € U and
Sit1(b) = Nit1(b,a) = Sit1(c) = Nit1(c,b) = t.

Proof. Let U C E(z) be a cycle which stays also after i + 1 stages. Let a be the vertex
which in stage i + 1 was chosen first among the vertices of U. Let b be the vertex before a
in U, i.e., (b,a) € U, and let ¢ be the vertex before b in U, i.e., (¢,b) € U. Since there are
no 2-cycles, a, b, c are all distinct vertices. Recall that for each y € Vi(x), S;(y) = t. Since
b was ranked below a in stage ¢ + 1, we have S;11(b) = Nit1(b,a) = N;(b,a) = S;(b) = t.
If ¢ was chosen after b in stage ¢ + 1, then Si41(c) = Nit1(c,b) = Ni(c,b) = t and we
are done. We now show that ¢ cannot be chosen before b in stage i + 1. If, by way of
contradiction, ¢ were chosen before b, since after ranking a, dyy: (b) = 0, it follows that when
¢ was picked, its out-degree was also 0. Hence, there exists d € MIN;(¢) which was picked by
i+ 1 before c¢. And so, S;y1(c) =t. On the other hand, since ¢ was picked before b, we have
Nit1(e,b) =t +1 > S;11(c), and so the edge (c,b) does not exist in G**1, a contradiction
to the fact that the cycle U stayed after stage i + 1. O

Lemma 5.4. Let © € C\ {p} be a candidate such that S;y1(x) =t+ 1 (where t = ms(i)).
Let G'(x) be as before. Then at least one cycle in G*(x) that passes through x, will stay
after the stage i + 1, i.e., in G*H1.

Proof. In Lemma 4.2 we have proved that, in G%(x) at least one cycle passes through z.
Since x appears in the preference list of i + 1 above all the MIN;(z), it follows that each
edge going out of = in G*(z), stays also in G'T!. After we added x to the preference list of
1+ 1, all the vertices in all the cycles passing through x were added in some order to the
preference list of ¢ + 1, while they were with out-degree 0 at the time they were picked (it
can be proved by induction on the length of the path from the vertex to x). Therefore, their
“father” field was not null when they were picked. We have to prove that there is at least
one cycle whose vertices were added in the reverse order (and then all the edges of the cycle
stayed in G**1). Let 2; € C'\ {p,z} be some vertex such that (z,z1) € G*(x) and there is a
path in G*(z) from 2; to x. Let 2o = z;.father. As observed earlier, zo # null. We first show
that when 2o was picked by 7 + 1, it was with out-degree 0. Indeed, if, by contradiction, we
suppose otherwise, then zo would have been picked after z; (the proof is by induction on
the length of the shortest path from vertex to z, that each vertex such that there is a path
from it to x was picked before z2), and this is a contradiction to the fact that zo = z1.father.
Therefore, the “father” field of z5 after stage i 4+ 1 is not null. Let z3 = zo.father. If z3 =z
then we are done because we have found a cycle x — 2z; — 29 — z3 = x which was ranked
in stage 7+ 1 in the reverse order. Otherwise, by the same argument as before, we can show
that when z3 was picked, its out-degree was 0. This way we can pass from a vertex to its
father until we reach p or null. We now show that we cannot reach p this way. Indeed, if, by
contradiction, we reach p, then there is a path from z to p in G*, and so all the vertices in
this path, including =, were picked when their out-degree was 0, and this is a contradiction
to the fact that the score of © went up in stage i + 1. Therefore, we cannot reach p when we
go from a vertex to its father starting with z;. Now, let z; be the last vertex before null in
this path. We would like to show that z; = x. If, by contradiction, z; was picked before z
by voter i 4 1, then all the vertices z;_1, ..., 22,21 would have been picked before x, when
their out-degree is 0, and then x would have been picked when its out-degree is 0. This is a
contradiction to the fact that x’s score went up in stage i+ 1. Now suppose by contradiction
that z; was picked after = in stage i + 1. Then all the vertices that have a path from them
to x, including z;, would have been picked before z; in stage ¢ + 1, since the out-degree of
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z; was greater than 0 when it was picked. This is a contradiction to the fact that z; was
picked before z;. So, z; = . This way we got a cycle x — 2; — ... — 2z;_1 — x which was
ranked in the reverse order in stage ¢ + 1. O

Lemma 5.5. Suppose that there are no 2-cycles in the graphs built by the algorithm. Let
z € C\ {p} be a candidate such that S;y1(x) =t + 1 (where t = ms(i)). Then after stage
1+ 2 at least one of the following will hold:

1. There will be a vertex w in G2 s.t. p € MIN;yo(w) and there will be a path from x
to w.

2. There will be a vertex w in G2 with S, o(w) < t, s.t. there will be a path from x to
w.

The proof of this lemma uses the same ideas as the proof of Lemma 5.4, and is omitted
due to space limitations.

The next lemma is central in the proof of Theorem 5.1. It states that the maximum
score of p’s opponents grows rather slowly.

Lemma 5.6. If there are no 2-cycles in the graphs built by the algorithm, then for all i,
0 <i<n-—3itholds that ms(i + 3) < ms(i) + 1.

Proof. Let i, 0 <i<n—3. Let x € C'\ {p} be a candidate. Denote ms(¢) = ¢t. We need
to prove that S;13(z) < t+ 1. If S;41(z) < ¢, then similarly to Lemma 4.3 we can prove
that S;+3(z) < t+1. So now we assume that S;;1(z) = t+ 1. By Lemma 4.3, we have that
Si+2(x) =t+ 1. Suppose by contradiction that S;13(x) =t + 2. x was ranked in stage i + 3
at the place s*. By Lemma 5.5 there exists a vertex w s.t. there is a path in G**2 from x to
w, and p € MIN;yo(w) or Sip2(w) < t. Then w was ranked in stage i + 3 above the place
s*, because the score of x went up in stage i + 3, and if, by contradiction, w was not ranked
above the place s*, then when we got to the place s* we would prefer w over x. It is easy to
see that all the vertices that have a path in G**? from them to w, and which were ranked
below w in stage i + 3, did not have their scores go up in that stage (since we took them one
after another in the reverse order on their path to w when they were with out-degree 0).
And as x was ranked below w, its score did not go up as well, and so S;13(z) = Sij42 =t+1,
a contradiction. O

We are now ready to prove the main theorem.

Proof of Theorem 5.1. Let opt denote the minimal size of the coalition of manipulators that
can make p win the election. It is easy to see that opt > ms(0) — Sp(p) + 1. We shall prove

that Algorithm 1 will find a manipulation for n = [w-‘ < {%OZ)I{I. And indeed,
by Lemma 5.6,

ms(n) < ms(0) + [E—‘ =ms(0) + {ms(o) _250(])) il 1—‘.

Whereas,
Sn(p) = So(p) +n

= So(p) + (ms(0) — So(p) +1) + [

ms(0) — So(p) + 1}
2

)41 [0 80141
<+ B0 S 41
> ms(n).
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O

Theorem 5.7. The 1%—approm'mation ratio of Algorithm 1 is valid also when there are
2-cycles in the graphs built by the algorithm.

Proof. Due to space constraints, we will only provide a sketch of the proof, and we will omit
the proofs of the lemmas (except of Lemma 5.9).

This following proof will show, in a way, that our algorithm is optimal in dismantling
2-cycles—if there are 2-cycles in G*, then for every algorithm ms*(i) > ms(i). Once 2-cycles
have been dismantled (and they cannot return), our algorithm performs a 14-approximation
on the number of steps left, and thus, generally a 1 %—approximation on the optimal solution.

Lemma 5.8. If there are no cycles of length 2 in a certain stage of the algorithm run (G°),
then no 2-cycles will be created in any further iteration—G? (j > i) will have no 2-cycles.

From now on, we shall assume G° contains at least one 2-cycle, with a Condorcet winner
a.

Lemma 5.9. If there is more than one 2-cycle at any stage i, there are no 2-cycles at stage
v+ 3.

Proof. Suppose b1, ba,..., b, are the 2-cycle partners of a. Suppose S;(a) = N;(a,bi) = x
and S;(bg) = N;(bg,a) =y.

If x = y, then each N;(bg,b.) = x. In stage i + 1, one vertex (w.l.o.g., a) will have a
score of x + 1, and the rest have a score of z. This is the same situation as before (multiple
2-cycles with a), but with x + 1 # 2. Now we will show that if  # y we can eliminate
2-cycles in 2 stages (so if = y, we need a total of 3 stages).

a x b a x b a b
YWD>Q>Q) Wc>a>b) W
y y y+1
C C C
Figure 1: Dismantling multiple 2-cycles

Between each b,., by there is at least one edge with value y. At stage i + 1, Si41(a) =«
(as it is the Condorcet winner), some b’s will have a value of y + 1, while some will have a
value of . Of those with the value y, there will be at least one, by, for which N;11(a, by) = .
This is because some by will be selected before a, either because dyyt(bg) = 0 or because it
was according to lines 21-22 of the algorithm, which ensure that at least one by score will
not change, and it will be selected before a according to line 17. In stage i +2, S;12(a) = z,
since either by will be selected before a, or if not, this means a was selected when d,,¢(a) = 0,
which occurs when a’s value doesn’t change. Furthermore, if S;y1(b,) =y + 1, and b, was
selected before by, this means it happened due to dout(by) = 0, and thus S;y2(b,) =y + 1,
and if it was selected after by, since a’s doy; after by’s selection is 0, if b, is selected it is
either before a, when its d,,; = 0, or after a, and thus S;2(b,) =y + 1. Since S;12(a) = z,
and there is no ¢ € C such that S; o = y + 2, this means there are no 2-cycles in G**2. O
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b1 k ¢l b2 k ¢2

Figure 2: Example

Thus, if there is more than one 2-cycle in GV, it will be eliminated in 3 steps at the
most. Now, we wish to show that the algorithm eliminates 2-cycles as fast as possible,
and then maintains its 1%—approximation. Once the 2-cycles are eliminated the ms is the
same (or less) than the optimal algorithm, and from that step onward our algorithm gives
a 1%—appr0ximation.

Lemma 5.10. Let b be a’s partner in the 2-cycle in stage G*. If in G* there is c € C # a,b
such that N;(a,c) = Si(a), there will be no 2-cycle in G*+3.

Lemma 5.11. If ¢ € C was not a part of a 2-cycle in G*, and is a part of a 2-cycle in
G, there will be no 2-cycles in G4,

Therefore, we can assume that a and b were part of a 2-cycle in G°, and they will be the
only participants of a 2-cycle during the algorithm’s run.
To continue, we need a few definitions. We will define ¢ € C as ¢ € {x € Clz €
min No(b,y)}. We will define d € C asd € {x € C|z € min Ny(a,y)}.
y€C\a,b yeC\a,b
Lemma 5.12. If Ny(b,c) < Sp(a), then after No(b, c)—So(b)+1 steps there are no 2-cycles,
and ms(No(b, ¢) — So(b) + 1) = ms(0).

Lemma 5.13. Let h = min(Ny(b,c), No(a,d)). For any algorithm, if h > So(a),
ms*(So(a) — So(b) + 2(h — So(a))) > h.

Lemma 5.14. Let h = min(No(b,c), No(a,d)). Using Algorithm 1, if h > Sp(a),
ms(So(a) — So(b) +2(h — Sp(a))) = h, and there are no 2-cycles in GSo(@)+2(h=S0(a)+1,

We have shown that if there are multiple 2-cycles in G°, we end up with no 2-cycles
in G3. If there is one, it is abolished, and the ms at the state in which it is abolished
is the smallest possible. From that point on, our algorithm provides a 1%—approximation
(according to Theorem 5.1). O

Now we show that our analysis of Algorithm 1 is accurate.

Theorem 5.15. The 1% approximation ratio of Algorithm 1 is asymptotically tight.

Proof. Consider  the  following example (see Figure 2). C =
{p,a1,b1,c1,a2,ba,¢a,...,a1,b;,¢;}. Let k be an integer, % <k < % So(p) = 0;
for all j, 1 S] < l: So(aj) = No(aj,bj) = So(bj) = No(bj,Cj) = So(Cj) = No(Cj,aj) =k. In

addition, for each 5,1 < j <1 —1: Ny(aj,a;+1) = k+ 1, and Ny(ai,a1) = k + 1. When
showing the preferences of the manipulators, we denote by A; the fragment a; > c¢; > b;
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of the preference, by B; the fragment b; >~ a; >~ ¢;, and by C; the fragment c; >~ b; > a;.
Consider the following preference list of the manipulators:

p%Al>A171>...>A1
p>—Al_1>-Al_2>-...>-A1>-Al
p=A_o= A3 ... A1 = A = A

It can be verified that in the above preference list, the maximum score of p’s opponents
(ms(i)) grows by 1 every mT_l stages (starting with k£ + 1). In addition, p’s score grows by
1 every stage. Therefore, when we apply the voting above, the minimum number of stages
(manipulators) n* needed to make p win the election should satisfy n* > k + 1+ (%1

Since [%1 < % + 1, the sufficient condition for making p win is:

*

n
1.
m—1+

n*>k+1+

So, we have,

(m—1n">m—-1)k+2)+3n*
(m—4)n" > (m—-1)(k+2)
n* > (m=1)k+2) 1)_(]1+ 2).

For large-enough m, % < k+3, and so n* = k+ 3 would be enough to make p win
the election.

Now let us examine what Algorithm 1 will do when it gets this example as input. One
of the possible outputs of the algorithm looks like this:

p=C1=Co = ...=C

p>= By > Bs>...>= B~ B

p=Asg = Ay = ... A = Al = A
p=Cy=Cs5>...=Cy=Cy = Cy > Cjy

It can be verified that in the above preference list, ms(i) grows by 1 every 3 stages, and p’s
score grows by 1 every stage. Therefore, the number of stages n returned by Algorithm 1
that are needed to make p win the election satisfies n > k + [%W Since {%1 > 7, the
necessary condition for making p win the election is:

n

n>k+ 3
We then have,

3n>3k+n

2n > 3k

3

n > Ek:

So we find that the ratio 2 tends to 11 as m and N (and k) tend to infinity. O
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6 Conclusions and Future Work

We introduced a new algorithm for approximating the UCO problem under the maximin
voting rule, and investigated its approximation guarantees. In future work, it would be
interesting to prove or disprove that Algorithm 1 presented in [7] has an approximation
ratio of 1%, for those instances where there is no Condorcet winner.2 Another issue is to
implement both algorithms, to empirically measure their performance and compare them in
practice.
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Algorithm 1 Decides CCUM for maximin voting rule
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: procedure MAXIMIN(C, p, Xg,n) > Xg is the set of preferences of voters in S, n is the
number of voters in T'
X —10 > Will contain the preferences of T'
fori=1,...,ndo > Iterate over voters
P, — (p) > Put p at the first place of the i-th preference list
Build a digraph G*~! = (V, Ei~1) >V =C\{p}, (z,y) € B~ iff
(y € MIN;_1(z) and p ¢ MIN;_1(z))
for c € C'\ {p} do > This for loop is used in the analysis
if doui(c) = 0 then
c.father — p
else
c.father «— null
end if
end for
while C'\ P; # () do > while there are candidates to be added to i-th preference
list
Evaluate the score of each candidate based on the votes of S and i — 1 first

votes of T’
if there exists a set A C C'\ P; with dyy¢(a) = 0 for each a € A then > if
there exist vertices in the digraph G*~! with out-degree 0

Add the candidates of A to the stacks @);, where to the same stack go
candidates with the same score
b «— Q1.popfront() > Retrieve the top-most candidate from the first
stack—with the lowest scores so far
P, — P, + {b} > Add b to ¢’s preference list
else

Let s = mincec\p,{Si-1(c)}
if there is a cycle U in G*~! s.t. there are 3 vertices a, b, ¢, s.t. (¢, b), (b, a) €
U, and S;—1(c) = Si—1(b) = s then

P, — P, + {b} > Add b to ¢’s preference list
else
Pick b € C'\ P; s.t. S;_1(b) = s > Pick any candidate with the lowest
score so far
P, — P, + {b} > Add b to i’s preference list
end if
end if
for ye C'\ P, do
if (y,b) € E*"! then > If there is a directed edge from y to b in the
digraph
Remove all the edges of E‘~! originating in y
y.father — b > This statement is used in algorithm analysis
Add y to the front of the appropriate stack @) ;—according to S;_1(y)
end if
end for
end while
X — XU{P)
end for
XT — X
if argmax_.co{Score of ¢ based on Xg U X7} = {p} then
return true > p wins
else
return false
end if
78
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Complexity of Safe Strategic Voting

Noam Hazon and Edith Elkind

Abstract

We investigate the computational aspectssafe manipulationa hew model of coalitional
manipulation that was recently put forward by Slinko and WHi1]. In this model, a po-
tential manipulatow announces how he intends to vote, and some of the other wobarse
preferences coincide with thoseofmay follow suit. Depending on the number of followers,
the outcome could be better or worse fothan the outcome of truthful voting. A manipu-
lative vote is calledsafeif for some number of followers it improves the outcome frefa
perspective, and can never lead to a worse outcome. In thiar,pae study the complexity
of finding a safe manipulative vote for a number of commonngtiules, including Plurality,
Borda, k-approval, and Bucklin, providing algorithms and hardnessilts for both weighted
and unweighted voters. We also propose two ways to extendatien of safe manipulation
to the setting where the followers’ preferences may diffent those of the leader, and study
the computational properties of the resulting extensions.

1 Introduction

Computational aspects of voting, and, in particular, v@timanipulation, is an active topic of current
research. While the complexity of the manipulation probfema single voter is quite well under-
stood (specifically, this problem is known to be efficientbvable for most common voting rules
with the notable exception of STV [1, 2]), the more recentkvoas mostly focused on coalitional
manipulation, i.e., manipulation by multiple, possiblyiglgted voters. In contrast to the single-
voter case, coalitional manipulation tends to be hard. éd¢gé has been shown to be NP-hard for
weighted voters even when the number of candidates is badumygle small constant [4]. For un-
weighted voters, nailing the complexity of coalitional nanation proved to be more challenging.
However, Faliszewski et al. [5] have recently establislned this problem is hard for most variants
of Copeland, and Zuckermaat al [13] showed that it is easy for Veto and Plurality with Runoff
Further, a very recent paper [12] makes substantial pregrethis direction, showing, for exam-
ple, that unweighted coalitional manipulation is hard fo¥min and Ranked Pairs, but easy for
Bucklin (see Section 2 for the definitions of these rules).

All of these papers (as well as the classic work of Bartholdile[1]) assume that the set of
manipulators is given exogenously, and the manipulat@sar endowed with preferences over the
entire set of candidates; rather, they simply want to getréiqodar candidate elected, and select
their votes based on the non-manipulators’ preferenceésthgublicly known. That is, this model
abstracts away the question of how the manipulating coalftborms. However, to develop a better
understanding of coalitional manipulation, it is desigatd have a plausible model of the coalition
formation process. In such a model the manipulators would sut by having the same type of
preferences as sincere voters, and then some agents—thosarevnot satisfied with the current
outcome and are willing to submit an insincere ballot—waygtitogether and decide to coordinate
their efforts.

However, it is quite difficult to formalize this intuition sas to obtain a realistic model of how
the manipulating coalition forms. In particular, it is ndéar how the voters who are interested in
manipulation should identify each other, and then reachgameanent which candidate to promote.
Indeed, the latter decision seems to call for a voting procedand therefore is itself vulnerable
to strategic behavior. Further, even assuming that seitadmlition formation and decision-making

1To0 appear in the proceedings of the 3rd International Syimposn Algorithmic Game Theory (SAGT’10)
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procedures exist, their practical implementation may beéied by the absence of reliable two-way
communication among the manipulators.

In a recent paper [11], Slinko and White put forward a modat tirovides a partial answer to
these questions. They consider a setting where a single v@i@nounces his manipulative vate
(the truthful preferences of all agents are, as usual, camimowledge) to his set of associatEs
i.e., the voters whose true preferences coincide with thbse As a result, some of the voters in
F switch to votingL, while others (as well as all voters not i) vote truthfully. This can happen
if, e.9.,v’s instructions are broadcast via an unreliable chanrme],9ome of the voters ifl simply
do not receive the announcement, or if some voters aonsider it unethical to vote non-truthfully.
Such a situation is not unusual in politics, where a publiarigmay announce her decision to vote
in a particular manner, and may be followed by a subset oftlilkeded people. That is, in this
model, the manipulating coalition always consists of v@teith identical preferences (and thus
the problem of which candidate to promote is trivially resal), and, moreover, the manipulators
always vote in the same way. Further, it relies on minimal gamication, i.e., a single broadcast
message. However, due to lack of two-way communicatiatges not know how many voters will
support him in his decision to vote. Thus, he faces a dilemma: it might be the case that if
voters fromF' follow him, then the outcome improves, while if some# = voters fromF switch
to voting L, the outcome becomes even less desirabtettean the current alternative (we provide
an example in Section 2). if is conservatively-minded, in such situations he would deowot to
manipulate at all. In other words, he would vidwas a successful manipulation only if (1) there
exists a subsdl’ C I such that if the voters i/ switch to votingL, the outcome improves; (2)
foranyW C F, if the voters inl¥/ switch to votingL the outcome does not get worse. Paper [11]
calls any manipulation that satisfies (1) and$aje The main result of [11] is a generalization of
the Gibbard—Satterthwaite theorem [7, 10] to safe manffmulathe authors prove that any onto,
non-dictatorial voting rule with at least 3 alternativesagely manipulable, i.e., there exists a profile
in which at least one voter has a safe manipulation. Howeagper [11] does not explore the
computational complexity of the related problems.

In the first part of this paper, we focus on algorithmic comjtleof safe manipulation, as defined
in [11]. We first formalize the relevant computational qigass and discuss some basic relationships
between them. We then study the complexity of these questimrseveral classic voting rules, such
as Plurality, Vetok-approval, Bucklin, and Borda, for both weighted and unwuteg voters. For
instance, we show that finding a safe manipulation is easy-fgpproval and for Bucklin, even if
the voters are weighted. In contrast, for Borda, finding a sadnipulation—or even checking that
a given vote is safe—turns out to be hard for weighted votees & the number of candidates is
bounded by a small constant.

We then explore whether it is possible to extend the modeifefmanipulation to settings where
the manipulator may be joined by voters whose preferendies fiom his own. Indeed, in real life
a voter may follow advice to vote in a certain way if it comesnfra person whose preferences are
similar (rather than identical) to hers, or simply because thinks that voting in this manner can
be beneficial to her. For instance, in politics, a populaspeality may influence many different
voters at once by announcing his decision to vote in a pdaticnanner. We propose two ways
of formalizing this idea, which differ in their approach tefthing the set of a voter’s potential
followers, and provide initial results on the complexitysaffe manipulation in these models.

In our first extension, a manipulatormay be followed by all voters who rank the same candi-
dates above the current winneradoes. That is, in this model a votemay follow v if any change
of outcome that is beneficial tois also beneficial ta:.. We show that some of the positive algo-
rithmic results for the standard model also hold in this ngeaeral setting. In our second model,
a voteru may follow a manipulatop that proposes to votg, if, roughly, there are circumstances
when votingL is beneficial tou. This model tends to be computationally more challenging: w
show that finding a safe strategic vote in this setting is leaamh for very simple voting rules.

We conclude the paper by summarizing our results and progasiveral directions for future
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research.

2 Preliminaries and Notation

An electionis given by a set ofandidateqalso referred to aalternative3 C = {c4,..., ¢} and
a set ofvotersV = {1,...,n}. Each voter is represented by hisreferenceR;, which is a total
order overC'; we will also refer to total orders ovér asvotes For readability, we will sometimes
denote the ordeR; by >-;. The vectolR = (R, ..., R,) is called goreference profileWe say that
two voters; and; are of the samgypeif R, = R;; we writeV; = {j | R; = R;}.

A voting rule F is a mapping from the set of all preference profiles to the §etndidates;
if F(R) = ¢, we say thatc wins underF in R. A voting rule is said to beanonymousf
F(R) = F(R'), whereR’ is a preference profile obtained by permuting the entrie® ofTo
simplify the presentation, in this paper we consider anamysnvoting rules only. In addition, we
restrict ourselves to voting rules that are polynomialeticomputable.

During the election, each votérsubmits a votd.;; the outcome of the election is then given
by F(L4,...,Ly,). We say that a voteris truthful if L, = R,;. ForanyU C V and a votel, we
denote byR _ (L) the profile obtained frorR by replacingR; with L foralli € U.

Voting rules We will now define the voting rules considered in this papéroAthese rules assign
scores to all candidates; the winner is then selected antengandidates with the highest score
using atie-breaking rule i.e., a mapping’ : 2¢ — C that satisfieg’(S) € S. Unless specified
otherwise, we assume that the tie-breaking rulexiographici.e., given a set of tied alternatives,
it selects one that is maximal with respect to a fixed ordering

Given a vectorx = (a, ..., ) With a3 > -+ > auy, thescores,(c) of a candidate € C
under apositional scoring rulef’, is given by) ;.\, a;; o), Wherej(i, c) is the position in which
voteri ranks candidate Many classic voting rules can be represented using thiséveork. Indeed,
Plurality is the scoring rule witlx = (1,0, ..., 0), Veto(also known ag\ntiplurality) is the scoring
rulewitha = (1,...,1,0), andBordais the scoring rule witlw = (m—1,m—2,...,1,0). Further,
k-approvalis the scoring rule witlw given bya; = - = ax =1, agr1 = - - = a,, = 0; we will
also refer tom — k)-approval ag-veta

Bucklin rulecan be viewed as an adaptive versiorkedpproval. We say that, 1 < k < m, is
theBucklin winning roundf for any j < k no candidate is ranked in tgppositions by at leagtn /2]
voters, and there exists some candidate that is ranked inpogitions by at leadtn/2] voters. We
say that the candidatés score in round; is his j-approval score, and hBucklin scoresz(c) is his
k-approval score, wherkis the Bucklin winning round. ThBucklin winneris the candidate with
the highest Bucklin score. Observe that the Bucklin scote@Bucklin winner is at leagt./2].

Weighted voters Our model can be extended to the situation where not all saiez equally
important by assigning an integerightw; to each votei. To compute the winner on a profile
(Rq1,...,R,) under a voting ruleF given voters’ weightsw = (w1, ...,w,), we applyF on a
modified profile which for each= 1, ..., n containsw; copies ofR;. As an input to our problems
we usually get aoting domaini.e., a tupleS = (C, V, w, R), together with a specific voting rule.
Whenw = (1,...,1), we say that the voters atmweighted For eachU C V, let |U| be the
number of voters ifV and letw(U) be the total weight of the voters 0.

Safe manipulation We will now formally define the notion of safe manipulatiorarhe purposes
of our presentation, we can simplify the definitions in [Lahsiderably.

As before, we assume that the voters’ true preferences eea diy a preference profil® =
(R1,...,Ry).

Definition 1. We say that a voté is anincentive to vote strategicallpr astrategic votdor i at’R
underF, if L # R, and for somd/ C V; we haveF(R_y (L)) =; F(R). Further, we say thalt
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is asafe strategic votéor a voteri at R underF if L is a strategic vote &k, and for anyU C V;
eitherF(R_y (L)) =i F(R) or F(R_y(L)) = F(R).

To build intuition for the notions defined above, consider fbllowing example.

Example 1. SupposeC = {a,b,c,d}, V = {1,2,3,4}, the first three voters have preference
b = a = ¢ > d, and the last voter has preference- d > a >~ b. Suppose also that the voting
rule is2-approval. Under truthful votingy andb get3 points, and: andd get1 point each. Since
ties are broken lexicographically,wins. Now, if voterl changes hisvote th = b > ¢ > a > d,

b gets3 points,a gets2 points, and: gets2 points, sob wins. Asb =1 a, L is a strategic vote for
1. However, it is not a safe strategic vote: if playerdin= {1, 2, 3} all switch to votingL, thenc
gets4 points, whileb still gets3 points, so in this casewins anda > c.

A maximalmanipulation is one where all the voters framchoose to votd.. We will call the
winner of such profile thenaximal manipulation winnéfor L.

3 Computational Problems: First Observations

The definition of safe strategic voting gives rise to two naltalgorithmic questions. In the defini-
tions below,F is a given voting rule and the voters are assumed to be untegigh

e |SSAFE(F): Given a voting domain, a votérand a linear ordef, is L a safe strategic vote
for i underF?

e EXISTSAFE(F): Given a voting domain and a votgrcan voter; make a safe strategic vote
underF?

The variants of these problems for weighted voters will beated, respectively, bw|SSAFE(F)
and WEXISTSAFE(F). Note that, in general, it is not clear if an efficient algonit for
(W)EXISTSAFE(F) can be used to solveM)I SSAFE(F), or vice versa. However, if the number
of candidates is constantvj EXISTSAFE(F) reduces to\)I SSAFE(F). We formulate the follow-
ing two results for weighted voters; clearly, they also ggplunweighted voters.

Proposition 1. Consider any voting rulé=. For any constant, if |C| < k, then a polynomial-time
algorithm forwl|sSAFE(F) can be used to solwe@EXISTSAFE(F) in polynomial time.

Proof. In this case has at mosk! = O(1) different votes, so he can try all of them. (|

A similar reduction exists when each voter only has polyraipimany “essentially different”
votes.

Proposition 2. Consider any scoring rule=, that satisfies either (i)y; = 0 for all j > k& or (ii)
a; = 1forall j < m — k, wherek is a given constant. For any such rule, a polynomial-time
algorithm forwlISSAFE(F,) can be used to solM@EXISTSAFE(F,,) in polynomial time.

Proof. We consider case (i); case (i) is similar. There are at mést- poly(n) different ways to
fill the top k positions in a vote. Further, if two votes only differ in pi@ns & + 1,...,m, they
result in the same outcome. Thus, to SOWVEXISTSAFE(F, ), it suffices to runwlSSAFE(F,) on
poly(n) instances. O

Observe that the class of rules considered in Propositiorcl@des Plurality and Veto, as well
ask-approval and:-veto whenk is bounded by a constant.
Further, we note that for unweighted voters it is easy to klifex given manipulation is safe.

Proposition 3. The problem sSAFE(F) is in P for any (anonymous) voting rulg.

82



Proof. SetV; = {i1,...,4s}. Since our voting rule is anonymous, it suffices to check treltions
of Definition 1 forU € {{i1}, {1,42},...,{i1,...,is}}, i.e., fors < n sets of voters. O

Together with Propositions 1 and 2, Proposition 3 implieg the problem EISTSAFE(F) is
in P for Plurality, Veto,k-veto andk-approval for constankt, as well as for any voting rule with a
constant number of candidates.

Note that when voters are weighted, the conclusion of Pitpns3 no longer holds. Indeed,
in this case the number of subsetsigfthat have different weights (and thus may have a different
effect on the outcome) may be exponentiahinHowever, it is not hard to show that the problem
remains easy when all weights are small (polynomially baahd

4 Plurality, veto, and k-approval

We will now show that the easiness resultsfesipproval and:-veto extend to arbitrary < m and
weighted voters (note that the distinction betwéeweto and(m — k)-approval only matters for
constant).

Theorem 4. For k-approval, the problems/| SSAFE and WEXISTSAFE are inP.

Proof. Fix a voterv € V. To simplify notation, we renumber the candidates so tfspreference

order is given by, =, ... =, ¢,n. Denotev’s truthful vote byR. Recall thatl, denotes the set of

voters who have the same preferences.a8uppose that under truthful voting the winneejs For

i=1,...,m,lets;(R') denote the:-approval score of; given a profiléR’, and set; = s;(R).
We start by proving a useful characterization of safe gjiateotes fork-approval.

Lemma 1. A voteL is a safe strategic vote farif and only if the winner iR _y, (L) is a candidate
c; With i < 7

Proof. Suppose that is a safe strategic vote fer Then there exists an< j and aU C V,, such
that the winner ifR _; (L) is ¢;. It must be the case that each switch fréio L increases;’s
score or decreases’s score: otherwise; cannot beat; after the voters ir/' change their vote
from R to L. Therefore, ifc; beatsc; when the preference profile 58_y (L), it continues to beat
c; after the remaining voters ii, switch, i.e., when the preference profiléRs_v, (L). Hence, the
winnerinRR_y, (L) is notc;; sinceL is safe, this means that the winnerLy, (L) is ¢, for some
{ <.

For the opposite direction, suppose that the winnéRin,, (L) is ¢; for somei < j. Note that
if two candidates gain points when some subset of votergestfromR to L, they both gain the
same number of points; the same holds if both of them losetfoin

Now, if 7 > k, a switch fromR to L does not lower the score of, so it must increase the score
of ¢; for it to be the maximal manipulation winner. Further, if aitelv from R to L grants points to
somecy # ¢;, then eithers, < s; or s; = s; and the tie-breaking rule favors overc,: otherwise,
¢; would not be the maximal manipulation winner.

Similarly, if j < k, a switch fromR to L does not increase the score®f so it must lower
the score ok;. Further, if somer, # ¢; does not lose points from a switch froRito L, then
eithersy < s; or sy = s; and the tie-breaking rule favors overc,: otherwisec; would not be the
maximal manipulation winner.

Now, consider anyU' C V,,. If s;(R_y(L)) > si(R—u(L)), theng; is the winner. If
si(R—u (L)) > s;(R—u(L)), theng; is the winner. Finally, supposg(R_y (L)) = s;(R—u(L)).
By the argument above, no other candidate can have a highrer. 0, suppose that(R_y (L)) =
si(R—u(L)), and the tie-breaking rule favoes overc; ande;. Then this would imply that, wins
in R or R_y, (L) (depending on whether a switch froRito L causes:; to lose points), a contra-
diction. Thus, in this case, too, eithgror ¢; wins. O
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Lemma 1 immediately implies an algorithm ferl SSAFE: we simply need to check that the
input vote satisfies the conditions of the lemma. We now shmwto use it to construct an algorithm
for WEXISTSAFE. We need to consider two cases.
i>k
In this case, the voters i1, already do not approve @f and approve of alt;, ¢ < k. Thus, no
matter how they vote, they cannot ensure that some< k, gets more points thasy. Hence, the
only way they can change the outcome is by approving of somdidatec;, k < i < j. Further,
they can only succeed if there exists@ar= k£ + 1,...,j — 1 such that eithes; + w(V,) > s;
or s; + w(V,) = s; and the tie-breaking rule favoks overc;. If such an: exists,v has an
incentive to manipulate by swappirg andc; in his vote. Furthermore, it is easy to see that any
such manipulation is safe, as it only affects the scores ahdc;.
i<k
In this case, the voters ii, already approve of all candidates they prefet toand therefore they
cannot increase the scores of the fjrst 1 candidates. Thus, their only option is to try to lower the
scores of; as well as those of all other candidates whose score cumeratiches or exceeds the
best score among, ..., s;_1.

SetCy = {c1,...,¢j—1}, Cy = {¢j,...,cm}. LetCy be the set of all candidates (i}, whose
k-approval score is maximal, and lgt.... be thek-approval score of the candidatesip. For any
ce € Gy, let s, denote the number of points thatgets from all voters i/ \ V,,; we haves, = s,
fork < £ < mands, = s, —w(V,) for £ = j,..., k. Now, it is easy to see thathas a safe
manipulation if and only if the following conditions hold:

e Forallc, € Cy eithers) < smax, OF s, = smax and there exists a candidate Cj, such that
the tie-breaking rule favorsovercy;

e There exist a sef’sate C Cb, |Ceate] = k — j + 1, such that for alk, € Csate eithers) +
w(Vy) < smax OF s; + w(V,) = smax and there exists a candidates C such that the
tie-breaking rule favors overcy.

Note that these conditions can be easily checked in polyaldime by computing, ands;, for all
{=1,...,m.

Indeed, if such a sef;,¢. exists, votew can place the candidates(f,g. in positionsj, . .., kin
his vote; denote the resulting vote by Clearly, if all voters inV,, vote according td., they succeed
to elect some € Cy. Thus, by Lemma 1L is safe. Conversely, if a sék.s. with these properties
does not exist, then for any vofe # R the winner inR_y, (L) is a candidate irC;, and thus by
Lemma 1L is not safe. O

We remark that Theorem 4 crucially relies on the fact that veak ties based on a fixed priority
ordering over the candidates. Indeed, it can be shown tleat thxists a (non-lexicographic) tie-
breaking rule such that finding a safe vote with respektapproval combined with this tie-breaking
rule is computationally hard (assumihdgs viewed as a part of the input). As the focus of this paper
is on lexicographic tie-breaking, we omit the formal stag¢etrand the proof of this fact.

In contrast, we can show that any scoring rule vitbandidates is easy to manipulate safely,
even if the voters are weighted and arbitrary tie-breakingsrare allowed.

Theorem 5. wISSAFE(F) is in P for any voting ruleF obtained by combining a positional scoring
rule with at most three candidates with an arbitrary tie-aking rule.

Proof. For one candidate, the statement is trivial. With two caattid, every positional scoring rule
is equivalent to Plurality, and under Plurality with two dighates no voter has an incentive to vote
strategically.

Now, suppose that”| = 3. Consider a votef and assume without loss of generality that
R; = (c1,c¢2,¢3). If F(R) = ¢1, theni has no incentive to vote strategically. We will now consider
the casesF(R) = c; andF(R) = c3 separately.
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1. F(R) = co. Suppose thalL is a strategic vote fot. Then L cannot ranke, in top two
positions. Indeed, any such manipulation does not decrg&sscore and does not increase
c1's score. Thus, it had a higher score than, this would still be the case no matter how
many voters inV/; switch to votingL. Further, if bothe, ande; had top scores, theh could
succeed only if it does not change the scores of either of tHamhin this case the score of
c3 does not change either, so the outcome remains the same.ifftensains to consider two
cases:L = (c1,c3,02) and L = (cg,c1,c2). Now, letec = F(R_v,(L)). If ¢ = ¢3, Lis
not safe. Further, i€ = ¢;, then we have, = F(R_y (L)) foranyU C V,, i.e., L is not
a strategic vote fof. Finally, if ¢ = ¢1, thenL is a safe strategic vote. Indeed, suppose that
Lis not safe, i.e.F(R_y (L)) = c3 for someU C V;. Each switch fromR; to L does not
decreases’s score, so in that casg would be a winner irR _y; (L), a contradiction.

2. F(R) = cs. It can be checked that If is a strategic vote fof, thenL has to rank: first, i.e.,
L € {(cg,¢1,¢3), (ca,c3,c1)}. If F(R_v,(L)) = c3, by the same argument as above, there
is no incentive fori to vote for L. Otherwise,L is a safe strategic vote, sineg s the least
preferred candidate.

O

5 Bucklin and Borda

Bucklin rule is quite similar t&-approval, so we can use the ideas in the proof of Theorem é-to d
sign a polynomial-time algorithm for finding a safe manigigia with respect to Bucklin. However,
the proof becomes significantly more complicated.

Theorem 6. For the Bucklin rule WEXISTSAFE is in P.

Interestingly, despite the intuition thatl SSAFE should be easier thawnEXISTSAFE, it turns
out thatwl sSAFE for Bucklin is coNP-hard.

Theorem 7. For the Bucklin rule,wISSAFE is coNP-hard, even for a constant number of candi-
dates.

Proof. We give a reduction from@&seT SuM. Recall that an instance oflUBSET SuM is given by
a set of positive integerd = {ay,...,as} and a positive integeK . Itis a “yes’-instance if there
is a subset of indices C {1,...,s} such thaty ,_; a; = K and a “no’™-instance otherwise. We
assume without loss of generality thet< |, a;

Given an instancg A, K) of SUBSET Sum with [4] = s and > ]_,a; = S, we con-
struct an instance oWISSAFE as follows. SetC = {a,b,c,z,y,2,2',y',2'}, and letV =
{v1,...,vs,u1,u2,us, uqs}. Table 1 shows the preferences and weights of each voteznabthat
the total weight of all voters i¢S. We ask if the votd. = (a, ¢, b, z,y, 2, 2',y', 2') is a safe strate-

Table 1:
\oter Preference order Weight
V; (x,y,2,a,b,c,2",y, ) a;
wr  (a,¢,byx,y, 2,2y, ) 285 —K —1
us  (m,e,b,a,y,2,2 Yy, ) 1
U3 (yzbacmxy'z’) K
Uy (@, 2 a,b,c,x,y, 2) S

gic vote forv; under Bucklin; as we will see, the answer to this questiorsdu# depend on the
tie-breaking rule.
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If all voters vote sincerely, thehwins in round3 with 2.5 points, and all other voters get less
that2S points in the first three rounds. Note also that the total fntedd voters inC' \ V,,, that rank
afirstis2S — K — 1, and the total weight of voters ifi \ V,,, that rankec second i2S — K.

Suppose that a group of voteis C V,,, votesL. If w(U) < K, thenb remains the winner,
while if w(U) > K thena becomes the winner, as it gets the majority of votes in therinsnd.
Therefore,L is a strategic vote fov;. However, ifw(U) = K, a only gets2S — 1 points in any
of the first three rounds, whilegets2S points in the second round. Therefore, in this caséns,
i.e., L is not safe for;. Hence,L is a safe strategic vote far if and only if no subset ofA sums
to K. (]

For Borda, unlikek-approval and Bucklin, both of our problems are hard whenvtiters are
weighted. The proof of the following theorem is similar tatlof Theorem 7.

Theorem 8. For the Borda rulewlsSAFE andWEXISTSAFE are coNP-hard. The hardness result
holds even if there are onlycandidates.

6 Extensions of the Safe Strategic Voting Model

So far, we followed the model of [11] and assumed that the volgrs who may change their votes
are the ones whose preferences exactly coincide with thiake enanipulator. Clearly, in real life
this assumption does not always hold. Indeed, a voter méywf@ suggestion to vote in a certain
way as long as it comes from someone he trusts (e.g., a vegeoted public figure), and this does
not require that this person’s preferences are complatelytical to those of the voter. For example,
if both the original manipulatar and his would-be followet rank the current winner last, it is easy
to see that following’s recommendation that leads to displacing the current imsin«’s best
interests.

In this section, we will consider two approaches to extegdie notion of safe strategic voting
to scenarios where not all manipulators have identicalgpegices. In both cases, we define the set of
potential followers for each voter (in our second modek #@t may depend on the vote suggested),
and define a votd. to be safe if, whenever a subset of potential followers vdtethe outcome
of the election does not get worse (and sometimes gets bitiar the manipulator’s perspective.
However, our two models differ in the criteria they use tonitifly a voter’s potential followers. Due
to space constraints, all proofs in this section are omitted

Preference-Based Extension Our first model identifies the followers of a given voter based
the similarities in voters’ preferences.

Fix a preference profil® and a voting ruleF, and letc be the winner under truthful voting. For
anyv € V, let I(v, ¢) denote the set of candidates thatanks strictly above. We say that two
votersu andv aresimilar if I(u,c) = I(v,c). A similar setS, of a voterv for a given preference
profile R and a voting ruleF is given byS, = {u | I(u,c) = I(v,c)}. (The setS, depends ofR
and.F; however, for readability we omi® and.F from the notation).

Note that ifu andwv are similar, they rank in the same position. Further, a change of outcome
from ¢ to another alternative is positive from's perspective if and only if it is positive fromis per-
spective. Thus, intuitively, any manipulation that is prafie foru is also profitable fon. Observe
also that similarity is an equivalence relation, and the Sgtare the corresponding equivalence
classes. In particular, this implies that for anyw € V eitherS,, = S, or S, N .S, = 0.

We can now adapt Definition 1 to our setting by repladifgvith .S,,.

Definition 2. A voteL is a strategic vote in the preference-based extenfion at R underF if
for someU C S, we haveF(R_y (L)) =, F(R). Further, we say thal is a safe strategic vote
in the preference-based extensfona voterv at R underF if L is a strategic vote aRk underF,
and for anyU C S, either F(R_y (L)) =, F(R) or F(R_uv (L)) = F(R).
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Observe that ifL is a (safe) strategic vote ferat R underF, then it is also a (safe) strategic
vote for anyu € S,. Indeedu € S, impliesS,, = S, and for anya € C we havea -, F(R) if
and only ifa >, F(R). Note also that we do not requife# R,: indeed, in the preference-based
extension = R, may be a non-trivial manipulation, as it may induce voterS,in, {v} to switch
their preferences t&®,. That is, a voter may manipulate the election simply by agkither voters
with similar preferences to vote like he does. Finally, éé&sy to see that for any voterthe sets,
of similar voters is easy to compute.

The two computational problems considered throughouptier, i.e., the safety of a given ma-
nipulation and the existence of a safe manipulation rene@vant for the preference-based model.
We will refer to these problems in this setting &SAFEP” and EXISTSAFEP", respectively, and
use prefixw to denote their weighted variants. The problem3IGSAFEP” and (W)EXISTSAFEP”
appear to be somewhat harder than their counterparts inritji@al model. Indeed, while voters
in S, have similar preferences, their truthful votes may be sutigtlly different, so it now matters
whichof the voters inS, decide to follow the manipulator (rather than jastw manyof them, as in
the original model). In particular, it is not clear 8$AFEP” (F) is polynomial-time solvable for any
voting rule 7. However, it turns out that both of our problems are easyfapproval, even with
weighted voters.

Theorem 9. For k-approval, the problems/| SSAFEP” andWEXISTSAFEP™ are inP.

In the preference-based model, a vatdollows a recommendation to vote in a particular way
if it comes from a voter whose preferences are similar toghafs. However, this approach does
not describe settings where a voter follows a recommendaitit so much because he trusts the
recommender, but for pragmatic purposes, i.e., becauspripmsed manipulation advances her
own goals. Clearly, this may happen even if the overall pesfees of the original manipulator and
the follower are substantially different. We will now praggoa model that aims to capture this type
of scenarios.

Goal-Based Extension If the potential follower’s preferences are different frémose of the ma-
nipulator, his decision to join the manipulating coalitisrikely to depend on the specific manipu-
lation that is being proposed. Thus, in this subsection viedefine the set of potential followets
in a way that depends both on the original manipulator’stithenn and his proposed votg, i.e., we
haveF = F;(L). Note, however, that it is not immediately obvious how toideavhether a voter
j can benefit from following’s suggestion to voté, and thus should be included in the $&tL).
Indeed, the benefit tp depends on which other voters are in the5€f.), which indicates that the
definition of the sef; (L) has to be self-referential.

In more detail, for a given voting rul&, an electionC, V') with a preference profil&, a voter
i € V and a votel, we say that a voter is pivotal for a sety/ C V with respecttdi, L) if j ¢ U,
R; # LandF(R_wugy) (L)) =; F(R-u(L)). Thatis, a votey is pivotal for a set if when
the voters inU vote according td., it is profitable forj to join them. Now, it might appear natural
to define the follower set fofi, L) as the set that consists ©&nd all voterg € V that are pivotal
with respect tqz, L) for some setV C V. However, this definition is too broad: a voter is included
as long as it is pivotal for some subgétC V, even if the voters i/ cannot possibly benefit from
voting L. To exclude such scenarios, we need to requirelthigelf is also drawn from the follower
set. Formally, we say thdt; (L) is afollower setfor (i, L) if it is a maximal setF that satisfies the
following condition:

Vije F[(j=1) Vv (3U C Fs.t.jis pivotal forU with respect tqi, L))] *

Observe that this means thit( L) is a fixed point of a mapping fro®" to 2V, i.e., this definition
is indeed self-referential. To see that the follower senigjuely defined for any € V' and any vote
L, note that the union of any two sets that satisfy conditigra{$o satisfies (*); note also that we
always have € F;(L).
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We can now define what it means fbrto be astrategic vote in the goal-based extens@md a
safe strategic vote in the goal-based exten&ipmeplacing the conditioty C .S; with U C F;(L)
in Definition 2. We will denote the computational problemschecking whether a given vote is a
safe strategic vote for a given voter in the goal-based sidarand whether a given voter has a safe
strategic vote in the goal-based extension $§AFEY" and ExiSTSAFEY, respectively, and use the
prefixw to refer to weighted versions of these problems.

Two remarks are in order. First, it may be the case that evaugthi benefits from proposing to
vote L, he is never pivotal with respect {o, L) (this can happen, e.g.,i6 weight is much smaller
that that of the other voters). Thus, we need to explicitiudes in the setF;(L), to avoid the
paradoxical situation whereg F;(L). Second, our definition of a safe vote only guarantees safety
to the original manipulator, but not to her followers. In t@st, in the preference-based extension,
any vote that is safe for the original manipulator is als@ $af all similar voters.

The definition of a safe strategic vote in the goal-basedsid@ captures a number of situations
not accounted for by the definition of a safe strategic votbépreference-based extension. To see
this, consider the following example.

Example 2. Consider an election with the set of candidatés- {qa, b, ¢, d, e}, and three voters,
2, and3, whose preferences are givenby-1 b =1 c =1 d =1 ¢e,e =2 b =2 a =2 d =2 ¢, and
d >3 a =3 b3 c>3e. Suppose that the voting rule is Plurality, and the ties an&dm according
to the priority ordekl > b > ¢ > e > a.

Under truthful voting,d is the winner, so we hav8; # Ss. Thus, in the preference-based
extension, a vote that ranksfirst is a safe strategic vote for vot2r but a vote that rankifirst is
not. On the other hand, Iét be any vote that ranksfirst. ThenFy (L) = F»(L) = {1,2}. Indeed,
if voter 1 switches to voting_, the winner is stilld, but it becomes profitable for voterto join her,
and vice versa. On the other hand, it is easy to see that ¥ai@nnot profit by voting_. It follows
that in the goal-based extensidrnis a safe strategic vote for voter

From a practical perspective, it is plausible that in Exariblvotersl and2 would be able
to reconcile their differences (even though they are sulisfa—voter1 ranks voter2’s favorite
candidate last) and jointly vote fér as this is beneficial for both of them. Thus, at least in some
situations the model provided by the goal-based extensiartuitively more appealing. However,
computationally it is considerably harder to deal with titia@ preference-based extension.

Indeed, it is not immediately clear how to compute the Bgtl), as its definition is non-
algorithmic in nature. While one can consider all subset¥ adind check whether they satisfy
condition (*), this approach is obviously inefficient. Wencavoid full enumeration if have access
to a procedured(i, L, j, W) that for each pai(i, L), each voterj € V and each séi’ C V' can
check ifj = i or there is a set/ C W such thayj is pivotal forU with respect tq(¢, L). Indeed,
if this is the case, we can compuiig(L) as follows. We start withV = V', run A(¢, L, j, W) for
all j € W, and letiW”’ to be the set of all voters for whicH(i, L, j, W) outputs “yes”. We then set
W = W’, and iterate this step unfi’ = W’. In the end, we seF;(L) = W. The correctness of
this procedure can be proven by induction on the number i@tims and follows from the fact that
if a setW contains no subséf that is pivotal forj, then no smaller sé¥’ C W can contain such a
subset. Moreover, since each iteration reduces the sidé, dhe process converges after at most
iterations. Thus, this algorithm runs in polynomial timetié procedured (i, L, j, W) is efficiently
implementable. We will now show that this is indeed the cas®furality (with unweighted voters).

Theorem 10. Given an electioffC, V') with a preference profil&k and unweighted voters, a ma-
nipulatori, and a votel,, we can compute the se}(L) with respect to Plurality in time polynomial
in the input size.

We can use Theorem 10 to show that under Plurality one camndiet in polynomial time
whether a given voté is safe for a playet, as well as find a safe strategic vote fdf one exists,
as long as the voters are unweighted.
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Theorem 11. The problem$sSAFEY! andExISTSAFEY are polynomial-time solvable for Plurality.

For weighted voters, computing the follower set is comporetily hard even for Plurality.
While this result does not immediately imply thatl SSAFEY and WEXISTSAFEY! are also hard
for Plurality, it indicates that these problems are unijkel be easily solvable.

Theorem 12. Given an instancéC, V, w, R) of Plurality elections, voters, j € V and a voteL,
it is NP-hard to decide whether € F;(L).

Just a little further afield, checking whether a given votsage with respect t8-approval is
computationally hard even for unweighted voters. This isantrast with the standard model and
the preference-based extension, where safely manipglatapproval is easy for arbitrary.

Theorem 13. ISSAFEY is coNP-hard for 3-approval.

Thus, while the preference-based extension appears torilarsio the original model of [11]
from the computational perspective, the goal-based extefsconsiderably more difficult to work
with.

7 Conclusions

In this paper, we started the investigation of algorithnaimplexity of safe manipulation, as defined

by Slinko and White [11]. We showed that finding a safe mariponh is easy fok-approval for an
arbitrary value ofc and for Bucklin, even with weighted voters. Somewhat ssipgly, checking
whether a given manipulation is safe appears to be a moreuiffiroblem, at least for weighted
voters: while this problem is polynomial-time solvable feapproval, it iscoNP-hard for Buck-
lin. For the Borda rule, both checking whether a given malaifian is safe and identifying a safe
manipulation is hard when the voters are weighted.

We also proposed two ways of extending the notion of safe pudation to heterogeneous
groups of manipulators, and initiated the study of componal complexity of related questions.
Our first extension of the model of [11] is very simple and nalitand seems to behave similarly to
the original model from the algorithmic perspective. Hoearguably, it does not capture some of
the scenarios that may occur in practice. Our second modehisiderably richer, but many of the
associated computational problems become intractable.

A natural open question is determining the complexity ofifigch safe strategic vote for voting
rules not considered in this paper, such as Copeland, R&dies) or Maximin. Moreover, for some
of the voting rules we have investigated, the picture givethis paper is incomplete. In particular, it
would be interesting to understand the computational ceriiyl of finding a safe manipulation for
Borda (and, more generally, for all scoring rules) for urgiéd voters. The problem for Borda is
particularly intriguing as this is perhaps the only widelydied voting rule for which the complexity
of unweighted coalitional manipulation in the standard elaslnot known.

Other exciting research directions include formalizind awestigating the problem of selecting
the best safe manipulation (is it the one that succeeds nfitae @r one that achieves better results
when it succeeds?), and extending our analysis to othes tgp#e-breaking rules, such as, e.g.,
randomized tie-breaking rules. However, the latter qoasthay require modifying the notion of
a safe manipulation, as the outcome of a strategic vote besanprobability distribution over the
alternatives.

References

[1] J.J. Bartholdi, IlI, C. A. Tovey, and M. Trick. The comgtional difficulty of manipulating an
election,Social Choice and Welfay&:227—-241, 1989.

89



(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

J. J. Bartholdi, Ill and J. B. Orlin. Single transferahlete resists strategic votingSocial
Choice and WelfareB(4):341-354,1991.

V. Conitzer, M. Rognlie, L. Xia. Preference FunctionstlScore Rankings and Maximum
Likelihood Estimation, irProc. IJCAI-09 pp. 109-115, 2009.

V. Conitzer, T. Sandholm, and J. Lang, When ere electiwitis few candidates hard to manip-
ulate?,J. ACM 54:1-33.

P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Cogelating: ties matter, ifProc. of
AAMAS-082008.

M. R. Garey, D. S. Johnson. Computers and IntractabilkyGuide to the Theory of NP-
Completeness, W. H. Freeman, 1979.

A. F. Gibbard. Manipulation of voting schemes: a geneeallt, Econometrica41:597-601,
1973.

H. Moulin. Choice functions over a finite set: a summa®gcial Choice and Welfay@:147—
160, 1985.

C. Papadimitriou. Computational Complexity, Addisor$iéy, 1994.

M. A. Satterthwaite. Strategy-proofness and Arrovgaditions: existence and correspondence
theorems for voting procedures and social welfare funstiafournal of Economic Theory
10:187-217, 1975.

A. Slinko, S. White. Non-dictatorial Social Choice RalAre Safely Manipulable, iRroc. of
COMSOC-082008.

L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer, andS] Rosenschein. Complexity of
unweighted coalitional manipulation under some commoingatules, inProc. of IJCAI-09
2009.

M. Zuckerman, A. D. Procaccia, and J. S. Rosenscheigorthms for the coalitional manip-
ulation problem Artificial Intelligence 173(2):392-412, 2009.

Noam Hazon

Department of Computer Science
Bar llan University

Israel

Email:hazonn@s. bi u. ac. i |

Edith Elkind

Division of Mathematical Science
Nanyang Technological University
Singapore

Email:eel ki nd@t u. edu. sg

90



An Empirical Study of Borda Manipulation

Jessica Davies, George Katsirelos, Nina Narodytska, and Toby Walsh

Abstract

We study the problem of coalitional manipulation in elections using the unweighted Borda
rule. We provide empirical evidence of the manipulability of Borda elections in the form of
two new greedy manipulation algorithms based on intuitions from the bin-packing and multi-
processor scheduling domains. Although we have not been able to show that these algorithms
beat existing methods in the worst-case, our empirical evaluation shows that they significantly
outperform the existing method and are able to find optimal manipulations in the vast majority
of the randomly generated elections that we tested. These empirical results provide further
evidence that the Borda rule provides little defense against coalitional manipulation.

1 Introduction

Elections are a well established mechanism to aggregate the preferences of individuals to reach
a consensus decision. New applications of voting and social choice have emerged in the field of
multiagent systems and are used on a daily basis by many people in the form of polls and ratings
systems on the internet. As an election is meant to be a fair way of reaching a decision, it is
important to study the weaknesses of different voting systems with respect to their vulnerability to
manipulation, bribery and control. In this paper we focus on the manipulation problem, where a
coalition of agents votes to ensure a desired outcome rather than reporting their true preferences. It
is assumed that the manipulators act with full knowledge of the votes of the remaining electorate,
but even so, the structure of the voting system may make it difficult to ensure that the desired
candidate wins. No practical voting system can prevent a coalition of enough manipulators from
achieving their goal in all elections. However, some mechanisms may be easier to manipulate than
others. For example, the required size of the coalition may be impractical, especially in real-world
settings where obtaining the cooperation of and coordinating more than two or three people can
be difficult. Even if the number of extra votes isn’t a concern, calculating the required set of
manipulator votes may be computationally infeasible.

In this work we study the voting system based on using the Borda rule to aggregate the votes.
The Borda rule is a positional scoring rule proposed by the French scientist Jean-Charles de Borda
in 1770. Like all positional scoring rules, each voter simply ranks the m candidates according
to their preference. The votes are aggregated by adding a score of m — k to a candidate for
each time it appears k' in a vote. The candidates with the highest aggregated score win the
election. The simplicity of this rule may have contributed to its independent reinvention on at
least one other occasion; political elections in two Pacific island states use slight modifications of
the Borda rule [11]. It is also commonly used in competitions such as the Eurovision song con-
test, the election of the Most Valuable Player in major league baseball, and the Robocup competition.

The susceptibility of Borda elections to manipulation has been strongly suggested by recent
theoretical work. Although the problem is NP-hard if the manipulators’ votes are weighted [6], in
the unweighted case the complexity class is still frustratingly unknown. Xia et al. observe that:

“The exact complexity of the problem [coalition manipulation with unweighted votes]
is now known with respect to almost all of the prominent voting rules, with the glaring
exception of Borda” [17]
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A number of recent theoretical results suggest that manipulation may often be computational
easy [5, 10, 15, 16]. Brelsford et al. [3] showed that weighted (and unweighted) Borda manipulation
has a FPTAS, which means that finding a very close to optimal manipulation can be done in poly-
nomial time. Along these lines, Zuckerman et al. [19] gave a simple greedy algorithm to calculate a
manipulation, that in the unweighted case uses at most one more manipulator than is optimal. In ad-
dition, even Borda himself appears to have recognised that his rule was susceptible to manipulation,
having retorted that:

“My scheme is intended only for honest men”, quoted on page 182 of [2]

More recently, strategic voting was identified in the 1991 presidential candidate elections in
the Republic of Kiribati (where a variant of the Borda rule is used) [11]. This suggests that the
manipulability of the Borda rule is not just a theoretical possibility but a practical reality.

The manipulability of voting rules has also been studied empirically [13, 14]. For example,
Walsh studied the Single Transferable Vote rule, which is theoretically NP-hard to manipulate.
However, he provided ample evidence that in practise, elections using this rule are easy to
manipulate [14]. We provide further empirical evidence that the Borda rule provides little defense
to manipulation, by showing that in many elections, an optimal manipulation can be found (and
often verified) in polynomial time. Our starting point is the greedy algorithm of Zuckerman et
al. [19], which decides the vote of each manipulator in turn by reversing the candidates ordered by
current score. Although this algorithm provides a guarantee that in the worst case it only uses one
more manipulator than is optimal, the theoretical analysis does not extend to answer the question
of how frequently it uses this extra manipulator. Perhaps another greedy algorithm exists that finds
the optimal manipulation much more frequently. If so, it could be used in conjunction with that of
Zuckerman et al. to provide a verified optimal solution whenever it finds a solution using one fewer
manipulator. We introduce two new greedy algorithms, based on intuitions from the bin-packing
and multiprocessor scheduling domains, and provide theoretical and empirical comparison between
their performance and that of Zuckerman et al.’s greedy algorithm. The new algorithms result in a
significant improvement over Zuckerman et al.’s algorithm, allowing the optimal manipulation to
be found and verified quickly on 99% of more than 60,000 randomly generated elections.

The paper continues with the definitions and background in Section 2, followed in Section 3 by
our new greedy algorithms. Section 4 presents the experimental results and we conclude in the last
section.

2 Background

In this section we introduce notation and definitions that will be used throughout the paper.

An election is a pair E = (V,m) where m is the number of candidates. We refer to the
distinguished candidate who the manipulators want to win the election as candidate 1 < d < m;
the other m — 1 candidates are then the competing candidates. V is a set of votes, where a vote is
an ordering of the candidates v = ¢; > ¢z > ... > ¢, such that | J¢; = {1,..,m}. Given a vote
v, the score of a candidate 7 under the Borda rule, denoted s(v, ), equals m — k where ¢, = . If
V is a set of votes, then the score of a candidate ¢ given by these votes is s(V,i) = E,cvs(v,1).
Given an election E = (V,m), the winners are defined as those candidates 1 < i < m such that
s(V, 1) is maximal. A manipulation of an election E = (V,m) is a set of manipulator votes M
such that s(V U M,d) > s(V U M, i) for all i # d. We assume that ties are broken in favour of the
manipulators. The manipulation problem is to find a manipulation such that |M| = n is minimized.
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Sometimes we will refer to a manipulation using n votes as an n-manipulation.
We define some additional notation that will be helpful in describing our greedy algorithms.

Definition 1 Given an election E = (V,m), a number of manipulators n, the gap of candidate
1 < i <m, is defined as gg (i) = s(V,d) +n(m — 1) — s(V, i). If the context is clear, we call the
gap of candidate 1 simply g;.

Intuitively, the gap of a candidate ¢ is the difference between the score the distinguished candidate
receives after the manipulators have voted, and the score of ¢ before the manipulators vote. Without
loss of generality, we assume that the manipulators always rank d first. Note that if g; is negative for
any ¢, then there is no n-manipulation.

Definition 2 Given an election E = (V,m), an n-manipulation matrix Ag_,, is an n X m matrix
such that all elements of column d are equal to m — 1, each row contains all numbers from 0 to
m — 1 and column i sums to at most gg (i) forall 1 <i < m.

It is easy to see that such a matrix represents an n-manipulation of the election, where each column
represents a competing candidate, and each row corresponds to the vote of a distinct manipulator.
We will drop the parameters E and n and refer to matrix A when the context is clear. We use the
notation A(7) to denote the 7** column of A, and sum/(A(7)) is defined to be the sum of the elements
in A(3).

Observation 1 Given an election E = (V, m) and a number of manipulators n, if £ gg (i) <
(n/2)(m — 1)(m — 2) then there is no n-manipulation.

This follows directly from Definition 2, since each of the n manipulator votes contributes a total of
Y2k = (1/2)(m — 1)(m — 2) score to the scores of the competing candidates. In other words,
there must be enough difference between the original scores of the competing candidates and the
achievable score of the distinguished candidate, otherwise an n-manipulation can not exist. We call
the multiset containing n copies of each 0 < k < m — 2 5,,.

The greedy algorithm of Zuckerman et al. [19] is shown in Figure 1, and from now on will
be referred to as REVERSE. The manipulation matrix A starts off empty, and is augmented row
by row until enough manipulators have been added that the distinguished candidate wins. The
sort procedure puts the distinguished candidate first, and then sorts the competing candidates in
increasing order by their current score, in order to create the next manipulator’s vote.

Example 1. Suppose E = (V,5) where V contains the votes vy = 1 > 2 >3 > 4 > 5, vy =
2>3>4>1>5,v3=3>4>1>2>bandvy=4>1>2>3>05,andd = 5.
Then s(V,5) = 0, and s(V,4) = 10 for all competing candidates ¢ < 5. In order for candidate 5
to win the election, at least 4 manipulators are required since ¥;gp 3(i) = 4% (4% 3 —10) = 8
but (n/2)(m — 1)(m — 2) = 1.5 x4 % 3 = 18. REVERSE will make the first manipulator vote
wy =5 >1>2 >3 > 4 (ordering the competing candidates arbitrarily), at which point, e.g.,
s(VU{w1},1) = 104 3 = 13. The candidates’ scores are shown in Figure 2 after each iteration of
the while loop. Since s(V U {wy, wa, w3, w4}, 5) = 16, REVERSE finds the optimal manipulation.

3 Greedy Algorithms for Borda Manipulation

The definition of manipulation matrix from Section 2 is a useful abstraction, that suggests a connec-
tion to bin-packing or multiprocessor scheduling [4]. Intuitively, the elements of the manipulators
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REVERSE (V, m, d)

1. A[i] « 0 for all 1<i<m

2. n «— 0

3. while max_i{sum(A[i]) + s(V,1i)} > sum(A[d]) + s(V,d)

4. w «— sort{i < j<= (sum( [i])+s(V,i) < sum(A[j])+s(V,]J) or i=d)}
5 A[i].push(s(w,i)) for all i

6 n«<n+1

7. return A

Figure 1: The greedy algorithm of Zuckerman et al. [19].

Candidate 7 | 1 2 3 4 5

s(V,i) |10 10 10 10 0

s(VU{wi},i) |13 12 11 10 4
s(VU{wy,wo},i) [ 13 13 13 13 8

s(V U {wy,wy,ws},i) | 16 15 14 13 12
(VU{wl,wQ,w37w4}, ) 16 16 16 16 16

Figure 2: Scores given by REVERSE, for Example 1.

votes, .S,,, must be assigned to the columns of A such that the sum of each column is at most g;.
In the bin-packing problem, a set of objects with sizes between zero and one must be grouped into
a minimum number of bins such that the sum of the objects in each bin is at most one. So in our
case, the set of objects would be S, representing the elements whose positions in manipulation
matrix A are initially unknown. One of the main differences is that our matrix A has a constraint on
each row, that it must contain all values from O to m — 1, and it is not clear how this translates to
other domains. Luckily, Theorem 3.1 tells us that we don’t have to worry about this constraint. If
a correctly sized matrix B containing n elements equal to j for each 0 < j < m — 1 can be found
such that the column sums are at most the candidate’s gaps and column d contains all the m — 1’s,
then it can always be converted to a manipulation matrix A.

Theorem 3.1 Suppose there exists an n X m matrix B such that the total number of elements in B
equal to k, for each 0 < k < m — 1 is n. Let the sum of the elements in the i'" column of B be
gi. Then there is another n X m matrix A with the same set of elements as B and the same column
sums, such that each row contains exactly one element equal to k, for each0 < k < m — 1.

Proof By induction on n. When n = 1, we have B = [by 1, ..., b1 ,,] such that B contains exactly
one element of value k for each 0 < k < m — 1. Therefore, just set A = B.

Assume that the theorem holds for all numbers of rows less than n. We prove that it also holds
for n rows. Let B be an n X m matrix such that the total number of elements in B equal to k, for
each 0 < k < m — 1is n. Let the sum of the elements in the 7*" column be g;.

Define a bipartite graph G = (SUT, E) such that the set of left-hand vertices is S = {0, ..., m —
1} (these will represent the set of values of the elements of row 1 in A), and the set of right-hand
vertices is T' = {1, ..., m} representing the columns of B. FE contains an edge (i, j); foreachi € S,
jeTand1l <k <mnsuchthati = B(k,j).

Note that there can be up to n edges between two vertices ¢ and j. Since every value appears n
times in B, |{(k,j) : i = B(k,j)}| = n and so the degree of each i € S is exactly n. For each
j € T, the degree will also be n: one edge to each i = B(k,j),1 <k <n.

Therefore, if we take any P C S, n|P| edges leave P. Since every vertex in 1" is also of degree
n, each vertex in the neighbourhood of P, nbhd(P), can accommodate at most n incoming edges.
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Therefore, |nbhd(P)| is not less than |P|. Since the Hall condition holds [8], there is a perfect
matching in G that assigns each value from 0 to mm — 1 to a position in the first row of B, as follows.

Let M = {e1,...,em} C E be the set of edges in the matching. For each e = (4, 7). € M, let
A(1,j) = i. Since M is a matching, each ¢, 0 < ¢ < m — 1 appears in exactly one column, and each
column is assigned exactly one element. Therefore, the first row of A is well defined. Also note that
for each column j, A(1, j) appears in the j** column of B.

Let B’ be the matrix defined by taking B and removing one element equal to A(1, j) from each
column j. Then B’ is an n — 1 X m matrix containing exactly n — 1 elements equal to 7 for each
0 < i < m — 1, since the elements removed were one of each value. The column sums for B’ are
g; —A(1, j) for all columns j. By the induction hypothesis, there exists an n— 1 x m matrix A’ such
that A’ contains the same elements as B’ and the same column sums, but each row of A’ contains
exactly one element equal to 7, for 0 < ¢ < m — 1. Given that we’ve already defined the first row of
A, let the remaining n — 1 rows be A’. Then A contains the same set of values as B, with the same
column sums A(1, j) + (g9; — A(1,4)) = g;, and every row of A contains exactly one element equal
tos, foreach0 <i<m —1.

Therefore, by induction, the theorem holds for all n. O

If a matrix B exists whose column sums are at most the value of the candidates’ gaps, and
sum(B[d]) = g4, then matrix A gives a manipulation, where each row of A defines the vote of one
of the manipulators. Therefore, we can devise algorithms to discover B and be assured that A exists.

However, the manipulation problem has two additional differences to bin-packing. First,
the number of objects in each bin must be exactly n, while bin-packing has no such constraint.
Secondly, each of our bins has a different maximum capacity g;. The former constraint has been
studied in the multiprocessor scheduling domain, where the problem is to schedule jobs on a set of
n processors such that the memory resources are never exceeded and the time to complete all jobs
is minimized [9]. Our problem corresponds to the case where each job takes a unit of processing
time. For each element a € S,,, there is a job with memory requirement equal to a. The number of
processors is equal to the number of manipulators n, and the amount of available memory resource
at time step ¢ is equal to g;. We wish to find a schedule that uses m — 1 time steps, which will be
possible if an n-manipulation exists. Krause et al. consider the case where the memory resource
remains constant over time, and present theoretical analysis of a simple scheduling algorithm that
assigns the jobs one at a time to particular time steps. Their scheduler takes the unassigned job with
largest memory requirements and assigns it to a time step (with at least one processor free), that has
the maximum remaining available memory. If no time step exists that can accommodate this job, a
new time step is added.

Our first greedy algorithm is based on this same intuition, where it translates to giving the largest
scores to the competing candidates that have the least score so far. In this it is similar to REVERSE,
but we are now free to pursue this heuristic strictly, while REVERSE for example decides which
candidate the second voter’s m — 2 should be assigned to after the smaller scores of the first manip-
ulator are assigned. This can sometimes be an advantage, but it may also lead the algorithm to make
more serious mistakes, as we will show.

3.1 Largest Score in Largest Gap

Our first greedy algorithm, LSLG is shown in Figure 3. LSLG takes the number of manipulators as
an argument and returns the matrix B (from Theorem 3.1) if it is able to find an n-manipulation. On
line 1, the matrix B (represented as an array of vectors) is initialized so that every column vector
is empty. On line 2, the column corresponding to the distinguished candidate is filled with the
maximum value, m — 1. On line 3, the array S is initialized with the sorted elements of .S,, defined
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LSLG (V, n, d)
// B[1i] is the ¢"th column of B
1. B[1i] <« 0 for all 1<i<m
// B[d] is filled with n m-1’s
2. B[d] « {m-1,...,m-1}
// Each score is repeated n times in S
3. 8 « {m-2,...,m2,0-3,...,m-3,...,1,...,1,0,...,0}

4. while s # {}
// The column of B that contains fewer than n elements,
// with the lowest sum

5. c « argmin_i{sum(B[i]) + s(V,i) : [B[i]] < n}

6. Blc].push(S[0])

7. S «— S - S[0]

8. if sum(B[d]) + s(V,d) > max_i{sum(B[i]) + s(V,1i)}

9. return B

10.else

11. return Failure

Figure 3: The greedy algorithm based on placing the largest remaining score in the column of A
with the most room.

in Section 2. Each iteration of the while loop on lines 4-7 removes the first (largest) element of .S
and pushes it (on line 6) into the column of B that has the lowest sum so far. Note that we use the
notation |B(i)| to denote the current number of elements in the i*” column of B. Once all elements
of S have been assigned, the loop terminates and line 8 checks if a valid manipulation has been
produced. If so, B is returned, and if not, the algorithm reports Failure.

The following proposition shows that this algorithm can sometimes find an optimal manipulation
when REVERSE fails, and this is true for an infinite family of instances.

Proposition 1 Let E = (V,m) be an election such that m > 2 is even, d = m, s(V,d) = 0 and
s(V,i) = +iforalli # d. Then LSLG finds an optimal 2-manipulation, but REVERSE produces
a 3-manipulation.

Proof

First, note that two non-manipulator votes are always sufficient to create such an election. Let
0=<1,2,...,m—1>and let

, m m m m
=< —+41,—= —+——-1,1,2,...,
o 5 + B +

2, ...
+2, D) 2

>

SIE

Theno + o’ =

m m m m m m m
<(1+3+1). (245 +2) e (F1+ 5+ 5 1) (F 1) e (m-14+T) >
which gives us % +2xforl <z < % — 1 and % +2x—1forl <z < %, or in other words,
T t+iforalll <i<m—1(.e. alli# d).

The first vote generated by REVERSE isrr; = m > 1 > 2 > ... > m — 1, after which
s(VU{ri},i) = & + m — 1 for all competing candidates, which is larger than the score of the
distinguished candidate s(V U {r;}, m) = m — 1. Therefore another manipulator is added, without
loss of generality its vote is 7 = m > 1 > 2 > ....m — 1. The resulting scores of the competing
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candidates are s(V U {r1,r2},4) = F + (m — 1) + (m —i — 1) = (5/2)m — 2 — 4. So candidate
i = 1 still has larger score than s(V U {ry, 72}, m) = 2m — 2. Therefore, REVERSE does not find
a 2-manipulation.

The first m—1 iterations of LSLG will place
the k" largest score from Sy into the k*" col- o 0
umn of matrix B for 1 < k < m — 1. Note that
the k" largest score is m — 2 — |[(k — 1)/2]. |m21 [m22 | m2:2
Let B,,—1 be the matrix at this point. Then
sum(Bp—1(i)) + s(V,i) = (m =2 — |[(i —
1)/2J)+%+if0ra]1i<m. The nextm — 1 I N me ||

. . . -3 m/2
iterations of LSLG will place the k" largest m3 | " +

score from Sy into the k*" column of matrix ma | ™ m+/z m-1
Bform < k < 2(m —1). So column i < m mi2+5 |
will receive the element %2 — 1 — [(i — 1)/2]. mi2+4
Let By(;,—1) be the matrix when the loop ter- m/2+3
minates. Then sum(Bs(m—1)(4)) + s(V,i) = m/2+2
(m—2—[G-1)/2)+(F+i)+(p—1- ™"
[(i—1)/2]) = 2(m—1) forall ¢ < m, while the
achievable score of m is also 2(m — 1). There-
fore, LSLG does find a 2-manipulation. Fig-
ure 4 shows the matrix generated by LSLG (col-
umn d = m is omitted), where the shaded areas
represents the scores s(V, 4) for each ¢ < m.

m/2-3 | m/2-3
m/2 m/2-1

Figure 4: The 2-manipulation generated by LSLG
for the election in Proposition 1

O
Unfortunately, LSLG does not share the guarantee of REVERSE that in the worst case it re-
quires one extra manipulator than is optimal. In fact, Theorem 3.2 shows that the number of extra
manipulators LSLG might require is unbounded.

Theorem 3.2 Let k be positive integer greater than zero and divisible by 36. Let s(V,1) = 6k,
s(V,2) = 4k, s(V,3) = 2k, s(V,4) = 0 be the scores of four candidates after some non-
manipulators V' vote, and let d = 4. Then REVERSE will find the optimal manipulation, using
2k manipulators. However, LSLG requires at least 2k + k/9 — 3 manipulators.

Proof First, we should mention that for any k there is a set of votes V}, that gives the specified scores
to the four candidates: V}, is simply 2k votes, all equal to 1 > 2 > 3 > 4. REVERSE will use 2k
manipulators, all voting 4 > 3 > 2 > 1, to achieve a score of 6k for all candidates (the only optimal
manipulation). It remains to argue that LSLG requires more than 2k+k/9—4 manipulators. Assume
for contradiction that we find a manipulation using n = 2k+k/9—4 = 19k/9—4 manipulators. We
will follow the execution of LSLG until a contradiction is obtained. Note that given our definition
of n, since k is divisible by 4 and 9, "5"’ is an integer.

First, the algorithm will place & 2’s in B[3], at which point sum(B[3]) = 2k + 2k = 4k =
$(Vi, 2). Then it will begin to place 2’s in columns B[2] and B[3] evenly, until all remaining n — k
2’s have been placed into B. At this point, B[2] contains %’k 2’s, and the number of 2’s that B[3]
contains is k + 2% = k/2 +n/2 = k/2 + (19k/9 — 4)/2 = 14k/9 — 2 < 19k/9 — 4 = n. So at
this point, B[3] is not full yet and B[2] isn’t either (it has fewer elements than B[3]). Both columns
sum to 4k +2(25%) = 46k /9 — 4 = 5k + k/9 — 4 < 6k. Therefore, the algorithm will start putting
I’s in both B[2] and B[3] evenly, until either their column sums reach 6% or B[3] gets filled. In fact,

B[3] will be filled before its sum reaches 6k, since B[3] requires "7% more elements to be filled, but

at this point, sum(B[2]) = sum(B[3]) = 46k/9 — 4 + “5% = 51k/9 — 6 = 5k + 2k /3 — 6 < 6k.
Now, the algorithm will continue by putting k/3 + 6 1’s into B[2], at which point sum(B[2]) =
51k/9 — 6 + k/3 + 6 = 6k. Then the algorithm will start putting 1’s evenly in both B[1] and B[2],
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LSLA (V,n)
1. B[i] « @ for all 1<i<m
// B[d] 1is filled with n m-1’s
2. B[d] <« {m-1,...,m-1}
// Each score 1s repeated n times in S

3. $ « {m-2,...,m2,m-3,...,m-3,...,1,...,1,0,...,0}
4. while s # {}
// The column of B with highest average desired score
5. c « argmax_i{ [g_i-sum(B[i])] / [n—-IB[ill]1] : [B[i]l| < n}
6. s ¢« chooseScore(g_c-sum(B[c]), S)
7. B[c] .push (s)
8. S « s - {s}

9. if sum(B[d]) + s(V,d) > max-i{sum(B[i]) + s(V,i)}
10. return B

11 .else

12. return Failure

chooseScore (g, S)

1. s «— max{s € S : s < g}
2. if s = None

3. s = S[0]

4. return s

Figure 5: The greedy algorithm based on average desired score, for n manipulators.

until either it runs out of 1’s or B[2] is filled. In fact, the 1’s will run out before B[2] is filled, since
B[2] requires n— (“5% + 25% + k/3+6) = 2k/3—6 more elements, which is equal to the number of
remaining 1’s, but these are spread between B[1] and B[2]. So B[2] will get (2k/3—6)/2 = k/3—3
additional 1’s, for a total of sum(B[2]) = 4k + 2(“5%) + 5% + k/3 + 6 + k/3 — 3 = 19k/3 —
3 > 19k/3 — 12 = 3n. Since sum(B[2]) > 3n there is no manipulation using n = 19%/9 — 4
manipulators. Therefore, LSLG requires at least n + 1 = 2k + k/9 — 3 manipulators. O

This result shows the weakness of LSLG, that it only considers the relative sizes of the competing
candidates’ current scores. Therefore if two candidates’ column sums ever become equal during
LSLG, they will often be treated equivalently for the remainder of the iterations. In the example
from Theorem 3.2, this is the fatal mistake, since at the point where sum(B[3]) becomes equal to
sum(BJ[2]), column 3 requires fewer additional elements before it is filled (i.e. |B[2]| < |B[3]|).
Therefore, it is important for column 3 to receive larger elements than column 2. In fact, all of the
largest elements must be taken by column 3, and none given to column 2. However, LSLG will
begin treating the two equal columns the same, distributing the remaining 2’s evenly between B[2]
and B([3]. This observation motivates our second greedy algorihthm.

3.2 Average Desired Score

The second greedy algorithm is based on the idea that it is not enough to simply assign the largest
scores to the columns of B that have the largest gap. Each column of B also requires exactly
n elements in order to be filled, where n is the number of manipulators currently attempted. To
balance these two requirements, we can look at the remaining gap g; — sum(B]i]) and divide it
by the remaining number of scores that must be added to column 4, n — | B[é]|. Notice that if we
had n — |Bl[i]| scores of this average size available (for each ), we could fill every column of B
perfectly. Since we don’t, a sensible heuristic is to put the largest scores in the columns that have
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jl1 2 3 4 5 6 71 8
S(Vi,j) | 67 60 59 58 58 52 52 42
S(Va,j) | 41 34 30 27 27 26 25 14

Figure 6: Examples where LSLG beats LSLA by finding the optimal number of manipulators vs.
using one extra.

largest average desired score. This algorithm, called LSLA, is shown in Figure 5.

The structure of LSLA is similar to LSLG, so it will not be explained line by line. Note that
on line 5 of LSLA we need some way to break ties between candidates that have the same average
desired score. We could break ties arbitrarily, but we also consider choosing the candidate ¢ with
minimum |B[7]| since this column needs more additional scores. We found experimentally that the
latter tie breaking policy works better overall, although there are some instances where only the
arbitrary policy finds the optimal manipulation. The procedure chooseScore is used to avoid
violating the maximum column sum g; earlier than necessary. Given an array of unassigned scores
and the size of a column’s remaining gap, it returns the largest unassigned score that fits in the
remaining gap. We found experimentally that this was vital to finding the optimal manipulation in
the majority of cases.

We now compare LSLA to the other two greedy algorithms. LSLA behaves similarly to
REVERSE on the instances from Theorem 3.2, and thus it performs better than LSLG on an infi-
nite family of instances. In fact, in the next section we will see that we have never found an instance
for which REVERSE can find an optimal manipulation but LSLA fails. However, cases do exist
where the simpler greedy algorithm LSLG finds the optimal manipulation and LSLA fails. Two
examples are shown in Figure 6, but analysis of these cases has failed to produce a generalizable
pattern. In the next section we provide further experimental evidence of the superiority of LSLA
compared to the other two algorithms.

4 Empirical Comparison

In this section we compare the performance of REVERSE, LSLG and LSLA from a practical
perspective. Our experimental setup is similar to that of Walsh [14]. We consider two methods of
generating non-manipulator votes, the uniform random votes model and the Polya Eggenberger urn
model [1]. In the uniform random votes model, each vote is drawn uniformly at random from all
m! possible votes. In the urn model, votes are drawn from an urn at random, but we place them
back into the urn along with a other votes of the same type. This model attempts to capture varying
degrees of social homogeneity, or the similarity between voters’ preferences. We set a = m)!,
which means that there is a 50% chance that the second vote is the same as the first. It would be
interesting to consider varying the degree of vote similarity by experimenting with different values
of a. In future work we also intend to study votes generated from real-world elections, e.g. [7].
We generated election instances for numbers of candidates m and numbers of non-manipulators p
in {22,...,27}. We generated 1000 instances for each pair (m,p). Since the votes were generated
randomly, for small numbers of candidates some duplicate instances were produced. The total
number of distinct Uniform elections obtained was 32679, and the number of distinct Urn elections
was 31530.

In order to determine the optimal number of manipulators exactly, we modeled the manipulation
problem as a constraint satisfaction problem (CSP). The model we used comes directly from the
definition of the manipulation matrix A, Definition 2. In this model, there are n x m — 1 finite
domain variables, with domains equal to {0, ...,m — 2} that represent the unknown elements of A.
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m  #Inst. | REVERSE LSLG LSLA LSLGbeat LSLA
4 2771 2611 2573 2771 0
8 5893 5040 5171 5852 2
16 5966 4579 4889 5883 3
32 5968 4243 4817 5879 1
64 5962 3980 4772 5864 3
128 5942 3897 4747 5821 2
Total 32502 24350 26969 32070 11
% 75 83 99 <1

Figure 7: Number of Uniform elections for which each algorithm found an optimal manipulation.

m  #Inst. | REVERSE LSLG LSLA LSLG beat LSLA

4 3929 3666 2604 3929 0

8 5501 4709 2755 5496 0

16 5502 4357 2264 5477 1
32 5532 4004 2008 5504 0
64 5494 3712 1815 5475 0
128 5571 3593 1704 5565 0
Total 31529 24041 13150 31446 1
% 76 42 99.7 <1

Figure 8: Number of Urn elections for which each algorithm found an optimal manipulation.

There are n ALLDIFF constraints, each over the variables of a row, that ensure each vote is properly
formed. m — 1 constraints over the variables of each column ¢ of A ensure that their sum is at most
g;. Finally, if g; = g, for any two columns ¢ < j, we added a constraint that A[:][0] < A[;][0] over
their row-1 elements. This breaks the symmetry between the two columns and reduces the number
of equivalent solutions to the model. We used the solver Gecode [12] to find a solution to the CSP,
using Domain Over Weighted Degree as the variable ordering heuristic. The timeout for Gecode
was set to one hour, and all experiments were performed on processors of typical contemporary
performance.

We will refer to the number of manipulators used by REVERSE as N,.. We ran the three compet-
ing greedy algorithms, and if this did not determine the optimal manipulation (i.e. none did better
than REVERSE), we checked whether Observation 1 or the fact that gg v, —1 (1) is negative for some
candidate ¢ allow us to conclude that a (N, — 1)-manipulation is impossible. If the optimal num-
ber of manipulators was still unknown, we attempted to find an (V,. —1)-manipulation using Gecode.

Uniform Elections Using the combined method described above, we were able to determine
the optimal number of manipulators in 32502 out of the 32679 distinct Uniform elections. The
results are shown in Figure 7, grouped by the number of candidates m. The first column shows
the number of candidates, and the second column shows the number of instances for which
we report results. The next three columns show the number of instances for which each of the
greedy algorithms could find an optimal manipulation. The last column shows the number of
instances on which LSLG found the optimal solution but LSLA did not. These results show
that both LSLG and LSLA provide a significant improvement over REVERSE, solving 83% and
99% of instances to optimality overall. We also notice that REVERSE solves fewer problems to
optimality as the number of candidates increases, while LSLA does not seem to suffer from this
problem as much: LSLA solves 100% of the m = 4 instances and 98% of the 128 candidate
elections. In addition to the results in the table, we mention that in every one of the 32502 instances,
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if REVERSE found an n-manipulation either LSLA did too, or LSLA found an (n — 1)-manipulation.

Urn Elections We were able to determine the optimal number of manipulators for 31529 out of
the 31530 unique Urn elections. Figure 8 presents the results, in the same format as Figure 7.
REVERSE solves about the same proportion of the Urn instances as it did of the Uniform instances,
76%. However, LSLG performance drops significantly, and is in fact much worse than REVERSE
at 42% of instances solved. This can be explained by the structure of the Urn elections, which
contain many identical votes. This results in a similar pattern of non-manipulator scores to those
in Theorem 3.2 on which LSLG has pathological behavior. Surprisingly, the good performance of
LSLA is maintained. LSLA found the optimal manipulation on more than 99% of the instances,
dominates REVERSE and only lost one instance to LSLG in this set of experiments.

5 Conclusion

We studied the coalitional manipulation problem in elections using the unweighted Borda rule. We
provided insight into the structure of the solutions that allows us to build algorithms that construct
a manipulation in a manner similar to bin-packing rather than constructing an entire vote at each
step. Using this insight, we proposed two new algorithms, LSLG and LSLA. We have provided no
optimality guarantees for these algorithms. In fact, we show that LSLG may require an unbounded
number of additional manipulators relative to the optimal. However, there are infinite families of
instances in which both algorithms can find the optimal but the algorithm proposed by Zuckerman
et al. [19], which does have a worst-case guarantee, can not. In an empirical evaluation performed
over more than 60000 randomly generated instances, LSLA finds the optimal manipulation in more
than 99% of the cases, is never outperformed by REVERSE and in only 12 instances by LSLG.
This result provides further empirical evidence that the unweighted Borda rule can be manipulated
effectively using relatively simple algorithms.

In future work, we intend to determine whether we can provide theoretical optimality guarantees
for LSLA similar to those that are known for REVERSE and theoretically verify the strict dominance
that we observed empirically. Further, we intend to investigate whether we can extend our
algorithms to always find the optimal number of manipulators for these elections. Another question
that arises from this work is whether similar insights can be developed for other scoring rules.
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Fair Division under Ordinal Preferences:
Computing Envy-Free Allocations of
Indivisible Goods!

Sylvain Bouveret, Ulle Endriss, and Jérome Lang

Abstract

We study the problem of fairly dividing a set of goods amongst a group of agents,
when those agents have preferences that are ordinal relations over alternative bun-
dles of goods (rather than utility functions) and when our knowledge of those pref-
erences is incomplete. The incompleteness of the preferences stems from the fact
that each agent reports their preferences by means of an expression of bounded size
in a compact preference representation language. Specifically, we assume that each
agent only provides a ranking of individual goods (rather than of bundles). In this
context, we consider the algorithmic problem of deciding whether there exists an
allocation that is possibly (or necessarily) envy-free, given the incomplete preference
information available, if in addition some mild economic efficiency criteria need to be
satisfied. We provide simple characterisations, giving rise to simple algorithms, for
some instances of the problem, and computational complexity results, establishing
the intractability of the problem, for others.

1 Introduction

The problem of fairly dividing a set of goods amongst a group of agents has recently started
to receive increased attention in the AT literature [6, 10, 15, and others]. The study of
the computational aspects of fair division, in particular, finds a natural home in AI; and
fair division is immediately relevant to a range of applications in multiagent systems and
electronic commerce.

To define an instance of a fair division problem, we need to specify the type of goods we
want to divide, the nature of the preferences that individual agents hold, and the kind of
fairness criterion we want to apply when searching for a solution. In this paper, we are
concerned with indivisible goods that cannot be shared: each item needs to be allocated
to (at most) one agent in its entirety. This choice renders fair division a combinatorial
optimisation problem.

Regarding preferences, most work in fair division has made the assumption that the pref-
erences of individual agents can be modelled as utility (or valuation) functions, mapping
bundles of goods to a suitable numerical scale. This assumption is technically convenient,
and it is clearly appropriate in the context of applications with a universal currency, ren-
dering preferences interpersonally comparable. On the other hand, from a cognitive point
of view, assuming such cardinal preferences may be questionable, as it requires an agent
to be able to attach a number to every conceivable state of the world. In this paper, we
make instead the (much weaker, and arguably more realistic) assumption that agents have
ordinal preferences, and for the sake of simplicity we assume that these preferences are strict
orders (which is a common assumption in fair division and voting). That is, each agent @
is equipped with a preference relation »=;: A =; B expresses that agent i prefers the set of
items A over the set of items B.

I This paper will also be presented at the 19th European Conference on Artificial Intelligence (ECAI-
2010).
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The third parameter is the criterion used to define what makes an allocation “fair”.
Restricting attention to ordinal preferences rules out some criteria. For instance, the Rawl-
sian (or egalitarian) approach to fairness ties social welfare to the welfare of the worst-off
agent [16], which presupposes that interpersonal comparison of preferences is possible. In-
stead, we focus on the important criterion of envy-freeness [13]. An allocation is envy-free
if each agent likes the bundle she received at least as much as any of the bundles received
by others. Besides envy-freeness, a secondary criterion we shall be working with is Pareto
efficiency, which also only requires ordinal preferences. An allocation is Pareto efficient if
there is no other allocation making some agents better and no agent worse off.

A challenging aspect of devising methods for fair division with indivisible goods is its
combinatorial nature [9]: the space of possible bundles grows exponentially in the number
of goods. If there are 20 goods, each agent would, in principle, have to rank over one
million bundles. This leads to the following dilemma: either we allow agents to express
any possible preference relation on the set of all subsets of items, and end up with an
exponentially large representation, as in the descending demand procedure of Herreiner and
Puppe [14], which, while of great theoretical interest, is computationally infeasible as soon
as the number of goods is more than a few units; or we restrict the range of preferences
that agents may express. The latter is the path followed by Brams and King [8] and Brams
et al. [7], who address the problem using the following approach: Elicit the preferences >;
of each agent ¢ over single goods (the assumption is that this is a strict linear order) and
induce an (incomplete) preference order >; over bundles as follows: for two bundles A and
B, infer A »; B if there exists an injective mapping f : (B\ A) — (A \ B) such that
f(a) >; a for any a € B\ A. That is, >=; ranks A above B if a (not necessarily proper)
subset of A pairwise dominates B, i.e., if A is definitely preferred to B given the limited
information (provided in the form of t>;) available—under reasonable assumptions on how
to “lift” preferences from single goods to bundles.? From a “computational” perspective,
we might say that Brams and coauthors [7, 8] are using [>; as a compact representation of
;. In fact, their approach coincides precisely with a simple fragment of the language of
conditional importance networks (Cl-nets), a compact graphical representation language for
modelling ordinal preference relations that are monotonic [5]. The fragment in question are
the so-called (exhaustive) SCI-nets, which we will define in Section 2.2.

We will model agent preferences using SCl-nets. Each SCI-net induces an incomplete
preference order over bundles, with the intended interpretation that the agent’s true prefer-
ence order is some complete order that is consistent with the known incomplete order. This
requires a nonstandard approach to defining fairness criteria. Here, again, we follow Brams
and King [8] and Brams et al. [7] and define an allocation as being possibly envy-free if it
is envy-free for some set of complete preferences that are consistent with the known incom-
plete preferences; and we say an allocation is necessarily envy-free if it is envy-free under
all possible completions. We define possible and necessary Pareto efficiency accordingly.

The main question we study in this paper is then: Given partially specified agent pref-
erences, modelled in terms of SCl-nets, does there exist an allocation that is possibly (nec-
essarily) envy-free? As the allocation that simply disposes of all goods (i.e., that does not
assign any goods to the agents) is always both possibly and necessarily envy-free, to be in-
teresting, this question needs to be asked under some efficiency requirements. In particular,
we will ask whether there exists such allocations that are complete (i.e., that allocate every
item to some agent) or possibly (necessarily) Pareto efficient.

Some of our results are positive: we are able to provide simple characterisations of
situations in which an allocation of the desired kind exists, and these characterisations

2The problem of lifting preferences over items to sets of items has been studied in depth in social choice
theory [3]. Indeed, pairwise dominance is closely related to the axiom of “(weak) preference dominance”
put forward by Sen in the context of work on formalising freedom of choice [17].
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immediately suggest an algorithm for computing such an allocation. Other results are
negative: deciding existence of an allocation of the desired kind (and thus also computing
such an allocation) often turns out to be intractable.

The remainder of the paper is organised as follows. In Section 2 we define the model
of fair division we shall be working with. In particular, this includes the language used
to specify agent preferences and several fairness and efficiency criteria. In Section 3 we
give the main results of this paper; namely, we show that while it is easy to compute
possibly envy-free allocations that are also complete or possibly Pareto efficient, requiring
necessary envy-freeness makes the problem NP-hard. The concluding Section 4 includes a
short discussion of related work. (For lack of space, some proofs are only sketched.)

2 The model

Let A= {1,...,n} be a finite set of agents and G = {x1,...,2:,} be a finite set of goods
(n > 2 and m > 1). An allocation 7 : A — 29 is a mapping from agents to sets of goods
such that (i) N 7(5) = 0 for any two distinct agents 4,5 € A; thus, goods are indivisible.
An allocation 7 with (1) U---Ux(n) = G is called complete.

In this section, we define criteria for identifying fair (or efficient) allocations of goods.
These criteria will be defined in terms of the preferences of the individual agents over the
bundles they receive.

2.1 Basic terminology and notation

A strict partial order is a binary relation that is irreflexive and transitive. A linear order is
a strict partial order that is complete (i.e., X > Y or Y > X whenever X # Y). A binary
relation = on 29 is monotonic if X DY implies X = Y. If = (or >) is a binary relation,
then = (or >) represents the reflexive closure of that relation (i.e., X > Y if and only if
X =Y or X =Y). Given two binary relations R and R’ on 29, we say that R’ refines R if
RCR.

2.2 Preferences: SCI-nets

The preference relation of each agent i € A is assumed to be a linear order >} over the
bundles (subsets of G) she might receive. However, as argued above, eliciting > entirely
would be infeasible; so we do not assume that =7 is fully known to us (or even to the agents
themselves). Instead, for each agent i we are given a strict partial order »; representing our
partial knowledge of >}, and the true preference of i is some complete refinement of ;. The
strict partial orders »-; are generated from expressions of a suitable preference representation
language. In this paper, we focus on the language of SCl-nets, i.e., precondition-free Cl-nets
in which all compared sets are singletons [5]. We now introduce SCI-nets;* for full Cl-nets
see [5].

Definition 1 (SCI-nets) An SCI-net N on G is a linear order on G, denoted by 1>, (or
simply >, when the context is clear). A strict partial order = on 29 complies with N, if
(1) = is monotonic and (it) S U {x} = SU{y} for any x,y such that © > y and any
S C G\{z,y}. The preference relation = induced by N is the smallest strict partial order
that complies with N.

As discussed earlier, >, is the partial order we obtain when we lift the order >x on G
to an order on 29 by invoking the principles of monotonicity and pairwise dominance, as

3What we call “SCI-nets” here were called “exhaustive SCI-nets” in [5].
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Figure 1: Preference relation induced by SCl-net a > b > ¢ > d. Dotted arcs are obtained
by monotonicity; arcs obtained by transitivity are omitted.

proposed by Brams and coauthors [7, 8]. We can give yet another characterisation of > s, in
terms of a utility function: Given SCI-net A" and A C G, for every k < |A| we denote with
Aj(\lé) the k-most important element of A; i.e., if x € A and #{y € A | y =n x} = k then

A%) = z. Given a vector w = (wy, ..., wy,) € (RT)™ inducing the additive utility function

Uy : 29 — R with uy(A) = ZmieA w;, and SCI-net N' = To(1) B> 00 > Toim) (for some
permutation 6 of {1,...,m}), we say that w and N are compatible if Wo(1) >+ > Wo(m)-

Proposition 1 (Dominance) Given an SCIl-net N' and bundles A, B C G, the following
statements are equivalent:
(1) A=x B
(2) There exists an injective mapping f : (B\A) — (A\B) such that f(a) > a for any
a € B\A.
(3) There exists an injective mapping g : B — A such that g(a) >ar a for all a € B and
g(a) >ar a for some a € B.
(4) Fither A D B, or the following three conditions are satisfied:
o 14> |Bl;
o for every k < |B|, Af\,g) D> B{\k/);
o there exists a k < |B| such that Aé\lg) DA Bé\]g).
(5) For any w compatible with N we have uy,(A) > wy(B).

The proof is simple; we omit it due to space constraints.

2.3 Criteria: envy-freeness and efficiency

For the fair division problems we study, each agent ¢ € A provides an SCI-net N;. This
gives rise to a profile of strict partial orders (>, ..., >, ). For any such profile (whether
it has been induced by SCI-nets or not), we can ask whether it admits a fair solution.

As our agents are only expressing incomplete preferences, the standard notions of envy-
freeness and efficiency need to be adapted. For any solution concept, we may say that it
is possibly satisfied (if some refinement of the preference profile to a profile of linear orders
satisfies it) or that it is mecessarily satisfied (if all such refinements do). The following
definitions are a synthesis of those introduced by Brams and King [8] and Brams et al. [7].%
While the results reported in the sequel apply to scenarios where each agent expresses
her preferences in terms of an SCl-net, we state these definitions independently from the
preference representation language in use.

Definition 2 (Modes of envy-freeness) Given a profile of strict partial orders (=1
veooy=n) on 29, an allocation 7 is called

4Brams and coauthors [7, 8] use a different terminology: our necessarily (resp. possibly) envy-free alloca-
tions correspond to their allocations that are not envy-possible (resp. that are not envy-ensuring), and our
necessarily (resp. possibly) Pareto efficient allocations correspond to their Pareto-ensuring (resp. Pareto-
possible) allocations. We believe that applying the standard modalities of “necessary” and “possible” to
basic fairness and efficiency criteria is the most systematic way of defining these notions.
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(1) possibly envy-free (PEF) if for every i € A there exists a linear order > refining >;
such that (i) =% 7(j) for all j € A and

(13) necessarily envy-free (NEF) if for every i € A and every linear order >=* refining >;
we have w(i) >=* w(j) for all j € A.

Next we establish alternative characterisations of PEF and NEF allocations, which are more
“computation-friendly” .

Proposition 2 (PEF and NEF allocations) Given (>1,..., ),
e 7 is NEF if and only if for all i,j, we have w(i) =; 7(j);
e 7 is PEF if and only if for all i, j, we have w(j) ¥; w(7).

Proof. The first point is obvious: 7 is NEF iff for every ¢ and j, and every >} refining >; we
have (i) =7 w(j), i.e., iff w(i) »; 7(j) holds for every ¢, j. For the second point, suppose
m(j) > m(3) for some i,7; then w(j) =7 m(¢) holds for any refinement > of >;, which
implies that 7 is not PEF. The converse direction is less immediate, because the condition
Cj: “for all j, m(j) #i m(i)” only guarantees that for every i and every j # i there exists
an refinement =7 of =; such that (i) =’ m(j). Assume that C; holds and let the relation
R; be defined by R; = [~; U{(n(i),B) | B # w(i) and B ¥; m(i)}]. We show that R; is
acyclic. First, suppose there is an X such that X R; X. Then by definition of R;, X =; X
(X # m(7) by definition of R;), which cannot be the case since >; is a well-defined strict order.
Suppose now that there exists an irreducible cycle X1, ..., X, of length at least 2 such that
X1RiXo.. . RiXqR; Xq11 = X1, and X; # X}, for every 1 < j # k < q. From the definition
of R;, for every k < g we have either Xy >; X411 or (X = (i) and Xp41 #; 7(¢)). Because
> is acyclic, there is at least one k such that X = (7). Because the cycle is irreducible,
there is at most one k such that Xy = m(:). Therefore, there is exactly one k such that
X = m(i); without loss of generality, let K = 1. We have (a) X3 >; w(¢) and (b) for every
j#1, X; = X4, that is, X5 = 7())R; X2 =; X3 >; ... = Xq > X1 = 7(i). Because
>, is transitive, Xo >; X3 >; ... >=; X4 >, m(¢) implies X5 >=; 7(¢), which contradicts (a).
Therefore, R; is acyclic, and its transitive closure R} is a strict partial order. Take >7 to be
any linear order refining R}. Because R; contains >;, > refines >;; and for every j, because
m(j) i w(i), by construction of R; we have that 7(i)R;7(j), therefore also 7 (i) =7 7(j). O

Example 1l Letm =5 n=2, Ny =a>b>c>dand Na =d>c>br> a. Consider
the allocation m defined by w(1) = {a,d} and 7(2) = {b,c}. We have {b,c} #1 {a,d} and
{a,d} #2 {b,c}, therefore w is PEF. However, w is not NEF, but the allocation ©' such that
7' (1) = {a,b} and 7'(2) = {c,d} is NEF (hence also PEF).

) on 29 an allocation 7' is said to
Pareto-dominate another allocation 7 if «'(i) =7 (i) for all i € A and 7'(j) =% 7(j) for
some j € A.

Recall that for a profile of linear orders (>7,...,>%

Definition 3 (Modes of dominance) Given a profile of strict partial orders (>=1,...,>n)
on 29 and two allocations m and 7',
(1) 7' possibly Pareto-dominates w if ' Pareto-dominates w for some profile of linear

orders (>=%,...,>7) refining (>1,...,>n).
(i1) 7" necessarily Pareto-dominates 7 if @' Pareto-dominates w for all profiles of linear
orders (>=7%,...,>7) refining (>1,...,>n).

5The usual definition of envy-freeness only requires that each agent should be at least as happy with her
share as with the share of anyone else, i.e., that 7(i) =7 m(j) holds for all 4,j € A. Here, (i) =* 7(j) and
w(2) >* m(j) are equivalent, because (i) =¥ w(j) is equivalent to w(i) >} 7(j) or w(i) = m(j), and of course
we have (i) # 7(j).
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We get characterisations of possible and necessary Pareto dominance that are similar as
those of Proposition 2.

Proposition 3 (Pareto dominance) Given (>-1,...,>,),

o 7' necessarily Pareto-dominates 7 if and only if (a) for all i, we have 7' (i) »=; 7(i) and
(b) for some i, we have 7' (i) =; 7(i);

o 7' possibly Pareto-dominates 7 if and only if (¢) for all i, we have 7(i) %; 7' (i) and (d)
for some i, we have 7(i) ¥; 7' ().

Proof. For the first point: (a) and (b) together clearly imply that 7’ necessarily dominates
m. Conversely, assume 7’ necessarily dominates 7. Then, by definition, 7’ Pareto-dominates
7 for all profiles of linear orders refining the partial orders. Exchanging the position of the
two universal quantifiers immediately gives (a). Now, suppose that there is no ¢ such that
7'(#) > m(i). Then for each i there is at least one refinement >} such that 7(7) >* 7'(7).
Let P* = (>~},...,=}). P* refines (>1,..., =), and for P*, 7’ does not Pareto dominate 7,
which contradicts the initial assumption, and we are done. The proof for the second point
is similar. O

Definition 4 (Modes of efficiency) Given a profile of strict partial orders (>1,...,>n)
on 29, an allocation m is called
(i) possibly Pareto efficient (PPE) if there exists no allocation 7' that necessarily Pareto-
dominates m; and
(17) mecessarily Pareto efficient (NPE) if there exists no allocation 7' that possibly Pareto-
dominates .

Above concepts naturally extend to the case where preferences are modelled using a repre-
sentation language, such as SCI-nets. For example, given a profile of SCI-nets (N7, ..., N,),
an allocation 7 is PEF if 7 is PEF for the profile (>ar, ..., =)

3 Computing envy-free allocations

In this section, we consider the problem of checking whether, for a given profile of SCI-nets,
there exists an allocation that is (possibly or necessarily) envy-free, and that also satisfies
a secondary efficiency requirement (in particular completeness).

3.1 Possible envy-freeness

We first ask whether a given profile of SCl-nets permits an allocation that is both PEF and
complete. It turns out that there is a very simple characterisation of those profiles that do:
all that matters is the number of distinct goods that are ranked at the top by one of the
agents (in relation to the number of agents and goods). As will become clear in the proof
of this result, the algorithm for computing a complete PEF allocation is also very simple.

Proposition 4 (PEF: general case) If n agents express their preferences over m goods
using SCI-nets and k distinct goods are top-ranked by some agent, then there exists a com-
plete PEF allocation if and only if m > 2n — k.

Proof. First, suppose there are m > 2n — k goods. Executing the following protocol will
result in a PEF allocation of 2n — k of those goods: (1) Go through the agents in ascending
order, ask them to pick their top-ranked item if it is still available and ask them leave the
room if they were able to pick it. (2) Go through the remaining n — k agents in ascending
order and ask them to claim their most preferred item from those still available. (3) Go
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through the remaining agents in descending order and ask them to claim their most preferred
item from those still available. The resulting allocation is PEF, because for no agent the
bundle of (one or two) goods(s) she obtained is pairwise dominated by any of the other
bundles: she either is one of the k agents who received their top-ranked item or she was
able to pick her second item before any of the agents preceding her in the first round were
allowed to pick their second item. The remaining goods (if any) can be allocated to any of
the agents; the resulting allocation remains PEF and is furthermore complete.

Second, suppose there are m < 2n — k goods. Then, by the pigeon hole principle, there
must be at least one agent 7 who receives an item that is not her top-ranked item Z; and no
further items beyond that. But then i will necessarily envy the agent who does receive Z;;
thus, the allocation cannot be PEF. O

Example 2 Letm=6,n=4, N1 =a>b>c>d>ed> f,No =a>d>b>c>el f,
Ns=b>avcer>d> freand Ny =b>a>c>e> f>d Wehave k=2 and m >
2n — k. Therefore, the algorithm returns a complete PEF allocation, namely, if we consider
the agents in the order 1 >2 >3 > 4: w(1) = {a}; 7(2) = {d, f}; 7(3) = {b}; 7(4) = {c,e}.
However, if f were unavailable, there would not be any complete PEF allocation.

It is possible to show that Proposition 4 remains true if we require allocations to be PPE
rather than just complete:

Proposition 5 (PPE-PEF: general case) If n agents express their preferences over m
goods using SCI-nets and k distinct goods are top-ranked by some agent, then there exists a
PPE-PEF allocation if and only if m > 2n — k.

Proof. First, any PPE allocation is complete; therefore, if there exists a PPE-PEF
allocation, there also exists a complete PEF allocation. Conversely, if we refine the protocol
given in the proof of Proposition 4 by allowing the last agent in round three to take
all the remaining items at the end, then that protocol returns an allocation that is the
product of sincere choices [8] by the agents for the sequence 1,2,...,n,n,...,1,...,1. By
Proposition 1 of Brams and King [8], any such allocation is PPE. O

The complexity of determining whether there exists an NPE-PEF allocation is still an open
problem.

3.2 Necessary envy-freeness

Next, we turn attention to the problem of checking whether a NEF allocation exists, given
a profile of SCI-nets. This is a considerably more demanding property than possible envy-
freeness. For instance, it is easy to see that a necessary precondition for the existence of
a complete NEF allocation is that all agents have distinct top-ranked goods (because any
agent not receiving her top-ranked good might envy the agent receiving it, whatever other
goods the two of them may obtain). Another necessary precondition is the following:

Lemma 6 (NEF: necessary condition) If n agents express their preferences over m
goods using SCI-nets and a complete NEF allocation does exist, then m must be a mul-
tiple of n.

Proof. If m is not a multiple of n, then for an allocation to be complete, some agent i
must receive fewer goods than another agent j. But any SCI-net (including that of 7) is
consistent with a linear order ranking any bundle of size k above any bundle of size less
than & (for all k). Hence, such an allocation cannot be NEF. O
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If there are as many goods as there are agents (m = n), then checking whether a complete
NEF allocation exists is easy: it does if and only if all agents have distinct top-ranked goods.
The next most simple case in which there is a chance that a complete NEF allocation might
exist is when there are twice as many goods as agents (m = 2n). We now show that checking
whether such an allocation exists (and computing it) is intractable:

Proposition 7 (NEF: general case) If n agents express their preferences over m goods
using SCI-nets, then deciding whether there exists a complete NEF allocation is NP-complete
(even if m = 2n).

Proof. Membership in NP is straightforward from Proposition 2. Hardness is proved by
reduction from [X3c] (exact cover by 3-sets): given a set S of size 3¢, and a collection
C = (C,...,C,) of subsets of S of size 3, does there exist a subcollection C’ of C' such that
every element of S is present exactly once in C'?

Without loss of generality, we have n > ¢. To any instance (S, C) of [X3C] we associate
the following allocation problem:

e 6n objects: 3n “dummy” objects {d},d?,d3|i = 1,...,n}, 3¢ “main” objects {m;|i =

1,...3q} and 3(n — q) “auxiliary” objects {0;]i = 1,...3(n — ¢)}

e 3n agents {¢;,c,c/li = 1,...,n}. ¢, ¢ and ¢ are called agents of type i and if
C; = {j, k,1}, their preferences are expressed by the following SCI-nets:

cii di > dZ>dP>mp > mp > m > o1 >0y > 03> ... > 03(n—g)—2 > 03(ng)—1 >
03(n—q) > D > M;
D dZ > dP > df > omy > my > my > 0g > 03 > 01 > L. B> 03(nmg)—1 B> 03(n—q) >
03(n—q)—2 > D> M;
clvdd > dl > df >my > m;>mg>o3 >0 > 03> ... > 03n_q) > 03(n_q-2 >

03(n—q)—1 > D> M;
where D (resp. M) means “all other dummy (resp. main) objects in any arbitrary
order”. mj, my, and m; will be called “first-level objects” for ¢;, ¢} and /.

Suppose there exists an exact cover C’ of C'. C’ contains exactly ¢ subsets, therefore C'\ C’
contains n — ¢ subsets. Let f: C'\ C' — {1,...,n — ¢} be an arbitrary bijective mapping.
Define the allocation m¢ as follows: '

1. every agent gets her preferred dummy object d’;

2. if C; € C’ then every agent of type i gets her preferred (first-level) main object (we
will call these agents “lucky” ones);

3. if C; ¢ C’, every (unlucky) agent of type i gets an auxiliary object: ¢; gets os¢(;)—2,
c; gets ogp(iy—1, and ¢} gets ogf(;).

Let us check that ¢ is a complete allocation. Obviously, every dummy object is allocated
(by point 1 above). Since C’ is a cover, every main object is allocated as first-level object
for some agent (by point 2 above). Since f is a bijective mapping, every auxiliary object
is allocated (by point 3 above). Every agent gets exactly 2 objects, so no object can be
allocated twice and the allocation is complete.

Now, we check that m¢ is NEF. Since every agent receives her top-ranked object and
another one, then by Proposition 1, checking that a does not necessarily envy b comes down
to checking that m(a)(y) >a 7(b)(, (hence comparing only the ranks of the worst objects in
7(a) and 7(b)).

e For each lucky agent a, rank(ﬂ'(a)&)) = 4. Each other agent gets either one main
object or an auxiliary one. In both cases, the rank is obviously worse than 4, hence
preventing a from possibly envying anyone else.

e The worst object received by any unlucky agent a of type i (say w.l.o.g. ¢;) is her
best one among the triple {osf(;)—2,03f(:)—1,03f¢i)}- The worst object received by
another agent of type i (say w.l.o.g. ¢}) is another one from the same triple, that is
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obviously worse for ¢;. Hence no agent of type ¢ can envy any other agent of the
same type. Let b be an agent of type j # ¢ (lucky or not). b receives her top-ranked
object dé? (k € {1,2,3}), which is ranked worse than every auxiliary object for a, hence
preventing a from possibly envying b.
Conversely, assume 7 is a complete NEF allocation. We first note that in 7, every agent re-
ceives exactly two objects, among which her preferred object; therefore, in 7 the assignment
of all dummy objects is completely determined.

Now, suppose there is an agent a that gets a main object m(a) which is not among her
first-level ones. Let m; be one of her first-level objects. Then some agent b receives both
m; and a dummy object, both ranked higher than m(a) in a’s SCI-net. Hence a possibly
envies b. From this we conclude that in 7, the second object received by an agent is either
a first-level object, or an auxiliary object.

Moreover, if an agent of type i (say, ¢;) receives a first-level object, then the other two
agents of type ¢ must also receive a first-level object, for if it is not the case for one of them,
she gets an auxiliary object and possibly envies ¢;. Therefore, in 7, for every 4, either all
agents of type i receive a first-level object, or none.

Finally, define C; as the set of all C; such that all the agents of type i receive a first-level
object. 7 being complete, every main object must be given. Therefore, C} is a cover of S.
Because no main object can be given to two different agents, C; is an exact cover of S.

The reduction being polynomial, this proves NP-hardness. O

Example 2, continued. There is no complete NEF allocation, because m is not a multiple
of n. If any one of the four agents is removed, again there is no complete NEF allocation,
because there are two distinct agents with the same top object. If only agents 1 and 3 are left
in, again it can be checked that there is no complete NEF allocation. If only agents 2 and 3
are left in, then there is a complete NEF allocation, namely w(2) = {a,d, e}, 7(3) = {b,c, f}.

Proposition 7 extends to the case of PPE allocations:

Proposition 8 (PPE-NEF: general case) If n agents express their preferences over m
goods using SCI-nets, then deciding whether there exists a PPE-NEF allocation is NP-
complete (even if m = 2n).

Proof. Given a sequence s of n agents, we can compute in polynomial time the allocation 7
that corresponds to the product of sincere choices according to s (which is PPE by Brams
and King’s characterisation [8]), and check in polynomial time that it is NEF. Thus s is a
polynomial certificate for the problem, hence membership in NP.

For NP-hardness we can use the same reduction from [X3c]. Since every PPE allocation
is complete, there is a PPE-NEF allocation only if there is a complete NEF allocation,
hence only if there is an exact cover. Conversely, assume that there is an exact cover. Then
the complete and NEF allocation obtained in the proof of Proposition 7 is also PPE by
Brams and King’s characterisation [8], since it is obtained by a sequence of sincere choices
by agents (all the agents in sequence in the first round, then all the lucky agents, and
finally all the unlucky agents). O

The hardness part of the proofs above extends to the case of NPE allocations (but we do
not know whether the problem is still in NP).

Proposition 9 (NPE-NEF: general case) If n agents express their preferences over m
goods using SCI-nets, then deciding whether there exists an NPE-NEF allocation is NP-hard
(even if m = 2n).
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Proof sketch. The idea of the proof (only sketched due to space constraints) is based on
the same reduction from [X3c]: there is an NPE-NEF allocation only if there is a complete
NEF allocation (since every NPE allocation is complete), hence only if there is an exact
cover. Conversely, if there is an exact cover C’, we can prove by contradiction that the
allocation w¢r is NPE. O

In the special case of allocation problems with just two agents, a complete NEF allocation
can be computed in polynomial time:

Proposition 10 (NEF: two agents) If there are only two agents and both express their
preferences using SCI-nets, then deciding whether there exists a complete NEF allocation is
in P.

We assume w.l.o.g. that the number of objects is even (m = 2q), for if not we know there
cannot be any complete NEF allocation. We have an exact characterisation of NEF alloca-
tions:

Lemma 11 Letn = 2 and m a complete allocation. 7 is NEF if and only if for everyi = 1,2
and every k =1,...,q, m gives agent i at least k of her 2k — 1 most preferred objects.

Proof. W.l.o.g., let the preference relation of agent 1 be given by x; I>1 22 I>1 ... >1 Ta4.

Assume that (1) for every i = 1,2 and every k = 1,...,q, w gives agent 7 at least kK among
{w1,... 2951} Let I = {i,z; € 7(1)} and J = I = {i,x; € ©(2)}. Let I = {iy,...,i,}
and J = {j1,...,Jq} with i1 < ... <i,and j1 < ... < j,. Let f be the following one-to-one
mapping from I to J: for every k = 1,...,q, f(ix) = jx. For every k < ¢, because of (1),
we have that i, < 2k — 1. Now, since INJ =0, JN{1,...,2k — 1} contains at most k — 1
elements, therefore j, > 2k, which implies i}, < jr and z;, >1 x;,. Thus f is a one-to-one
mapping from I to J such that for every i € I, agent 1 prefers x; to xy(;). Symmetrically,
we can build a one-to-one mapping g from J to I such that for every j € J, agent 2 prefers
xj to xg(;y. This implies that 7 is NEF.

Reciprocally, assume there exists a k < g such that 7 gives agent 1 at most &k — 1 objects
among {x1,...,2Za,—1}. Then 7 gives agent 2 at least k objects among {x1,...,Z2t_1}.
This implies that for any one-to-one mapping f from 7 (1) to 7(2), there is some ¢ < k such
that xy(;) >1 x;, therefore 7 is not NEF. Symmetrically, if there exists a & < ¢ such that 7
gives agent 2 at most k—1 objects among her 2k — 1 preferred objects, then 7 is not NEF. O

Proof (Proposition 10). Let the preference relation of agent 1 be, w.lo.g., 1 >1 2o >
... D1 @aq. From that SCI-net, we build the flow network shown in Figure 2 (edge labels
x/y correspond to the edge lower bound x and capacity y).

We build the same flow network
for agent as (nodes a¥ are now called

a¥) and identify, between the two

2/?
3[® networks, the nodes corresponding to
" @ the same objects, the source s, and
the sink t.
o We claim (but do not show due to

lack of space) that there is an alloca-
tion 7 satisfying the condition stated
in Lemma 11 if and only if there is a
feasible flow of value p in the latter
network.

Figure 2: The flow network for one agent.
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The problem of finding a feasible flow in a network with lower bounds as well as ca-
pacities is known as the circulation problem and is known to be solvable in (deterministic)
polynomial-time [12]. Hence the problem of deciding whether there exists a complete NEF
allocation for a problem with two agents is in P. O

4 Conclusion and related work

We have studied the problem of computing envy-free allocations of indivisible goods, when
agents have ordinal preferences over bundles of goods and when we only know their prefer-
ences over single items with certainty. Building on work from the (“non-computational”) fair
division literature, in particular the contributions by Brams et al. [7, 8], we have proposed
a framework in which to study such questions, we have provided a number of alternative
characterisations of the central concepts involved, and we have analysed the computational
complexity of computing allocations of the desired kind.

We have been able to show that computing an allocation that is possibly envy-free is
easy (whether paired with a requirement for completeness or possible Pareto efficiency).
We have also been able to show that computing necessarily envy-free allocations is NP-hard
(whatever the secondary efficiency requirement); only for problems with just two agents there
is a polynomial (but non-trivial) algorithm. The complexity of finding envy-free allocation
that are necessarily Pareto efficient is not fully understood at this stage. In particular, it
is conceivable that deciding the existence of allocations that are both necessarily envy-free
and necessarily Pareto efficient might not even be in NP; we leave the full analysis of this
question to future work.

Future work should also seek to extend our results to nonstrict SCl-nets, where indif-
ference between single goods is allowed. Problems that are still easy with strict SCI-nets,
such as the existence of a complete PEF allocation, could conceivably become NP-complete.
Intuitively, the more indifferences the agents express, the more complete the preference re-
lations and the closer the notions of possible and necessary envy-freeness, which means that
possible envy-freeness will be harder to guarantee.

Our work is part of a growing literature on computational aspects of fair division. In
particular, complexity aspects of envy-freeness have been studied, for example in the works
of Lipton et al. [15] and de Keijzer et al. [11], who address the problem of finding envy-free
and complete (resp. Pareto efficient) allocations, when the agents have numerical additive
preferences. Bouveret and Lang [6] also address the same problem, for various notions of
efficiency, in a context where the agents have utilities expressed in compact form. However,
none of these computational works concerns ordinal preferences, and none have considered
possible or necessary satisfaction of fairness criteria. There is also a related stream of works
on the Santa Claus problem, consisting in computing maxmin fair allocations (see e.g.,
Bansal and Sviridenko [2], Bezédkova and Dani [4], Asadpour and Saberi [1]). These works
encode fairness by an egalitarian collective utility function and do not consider envy-freeness.
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A Maximin Approach to
Finding Fair Spanning Trees

Andreas Darmann, Christian Klamler, and Ulrich Pferschy

Abstract

This paper analyzes the computational complexity involved in solving fairness issues
on graphs, e.g., in the installation of networks such as water networks or oil pipelines.
Based on individual rankings of the edges of a graph, we will show under which conditions
solutions, i.e., spanning trees, can be determined efficiently given the goal of maximin
voter satisfaction. In particular, we show that computing spanning trees for maximin
voter satisfaction under voting rules such as approval voting or the Borda count is N'P-
hard for a variable number of voters whereas it remains polynomially solvable for a
constant number of voters.

1 Introduction

Spanning trees have first been used in connection with fair division problems in the 1970s for
fairly assigning costs to individuals in a graph theoretical setting (Bird [3]). From this starting
point, a huge body of literature has developed in recent years with a certain vicinity to Social
Choice Theory, often axiomatically motivated (e.g., Bogomolnaia and Moulin [4], Dutta and
Kar [11] and Kar [12]). In this paper we want to strengthen this link to Social Choice Theory
by looking at the maximin voter satisfaction and analyzing the computational complexity of
solution methods based on certain well-known social choice rules.

Many of the current papers use graphs to model certain networks, such as the installation of
water or power networks, oil pipelines, road constructions, or links between different countries.
Costs are assigned to the edges in such a graph and the goal is to connect all nodes (individuals,
countries, etc.) at minimum total cost and fairly assign that cost to the nodes.

In this paper!' we do not consider any monetary costs, be it because they are negligible or because
they are covered by some external source (e.g., the state). Our approach is based on individuals’
preferences over the edges of a graph and we analyze methods that - given those preferences -
fairly, i.e., socially acceptably, install networks. The focus of our analysis, however, does not lie
in the quality of the solution, i.e., in an axiomatic analysis of the solution methods, but in the
computational complexity involved.

An example in that respect could be a village that has to install a sewage or water network or
countries that need to agree on oil pipelines. Each homeowner or country needs to be connected
but obviously there are many different ways to connect everyone. Mathematically the situation
can be represented as a graph, i.e., the nodes are the homeowners and the edges are the connec-
tions between pairs of homeowners, and a solution is a spanning tree. The problem, however, is
that homeowners might have different preferences over which connections (edges) should be used
in the spanning tree. E.g. one homeowner might prefer a certain connection over another con-
nection for environmental reasons, whereas another homeowner might just prefer any connection
further away from his own garden to any connection that is closer to his garden. As we consider
that costs are no issues here, the ordinal rankings over edges by those homeowners are the only
inputs that can be used by any solution method.

LA major part of this work appeared in Darmann et al. [9, 10].
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The quality of different solution methods based on social choice rules has been analyzed in a
previous paper by Darmann et al. [§], extensive studies of social choice rules can be found in
Brams and Fishburn [6], Nurmi [14] and Saari [19] among many others. The goal in this paper,
however, is to look at the computational complexity involved in finding optimal spanning trees
based on such solution methods, i.e., whether such solutions can be found in polynomial time or
not.2 Our main focus will be on methods using scores as in the Borda count or in approval voting
and the basis for evaluating different solutions will be the maximin voter satisfaction (MMVS).
In a completely different setup, namely the consideration of different scenarios to represent uncer-
tainty in Robust Optimization, closely related models of spanning tree problems were considered,
e.g., in Aissi et al. [1] and Kouvelis and Yu [13]. While their works assign arbitrary numerical
values as weights of the edges, we will consider the outcome of voting procedures to compare
edges and trees.

An important differentiation arises from the number of voters considered in the problem, i.e.,
whether this number is fixed or not. Following the results of Aissi et al. [1], it is shown that for
a fixed number of voters, solutions based on MMVS can be found in polynomial time. Things
do change when the number of voters is variable, i.e., the number of voters is part of the input
of the problem. This makes the problem significantly harder in the case of general edge weights
as has been shown by Kouvelis and Yu [13]. However, as far as the A'P-hardness results are
concerned, the simple structure of edge weights arising from the respective voting rules requires
a completely different proof technique than their previously known results.

The contribution of this paper is to answer the questions of complexity posed by the application
of voting rules from Social Choice Theory. We show that even under very simple voting structures
such as approval voting, vote-against-t elections and choose-t elections for t > 2, MMVS is N'P-
hard. Furthermore we show that MMVS is intractable for both dichotomous and multichotomous
voter preferences. Moreover, irrespective of whether the voters’ preferences are weak or strict
orders on the edge set, MMVS under Borda voting is AP-hard. Only for the two structurally
most simple solution methods under consideration MMVS can be solved in polynomial time,
namely for plurality voting and vote-against-1 election. In fact, our result settles the complexity
status for any reasonable election process: If every voter is allowed to distinguish only one edge in
a positive or negative sense the problem remains polynomially solvable. As soon as two or more
edges receive an appraisal different from the remaining edges, the problem becomes NP-hard.
The paper is structured as follows: We give the formal framework in Section 2 and then restate
and discuss previous results for a fixed number of voters in Section 4. In Section 5 we keep the
number of voters variable and prove our main results.

2 Preliminaries

In order to be able to express preferences, we give some basic definitions for relations; the
terminology is adopted from Roberts [17].

A binary relation 77 C A X A on a set A is called complete if Va,b € A, a #b, (aZZbor b a).
7 is reflexive if Va € A, a 77 a. Tt is called transitive if Va,b,c € A, (a 77 band b 7 ¢) =
a 7 c. Finally, = is called asymmetric if Ya,b € A, a 77 b = —(b ZZ a); and we call it symmetric
if Va,b € A, a 2 b = b 7 a. A relation is called weak order if it is complete, reflexive and
transitive. A relation is called strict order, if it is complete, transitive and asymmetric.

Let G = (V, E) be an undirected and connected graph. Let n := |V| and 7 be the set of spanning
trees of G. For every voter i, 1 < i < k, we are given a preference relation 2-; on E. Unless

otherwise stated, 7, is assumed to be a weak order on F, consisting of an asymmetric part >=; and

)~

2P £ NP is tacitly assumed throughout this paper.
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a symmetric part ~; respectively. The symmetric part ~; of 2Z; induces a partition Ey, Es, ..., E,
of E, such that for all j, 1 < j < ¢, we have e ~; f for all e, f € Ej. The sets E;, 1 < j < g, are
called preference classes. In case ¢ = 2 we call =; dichotomous. If ¢ > 3 the order 7; is called
multichotomous. Furthermore, we refer to the k-tuple 7 = (271,72, .- ., 7k) as a voter preference
profile.

The basic concept used in this work is the one of voters’ scoring functions, which can be un-
derstood as a generalization of the positional scoring procedures (for details concerning these
procedures see Brams and Fishburn [6]).

Definition 2.1 Let 1 <i < k. We call a function v; : E — Nq voter i’s scoring function, if
1. foralle,f e Eer; f < wvi(e) >vi(f), and
2. max.eg{vi(e)} is bounded by a polynomial in n.

Definition 2.2 For 1 <i <k let v; be voter i’s scoring function. Voter i’s score (or count) of
tree T € 1 is vi(T) := Y cpvile).

Hence, voters’ preferences on trees are assumed to be additively separable, i.e., there do not exist
complementaries or synergies between the edges. Many scoring procedures can be embedded
in the framework of voters’ scoring functions. For example, approval voting (see Brams and
Fishburn [5]), plurality voting (see Roberts [18]), vote-against-t elections (presented in Brams
and Fishburn [6]) and Borda voting (see Brams and Fishburn [6] and Vorsatz [22]) can be
formulated within this framework.3

Definition 2.3 Let 1 <i < k. Fore,f € E, e # f, let

2 difex; f
dile, f/):==1<1 ife~;f

0 otherwise.

Then in Borda voting, voter i’s scoring function is the Borda function b; : E — Ny defined by
bi(e) == X tep\ (e} Gile, f). For e € E we call bi(e) voter i’s Borda* count of edge e. Voter i’s
Borda count of tree T' € 7 is by(T) := Y . bi(e).

In approval voting, for every voter i the set E is partitioned into a set S; C FE of edges voter 4
approves of and a set S¢ := E \ S; of edges voter ¢ disapproves of.

Definition 2.4 Let 1 < ¢ < k. In approval voting voter i’s scoring function is the function

a; : E — Ny with
1 ifees;
a;(e) = ‘
0 ifeelsSs.

3The use of scoring functions on edges to obtain scores for spanning trees has not received much attention yet
in the literature. A general axiomatic analysis as surveyed by Barbera et al. [2] might help to provide support for
such a use.

41f -, is a strict order on E, we have b;(e) = 2-|{f € E: e =; f}| for e € E. Let é;(e, f) := %éi(e, f) for
alle, f € E, e # f, and let b;(e) := Y rer\{e} bi(e, f) for e € E. Thus bi(e) = |{f € E: e =; f}|, and hence
b; (e) would define voter #’s Borda count of edge e in the canonical way. Note that b;(e) > b;(f) <= bi(e) > b;(f)
foralle, f € E, e# f,and 3 cp bi(e) > > cp, bi(e) < X.cp, bi(e) > 2., bi(e) for all Ty, Th € 7. The
function b; however does not map from F into the set of non-negative integers but may take rational values as
well. Since this causes some technical inconvenience (i.e., Theorem 4.1 cannot be applied directly), b; is omitted
in this work.
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The function a; is called voter i’s approval function. Voteri’s approval count of T € T is defined
by ai(T) := Y cer aile).-

Choose-t elections and vote-against-t elections constitute two special cases of approval voting.
A choose-t election® corresponds to approval voting subject to the requirement that for a fixed
t € N|S;| =tfor 1 <i <k In this context, a choose-1 election is called plurality voting.
Approval voting under the requirement that for a fixed ¢t € N |S¢| = ¢ for 1 < i < k is called
vote-against-t election.

3 Problem formulation

With the above preliminaries we are now able to state the maximin voter satisfaction problem.

Definition 3.1 Mazimin voter satisfaction problem (MMVS)

Let G = (V, E) be an undirected graph, let I be a set of voters and let m be a voter preference
profile. For i € I let v; be voter i’s scoring function. The mazimin voter satisfaction problem
(MMVS) is the following problem:

max min v, (7'

Ter iel
Maximizing the minimum of such concepts as utility, costs, time, etc. is a very common way
to formalize the idea of fairness. Such a maximin approach to fairness can especially be found
in the literature on networks, scheduling, etc. On the other hand, maximin fairness also has a
certain link to fairness in Social Choice Theory, originally discussed decades ago by Rawls [16].
However, there are also many other approaches to formalize fairness based on proportionality,
equitability, envy-freeness, etc. and used in areas such as mathematics and economics (Brams
and Taylor [7], Thomson [21]).
From a completely different point of view the problem appears in the Operations Research liter-
ature in the context of Robust Optimization. One possibility to model an optimization problem
under uncertainty is the consideration of different scenarios each of which induces different data
for the problem. Maximizing the objective function for the worst-case scenario amounts to a
maximin problem with voters corresponding to scenarios. In this context Aissi et al. [1] refer to
an analogon of MMVS as maz-min spanning tree problem while Kouvelis and Yu [13] use the
terminology absolute robust minimum spanning tree problem. In this paper, however, the aim is
to analyze the complexity of aggregating voters’ opinions with the help of special types of voting
procedures.

4 MMVS with a fixed number of voters

In this section the number k of voters is assumed to be a constant integer number. Likewise one
could say that k is not regarded as a part of the input within this section. With this point of
view MMVS is known to be solvable in polynomial time (see Aissi et al. [1]). We restate this
result in the following theorem.

Theorem 4.1 (Aissi et al. [1])
MMVS can be solved in O(n*Wklog W) time, where W € N is an upper bound for the objective
Sfunction value.

5Tn the literature, choose-t elections are also called t-approval voting (Peters et al. [15]) or vote-for-exactly-t
procedures (Brams and Fishburn [6]).
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Noting that for approval voting there is W < n and for Borda voting W < 2nm, this theorem
yields the following corollary.

Corollary 4.2 MMYVS under approval voting can be solved in O(n***logn) time. MMVS under
Borda voting can be solved in O(n*tk*m¥logn) time.

However, for the special case of plurality voting MMVS can even be solved in linear time.
Proposition 4.3 MMVS under plurality voting can be solved in O(mk) = O(m) time.

Proof. Given the graph G = (V, E), let Eq := {e € E|v;(e) = 1 for at least one i, 1 <i < k}. If
the subgraph H = (V, E4) is acyclic, then there obviously exists a spanning tree T' of G such that
E; C T holds. In this case trivially maxgpe, min;ey v;(T) = 1. If on the other hand H contains
a cycle, then clearly there cannot exist a spanning tree T" of G with E; C T. Thus for each
spanning tree T' of G there is an edge of F; that is not contained in 7. Hence for each T' € 7 we
have min;e; v;(T') = 0 which yields maxpe, min;e; v;(T) = 0.

Calculating the set E; takes O(mk) = O(m) time, the determination whether H is acyclic or
not can be done in O(m) time. This proves the proposition. O

5 MMYVS with a variable number of voters

In this section the number k of voters is not assumed to be constant but may vary instead, i.e., k
is considered to be part of the input. This approach seems to make MMVS significantly harder.
To be more precise, MMVS was shown to be strongly A'P-hard for arbitrary scoring functions
by Kouvelis and Yu [13]. The question of the computational complexity of MMVS under the
common voting rules such as approval voting, plurality voting, choose-t elections, vote-against-t
elections and Borda voting is not answered by Kouvelis and Yu [13] though and to the authors’
best knowledge has been open so far.

We improve upon the result of Kouvelis and Yu [13] and show that MMVS is NP-hard even
in case of very basic voting procedures. In particular, MMVS turns out to be A'P-hard even
under the simple procedure of approval voting — that is, MMVS remains N P-hard if the range
of the voters’ scoring functions is restricted to {0,1}.° We also show that this result still holds
if the number of approved or disapproved edges is some fixed ¢ > 2 (choose-t elections and vote-
against-t elections respectively for ¢ > 2). Moreover, we can show that MMVS is A"P-hard under
Borda voting. In contrast to these results, it can easily be shown that MMVS under plurality
voting and vote-against-1 elections can be solved in polynomial time.

The key instrument used in the NP-hardness proofs presented in this section is to reduce the
NP-complete monotone one-in-three 3SAT problem (Schaefer [20]) to the decision problem cor-
responding to MMVS.

Definition 5.1 Monotone one-in-three 3SAT problem (monotone 1-in-3SAT)
GIVEN: A set X of variables and a collection C of clauses over X such that every
clause is made up of exactly three positive literals.
QUESTION: Is there a truth assignment for X such that every clause contains exactly one
true literal?

Remark. Note that in above definition every clause contains exactly three literals all of which
must be positive. That is, in monotone 1-in-3SAT there are no negated literals. Therefore in
monotone 1-in-3SAT the set X of variables corresponds to set of literals over X.

6Note that this implies and sharpens the strong AP-hardness result of Kouvelis and Yu [13].
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Figure 1: Undirected Graph G derived from instance U; of monotone 1-in-3SAT.

5.1 Approval voting and Borda voting

Our first result shows that MMVS is A'P-hard already for weak orders if the voters’ scoring
functions have the simple structure of approval functions.

Theorem 5.1 Under approval voting MMVS is N'P-hard.

Proof. We will polynomially transform an arbitrary instance of monotone 1-in-3SAT to an
instance of MMVS with approval voting.

Let Uy be an instance of monotone 1-in-3SAT with X := {Z1,Zo,...,Z¢} being the set of variables
(= literals) and C := {C},Cy,...,C.} being a collection of clauses over X. W.lL.o.g. we assume
clause C’l to contain the literals &1, Zo, Z3. We construct the undirected graph G = (V, E) by the
following procedure (see Fig. 1):

Let V =0 and E = (. For each literal Z; € X add two nodes «; and w; to V. For each clause
C; € C add node C; to V. Add node r to V. Next for each literal ;€ X

e add edge x; to E connecting the nodes o; and w;

e add edge f; to E connecting «; and

e add edge g; to E connecting w; and r

e if #; is contained in clause C; € C' add edge e; ; to E connecting the nodes C; and a;.

Note that n = |V| =2+ 2¢+ 1 and m = |E| = 3{ + 3z.

We now establish the voter preference profile m and the corresponding values of the voters’
approval functions (see Table 1 and 2). First, we introduce voters x;, 1 < j < ¢, whose approval
functions are given by

a,. (e) =
X () 1 otherwise.

{O ife e {l‘j,fj}
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Lo e T ox [ x|

|edge|ax1 ||edge|aX2 ||edge|ax3 || ||edge|am |
T 0 X9 0 xs3 0 Ty 0
fi 0 f2 0 f3 0 fe 0
et | 1 jlen| 1 (|en| 1 e;1| 1
C I T | T B | R A |
1 1 1 1
Xy 1 Ty 1 Ty 1 Ti—1 1

Table 1: Preference profile of voters x;, 1 < j < ¢, and the values of the corresponding approval
functions.

e [ [ & [ & [ e [ e [ = |
‘ edge |a, || edge @i edge @iz edge @i edge ‘acf_jl edge ‘acf_72 edge a s
Ly 0 Ljy 0 Ljo 0 Ljs 0 fjl 0 sz 0 fj3 0
Tj, | O | €ijo | O || € | O |[ €y | O |[€ij | O |egj| O |eg| O
xjg 0 €i,j3 0 €i,j3 0 €i,jo 0 1 1 1

1 1 1 1 1 1 1
other| 1 ||other| 1 ||other| 1 |lother| 1 |lother| 1 other| 1 other| 1
edges edges edges edges edges edges edges

1 1 1 1 1 1 1

Table 2: Preference profile (and corresponding approval functions) derived from clause C; containing
the literals :i‘jl , :i‘jz , jjs .

Lo [ a I & [ & [ o [ £ [ & |
‘edge Ge, ‘edge a ||edge|a i || edge|a ss || edge a s, edge a s, edge‘achB
I 0 X1 0 To 0 I3 0 f1 0 f2 0 f3 0
X2 0 €1,2 0 €1,1 0 €1,1 0 €1,1 0 €1,2 0 €1,3 0
I3 0 €1,3 0 €1,3 0 €1,2 0 €1,2 1 €1,1 1 €1,1 1
€1,1 1 €1,1 1 €1,2 1 €1,3 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
Ty 1 Ty 1 Ty 1 Ty 1 Ty 1 Ty 1 Ty 1

Table 3: Preference profile derived from clause C; which is made up of the literals &1, Z, &5.
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The rest of the voter preference profile is established as follows. Let a clause C; € C' contain the
literals Zj,, Z},, Zj, — which means node o, and node C; are adjacent, y € {j1, j2,73}. Add seven
voters denoted by ¢, ¢/', ¢2, ¢, ¢/ ¢/ and ¢/ to 7. Voter ¢; assigns value 0 to the edges
Tj,,Tj,,2j, and value 1 to all other edges. Voter ¢/, y € {j1, ja2,j3} assigns value 1 to all edges
but to x, and to the edges e;, with u € {j1,J2,73}, u # y, which get value 0. And voter c{”,
y € {Jj1,J2, js}, assigns value 0 to the edges f, and e; ,, and assigns value 1 to all the other edges
(see Table 2). To illustrate the voter preference profile 7, an example is given in Table 3 with
the preferences and approval functions of the seven voters corresponding to clause C; which is
made up of the literals Z1, T2, Z3.

Having treated all clauses in the way just described the voter preference profile is made up
of k := ¢ + 7z voters. Note that the instance of MMVS under approval voting defined by
G = (V, E), m and the corresponding approval functions can be constructed in polynomial time

(with respect to the size of Uy).

Claim 1. There exists a truth assignment for X such that each clause in C' contains exactly one
true literal if and only if there exists a T' € 7 such that for all p, 1 < p <k, ap(T) > n—2 holds.

Proof of Claim 1.
“=" For a satisfying truth assignment ¢g let S be the set of literals set “TRUE” under tg. Create
tree T as follows. Set T'= (). For all Z; € S:

e add z; and g; to T
e add e;; to T for all i, 1 <7 < 2, for which edge e; ; € G

For all z; € X\ S, i.e., literals set “FALSE” in tg, add f; and g; to 7. Summarizing, we get for
1 < j < £ the following four properties:

1. g;eT

2. z; € T & T; is set “TRUE” under tg
3. zjelT e el forallize ; €G
4. z;€eT o f¢T

Since tg constitutes a satisfying truth assignment, each node C;, 1 < i < z, is connected to node
r in T. Obviously, all other nodes of V' are connected to r in T" as well and thus T' is connected.
Because of [T'| = |S|+z+4++ (¢ —|S]|) = z + 2¢ we get |T| = n — 1 and hence the subgraph T is
a tree. Due to |T'| =n — 1 and property 4. we get a,,(T) =n —2 for all j € {1,2,...,¢}.

As above, let clause C; be made up of the literals Zj,, %4y, T4, The fact that exactly one of
the literals Z;,,;,,%;, is set “TRUE” under ts means exactly one of the edges z;,,z;,,x;, is
contained in T'. Together with |T'| = n — 1 this yields a.,(T) = n — 2. Let us now consider the
voters ¢/', ¢, ¢}’: W.lo.g. we may assume that z;, is set “TRUE” under tg. Thus z;, € T,

zj, ¢ T, xj, ¢ T. Due to property 3. we hence get e; ;, € T, €; 5, € T, €; j, ¢ T. This implies

acz'y (T)=n-2

for all y € {j1,jo,73}.” Finally, properties 3. and 4. yield a_ry (T)=n—2 for all y € {j1, 742,73}

"Clearly, assuming that instead of i, either i, or Z;, is set “TRUE” under tg yields a j, (T) = n—2 as well.
i
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“<": Let now @ be a spanning tree with a,(Q)) > n — 2 for all p, 1 <p < k. Thus for each voter
p in our voter preference profile at most one edge e with a,(e) = 0 is contained in Q. Hence
because of voters x; the edges x; and f; cannot both be contained in @, 1 < j < £. Analogously
due to voters ¢;, 1 < i < z, for any clause C; made up of some literals Zj,Tj,,T;, at most one
of the edges z;,, x;,, ;, is contained in (). Next we show that for 1 < j </

ijQﬁei}jGQ

holds for all ¢ with e; ; € G.

Assume z; = z;, € () and let node C; be adjacent to nodes Qg s Oy, and ag; (i.e., in our

J2
monotone 1-in-3SAT instance clause C; is again made up of the literals Zj,,%4,,%j,). Because of
voter c{l we have e; j, ¢ @ and e; j, ¢ Q. Note that the degree of node C; equals three and thus
e, € @ since otherwise C; would be isolated. Thus z; € @ implies e; ; € @ for all ¢ such that
€;; € G.

On the other hand, let e;;, € @ for some i, 1 < i < %z, and some j;, 1 < j; < 4. Now
@ (Q) > n — 2 implies ¢; j, ¢ @ and ass (Q) > n — 2 implies e; j, ¢ Q. In other words, node

C; is a leaf. Due to voter clf“ we have f;, ¢ Q. If there isno u, 1 < u < z, u # 14, such that
ey, € @ then it is easy to see that x;, must be contained in ) since otherwise nodes r and C;
would not be connected. If such an edge e, ;, is contained in @), then as a consequence of

a (@) =mn—2

node C, must be a leaf as well and thus the same argument applies. Hence z; € Q < €;; € Q
holds for all 7 with e¢; ; € G, 1 < j < L.

But since node C} is a leaf, 1 < i < 2z, for each such node there is exactly one 7, 1 < j < £, such
that both z; and e;; are contained in ). In other words, the truth assignment ¢z defined by
letting S := {#;]z; € Q} be the whole set of literals set “TRUE” under ¢z is a satisfying truth
assignment for the considered instance of monotone 1-in-3SAT. This proves the claim. O
Claim 1 implies that any arbitrary instance of monotone 1-in-3SAT can be reduced to an
instance of MMVS under approval voting. As stated before, the instance of MMVS under
approval voting can be constructed in polynomial time. Thus it is proven that monotone
1-in-3SAT polynomially transforms to MMVS under approval voting. O

Remark. Note that in case of dichotomous preferences the sets of optimal solutions of MMVS
under approval voting and of MMVS under Borda voting obviously coincide.® Thus from The-
orem 5.1 it follows that, given weak preference orders, MMVS under Borda voting is AP-hard
as well.”

Proposition 5.2 MMYVS under Borda voting is N'P-hard.

Since dichotomous preferences over the edges induce approval functions in a natural way, it
follows from Theorem 5.1 that MMVS is ANP-hard for any dichotomous preferences already.
Furthermore it can easily be shown that MMVS is AP-hard in the cases of multichotomous
preferences as well.

Corollary 5.3 Let 7 = (71,752, - -, k) be a voter preference profile such that 7-; is multichoto-
mous for all 1 <i < k. Then MMVS is N'P-hard.

8Therefore the general result shown in [22] that, given dichotomous preferences, Borda’s method and approval
voting are equivalent, applies for MMVS as well.

9We can show that this result still holds if the voters’ preferences are strict orders. I.e., MMVS is also N"P-hard
if the voters’ scoring functions are bijections to {1,2, ..., m} and thus no two edges receive the same value.
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Proof. Let ¢ > 2 be the number of preference classes. Create a graph H from the graph
G = (V, E) used in the proof of Theorem 5.1 by concatenating a path p of length ¢ — 2 to node r.
Let n := |V| and m := |E|. We now derive from the profile = used in the proof of Theorem 5.1
a profile 7 on the edges of graph H such that 7 consists of ¢ preference classes in two steps.
Firstly, we derive from 7 a preference profile m on G such that every voter ¢ who disapproves of
three edges in 7 is in 7 replaced by three voters who disapprove of two edges only. Secondly,
using the profile m; and path p, we assign the edges of H to the preference classes.

In order to get m1, a voter v who disapproves of edges {€1,¢€2,e3} is replaced by the following
three voters: voter 71 who disapproves of edges {e1,e2}, voter 72 who disapproves of edges
{e2,€3} and voter 3 who disapproves of edges {e1,e3}.

Denote the preference classes that make up 7 by A;;, 0 < j < ¢ —1, for all voters 4, 1 <7 < k.
Let these preference classes be such that each edge in A;; be strictly preferred to each edge
in A;j for 0 < j/ < 5 < g—1. Now for each voter i let A;p := {e € Ela;(e) = 0} and let
Ajg—1) := {e € Elai(e) = 1} according to 7;. Note that [A;| = 2 and |A;4—1)| = m — 2. Assign
the ¢ — 2 edges of the path p to the classes A;;, 1 < j < ¢ — 2, in an arbitrary way such that
each of these classes contains exactly one edge. Assume Borda voting is being used. Then for
every i, voter i's Borda values of the edges are given as follows:

2q+ (m — 3) 1fe S Ai(qfl)
bi(e) = 42(j + 1) ifeedjj,1<j<q—2
1 ifeEAio

Obviously each edge of the path p must be contained in a spanning tree of H. Since 2¢+(m—3) >
2 the following two decision problems (D1) and (D2) are equivalent:
(D1) GIVEN: Graph G and preference profile .
QUESTION: Is there a spanning tree T' of G such that a;(T) > n — 2
foralli, 1 <i<k?
(D2) GIVEN: Graph H and preference profile 7.
QUESTION: Is there a spanning tree T7 of H such that
bi(T1) > (n—2)(2q+ (m —3)) + 3 0-72(j +1) forall i, 1 <i <k ?
Thus, the corollary follows. |

5.2 Vote-against-t elections and choose-t elections

As a consequence of the proof of Theorem 5.1 in the previous subsection, for any integer t > 2
MMVS under vote-against-t elections is AP-hard as well. The proof of this result uses the same
approach as the one of Theorem 5.1 and is therefore omitted in this paper.

Corollary 5.4 Lett € N, t > 2. Under vote-against-t elections MMVS is N'P-hard.

It is worth noting that the above corollary does not hold for MM VS under vote-against-1 elections.
In this case a solution of MMVS can be found in the following way: Remove from the considered
graph G all edges e that have v;(e) = 0 for at least one voter i. If the remaining graph is
connected, then the objective function value is n — 1, otherwise it is n — 2. This observation
yields the following statement.

Proposition 5.5 Under vote-against-1 elections MMVS can be solved in O(mk) time.

From Proposition 4.3 we know that MMVS under plurality voting, i.e., choose-1 elections, can
be solved within the polynomial time bound of O(mk). By a reduction from the classical 3SAT
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problem we can show that, in contrast, MMVS under choose-t elections is NP-hard for each
fixed t > 2. Therefore, as for vote-against-t elections, with the step from ¢ = 1 to t = 2
the computational complexity of MMVS under choose-t elections jumps from polynomial time
solvable to N'P-hard.

Theorem 5.6 MMVS under choose-t elections is N'P-hard for every fived t > 2.

6 Conclusion

We have considered the maximin voter satisfaction problem under both the scenarios that the
number of voters is constant and may vary. It is known from Aissi et al. [1] that MMVS is
polynomially solvable when the number of voters is fixed. The main contribution of this paper
has dealt with the question of computational complexity of MMVS in the case of a wvariable
number of voters. We improve upon an AP-hardness result of Kouvelis and Yu [13] for general
scoring functions by showing that, for a varying number of voters, MMVS is A/P-hard under
very basic voting rules already. In particular, we have shown that MMVS is computationally
intractable under approval voting, vote-against-¢ elections and choose-t elections for t > 2. We
have proven that the problem is AP-hard both in the cases of dichotomous voter preferences
and multichotomous voter preferences. Furthermore, MMVS under Borda voting is NP-hard,
irrespective of the underlying voter preferences constituting weak orders or strict orders on the
set of edges. Among the voting methods under consideration MMVS has turned out to be
polynomially solvable only for the structurally most simple ones: plurality voting and vote-
against-1 elections. Thus, when allowing each voter to approve or disapprove of more than one
edge, the computational complexity of MMVS jumps from polynomial time solvable to N"P-hard.
In these A'P-hard cases however, it is natural to ask if MMVS is fixed-parameter tractable when
parametrized by the number of voters. Following the approach of Aissi et al. [1], we can show that
MMVS is fixed-parameter tractable under choose-t elections and under vote-against-¢ elections,
for each ¢ > 2. Whether or not MMVS under Borda voting is fixed-parameter tractable remains
an interesting open question.
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Approximate Judgement Aggregation

Ilan Nehama

Abstract

We analyze judgement aggregation problems in which a group of agents indepen-
dently votes on a set of complex propositions that has some interdependency con-
straint between them (e.g., transitivity when describing preferences). We generalize
the current results by studying approximate judgment aggregation. That is, we relax
the main two constraints assumed in the current literature. We relax the consistency
constraint by measuring the fraction of inputs for which an aggregation mechanism
returns an inconsistent result and we relax the independence constraint by defining
a measure for the dependance of the aggregation for an issue on the votes on other
issues. We define the problem of measuring the impact of such small relaxation on
the class of satisfying aggregation mechanisms and raise the question of whether
there exists an agenda for which the expansion of this class is non-trivial. We show
that the recent works for preference aggregation of Kalai and Mossel fit into this
framework. We prove that, as in the case of preference aggregation, in the case of a
subclass of premise-conclusion agendas, the set of satisfying aggregation mechanisms
does not extend non-trivially when relaxing the constraints.

A corollary from our result for the xor premise-conclusion agenda is a generalization
of the classic result for local property testing of linearity of boolean functions.

Keywords: approximate aggregation, discursive dilemma, premise-conclusion agenda,
inconsistency index, dependency index

1 Introduction

Assume a committee of three referees needs to review a paper for a conference. Each of the
referees judges the paper individually for originality and for quality (assumed to be pass/fail
questions) and approves the paper only if it passes both criteria. The three referees cast
their votes simultaneously and we assume no strategic behavior on their behalf. Now assume
that both the first and second referee think that the paper is original enough and both the
second and third referee think it stands in the quality standards of the conference. Then
we have that although a minority of the committee (one out of three) thinks the paper
should pass, for each issue separately there is a supporting majority (two out of three).
This discrepancy between the majority vote on premises (quality and originality) and the
majority vote on the conclusion (pass) was presented by Kornhauser and Sager in 1986[13]
and was later named ‘The Doctrinal Paradox’. Such discrepancy phenomena can happen
when the ‘accepted opinions’ is restricted to be other sets as well (e.g., Condorcet Paradox
for preference aggregation) and is the subject of a growing body of works in economics,
political science, philosophy, law, and other related disciplines. (A survey of this field can
be found in [14])

Abstract aggregation can be formalized in the following way. There is a committee of
n individuals (also called voters) that needs to decide on m boolean issues (that is, each
question has exactly two possible answers True and False!). Each individual holds an
opinion which is an answer for each of the issues. We denote the answer of the i voter

The research was supported by a grant from the Israeli Science Foundation (ISF).
IThere is some literature also on aggregating non-boolean issues, e.g., [20] and [7], but this is outside the
scope of this paper.
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for the jt issue by Xij and the vector of all opinions in the committee (called profile) by
X € ({0,1}™)" (For the ease of presentation we will identify True with 1 and False with
0). Like in the example above, not all opinions are acceptable (one cannot accept a non-
original paper). We assume a non-empty set X of {0,1}™ called the agenda is given. The
opinions in X are called the consistent opinions and only these opinions are held by voters?.
For instance the conjunction agenda, which is the agenda described in the example, is
defined to be the set {000,010,100,111}3. Another example is the preference agenda.
In this agenda the consistent opinions represent the linear orders over a set of candidates
{c1,¢2,...,¢s} and the issues are the (;) pair-wise comparisons between candidates*®.

An aggregation mechanism is a function that defines for any profile the aggregated
opinion (F : ({0,1}™)" — {0,1}™). There are two desired properties for aggregation mech-
anism, independence and consistency. Independence states that the aggregated opinion
on the j¥ issue, F7(X) depends solely on the opinions on that issue X7. Consistency of
the aggregation mechanism states that whenever all the members of the committee hold
consistent opinions, i.e., X € X", F returns a consistent opinion as well, i.e., F(X) € X.

For instance, issue-wise majority satisfies independence but also, as can be seen in the
accept-paper example, might lead to an inconsistent result for the conjunction agenda and
hence does not satisfy consistency. Similarly, the Condorcet Paradox[15] shows that, for
the preference agenda, issue-wise majority might lead to an inconsistent result. The nat-
ural question is whether one can find other aggregation mechanisms that satisfy indepen-
dence and consistency. Answering this question, Arrow’s theorem[1] shows that (under mild
and natural constraint®) the only aggregation mechanisms that satisfy independence and
consistency are the dictatorships. For other agendas one can find similar theorems that
characterize the class of consistent and independent aggregation mechanism to be a very
small and unnatural class. For instance, for the conjunction agenda (under the same mild
and natural constraint®) the only aggregation mechanisms that satisfy independence and
consistency are the oligarchies (The oligarchy of a coalition S returns for each issue True
if all voters in S voted True for that issue). In a recent work Dokow and Holzman ([5],[6])
proved a generalization of these results characterizing the set of consistent and independent
aggregation mechanism for several large families of agendas.

Lately there is a series of works coping with impossibility results in Social Choice using
approximations (e.g., [11] and [10]). The version of approximation we define in this work
is studying independence aggregation mechanisms that are almost consistent in the sense
that they return a consistent aggregated opinion for the vast majority of the inputs 7. We
quantify being almost consistent by defining the inconsistency index.

Definition 1.1 (Inconsistency Index).
For an agenda X and an aggregation mechanism F' for that agenda, the inconsistency index

2For instance those might be the legal opinions, logic consistent opinions, or rational according to other
criteria so one can assume that any ‘reasonable’ individual should hold only consistent opinions.

3L.e., the third bit ia a conjunction of the first two.

4For instance, for s = 3 the issues are ‘clécg’, ‘02;03’, and ‘cgécl’ and the consistent opinions are
{001,010, 100, 110, 101,011}

5A related model that can be found in the literature is ‘Judgement Aggregation’. In this model the issues
are logical propositions over a set of variables and a consistent opinion is an assignment to these variables
(so not every combination of truth values for the proposition is achievable). From our perspective the model
we describe is more general since we allow any agenda. Dokow and Holzman[5] proved that the two models
are equivalent in the sense that each set of consistent opinions can be described using a proposition set
(although not uniquely).

SPareto - Whenever all the voters hold the same opinion, this is the aggregated opinion.

“In most of this work we leave the independence constraint intact and relax the consistency constraint.
However, as we show in section 6, one can relax the independence constraint as well and get similar results.
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is defined to be the probability to get an inconsistent result.
ICX(F)=Pr[F(X) ¢ X | X € X"
assuming uniform probability over the inputs.

This definition assumes a uniform distribution over the opinions for each voter and
that voters draw their opinions independently (Impartial Culture Assumption). This
assumption, while certainly unrealistic, is the natural choice in this kind of work and is
discussed further in section 2.

In addition we use the usual Hamming distance between two aggregation mechanisms
(dX(F,G) =Pr[F(X) # G(X) | X € X"]) and derive from it a distance between an aggre-
gation mechanism and a collection of aggregation mechanisms (d*(F,G) = glelg dX(F, Q).

It is easy to see that when F' is close to G and G is consistent, F' is close to being
consistent, i.e., IC(F) is small. Our main question is whether there are other aggregation
mechanisms that are close to being consistent (Formally, IC*(F) < d*(F, Q))).

For the preference agenda, recent works of Kalai[12] and Mossel[17] prove such bounds

Theorem ([12]). There exists an absolute constant K such that the following holds: For
any € >0 and any aggregation mechanism F for the preference agenda over 3 candidates
that satisfies: F is balanced®, F is independent, and IC(F) < Ke , there evists an
aggregation mechanism G that satisfies consistency and independence such that d(F,G) < e.

In this paper we prove similar theorems for a family of agendas: premise-conclusion
agendas in which every issue is either a premise or a conclusion of at most two premises. In
a premise-conclusion agendas the issues are divided into two types: premises and conclusions.
Each conclusion j is characterized by a boolean function ®; over the premises and an opinion
is consistent if the answers to the conclusion issues are attained by applying the function
®; on the answers to the premise issues.

X ={z€{0,1}" | 27 = & (premises) for every conclusion issue j}

For instance the conjunction agenda is a premise-conclusion agenda with two premises and
one conclusion and we mark this by notating the agenda as (A, B, A A B) . In some cases
the division to premises and conclusion might be non-unique. For instance for the xor
agenda X = {001,010,100,111} one can define it as a premise-conclusion agenda both as
(A,B,A® B) and as (A,A® C,C).

The main result of this paper is:

Theorem (Theorem 4.1). For any € >0 and n > 1, there exists § = poly (%, e), such that
for every premise-conclusion agenda in which each issue is either a premise, or a conclusion
of at most two premises, if F' is an aggregation mechanism for X over n wvoters satisfying
independence and IC(F) < §, then there exists an aggregation mechanism G that satisfies
consistency and independence such that d(F,G) < e.

Moreover, one may take § = Cn~2€® for some absolute constant C.

From the theorem it follows that, whenever the inconsistency index of is small enough
(O(n™7)), the distance to the class of independent consistent mechanisms is small too
(poly(n)-small. I.e., bounded from above by one over a polynomial of n) and hence proves
that for these agendas the class of satisfying aggregation mechanisms does not expand much
when relaxing the consistency constraint.

8For every pair of candidates, a and b, it holds that the probability that F ranks a above b is exactly
1/2.
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The general statement follows easily from the analysis of three basic cases: The conjunc-
tion agenda (A, B, A A B) , the xor agenda (A, B, A® B) , and the id agenda (A, A)

We use two different techniques in the proofs. For the conjunction agenda we study
influence measures® of voters on the issue-aggregating functions and for the xor agenda we
use Fourier analysis of the issue-aggregating functions.'®

Notice the question of approximate aggregation has a close relation to the field of local
property testing. In this field we query a function at a small number of (random) points
testing for a global property (In our case the property is being a consistent independent
aggregation mechanism). And indeed one can see our characterization for the xor agenda
as a generalization of the result of Blum, Luby, and Rubinfeld ([3], [2]) that shows that a
function f that passes the linearity test with high probability!! is close to linear.

An open question is whether one can find such bounds for any agenda or whether there
exists an agenda for which the class of aggregation mechanisms that satisfy consistency
and independence expands non trivially when we relax the consistency and independence
constraints.

We proceed to describe the structure of the current paper. In Section 2 we describe
the formal model of aggregation mechanisms. In section 3 we give the two main examples
we deal with, preference aggregation and premise-conclusion aggregation. In section 4 we
state the motivation to deal with approximate aggregation, we describe the known results
for preference approximate aggregation by Kalai and Mossel and state our main result
for approximate aggregation for premise-conclusion agendas. In sections 5 we outline the
proof of the main theorem. In section 6 we define a measure that relaxes the independence
constraint and show that any result for approximate aggregation for independent aggregation
mechanisms (which is the case in our main theorem) can be translated to the more general
definition relaxing both constraints. Section 7 concludes.

2 The model

We define the model similarly to [5] (which is Rubinstein and Fishburn’s model [20] for the
boolean case)

We consider a committee of n individuals that needs to decide on m issues. An opinion
is a vector x = (z1,22,...,Zm) € {0,1}™ denoting an answer to each of the issues. An
opinion profile is a matrix X € ({0,1}")" denoting the opinions of the committee members
so an entry X7 denotes the vote of the it voter for the j' issue, the i row of it X; states
the votes of the it® individual on all issues, and the jt column of it X7 states the votes of
each of the individuals on the j'! issue. In addition we assume that an agenda X € {0,1}™
of the consistent opinions is given.

The basic notion in this field is an aggregation mechanism which is a func-
tion that returns an aggregated opinion (not necessarily consistent) for every profile
(F: ({0,1}™)" — {0,1}m) 12

An aggregation mechanism satisfies Independence (and we say that the mechanism
is independent) if for any two consistent profiles X and Y and an issue j, if X/ =YJ
(all individuals voted the same on the j'! issue in both profiles) then (F(X))! = (F(Y))?
(the aggregated opinion for the jt issue is the same for both profiles). This means that F

9Both the known influence (Banzhaf power index) and a new measure we define:The ignorability of a
voter.

10T he proof for the id case is trivial.

Mwhich is equivalent to that the aggregation mechanism for (A, B, A® B) that uses f for each of the
issues has small inconsistency index.

12We define the function for all profiles for simplicity but we are not interested in the aggregated opinion
in cases one of the voters voted an inconsistent opinion.
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satisfies independence if one can find m boolean functions f1, f2 ..., f™:{0,1}" — {0,1}
st F(X) = (fHX1Y), fA2(X?),..., f™(X™)). Notice this property is a generalization of the
ITA property for social welfare functions (aggregation mechanism for the preference agenda)
so a social welfare function satisfies ITA iff it satisfies independence as defined here (when
the issues are the pair-wise comparisons). An independent aggregation mechanism satisfies
systematicity if F(X) = (f(X*'),..., f(X™)) for some issue aggregating function, i.c., all
issues are aggregated using the same function. We will use the notation (f*, f2,..., f™) for
the independent aggregation mechanism that aggregates the jt issue using f7.

The main measure we study in this paper is the inconsistency index IC*(F) of a
given aggregation mechanism F and a given agenda X (as defined in the introduction).
This measure is a relaxation of the consistency criterion that is usually assumed in current
works'3. We defining this measure by

IC*(F)=Pr[F(X)¢X| X € X"]

assuming uniform distribution of the profiles. In cases the context is clear we omit the
agenda and notate it by IC(F').

This definition includes two major assumptions on the opinion profile distribution.
First, we assume the voters pick their opinions independently and from the same distri-
bution. Second, we assume a uniform distribution over the (consistent) opinions for each
voter(Impartial Culture Assumption). The uniform distribution assumption, while cer-
tainly unrealistic, is the natural choice for proving ‘lower bounds’ on IC(F'). That means,
proving results of the format ‘Every aggregation mechanism of a given class has inconsis-
tency index of at least ...". In particular, the lower bound, up to a factor J, applies also
to any distribution that gives each preference profile at least a ¢ fraction of the probability
given by the uniform distribution. Note that we cannot hope to get a reasonable bound
result for every distribution. For instance, since for every aggregation mechanism we can
take a distribution on profiles for which it returns a consistent opinion.

2.1 Boolean Functions

Since this work deals with binary functions (for aggregating issues), we need to define several
notions for this framework as well. To ease the presentation, throughout this paper we will
identify True with 1 and False with 0 and use logical operators on bits and bit vectors
(using entry-wise semantics).

Let f:{0,1}"™ — {0,1} be a boolean function. f is the oligarchy of a coalition S if it
is of the form: f(z) = [] #;. This means that f returns 1 if all the members of S voted

i€s

1. We denote by 01ig the class of all 2" oligarchies. Two special cases of oligarchies are
the constant 1 function which is the oligarchy of the empty coalition and the dictatorships
which are oligarchies of a single voter.

f is a linear function if is it of the form f(z) = '?S x; for some coalition S'4. This

K3

means that f returns 1 if an even number of the members of S voted 1. We denote by Lin
the class of all 2" linear functions. Two special cases of linear functions are the constant 1
function which is the xor function over the empty coalition and the dictatorships which are
xor of a single voter.

We say that f satisfies the Pareto criterion is f(0) = 0 and f(1) = 1'5. Le., when all

13 satisfies consistency if IC(F) = 0.

14 An equivalent definition is: Vz,y: f(z) + f(y) = f(z +y) when the addition is in Zy and Z, respec-
tively.

151n the literature this criterion is sometimes referred to as Unanimity, e.g., in [14]. We choose to follow
[6] and refer to it as Pareto to distinguish between it and the unanimity function which is the oligarchy of
{1,2,...,n}.
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the individuals voted unanimously 0 then f should return 0 and similarly for the case of 1.

We define two different measures for the influence of an individual on a function
f:{0,1}" — {0,1}. Both definitions use the uniform distribution over {0,1}" (which is
consistent with the assumption we have on the profile distribution).

o The influence'® of a voter i on f is defined to be the probability that he can flip the
result by changing his vote.

I;(f) = Pr[f(z) # f(z S ei)]
(xrDe; : e; = the i elementary vector. It is equivalent to flipping the it® bit 0 « 1)

e The (zero-)ignorability of a voter 7 on f is defined to be the probability that f returns
1 when ¢ voted 0.
Pi(f) =Pr[f(z) =1 | z; = 0)]
(We did not find a similar index defined in the voting literature or in the cooperative
games literature).

In addition we define a distance function over the boolean functions. The distance
between two functions f, g : {0,1}"™ — {0, 1} is defined to be the probability of getting a dif-
ferent result (normalized Hamming distance). d(f,g) = Pr[f(z) # g(x)]. From this measure
we will derive a distance from a function to a set of functions by d(f,G) = rrgg d(f,g)

g

One more notation we are using in this paper is 2, for a binary vector z € {0,1}" and
a coalition J C {1,2,...n} for notating the entries of z that correspond to J.

3 Agenda Examples

A lot of natural problems can be formulated in the framework of aggregation mechanisms.
In this paper we concentrate on two examples: (strict) preference aggregation and the class
of premise-conclusion agendas. Among other interesting natural agendas in this framework
that were studied one can find the equivalence agenda[9] and the membership agenda [21][16].

3.1 Preference Aggregation

Aggregation of preferences is one of the oldest aggregation frameworks studied. In this
framework there are s candidates and each individual holds a full strict order over them.
We are interested in Social Welfare Functions which are functions that aggregate n such
orders to an aggregated order. As seen in [18] and [4], this problem can be stated naturally
in our framework by defining (3) issues'”.

3.2 Premise-conclusion agendas

In a premise-conclusion agendas the issues are divided into two types: k premises and
(m — k) conclusions. The conclusion issues are boolean functions over the k premises,
®:{0,1}* — {0,1}™*. An opinion is consistent if the answers to the conclusion issues
are attained by applying the function ® on the premise issues.

X={ze{0,1}" |2 =& (z1,...,2x) j=k+1,....m}

In this paper we prove results to the following two specific premise-conclusion agendas. We
later derive results to a general family of premise-conclusion agendas.

161n the simple cooperative games regime, this is also called the Banzhaf power index of player 4 in the

game f.
17The issue (i, ) (for i < j) represents whether an individual prefers ¢; over c;.
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3.2.1 Conjunction Agenda (Doctrinal Paradox Agenda)

In the (2-premises) conjunction agenda (A, B, A A B) there are three issues to decide on and
the consistency criterion is defined to be that the third issue is a conjunction of the first two.
A common description of the problem is of a group of judges or jurors that should decide
whether a defendant is liable under a charge of breach of contract. Each of them should
decide on three issues: whether the contract was valid (p), whether there was a breach (q)
and whether the defendant is liable (r). In their decision making they are constrained by
the legal doctrine that the defendant is only liable if the contract was valid and if there was
indeed a breach (r <= (pAq)).

3.2.2 Xor Agenda

Similarly, in the (2-premises) xor agenda (A, B, A® B) there are three issues to decide on
and the consistency criterion is defined to be that the third issue is True if the first two
answers are equal. An equivalent way to define this agenda is constraining the number of
True answers to be odd.

4 Approximate Aggregation Results

In this paper we are interested in studying whether relaxing the consistency constraint,
i.e., taking IC(F) =Pr[F(X) ¢ X | X € X"] to be small (while restricting ourselves to in-
dependent aggregation mechanisms), extends non-trivially the set of satisfying aggregation
mechanisms, i.e. entails that d(F,C(X)) = GrenCi{lX) PriF(X) # G(X) | X € X"] is small (tak-

ing C(X) to be the class of aggregation mechanisms that satisfies consistency and indepen-
dence). More specifically we are interested in theorems of the following form (For a given
agenda X):

Theorem. For any e >0 and n > 1, there exists § = 0 (%,e), such that if F' is an aggre-
gation mechanism for X over n voters satisfying independence and IC(F) < 4, then there
exists an aggregation mechanism G that satisfies consistency and independence such that
d(F,G) <e.

Notice that such a theorem can be trivially satisfied by d(e,n) = 0. We seek better
bounds. Particulary, we are interested that whenever € is small (e.g., m), then so is §.
E.g., taking ¢ to be poly (%, e).

We find the motivation for dealing with the field of approximate aggregation in three
different disciplines.

e The consistent characterization are often regarded as ‘impossibility results’ in the
sense that they ‘permit’ a very restrictive set of aggregation mechanisms. (e.g., Ar-
row’s theorem tells us that there is no ‘reasonable’ way to aggregate preferences).
Extending this theorems to approximate aggregation characterizations sheds light on
these impossibility results by relaxing the constraints.

e The questions of Aggregation Theory have often roots in Philosophy, Law, or Political
Science. Results on approximate aggregations support the discussion that started in
the works of Arrow[1l] and Kornhauser and Sager[13] and searches for ways to deal
with scenarios in which it is needed to aggregate such opinions.

e The CS field of Local Property Checking of Boolean Functions deals with the problem
of deciding whether a given function has a given property (e.g., linearity) or whether it
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is ‘far’ from any object having the property. The works in the field consider randomized
algorithms that query the function at points of their choice, and seek algorithms which
query the function at relatively few points (For a survey of this field see [8]). The
question of checking locally for a global property is very close to the framework of
approximate aggregation (whether there exists an aggregation mechanism that is far
from the set of independent and consistent aggregation mechanisms but still does not
fail for most profiles). And indeed, the analysis of such randomized algorithm deals
with very similar expressions to the inconsistency index and hence results from the
field of approximate aggregation can be easily translated to the field of property testing
for the property ‘belongs to the class of consistent aggregation mechanism’. Special
interest should be in results that restrict the aggregation mechanisms to systematic
aggregation mechanisms (For instance Blum, Luby, and Rubinfeld’s result ([3],[2])
can be seen as a result for approximate aggregation using systematic aggregation
mechanisms for the xor agenda.).

The first work studying approximate aggregation was done for the preference agenda over
three candidate by Kalai[12] (although without stating the general framework of approxi-
mate aggregation). In this paper he proved the following bound for approximate aggregation
mechanisms.

Theorem ([12]). There exists an absolute constant K such that the following holds: For
any € >0 and any aggregation mechanism F for the preference agenda over 3 candidates
that satisfies: F is balanced'®, F is independent, and IC(F) < Ke , there exists an
aggregation mechanism G that satisfies consistency and independence such that d(F,G) < e.

This theorem was extended by Mossel[17] for preference agendas over any number of
candidates and non-balanced aggregation mechanisms but with worse dependence of IC(F)
in € (instead of linear as above).

Our main theorem gives bounds for every premise-conclusion agenda in which every
conclusion is a function of at most two of the premises.

Theorem 4.1 (Main theorem).

For any e > 0 andn > 1, there exists § = poly (%, e), such that for every premise-conclusion
agenda in which each issue is a premise, a conclusion of one premise, or a conclusion of
two premises, if F' is an aggregation mechanism for X over n voters satisfying independence
and IC(F) < §, then there exists an aggregation mechanism G that satisfies consistency and
independence such that d(F,G) < e.

Moreover, one may take § = Cn~2€® for some absolute constant C.

5 Proof Sketch

We prove this theorem by proving it explicitly for three specific agendas: the id agenda
(A, A), the xor agenda (A, B, A® B) , and the conjunction agenda (A, B, A A B) . Since
every boolean function on two bits can be reduced to one of the cases f(z,y) = z, f(z,y) = v,
f(z,y) = x Ay, and f(x,y) = © @ y by negating the inputs and output (which is renaming of
opinions in our framework) we get theorem 4.1 using induction on the number of conclusions.

Below we sketch the proof idea for the xor agenda and conjunction agenda. The proofs
of the more technical lemmas can be found in the full version.

I8For every pair of candidates, a and b, it holds that the probability that F ranks a above b is exactly
1/2.
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5.1 Proof for the xor agenda
For the agenda (A, B, A® B) we prove:

Theorem 5.1. For any € < % and any independent aggregation mechanism F':
If IC(F) < ¢, then there exists an aggregation mechanism G that satisfies consistency and
independence such that d(F,G) < 3e.

Proof sketch.
Technique'?: The proof uses the Fourier representation of boolean functions. That means
representing the functions as linear combinations of the linear boolean functions.

Given an independent aggregation mechanism F = (f,g,h) we analyze the expres-
sion E[f(x)g(y)h(xy)] when = and y are sampled uniformly and independently. On one
hand we show that E[f(z)g(y)h(zy)] =1—2IC(F). On the other hand we show that

B[/ @)o(w)h(ry)] = ¥ FO)G00RG) when |F()| eauals 1 —2min (d(f,x).d(f, ).

Hence, when IC(F) is small then this sum is close to one and hence there exists a lin-
ear function such that f,g, and h are close to it (up to negation). Noticing that for any
linear function x, (x, X, x) and the permutations of (—yx, —, x) are consistent independent
aggregation mechanism for this agenda gives us the result.

5.2 Proof for the conjunction agenda
For the agenda (A, B, A A B) we prove:

Theorem 5.2. For any € > 0 and any independent aggregation mechanism F:
If IC(F) < ¢, then there exists an aggregation mechanism G that satisfies consistency and
independence such that d(F,G) < 5v/n2e.

Proof sketch.

Technique: The main insight in the proof is that we can bound the product of the influence
of a voter on f and the ignorability of the same voter for g (and vice versa) using the
inconsistency index of F' by P,(f) - I,(g9) < 4IC(F).

Let F' = (f,g,h) be an aggregation mechanism that satisfies IC(F) < e. In case that f
(or g) is close enough to the constant zero function, F is close to the consistent aggregation
mechanism (0, g,0).

Otherwise, we define for a given function f:{0,1}™ — {0,1} and a coalition J (the
junta), the junta function  f7:{0,1}™ — {0, 1}. It is derived from f in the following way:

fJ(‘r) = majority {f(y) |y, =z, }.

Le., for a given input, f/ reads only the votes of the junta members, iterates over all the
possible votes for the members outside the junta, and returns the more frequent result
(assuming uniform distribution over the votes of the voters outside J).

We define f7 and g/ with regard to the junta of all the voters with small ignorability for
either f or g. We prove that f” and g’ are close to f and g, respectively and that there
exists an issue aggregation function h* such that < 7. g7 ,h*> is a consistent aggregation
mechanism that is close to F'.

There is a known characterization of the consistent independent aggregation mechanism
for the conjunction agenda. (This characterization is a direct corollary from a series of works
in the more general framework of aggregation, E.g., [19], [5]. We include a proof of it in the
full version)

9The proof is similar to the analysis of the BLR (Blum-Luby-Rubinfeld) linearity test done in [2].
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Lemma 5.3.
Let f,g,h:{0,1}™ — {0, 1} be three voting functions satisfying IC((f,g,h)) = 0. Then ei-
ther f=h=0,0org=h=0, or f =9g=h € 0lig.

A corollary from this theorem and theorem 5.2 is a characterization of the approximate
aggregation mechanisms for this agenda. Actually ,in the proof of theorem 5.2 we get a
tighter characterization that distinguishes between the two cases of consistent independent
aggregation mechanism.

6 General Definition of Approximate Aggregation

In this paper we defined approximate aggregation by leaving the independence constraint
intact and relaxing the consistency constraint. In this section we show that under a more
general definition of approximate aggregation that relaxes both constraints we get similar
results for any agenda and hence we do not lose much by restricting ourselves to the narrower
definition.

Let X be an agenda and let F' be an aggregation mechanism for that agenda. We define
the dependency index as a measure for ‘not satisfying independence’.

Definition 6.1 (dependency index).
For an agenda X and an aggregation mechanism F' for that agenda, the dependency index
DI*(F) is defined by

DI*(F)= max DI*(F) when DI’*(F)= E | Pr [F(X)# F(Y)X’=Y]
j=1,....m Xexn |[YeXn
That is, DI?*(F) is the probability that the following test for dependence of aggregating
issue j on other issues fails (returns False):
Choose a profile X uniformly at random.

Choose a profile Y that agrees with X on issue j uniformly at random.
Return whether FI(X) # F(Y)

We are interested in theorems of the form (for a given agenda X):

Theorem. For any € >0 and n > 1, there exist 6,.,6,, > 0%, such that if F is an
aggregation mechanism for X over n voters satisfying IC(F) < 8, and DI(F) < ,,, then

there exists an aggregation mechanism G that satisfies consistency and independence such
that d(F,G) < e.

It is easy to see that theorems of this form are generalizations of theorems of the form
we proved in this paper and one can easily derive approximate aggregation results for inde-
pendent aggregation mechanisms (DI(F) = 0) from theorems of the above general form.

It turns out that one can derive theorems the other way too using the following propo-
sition.2!

Proposition 6.1. Let G be an aggregation mechanism for an agenda over m issues that
satisfies DI(G) < d,,. Then there exists an independent aggregation mechanism F that
satisfies d(F,G) < 2md ,,

Given a result in the following format (which is the format we proved for in this paper):
Let 6 : [0,1] — [0,1] be a function s.t. for any € > 0: If F' is an aggregation mechanism
satisfying independence and IC(F') < 0(¢), then there exists an aggregation mechanism
G that satisfies consistency and independence such that d(F,G) < e.

20We would like §,, 6,,; to not be too small. For instance we would like them to be poly (%, €).
21Due to space limitations we omit the proof. It can be found in the full version of this paper.
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We will define d,, =36(5), 0,, = 7= min (6(5),¢). Now, let G be an aggregation
mechanism that satisfies IC(G) < d,. and DI(G) < J,,. Then based on proposition
6.1 there is an independent aggregation mechanism F' such that d(F,G) < 2md,,. It
is easy to see that IC(F) < IC(G)+d(F,G) and for any aggregation mechanism H,
d(G,H) < d(F,H)+d(F,G) and hence there exists an aggregation mechanism H that
satisfies consistency and independence such that d(G, H) < €.22

Notice that the dependency of ¢, and d,,, in € and n (for instance, being polynomial in
these parameters) is ‘inherited’ from the dependency of ¢ in € and n. Therefore, such result
will be similar in quality to the result for approximate aggregation mechanism that satisfies
independence and we do not lose much by restricting ourselves to studying approximate
aggregation by mechanisms that satisfying independence when analyzing a given agenda.

7 Summary and Future Work

In this paper we defined the issue of approximate aggregation which is a generalization of
the study of aggregation mechanisms that satisfy consistency and independence. We defined
measures for the relaxation of the consistency constraint (inconsistency index IC') and for
the relaxation of the independence constraint (dependency index DI) .

We proved that relaxing these constraints does not extend the set of satisfying aggre-
gation mechanisms in a non-trivial way for any premise-conclusion agenda in which every
conclusion can be stated as a function of at most two of the premises. Particulary we cal-
culated the dependency between the extension of this class (¢) and the inconsistency index
(6(€)) (although maybe not strictly) for any premise-conclusion agenda of three issues. The
relation we proved includes dependency on the number of voters (n). In both the works
that preceded us for preference agendas (Kalai[12] and Mossel[17]) the relation did not in-
clude such a dependency. An interesting question is whether such a dependency is inherent
for premise-conclusion agendas or whether it is possible to prove a relation that does not
depend on n.

A major assumption in this paper is the uniform distribution over the inputs which is
equivalent to assuming i.i.d uniform distribution over the premises. We think that our results
can be extended for other distributions (still assuming voters’ opinions are distributed i.i.d)
over the space over premises’ opinions which seem more realistic.

Immediate extensions for this work can be to extend our result to more complex premise-
conclusion agendas and generalize our results for three issues premise-conclusion agenda and
Kalai and Mossel’s works for the preference agenda to get a unified bound for any three
issues agenda.

A major open question is whether one can find an agenda for which relaxing the con-
straints of independence and consistency extends the class of satisfying aggregation mecha-
nisms in a non-trivial way.
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Complexity of Winner Determination and
Strategic Manipulation in Judgment Aggregation

Ulle Endriss, Umberto Grandi, and Daniele Porello

Abstract

Judgment aggregation is an area of social choice theory that analyses procedures for
aggregating the judgments of a group of agents regarding a set of interdependent
propositions (modelled as formulas in propositional logic). The judgment aggrega-
tion framework gives rise to a number of algorithmic problems, including (1) com-
puting a collective judgment from a profile of individual judgments (the winner
determination problem), and (2) deciding whether a given agent can influence the
outcome of a judgment aggregation procedure in her favour by reporting insincere
judgments (the manipulation problem). We study the computational complexity
of both these problems for two concrete judgment aggregation procedures that are
complete and consistent and that have been argued to be useful in practice: the
premise-based procedure and (a new variant of) distance-based merging. Our re-
sults suggest that manipulating these procedures is significantly harder than solving
the corresponding winner determination problem.

1 Introduction

Judgment aggregation (JA) is an area of social choice theory that analyses procedures for ag-
gregating the judgments of a group of agents regarding a set of interdependent propositions
(List and Puppe, 2009). In JA, we are given a set of propositional formulas (the agenda)
and ask several agents to report which of these formulas they judge to be true. How should
we aggregate this information into a collective judgment? And under what circumstances
will the collective judgment be consistent? To date, most technical contributions to the JA
literature have been of an axiomatic flavour, establishing characterisations and impossibil-
ity theorems (e.g. List and Pettit, 2002; Dietrich, 2006). In recent work, we have begun to
investigate the computational properties of the JA framework (Endriss et al., 2010). Here,
we want to extend the scope of this work and suggest a framework for analysing the com-
putational complexity of two algorithmic problems associated with concrete JA procedures:
the winner determination problem, i.e., the problem of computing the collective judgment
from a profile of individual judgments, and the manipulation problem.

In the context of voting, a player is said to be able to manipulate a voting rule when
there exists a situation in which voting in a manner that does not truthfully reflect her
preferences will result in an outcome that she prefers to the outcome that would be realised
if she were to vote truthfully (Gaertner, 2006). What would constitute an appropriate
definition of manipulation in the context of JA? This is not immediately clear, because in
JA there is no notion of preference. Here, we follow Dietrich and List (2007) and assume
that a player’s individual judgment set is also her most preferred outcome and amongst
any two outcomes she will prefer the one that is “closer” to that most preferred outcome.
We will measure “closeness” using the Hamming distance. So, we will call an aggregation
procedure F' manipulable if it permits a situation where an agent can change the outcome
to a judgment set that is closer to her true judgment set by reporting untruthfully. A
procedure that cannot be manipulated is called strategy-proof.

Dietrich and List (2007) show that F' is strategy-proof if and only if it is independent
and monotonic. Thus, for a meaningful study of the computational complexity of strategic
manipulation, we have to restrict attention to rules that are not both independent and

139



monotonic.! Furthermore, for this initial study of the subject, we choose to focus on rules
that produce consistent and complete judgment sets. Specifically, we analyse two rules: the
premise-based procedure (Kornhauser and Sager, 1993; Dietrich and Mongin, 2010) and (a
new variant of) distance-based merging (Pigozzi, 2006). For both procedures, we compare
the complexity of manipulation with the complexity of winner determination.

For the premise-based procedure, we show that manipulating the procedure is NP-hard,
while winner determination is possible in polynomial time. Thus, misuse of the procedure
is significantly harder than using it in the intended manner (under the common assumption
that P # NP). For distance-based merging, we show that (the decision problem correspond-
ing to) winner determination is in NP and we conjecture that manipulation is X5-complete
(which would place the latter problem at the second level of the polynomial hierarchy).
That is, under the common assumption that the polynomial hierarchy does not collapse,
this would, again, make manipulation considerably harder than winner determination.

The remainder of this paper is organised as follows.? In Section 2 we recall the framework
of JA and define the winner determination and manipulation problems. The premise-based
procedure is analysed in Section 3 and distance-based merging in Section 4. We conclude
with a brief discussion of related work in Section 5.

2 Judgment Aggregation

In this section we recall the basic formal framework of JA familiar from the literature (List
and Pettit, 2002; Dietrich, 2006; List and Puppe, 2009) and introduce a particular notion
of strategic manipulation originally proposed by Dietrich and List (2007). To make the
problem amenable to a complexity-theoretic investigation, we then formulate manipulation
as a decision problem, and we do the same for the winner determination problem.

2.1 The Basic Framework

We now define the basic framework for JA.> Let PS be a set of propositional variables,
and Lpg the set of propositional formulas built from PS (using the usual connectives —,
A, V, —, <, and the constants T and L). If « is a propositional formula, define ~«, the
complement of «, as —« if « is not negated, and as § if &« = —3. An agenda is a finite
nonempty set ® C Lpg not containing any doubly-negated formulas that is closed under
complementation (i.e., if « € ® then ~a € ®). Denote with ®* the set of positive formulas
in ®. A judgment set J on an agenda  is a subset of the agenda J C ®. Define J(¢) =1
if o e J,and J(p) =0if ¢ € J. We call a judgment set J complete if o € J or ~a € J
for all @ € ®; complement-free if for no « € ® both a and ~« are in J; and consistent
if there exists an assignment that makes all formulas in J true. Denote with J(®) the set
of all complete consistent subsets of ®. Given a set N = {1,...,n} of n > 3 agents, denote
with J = (J1,...,J,) a profile of judgment sets, one for each agent.

Definition 1 (Aggregation procedure). A (resolute) aggregation procedure for an agenda
® and a set of n individuals is a function F : J(®)" — 22.

!Independent and monotonic aggregation procedures are not very attractive: they are either dictatorial
or risk producing inconsistent outcomes unless the agenda is structurally very simple (List and Puppe, 2009).

2We shall assume familiarity with the basics of complexity theory up to the notion of NP-completeness
(see e.g. Papadimitriou, 1994). We also make reference to two complexity classes at the second level of the
polynomial hierarchy: 5, the class of problems for which a certificate can be verified in polynomial time by
a machine equipped with an NP oracle, and Hg, the class of problems that are complements of those in Eg.

3Following our earlier work (Endriss et al., 2010), to allow for a precise analysis of the computational
aspects of JA, we make slight changes to the standard framework (see e.g. List and Puppe, 2009): e.g., we
allow for tautologies in the agenda and we make a clear distinction between purely “syntactic” and “logical”
criteria (complement-freeness vs. consistency). We also permit irresolute JA procedures.
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That is, F' maps each profile of individual judgment sets to a collective judgment set. (In
Section 4 we will also introduce an irresolute procedure that returns a set of collective
judgment sets.) An aggregation procedure F, defined on an agenda ®, is said to be complete
(complement-free, consistent) if F'(J) is complete (complement-free, consistent) for every
J € J(®). Here, we are only interested in procedures that are complete and consistent
(and thus also complement-free). As discussed at length in the literature, these are not easy
criteria to satisfy. The majority rule, for instance, which accepts a formula if and only if
a majority of agents do, fails to satisfy consistency (Kornhauser and Sager, 1993).

Axioms provide a normative framework in which to state what the desirable (or essential)
properties of aggregation procedures are. Important axioms include anonymity, stating
that the procedure should treat all agents the same; neutrality, requiring symmetry with
respect to propositions; independence, postulating that collective acceptance of ¢ should
only depend on individual acceptance patterns of ¢; and monotonicity, specifying that ad-
ditional support for a collectively accepted formula ¢ should never cause ¢ to get rejected.*
While all of these axioms are intuitively appealing, several impossibility theorems, estab-
lishing inconsistencies between certain combinations of axioms with other desiderata, have
been proved in the literature. The original impossibility theorem of List and Pettit (2002),
for instance, shows that there can be no consistent and complete aggregation procedure
satisfying anonymity, neutrality, and independence.

2.2 Strategic Manipulation

We now define the notion of strategic manipulation for JA sketched in the introduction. Our
definition is an instance of a more general definition proposed by Dietrich and List (2007),
which is based on the idea that we can induce a preference relation over judgment sets by
assuming that an agent’s true judgment set J is her most preferred outcome, and between
any two outcomes the one that is “closer” to J is preferred. One of the most appealing
choices for such a notion of “closeness” is the Hamming distance.

Definition 2 (Hamming distance). Given an agenda ®, let J, J' € 2% be two complete and
complement-free judgment sets for ®. The Hamming distance H(J,J') between J and J' is
the number of positive formulas on which they differ:

H(JT) = Y [Je) =T ()
peDt

That is, H(J,J') is an integer between 0 (complete agreement) and % (complete disagree-

ment). For example, if the agenda is ® = {p, =p,q,~q,p A ¢,~(p A ¢)}, then the Hamming
distance between J = {-p,q, = (pAq)} and J' = {p, ~q,~(pAq)} is H(J, J') = 2. Intuitively,
if J; is the true judgment set of agent ¢, then 7 “prefers” J over J' if H(J;, J) < H(J;, J').

Definition 3 (Manipulability). Let ® be an agenda, let F : J(®)" — 2% be an aggregation
procedure for that agenda, and let I = (J1,...,Jiy ..., Jn) € T(P)™ be a profile. Then F is
said to be manipulable at J, if there exist an alternative judgment set J, € J(®) for some
agent i € N such that H(J;, F(J!,J_;)) < H(J;, F(J)).

That is, by reporting J/ rather than her truthful judgment set J;, agent ¢ can achieve the
outcome F(J/,J_;) and that outcome is closer (in terms of the Hamming distance) to her
truthful (and most preferred) set J; than the outcome F(J) that would get realised if she
were to truthfully report J;. A procedure that is not manipulable at any profile is called
strategy-proof. Dietrich and List (2007) have shown that a JA procedure is strategy-proof if
and only if it is independent and monotonic. Thus, to study the complexity of manipulation,
we have to restrict ourselves to procedures that are either not independent or not monotonic.

4See (List and Puppe, 2009) or (Endriss et al., 2010) for formal presentations of these axioms.
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2.3 Strategic Manipulation as a Decision Problem

To study the complexity of strategic manipulation, we formulate manipulation as a deci-
sion problem. We propose the following simple definition, parametrised by the judgment
aggregation procedure F' under consideration.

MANIPULABLE(F')
Instance: Agenda ®, judgment set J; € J(®), partial profile J_; € J(®)" 1.
Question: Is there a J, € J(®) s.t. H(J;, F(J[,J_;)) < H(J;, F(J;,J_;))?

That is, agent ¢ is the manipulator and her true judgment set is J;. The other agents’
judgments are given by J_;. If agent ¢ does not manipulate, then the outcome will be
F(J;,J_;), and the Hamming distance of this outcome to her most preferred outcome (which
is also J;) is H(J;, F(J;,J—;)). The question we are asking is whether there exists another
judgment set J! that agent i could report instead that would lead to an outcome F(J!,J_;)
that is closer to J; in terms of the Hamming distance. That is, we are asking whether she
can manipulate successfully, rather than how.

2.4 Winner Determination as a Decision Problem

Next, we also formulate winner determination as a decision problem:

WINDET(F)
Instance: Agenda @, profile J € J(®)™, formula ¢ € ®.
Question: Is ¢ an element of F(J)?

By solving WINDET once for each formula in the agenda, we can compute the collective
judgment set from an input profile (and, vice versa, any algorithm for computing the col-
lective judgment set can be used to solve WINDET).

3 Premise-based Judgment Aggregation

There are two basic (types of) JA procedures that (can be set up so as to) produce consistent
outcomes that have been discussed in the JA literature from its very beginnings, namely the
premise-based (or issue-based) and the conclusion-based (or case-based) procedure (Korn-
hauser and Sager, 1993; Dietrich and Mongin, 2010). The basic idea is to divide the agenda
into premises and conclusions. In the premise-based procedure, we apply the majority rule
to the premises and then infer which conclusions to accept given the collective judgments
regarding the premises;® under the conclusion-based procedure we directly ask the agents
for their judgments on the conclusions and leave the premises unspecified in the collective
judgment set. That is, the conclusion-based procedure does not result in complete outcomes,
which is why we shall not consider it any further here. The premise-based procedure, on
the other hand, can be set up in a way that guarantees consistent and complete outcomes,
which provides a usable procedure of some practical interest—despite its well-documented
shortcomings (Kornhauser and Sager, 1993; Pigozzi, 2006).

In this section, we first formally introduce the precise variant of the premise-based pro-
cedure we shall analyse. We then study the complexity of the winner determination and
manipulation problems for this procedure. For ease of exposition, throughout this section,
we shall assume that the number of agents n is odd.

5This is what is commonly understood by “premise-based procedure”. Dietrich and Mongin (2010), who
call this rule premise-based magjority voting, have also investigated a more general class of premise-based
procedures in which the procedure used to decide upon the premises need not be the majority rule.
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3.1 Definition of the Procedure
For many JA problems, it will be natural to divide the agenda into premises and conclusions.

Definition 4 (Premise-based procedure). Let & = &, W &, be an agenda divided into a set
of premises ®, and a set of conclusions ®., each of which is closed under complementation.
The premise-based procedure PBP : J(®)" — 2% for ®, and ®. is the function mapping
each profile J = (J1,...,Jn) € T(P)" to the following judgment set:

PBP(J) = Au{ped.|AEqp},
whereA:{goe<I>p|#{i|g06Ji}>g}

If we want to ensure that the PBP always returns judgment sets that are consistent and
complete, then we have to impose certain restrictions:

e If we want to guarantee consistency, we have to impose restrictions on the premises.
It is well-known that the majority rule is guaranteed to be consistent if and only if
the agenda ® satisfies the so-called median property, i.e., if every inconsistent subset
of ® has itself an inconsistent subset of size < 2 (Nehring and Puppe, 2007; List and
Puppe, 2009). This result immediately transfers to the PBP: it is consistent if and
only if the set of premises satisfies the median property.

e If we want to guarantee completeness, we have to impose restrictions on the conclu-
sions: for any assignment of truth values to the premises, the truth value of each
conclusion has to be fully determined.

Deciding whether a set of formulas satisfies the median property is known to be IT5-hard
(Endriss et al., 2010). That is, in its most general form, deciding whether the PBP can be
applied correctly is a highly intractable problem (and, as we shall see, a problem that is most
likely considerably harder than either using or manipulating the PBP). For a meaningful
analysis, we therefore restrict attention to the following case. First, we assume that the
agenda ® is closed under propositional variables: p € ® for any propositional variable p
occurring within any of the formulas in ®. Second, we equate the set of premises with the
set of literals. Clearly, the above-mentioned conditions for consistency and completeness are
satisfied under these assumptions.

So, to summarise, the procedure we consider in this section is defined as follows: Under
the assumption that the agenda is closed under propositional variables, the PBP accepts
a literal ¢ if and only if more individual agents accept ¢ than do accept ~¢, and the PBP
accepts a compound formula if and only if it is entailed by the accepted literals. For
consistent and complete profiles, and under the assumption that n is odd, this leads to a
resolute JA procedure that is consistent and complete.

3.2 Winner Determination
Winner determination is a tractable problem for the premise-based procedure:
Proposition 1. WINDET(PBP) is in P.

Proof. Counting the number of agents accepting each of the premises and checking for each
premise whether the positive or the negative instance has the majority is easy. This deter-
mines the collective judgment set as far as the premises are concerned. Deciding whether
a given conclusion should be accepted by the collective now amounts to a model checking
problem (is the conclusion ¢ true in the model induced by the accepted premises/literals?),
which can also be done in polynomial time. O
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3.3 Strategic Manipulation

Manipulating the premise-based procedure, on the other hand, is intractable:
Theorem 2. MANIPULABILITY(PBP) is NP-complete.

Proof. We first establish NP-membership. An untruthful judgment set J; yielding a pre-
ferred outcome can serve as a certificate. Checking the validity of such a certificate means
checking that (a) J/ is actually a complete and consistent judgment set and that (b) the
outcome produced by J! is better than the outcome produced by the truthful set .J;. As for
(a), checking completeness is easy. Consistency can also be decided in polynomial time: for
every propositional variable p in the agenda, J/ must include either p or —p; this admits only
a single possible model; all that remains to be done is checking that all compound formulas
in J! are satisfied by that model. As for (b), we need to compute the outcomes for .J; and
J! (by Proposition 1, this is polynomial), compute their Hamming distances from .J;, and
compare those two distances.

Next, we prove NP-hardness by reducing SAT to MANIPULABILITY(PBP). Suppose we
are given a propositional formula ¢ and want to check whether it is satisfiable. We will build
a judgment profile for three agents such that the third agent can manipulate the aggregation
if and only if ¢ is satisfiable. Let p1,...,p, be the propositional variables occurring in ¢,
and let g1, g2 be two additional propositional variables. Define an agenda ® that contains
all atoms p1,...,pm,q1,¢2 and their negation, as well as m + 2 syntactic variants of the
formula ¢; V (¢ A ¢2) and their negation. For instance, if ¥ := ¢1 V (¢ A g2), we might use
the syntactic variants ¥, ¥ A T, ¥ AT AT, and so forth. The judgment profile J is defined
by the following table (the rightmost column has a “weight” of m + 2):

p1 P2 Pm |t @2 | @V I(eAg)
J |1 1 170 0 ?
Jo 0 O 0 0 1 ?
Js |11 111 0 1
FO |1 1 1[0 0 0

The judgments of agents 1 and 2 regarding g1 V (¢ A g2) are irrelevant for our argument, so
they are indicated as “?” in the table (but note that they can be determined in polynomial
time; in particular, Ji (g1 V (¢ A ¢2)) = 0 for any o).

If agent 3 reports her judgment set truthfully (as shown in the table), then the Hamming
distance between J; and the collective judgment set will be 1 + (m + 2) = m + 3. Note
that agent 3 is decisive about all propositional variables (i.e., premises) except ¢; (which
will certainly get rejected). Now:

e If ¢ is satisfiable, then agent 3 can report judgments regarding ps, ..., pn, that corre-
spond to a satisfying assignment for ¢. If she furthermore accepts go, then all m + 2
copies of g1 V (¢ A g2) will get accepted in the collective judgment set. Thus, the
Hamming distance from J3 to this new outcome will be at most m + 2, i.e., agent 3
will have manipulated successfully.

e If  is not satisfiable, then there is no way to get any of the m + 2 copies of g1 V
(¢ A q2) accepted (and g1 will get rejected in any case). Thus, agent 3 has no means
of improving over the Hamming distance of m + 3 she can guarantee for herself by
reporting truthfully.

Hence, ¢ is satisfiable if and only if agent 3 can manipulate successfully, and our reduction
from SAT to MANIPULABILITY(PBP) is complete. O

Thus, manipulating the premise-based procedure is significantly harder than using it—at
least in terms of worst-case complexity (and under the common assumption that P # NP).
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4 Distance-Based Judgment Aggregation

Pigozzi (2006) has shown that ideas from belief merging (Konieczny and Pino Pérez, 2002)
can be imported into JA to yield practical aggregation procedures that are complete and
consistent. Specifically, Pigozzi proposes a procedure that works roughly as follows: asso-
ciate with each individual judgment set the model(s) satisfying that judgment set; merge
the resulting set of models to obtain a new collection of models that minimise the sum of the
(minimal) Hamming distances to the individual models; and return a collective judgment
set corresponding to that collection of models. In this section, we introduce a new variant
of this procedure and we study the computational complexity of its winner determination
and manipulation problems.

4.1 A New Procedure: “Syntactic” Distance-based Merging

The merging procedure of Pigozzi (2006) has the drawback of being defined for a somewhat
restricted class of profiles: the agenda is assumed to be closed under propositional vari-
ables and all compound formulas (the integrity constraints) are unanimously accepted (or
rejected) by all agents. Most importantly, the syntactic information contained in the agenda
is discarded by moving the aggregation from the level of formulas to the level of models.
Our own proposal for distance-based merging in JA consists of a syntactic variant of this
procedure, where we merge judgment sets rather than models corresponding to judgment
sets. It is an rresolute procedure, returning a (nonempty) set of collective judgment sets.

Definition 5 (Distance-based procedure). Given an agenda ®, the distance-based procedure
DBP is the function mapping each profile J = (J1,...,Jn) € J(®)™ to the following set of
Judgment sets: n
DBP(J) = arg ng}?q)) 2 H(J,J;)

A collective judgment set under the DBP minimises the amount of disagreement with the
individual judgment sets. Note that in cases where the majority rule leads to a consistent
outcome, the outcome of the DBP coincides with that of the majority rule (making it
a resolute procedure over these profiles). In all other profiles the consistent judgment sets
that are the closest with respect to the Hamming distance are chosen as collective outcomes.

The DBP can be made resolute by introducing a tie-breaking rule (e.g., a lexicographic
tie-breaking rule). Note that the DBP does not coincide with the procedure of Pigozzi
(2006), even for agendas closed under propositional variables. The main reason is that the
DBP is sensitive to logical correlations between formulas of the agenda: accepting an atom
that is correlated with other formulas in the agenda “counts” more in our procedure than
accepting an independent one. We find this an appealing property for a JA procedure,
since it does not discard the syntactic information contained in the agenda. Also note that
the DBP shares many features with the Kemeny rule for preference aggregation (Kemeny,
1959). We will elaborate more on this similarity in the proof of Lemma 4.

4.2 Winner Determination

Next, we want to analyse the complexity of the winner determination problem for the DBP.
As the DBP is not resolute, we cannot work with the decision problem WINDET(DBP).
The reason is that when there is more than one winning set, each query to WINDET (to
settle the assignment for one formula at a time) may relate to a different winning set. We
therefore formulate a new decision problem specifically for the DBP:
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WINDET*(DBP)
Instance: Agenda ®, profile J € J(®)", formula ¢ € &, K € N.
Question: Is there a J* € J(®) with p € J* s.t. >,y H(J*, J) < K?

That is, we ask whether there is a J with Hamming distance at most K that accepts ¢. To
see that this is an appropriate formulation for a decision problem corresponding to the task
of computing some winning set, note that we can compute a winner using a polynomial
number of queries to WINDET*(DBP) as follows. We first use it to find the smallest K for
which o7 can be accepted, as well as the smallest K for which ~p; can be accepted (n-m is
an obvious upper bound for K, so this can be done with a polynomial number of queries).
Then we accept either @1 or ~¢1, whichever did yield the smaller K (choose either one
in case of a tie). Now leave K fixed for the rest of the process. Next, substitute ¢; with
the appropriate truth value throughout J. Then check whether s can be accepted yielding
distance K; if not, ~ps must be acceptable with distance K. Accept the appropriate formula
and make the appropriate substitutions in J; then continue with 3, and so forth.

Unsurprisingly, the DBP is much more complex a procedure than the PBP. Nevertheless,
as we show next, the complexity of winner determination does at least not exceed NP.

Lemma 3. WINDET*(DBP) s in NP.

Proof. We will show that WINDET*(DBP) can be modelled as an integer program (without
an objective function). This proves membership in NP (Papadimitriou, 1981).

Suppose we want to answer an instance of WINDET*(DBP). The number of subformulas
of propositions occurring in the agenda ® is linear in the size (not cardinality) of ®. We
introduce a binary decision variable for each of these subformulas: z; € {0,1} for the ith
subformula. We first write constraints that ensure that the chosen outcome will correspond
to a consistent judgment set (i.e., that J* € J(®)). Note that we can rewrite any formula in
terms of negation, conjunction, and bi-implication without resulting in a superpolynomial
(or even superlinear) increase in size.% So we only need to show how to encode the constraints
for these connectives. The following table indicates how to write these constraints.

P2 = TPl r2=1-—1

p3=p1Nps |v3 <z andz3 <zpand z; +x2 <23+ 1
p3=@1 @2 |21 +x2<xz+1land xy +x3 <2+ 1
and vo + 23 <z1+1land 1 <21 + 29 + 3

Before we continue, consider the following way of rewriting the sum of distances featuring
in the definition of WINDET*(DBP):

SSTHTLT) = S S 1) - Ji()

JeJ i=1gp6<1>+
1 L
= 5 2.2 1@~ Jilw)l
ped i=1
1 ) -
= g'ZIn'J(w)—ZJi(w)I
pED i=1

We will need to bound this sum from above. Now suppose that variables x; with indices
i €{1,...,m} with m = |®| are those that correspond to the propositions that are elements
of ®. Let a; be the number of individuals that accept the ith proposition in ® (according

6For instance, any occurrence of AV B can be rewritten as =(=A A =B). Note that rewriting a formula
with nested bi-implications in terms of = and A alone may result in an exponential blow-up.
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to J). To compute a winner under the DBP, we need to find a consistent judgement set J*
(characterised by variables x1, . . ., T, ) that minimises the sum |n-z1 —ai|+- - -+|n-Tm —am|-
We do this by introducing an additional set of integer variables y; > 0 for i = 1,...,m. We
can ensure that y; = |n - z; — a;| by adding the following constraints:

m) n-x;—a; <Yi
m) a;—n-x; <Y

Now the sum % - > i corresponds to the Hamming distance between the winning set
and the profile. To ensure it does not exceed K, we can add the following constraint:

m
'Zyi <K
i1

Finally, let x;« be the the variable corresponding to the formula ¢ € ® for which we want to
answer WINDET*(DBP). We can force that ¢ gets accepted by adding one last constraint:

N —

xi*=1

Now, by construction, the integer program we have presented is feasible if and only if the
instance of WINDET* (DBP) we have started out with should be answered in the positive. [

Our proof also produces an algorithm for performing distance-based merging in practice.
Observe that the following integer program (now with an objective function) can be used
to find (some) winning judgment set under the DBP:

m
min Z y; subject to all of the above constraints
i=1

The solution can be read off from the values of the x;. Note that the implementation
details of the IP solver used will implicitly determine a tie-breaking rule. If required, other
tie-breaking rules can be implemented explicitly.

Next, we show that the upper bound established by Lemma 3 is tight. Here, the similarity
of the DBP to the Kemeny rule in preference aggregation allows us to build on a known
NP-hardness result from the literature (Bartholdi et al., 1989b; Hemaspaandra et al., 2005).

Lemma 4. WINDET*(DBP) is NP-hard.

Proof sketch. We build a reduction from the problem KEMENY SCORE, as defined by Hemas-
paandra et al. (2005). An instance of this problem consists of a set of candidates C, a profile
of linear orders” P = (Py,..., P,) over C, a designated candidate ¢, and a positive integer
K. The Kemeny score of candidate c is given by the following expression:

KemenyScore(c, P) = min{ zn:d(Pi, Q) | top(Q) = ¢}
i=1

where d(P;, Q) is the Hamming distance between preference profiles and top(Q) is the most
preferred candidate. The problem asks whether the Kemeny score of ¢ is less than K.

We now build an instance of WINDET*(DBP) to decide this problem. Define an agenda
®c in the following way. First add propositional variables p,;, for all ordered pairs of
candidates a,b in C; these variables can encode a linear order over C' as a binary relation

7 Although the Kemeny rule is defined for weak orders, the problem is known to remain NP-complete also
in the case of linear orders (Bartholdi et al., 1989b, Lemma 3).
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(where pgp, stands for a > b). Then add m? (where m = |C|) syntactic variants of the formula
Pab N Poe — Pac for all suitable combinations of ordered pairs of candidates; these formulas
encode the transitivity of the linear order encoded by the first set of variables. Finally, add
an additional variable top.. Given a preference profile P we can build a judgment profile
Jp by encoding all strict orders P; over C in a judgment set Jp over ®c. Due to space
constraints we just show this procedure for a simple example with three candidates:

P={a>b>c} = Jp={Dab)Pbc, Pea; t0p,, all transitivity constraints}

To conclude, it is sufficient to notice that d(P, Q) = H(Jp,Jg) in case P and () share the
same top candidate, otherwise the difference is 1. It is therefore sufficient to ask a query
to WINDET*(DBP) using Jp as a profile, a suitable K’ as a bound, and top. as the fixed
formula ¢, to obtain an answer to the initial KEMENY SCORE instance with parameter
K. The key step is to notice that judgment sets encoding intransitive preferences will
not be considered in the minimisation process, since every disagreement on a transitivity
formula will cause a much greater loss in the Hamming distance than what can be gained
by modifying the variables encoding the candidate rankings. O

Putting Lemma 3 and 4 together yields a complete characterisation of the complexity of
winner determination under distance-based merging:

Theorem 5. WINDET*(DBP) is NP-complete.

4.3 Strategic Manipulation

Next, we discuss the complexity of manipulating the DBP. Note that our definition of
manipulation was tailored to resolute aggregation procedures, while the DBP (in its most
general form) is irresolute and may return a set of winners. One interesting line of research to
pursue in future work would be to define appropriate notions of manipulation and strategy-
proofness for irresolute JA procedures. Here, instead, we shall assume that the DBP comes
with a fixed tie-breaking rule (say, a lexicographic rule, or even the tie-breaking rule implicit
in the IP formulation of the procedure given above, for a specific IP implementation). We do
assume that this tie-breaking rule does not increase the complexity of winner determination
beyond NP (this is the case for the two examples mentioned). Let MANIPULABILITY(DBPY)
be the manipulation problem for the DBP with such a fixed tie-breaking rule.

Establishing the precise complexity of manipulation for distance-based merging is cur-
rently an open problem. However, we are able to provide an upper bound:

Lemma 6. MANIPULABILITY(DBP?) is in 5.

Proof sketch. To show membership in X5 we need to show that it is possible to verify a
certificate in polynomial time on a machine that has access to an NP oracle. Recall from
the first part of the proof of Theorem 2 that an appropriate certificate is a judgment set J/
for the manipulator that is complete and consistent and that produces an outcome that is
closer to the manipulator’s true judgment set J; than the outcome produced if she reports J;.
This involves three non-trivial steps, all of which can be resolved by the NP oracle: deciding
consistency of J! is in NP (this is just SAT), and computing the winners for J; and J/ is also
in NP (by Lemma 3). Thus, the certificate can be verified using three calls to the oracle;
the remainder of the computation is clearly polynomial. O

We conjecture that the above bound is tight, i.e., that MANIPULABILITY(DBP?) is Y5-
complete.® If this conjecture is correct, then manipulation is significantly harder than
winner determination, also in the case of distance-based merging.

8To the best of our knowledge, there are currently no known results on the complexity of the (presumably)
closely related problem of manipulating Kemeny elections.

148



5 Related Work

We conclude by briefly reviewing some related work regarding (1) alternative notions of
manipulation in JA, (2) other complexity-theoretic questions in JA, (3) manipulation and
strategy-proofness in belief merging, and (4) the complexity of manipulation in voting.

As mentioned earlier, our definition of strategic manipulation in JA is based on the work
of Dietrich and List (2007). This definition crucially rests on the idea that we can induce
a preference ordering over judgment sets from an agent’s true judgment set an a metric
for measuring “closeness”. The Hamming distance is one such metric; Dietrich and List
(2007) also discuss the concept of “closeness-respecting” preferences (and the corresponding
notions of strategic manipulation) in more general terms. Other than that there has been
preciously little work on manipulation in JA to date. One exception is the work of Pigozzi
et al. (2009), who introduce a notion of full manipulability, which asks whether an agent can
change the outcome to fully coincide with her own judgment set by means of an insincere
judgment. But (as clearly recognised by the authors) the guarantee of the absence of full
manipulation is probably a property that is simply too easy to satisfy to lead to interesting
characterisations of JA procedures.

In previous work (Endriss et al., 2010), we have analysed the complexity of another
aspect of the JA framework: for a given set of axioms characterising a class of aggrega-
tion procedures, how hard is it to check whether a given agenda is safe for all procedures
belonging to that class, in the sense that no profile of complete and consistent individual
judgment sets will ever result in a collective judgment set that is not consistent? (Our results
suggest that deciding safety of the agenda is II5-complete for most natural combinations of
the standard axioms.) To the best of our knowledge, this is the only other work on the
computational complexity of JA to date.

The field of belief merging is closely related to judgment aggregation (Konieczny and
Pino Pérez, 2002; Pigozzi, 2006). A definition of strategy-proofness for belief merging op-
erators has been proposed by Everaere et al. (2007), and the same authors have discussed
the problem of manipulation for a range of belief merging operators. While this work does
include the study of the complexity of belief merging, the complexity of manipulation has,
to the best of our knowledge, not yet been addressed in the belief merging literature.

Finally, there are of course close connections between our work and the line of work in
computational social choice that has studied the complexity of both the winner determi-
nation and the manipulation problem for a range of voting rules in depth, starting with
the seminal work of Bartholdi et al. (1989a,b). Some of this work has been reviewed by
Chevaleyre et al. (2007), who give many references. Recent discussion in the literature on
the complexity of manipulation of elections has centred on the question of whether worst-
case results (such as NP-hardness results) are sufficient deterrents against manipulation in
practice (see e.g. Procaccia and Rosenschein, 2007). They probably are not; what is really
needed is a better understanding of the average-case complexity of manipulation. The very
same questions will have to be asked for JA as well; our (worst-case intractability) result
and conjecture are only the first step.
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Multivariate Complexity Analysis of
Swap Bribery

Britta Dorn and Ildiké Schlotter!

Abstract

We consider the computational complexity of a problem modeling bribery in the
context of voting systems. In the scenario of SWAP BRIBERY, each voter assigns a
certain price for swapping the positions of two consecutive candidates in his pref-
erence ranking. The question is whether it is possible, without exceeding a given
budget, to bribe the voters in a way that the preferred candidate wins in the election.
We initiate a parameterized and multivariate complexity analysis of SWAP BRIBERY,
focusing on the case of k-approval. We investigate how different cost functions
affect the computational complexity of the problem. We identify a special case of
k-approval for which the problem can be solved in polynomial time, whereas we
prove NP-hardness for a slightly more general scenario. We obtain fixed-parameter
tractability as well as W[1]-hardness results for certain natural parameters.

1 Introduction

In the context of voting systems, the question of how to manipulate the votes in some way
in order to make a preferred candidate win the election is a very interesting question. One
possibility is bribery, which can be described as spending money on changing the voters’
preferences over the candidates in such a way that a preferred candidate wins, while re-
specting a given budget. There are various situations that fit into this scenario: The act of
remunerating the voters in order to make them change their preferences, or paying money
in order to get into the position of being able to change the submitted votes, but also the
setting of systematically spending money in an election campaign in order to convince the
voters to change their opinion on the ranking of candidates.

The study of bribery in the context of voting systems was initiated by Faliszewski,
Hemaspaandra, and Hemaspaandra in 2006 [12]. Since then, various models have been an-
alyzed. In the original version, each voter may have a different but fixed price which is
independent of the changes made to the bribed vote. The scenario of nonuniform bribery
introduced by Faliszewski [11] and the case of microbribery studied by Faliszewski, Hemas-
paandra, Hemaspaandra, and Rothe in [13] allow for prices that depend on the amount of
change the voter is asked for by the briber.

In addition, the SwAP BRIBERY problem as introduced by Elkind, Faliszewski, and
Slinko [10] takes into consideration the ranking aspect of the votes: In this model, each
voter may assign different prices for swapping two consecutive candidates in his preference
ordering. This approach is natural, since it captures the notion of small changes and com-
prises the preferences of the voters. Elkind et al. [10] prove complexity results for this
problem for several election systems such as Borda, Copeland, Maximin, and approval vot-
ing. In particular, they provide a detailed case study for k-approval. In this voting system,
every voter can specify a group of k preferred candidates which are assigned one point
each, whereas the remaining candidates obtain no points. The candidates which obtain the
highest sum of points over all votes are the winners of the election. Two prominent special
cases of k-approval are plurality, (where k = 1, i.e., every voter can vote for exactly one
candidate) and veto (where k = m — 1 for m candidates, i.e., every voter assigns one point

1Supported by the Hungarian National Research Fund (OTKA 67651).
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Result Reference

k =1 (plurality) P [10]

k=m —1 (veto) P [10]

1 <k <m, m or n constant P [10]

1<k <m,all costs =1 P Thm. 1

k=2 NP-complete 2]

3<k<m-—2, NP-complete [10]
costs in {0,1,2}

2<k<m-2, NP-complete [2], Prop. 2
costs in {0,1} and 8 =0

2 < k <m — 2 is part of the input, NP-complete (3], Prop. 2
costs in {0,1} and 8 = 0, n constant

2<k<m-2, NP-complete, W[1]-hard () Thm. 3
costs in {d1,02}, 02 > 261 >0

1<k<m FPT (m) Thm. 4

1 < k < m is part of the input FPT (3,n) by kernelization Thm. 5

1<k<m FPT (8,n,k) by kernelization Thm. 5

Table 1: Overview of known and new results for SWAP BRIBERY for k-approval. The results
obtained in this paper are printed in bold. Here, m and n denote the number of candidates
and votes, respectively, and 3 is the budget. For the parameterized complexity results, the
parameters are indicated in brackets. If not stated otherwise, the value of k is fixed.

to all but one disliked candidate). Table 1 shows a summary of research considering SWAP
BRIBERY for k-approval, including both previously known and newly achieved results.

This paper contributes to the further investigation of the case study of k-approval that
was initiated in [10], this time from a parameterized point of view. The main goal of
this approach is to find fixed-parameter algorithms confining the combinatorial explosion
which is inherent in NP-hard problems to certain problem-specific parameters, or to prove
that their existence is implausible. This line of research has been pioneered by Downey and
Fellows [9], see also [15, 21] for two more recent monographs, and naturally expands into the
field of multivariate algorithmics, where the influence of “combined” parameters is studied,
see the recent survey by Niedermeier [22]. These approaches seem to be appealing in the
context of voting systems, where NP-hardness is a desired property for various problems,
like MANIPULATION, LOBBYING, CONTROL, or, as in our case, SWAP BRIBERY. However,
NP-hardness does not necessarily constitute a guarantee against such dishonest behavior.
As Conitzer et al. [8] pointed out for the MANIPULATION problem, an NP-hardness result in
these settings would lose relevance if an efficient fixed-parameter algorithm with respect to
an appropriate parameter was found. Parameterized complexity can hence provide a more
robust notion of hardness. The investigation of problems from voting theory under this
aspect has started, see for example [1, 3, 4, 7, 20].

We show NP-hardness as well as fixed-parameter intractability of SWAP BRIBERY for
certain very restricted cases of k-approval if the parameter is the budget, whereas we identify
a natural special case of the problem which can be solved in polynomial time. By contrast, we
obtain fixed-parameter tractability with respect to the parameter ‘number of candidates’ for
k-approval and a large class of other voting systems, and a polynomial kernel for k-approval
if we consider certain combined parameters.

The paper is organized as follows. After introducing notation in Section 2, we investigate
the complexity of SwWAP BRIBERY depending on the cost function in Section 3, where we
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show the connection to the POSSIBLE WINNER problem, identify a polynomial-time solvable
case of k-approval and a hardness result. In Section 4, we consider the parameter ‘number
of candidates’ and obtain an FPT result for Swap BRIBERY for a large class of voting
systems. We also consider the combination of parameters ‘number of votes’ and ‘size of the
budget’. We conclude with a discussion of open problems and further directions that might
be interesting for future investigations.

2 Preliminaries

Elections. An election is a triple E = (V,C, &), where V = {vy,...,v,} denotes the set of
votes or voters, C = {c1,...,cm} is a set of candidates, and & is the election system which
is a function mapping (V,C) to a set W C C called the winners of the election. We will
express our results for the winner case where several winners are possible, but our results
can be adapted to the unique winner case where W consists of a single candidate only.

In our context, each vote is a strict linear order over the set C, and we denote by
rank(c,v) the position of candidate ¢ € C in a vote v € V.

For an overview of different election systems, we refer to [6]. We will mainly focus
on election systems that are characterized by a given scoring rule, expressed as a vec-
tor (s1,S82,...,5m) where m = |C|. Given such a scoring rule, the score of a candidate ¢ in
a vote v, denoted by score(c,v), iS Syank(c,v)- The score of a candidate ¢ in a set of votes V'
is score(c, V) = >,y score(c,v), and the winners of the election are the candidates that
receive the highest score in the given votes.

The election system we are particularly interested in is k-approval, which is defined by
the scoring vector (1,...,1,0,...,0), starting with k£ ones. In the case of k = 1, this is the
plurality rule, whereas (m — 1)-approval is also known as veto. Given a vote v, we will say
that a candidate ¢ with 1 < rank(c,v) < k takes a one-position in v, whereas a candidate ¢/
with k 4+ 1 < rank(c¢’,v) < m takes a zero-position in v.

Swap Bribery, Possible Winner, Manipulation. Given V and C, a swap in some
vote v € V is a triple (v, c1,c2) where {c1,c2} C C,c1 # co. Given a vote v, we say that a
swap v = (v, c1,¢2) is admissible in v, if rank(cy,v) = rank(ce,v) — 1. Applying this swap
means exchanging the positions of ¢; and ¢z in the vote v, we denote by v” the vote obtained
this way. Given a vote v, a set I of swaps is admissible in v, if the swaps in I" can be applied
in v in a sequential manner, one after the other, in some order. Note that the obtained vote,
denoted by v, is independent from the order in which the swaps of I" are applied. We also
extend this notation for applying swaps in several votes, in the straightforward way.

In a SwAaP BRIBERY instance, we are given V, C, and £ forming an election, a preferred
candidate p € C, a cost function ¢ mapping each possible swap to a non-negative integer,
and a budget 8 € N. The task is to determine a set of admissible swaps I" whose total cost is
at most 3, such that p is a winner in the election (VI C,&). Such a set of swaps is called a
solution of the SWAP BRIBERY instance. The underlying decision problem is the following.

SWAP BRIBERY

Given: An election E = (V,C, £), a preferred candidate p € C, a cost function ¢
mapping each possible swap to a non-negative integer, and a budget g € N.
Question: Is there a set of swaps I' whose total cost is at most 8 such that p is
a winner in the election (VT,C, £)?

We will also show the connection between SWAP BRIBERY and the POSSIBLE WINNER
problem. In this setting, we have an election where some of the votes may be partial orders
over C instead of complete linear ones. The question is whether it is possible to extend the
partial votes to complete linear orders in such a way that a preferred candidate wins the
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election. For a more formal definition, we refer to the article by Konczak and Lang [18] who
introduced this problem. The corresponding decision problem is defined as follows.

PossiBLE WINNER

Given: A set of candidates C, a set of partial votes V' = (v{,...,v],) over C,
an election system &, and a preferred candidate p € C'.
Question: Is there an extension V = (v1,...,v,) of V'’ such that each v; ex-

tends v}, and p is a winner in the election (V,C, E)?

A special case of POSSIBLE WINNER is MANIPULATION (see e.g. [8, 17]). Here, the given
set of partial orders consists of two subsets; one subset contains linearly ordered votes and
the other one completely unordered votes.

Parameterized complexity, Multivariate complexity. Parameterized complexity is a
two-dimensional framework for studying the computational complexity of problems [9, 15,
21]. One dimension is the size of the input I (as in classical complexity theory) and the
other dimension is the parameter & (usually a positive integer). A problem is called fized-
parameter tractable (FPT) with respect to a parameter k if it can be solved in f(k) - [7]9™)
time, where f is an arbitrary computable function [9, 15, 21]. Multivariate complexity
is the natural sequel of the parameterized approach when expanding to multidimensional
parameter spaces, see [22]. For example, if we regard two parameters, say k1 and ks, then
the desired FPT algorithm should run in time f(ki, ko) - [I|°") for some f.

The first level of (presumable) parameterized intractability is captured by the complexity
class W[1]. A parameterized reduction reduces a problem instance (I, k) in f(k)-|I|°M") time
to an instance (I’, k') such that (I, k) is a yes-instance if and only if (I’, k") is a yes-instance,
and &’ only depends on k but not on |I].

We will use the following W([1]-hard problem [14] for the hardness reduction in this work:

MULTICOLORED CLIQUE

Given: An undirected graph G = (V4 UVa U .- UV, E) with V; N V; = 0 for
1 <i < j <k where the vertices of V; induce an independent set for 1 < i < k.
Question: Is there a complete subgraph (clique) of G of size k?

We will also make use of a kernelization algorithm in this work, which is a standard
technique for obtaining fixed-parameter results, see [5, 16, 21]. The idea is to transform the
input instance (I, k) in a polynomial time preprocessing step via data reduction rules into
a “reduced” instance (I', k') such that two conditions hold: First, (I, k) is a yes-instance if
and only if (I, k") is a yes-instance, and second, the size of the reduced instance depends
on the parameter only, i.e., |I'| + |k'| < g(p) for some arbitrary computable function g.
The reduced instance (I, k') is then referred to as the problem kernel. If in addition g is a
polynomial function, we say that the problem admits a polynomial kernel. The existence of
a problem kernel is equivalent to fixed-parameter tractability of the corresponding problem
with respect to the particular parameter [21].

3 Complexity depending on the cost function

In this section, we focus our attention on SWAP BRIBERY for k-approval. We start with the
case where all costs are equal to 1, for which we obtain polynomial-time solvability.

Theorem 1. SWAP BRIBERY for k-approval is polynomial-time solvable, if all costs are 1.

Proof. Let V be the set of votes and C' be the set of candidates. The score of any candidate is
an integer between 0 and |V|. Our algorithm finds out for each possible s* with 1 < s* < |V]|
whether there is a solution in which the preferred candidate p wins with score s*.
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Given a value s*, we answer the above question by solving a corresponding minimum
cost maximum flow problem. We will define a network N = (G, s,t,¢g,w) on a directed
graph G = (D, FE) with a source vertex s and a target vertex ¢, where g denotes the
capacity function and w the cost function defined on E. First, we introduce the vertex sets
A={ayc|veV,ceCrank(c,v) <k}, A ={a, . |veV,ceC}and B={b|ce C},
and we set D = {s,t,z} U AU A’ U B. We define the arcs E as the union of the sets
Es = {sa | a € A}, Ex = {ay,ca, . | rank(c,v) < k}, Ea = {ayca, o | rank(c,v) <
k,rank(c’,v) > k}, Ep = {a;, b. | v € V,e € C}, Ex = {bex | ¢ € C,c # p}, plus the
arcs byt and xt. We set the cost function w to be 0 on each arc except for the arcs of Ey-,
and we set w(ay,ca,, ) = rank(c’,v) — rank(c,v). We let the capacity g be 1 on the arcs of
EsUEAUE 4 UER, we set it to be s* on the arcs of Ex U{byt}, and we set g(xt) = |V|k—s*.

The soundness of the algorithm and hence the theorem itself follows from the following
observation (for a detailed proof, see the full version): there is a flow of value |[V|k on N
having total cost at most [ if and only if there exists a set I' of swaps with total cost at
most 3 such that score(p, V!') = s* and score(c, VT) < s* for any ¢ € C, ¢ # p. O

Theorem 1 also implies a polynomial-time approximation algorithm for SWAP BRIBERY
for k-approval with approximation ratio 4, if all costs are in {1,d} for some § > 1.

Proposition 2 shows the connection between SwWAP BRIBERY and POSSIBLE WINNER.
This result is an easy consequence of a reduction given by Elkind et al. [10]. For the proof
of the other direction, see again the full version.

Proposition 2. The special case of SWAP BRIBERY where the costs are in {0,0} for
some § > 0 and the budget is zero is equivalent to the POSSIBLE WINNER problem.

As a corollary, SWAP BRIBERY with costs in {0, 4}, § > 0 and budget zero is NP-complete
for almost all election systems based on scoring rules [2]. For many voting systems such as
k-approval, Borda, and Bucklin, it is NP-complete even for a fixed number of votes [3].

We now turn to the case with two different positive costs, addressing 2-approval.

Theorem 3. (1) SWAP BRIBERY for 2-approval, with costs in {1,2}, is NP-complete.
(2) Swap BRIBERY for 2-approval, with costs in {1,2}, is W/[1]-hard, if the parameter is
the budget 3, or equivalently, the mazimum number of swaps allowed.

Proof. We present a reduction from the MULTICOLORED CLIQUE problem. Let F = (V, E)
with the k-partition V= V3 U Vo U --- U Vi be the given instance of MULTICOLORED
CLIQUE. For each 1 <i < j <k welet E% = {zy |z € V;,y € V;,zy € E}. We construct
an instance Ir of SWAP BRIBERY as follows.

The set C' of candidates will be C' = (J;¢(y(4i U B; UC;) UD UG U {p} where A; =
{al | j € [k],v € Vi}, B; = {bl | j € [k],v € Vi}, and C; = {c"I | j € [k]}. (Here and
later, we write [k] for {1,2,...,k}.) Our preferred candidate is p. The sets D = {dy,d2, ...}
and G = {g1,92,...} will contain dummies and guards, respectively. Our budget will be
8 = 6k — k. Regarding the indices i and j, we will suppose 4, j € [k] if not stated otherwise.

The set of votes will be W = Wg U W; U Wg U We. Votes in Wg will define guards
(explained later), votes in W will set the initial scores, votes in Wg will represent the
selection of (g) edges and k vertices, and finally, votes in W will be responsible for checking
that the selected edges connect selected vertices. We construct W such that the following
will hold for some fixed even integer K (determined later):

score(p, W) = K.

score(ct W) = K + 1 for each i and j,

score(q, W) = K for each ¢ € J;¢3y(4i U B;) UG, and
score(d, W) <1 for each d € D.
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We define the cost function ¢ such that each swap has cost 1 or 2. We will define each
cost to be 1 if not explicitly stated otherwise. Using that each cost is at least 1, we get
that none of the candidates ranked after the position 5+ 2 in a vote v can receive non-zero
score in v without violating the budget. Thus, we can represent votes by listing only their
first 0 + 2 positions. We say that a candidate does not appear in some vote, if he is not
contained in these positions.

Dummies, guards, and truncation. First, let us clarify the concept of dummy
candidates: we will ensure that no dummy can receive more than one score in total, by
letting each d € D appear in exactly one vote. This can be ensured easily by using at most
|[W1(8 + 2) dummies in total. We will use the sign * to denote dummies in votes.

Now, we define 8 + 2 guards using the votes Wg. We let W contain votes of the
form weq(h) for each h € [ + 2], each such vote having multiplicity K/2 in Wg. We let
wa(h) = (9h, Gh+1s Ght2s - - - 98+25 91, 92, - - - gn—1)- Clearly, score(g, W) = K for each g €
G, and the total score obtained by the guards in W cannot decrease. As we will make
sure that our preferred candidate cannot receive more than K scores without exceeding the
budget, this yields that in any possible solution, each guard must have score exactly K.

Using guards, we can truncate votes at any position h > 2 by putting arbitrarily chosen
guards at the positions h,h+1,..., 3+ 2. This way we ensure that only candidates on the
first h — 1 positions can receive a score in this vote. We will denote truncation at position h
by using a sign T at that position.

Setting initial scores. Using dummies and guards, we define W} to adjust the initial
scores of the relevant candidates as follows. We put the following votes into W7y:

(p, *, T) with multiplicity K,
(¢, %, 1) with multiplicity K + 1 — |E%J| for each i # j,
(c¥%, %, 1) with multiplicity K + 1 — |V;| for each i € [k], and
(¢, , 1) with multiplicity K — 1 for each ¢ € ;¢ (Ai U B;).

The preferred candidate p will not appear in any other vote, implying score(p, W) = K.
Selecting edges and vertices. The set Wg consists of the following votes:

ws (i,x) = (x,¢4 al, 1) for each i € [k] and x € V;, and
ws (i, 4, x,y) = (ci’J,cj"’,a;,a;,T) foreachi < j,zeV;,,yeV;, zy € E.

The cost of swapping ¢/ with ¢/ and the cost of swapping a’, with o/, in ws (i, j, z, y) is 2.
Checking incidency. The set W will contain the votes

we(i, ) = (al, b=t bl 1) for each i € [k] and = € V.

s Yo

Here i — 1 is taken modulo k. In wc (i, z) we let the cost of swapping a’ with b2~! and also
the cost of swapping b, with the neighboring dummy be 2.

It remains to define K properly. To this end, we let K be the minimum even integer not
smaller than the integers |E%7| for every 1 < i < j < k and |V;] for each i € [k]. This finishes
the construction. Note that the initial scores of the candidates are as claimed above.

Construction time. Observe |W¢| = (8 + 2)K/2, |W;| = O(Kk|V|), [Ws| = |E| +
|V|, and |W¢| = |V|. Hence, the number of votes is polynomial in the size of the input
graph F. This also implies that the number of candidates is polynomial as well, and the
whole construction takes polynomial time. Note also that (3 is only a function of k, hence
this yields an FPT reduction as well.

Our aim is to show the following: F' has a k-clique if and only if the constructed instance
is a yes-instance of SwAP BRIBERY. This will prove both (1) and (2).
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Direction <=. Suppose that I is solvable, and there is a set I" of swaps transforming W
into W’ with total cost at most 3 such that p wins in W’ according to 2-approval. We also
assume w.l.o.g. that I' is a solution having minimum cost.

As argued above, score(p, W') < K and score(g, W') > K for each g € G follow directly
from the construction. Thus, only score(p, W’) = score(g, W) = K for each g € G is
possible. Thus, for any 4,j € [k], by score(c™/, W) = K + 1 we get that ¢’/ must lose at
least one score during the swaps. Considering ¢** (and the optimality of T'), this means
that each ¢ is swapped with a! by I' in wg(i,z) for some unique x € V;. We use the
notation o(7) to denote this vertex z, i.e. we let o(i) = . We will show that the vertices
o(1),0(2),...,0(k) form a k-clique in F.

Let us denote by I'ys the set of those swaps in I" that swap c¢? with ai(i) for some i € [k].
Clearly, I'ys has total cost k.

Let us fix 4 and j now, assuming i < j. Since both ¢/ and ¢/ have the same score
in Wy as in WIF, ¢»J must lose a score due to swaps in wg(i,,21,y1) for some 2y and y,
and similarly, ¢/ must lose a score due to swaps in wg (i, j, 2, y2) for some z3 and ys. Let
Tes(i,7) be the swaps applied in these two votes. There are three possibilities for Tes(i, j):

(a) ws(i,f,z1,y1) = ws(4,4,22,y2), and the swaps in Tes(i,7) transform the vote

(7,0, ajwl,azll,f) into (a;17a;1,cl*7, ¢" 1) through 4 swaps having total cost 4.

(b) ws(i, 4, z1,91) # ws(4, j, 2,y2) and as a result of the swaps in Tes(i, 5), ¢*9 gets to the
third position of ws(i, 7, x1,y1), and ¢* gets to the third position of wg(i, j, z2, y2).
In this case, [T'es(7,7)| > 3 and ¢(Tes(3, 7)) > 4.

(¢) ws(i,j,x1,y1) # ws(i,j,x2,y2) and after the swaps in I'es(4, 7), at least one of ¢J and
¢ is placed on the fourth position in one of the votes wg (i, j, x1,y1) or ws(i, j, 2, y2).
This means |Tes(4, )| > 4 and ¢(Tes(4, 7)) > 5.

From the above discussion, the cost of the swaps in [es(7,5) is at least 4. Moreover,
as a result of the swaps in Tes(i,j), the candidates in o}, ,al ,al,, al receive a total of 2
additional scores with respect to their initial score in W.

Let A* denote those candidates in Uie[k] A; which receive an additional score as a result
of the swaps in I'ys or in Tes(4, ) for some ¢ < j. The total score gained by the candidates
in A* during these swaps is exactly k2. Since the initial score of each candidate in A* is K,
we know that the remaining swaps of I' must force these candidates to lose a total of k2
scores. Observe that this can only happen through swaps applied in W¢, and moreover,
each candidate can lose at most one score with such swaps. This implies |A*| = k2.

Let I'; be the set of swaps in I" applied in We, transforming We into a set of votes W/,.
The above discussion yields that score(a, W¢) > score(a, W) holds for each a € A*. Since T’
is a solution, we also obtain that score(q, W¢) < score(q, W(;) must hold for each g €
Uie[k] B; UG. We will prove the following claim below.

Claim. ¢(T';) > 4k?, and equality can only be reached if
{ad |jek]}NA* =0 or {al | j € [k]} € A* holds for each z € V. (1)

Using this claim, ¢(T") = ¢(T'vs) + X, ¢(Tus(i, §)) + c(Te) > k+4(5) + 4k = 6k* — k =
follows. Thus, equalities must hold everywhere, resulting in the following consequences.

First, (1) implies that A* is the union of sets of the form {al,a2,...ak} for exactly k
vertices x. By aﬁr(i) € A*, this yields A* = Ui,je[k]{afr(i)}' Recall that by our construction
of the votes wg(i,x), we know o (i) € V; for each .

Second, note that c¢(Tes(i,7)) = 4 shows that case (¢) cannot happen for the
swaps I'es(7,7). Moreover, from (1) we have |A* N A;| = k for each ¢ € [k], which im-
plies that case (b) can neither happen. Thus, the only possibility is case (a), meaning
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that the swaps of Tes(i,j) transform the vote (c"7, ¢’ al,al, ) for some z and y into a
vote (a,al,,c"7, ¢, ). However, by the definition of wg(4, j, z,y) we know x € V;, y € Vj,
and zy € E. But from A* = J, ;e
possible. Hence, o(i) and o(j) are neighboring for each i < j, proving the first direction.

Before proving the other direction, it remains to show our claim. Let us fix some x € V/,
and let us suppose {a?, | j € [k]} N A* # 0. Let |A*N{al | j € [k]}| = aZ, and let c(i) be the
total cost of the swaps in I applied to we (i, z). We are trying to show that Zie[k] c(i) > 4a’
and equality implies a} = k.

Recall that a’ appears only in the vote we (i, z) = (al,bi=1 bi, 1) in We. We will use

T YT

0-1 variables «; and 3; to denote whether the score of a’, and b, respectively, are changed in
we (i, ) as a result of the swaps in I'.. The following are elementary observations (sometimes
we also use that I'; is of minimum cost, and we take ¢ — 1 modulo k):

1. Ifa; =1and B; =0 then ¢(i) = 5. (In this case, §;—1 = 0 must hold.)
If ; = 0 and B; = 1 then ¢(i) = 1. (In this case, 3;—1 = 1 must hold.)
If ; =0, B; =0, and B;—1 = 0 then ¢(i) = 0.
If ; =0, 5; =0, and B;—1 = 1 then ¢(i) = 3
If a; =1, §; =1, and B;—1 = 0 then c(i) = 3.
If o = 1, ﬂz = 1, and ﬂi—l =1 then C(Z) =4

7. If 5;=0and B;_1 =1, then o; = 1 is not possible.

First, note that if 3; = 1 for every i € [k], then } ;. (i) = 4aj + (k — a3) follows
directly by 2 and 6 above. Thus, Zie[k] ¢(i) > 4a’ holds, and equality indeed implies a} = k.

Otherwise, let us call a maximal series of indices ¢,i + 1,...,7 in [k] a segment, if 3; =
Biv1 = -+ = Bj—1 = 1 but B; = 0. We think of such series in a cyclic manner, so i > j is
possible. First, observe that the cycle 1,2,...,k can be decomposed into a certain number
of segments and a remaining set H of indices h for which B, = Br—1 = 0. Let us write
I* = {i| a%, € A*} for the set of indices associated with A*. From claims 1 and 3, we know
Yonemc(h) =5I"NH|.

Now, consider a segment i,7 + 1,...,7, and let S denote the set of its elements. By
claims 7 and 4 we get a; = 0 and ¢(j) = 3. Since case 5 above can only apply for ¢, by
an easy calculation we obtain }, - c(h) > c(j) + 3 cgnz- c(h) > 4[S N I*|. Taking into
account all segments together with the set H, we get Zie[k] ¢(i) > 4a%. From this, the claim
follows.

Direction =>. Let 0(1),0(2),...,0(k) form a k-clique in F' where o(i) € V; for each .
It is straightforward to check that the following swaps of total cost 3 yield a solution for Ig:
1. For each i € [k], swap ¢"' with ag(i) in wg(i,0(4)).

]{ai(i)}, we get that only z = o(i) and y = o(j) is

BNl ol o

2. For each i < j, swap both ¢*J and ¢/** with both af,(i) and al, ;) in ws(i, j, o), 0(4)).
3. For each i, j € [k], swap both ai(i) and bia with bfr(i) and the dummy in we (i,0(2)). O

Looking into the proof of Theorem 3, we can see that the results hold even if the costs
are uniform in the sense that swapping two given candidates has the same price in any vote,
and the maximum number of swaps allowed in a vote is at most 4. By applying minor
modifications to the given reduction, Theorem 3 can be generalized to hold for the following
modified versions as well.

e If all costs are in {1, 62} such that d2 > 267 > 0: we only have to replace costs 1 and

2 with new costs d; and s, respectively.

e If we want p to be the unique winner: we only have to set score(p, W) = K + 1.

e If we use k-approval for some 3 < k < |C| — 2 instead of 2-approval: it suffices to
insert & — 2 dummies into the first & — 2 positions of each vote.
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Hence, Theorem 3 shows that SWAP BRIBERY remains hard even if we consider such natural
parameters as the maximum number of swaps allowed in a vote, the maximum number of
different possible costs, or the maximum ratio of two different costs to have a fixed value.

4 Other parameterizations

In this section, we will consider different kinds of parameterizations. First, we will look at
the parameter ‘number of candidates’. For this case, the following observation is helpful.

Let Sy, = {m1,m2, ..., ™m1} be the set of permutations of size m. We say that an election
system is described by linear inequalities, if for a given set C' = {c1, ¢a, ..., cm} of candidates
it can be characterized by f(m) sets Ay, As,... Ay, (for some computable function f) of
linear inequalities over m! variables x1,xs,..., T, in the following sense: if m; denotes
the number of those votes in a given election E that order C according to m;, then the
first candidate c¢; is a winner of the election if and only if for at least one index ¢, the
setting x; = n; for each j satisfies all inequalities in A;.

It is easy to see that many election systems can be described by linear inequalities: any
system based on scoring rules, Copeland® (0 < a < 1), Maximin, Bucklin, Ranked pairs.

Theorem 4. SWAP BRIBERY is FPT if the parameter is the number of candidates, for any
election system described by linear inequalities.

Proof. Let C = {c1,c2,...,¢cm} be the set of candidates given, and let Aj, Ag, ... Apiy)
be the sets of linear inequalities over variables x1,..., T, that describe the given election
system £. For some 7; € S,,, let v; denote the vote that ranks C according to m;. We
describe the given set V' of votes by writing n; for the multiplicity of the vote v; in V.

Our algorithm solves f(m) integer linear programs with variables T = {t;; | i # j,
1 <4, <ml}. We will use t;; to denote the number of votes v; that we transform into
votes v;; we will require ¢; ; > 0 for each i # j. Let VT denote the set of votes obtained
by transforming the votes in V according to the variables t; ; for each ¢ # j. Such a
transformation from V' is feasible if 3., ¢ ; < n; holds for each i € [m!] (inequality A).

By an observation in [10], we can compute the price ¢; ; of transforming the vote v;
into v; in O(m?) time. Transforming V into V7 can be done with total cost at most 3, if
Ei,je[m!] tijci; < 0 (inequality B).

We can express the multiplicity @} of the vote v; in VT as 2!, = n; + Zj# tji— Zi# tij-
For some i € [f(m)], let A, denote the set of linear inequalities over the variables in T
that are obtained from the linear inequalities in A; by substituting x; with the above given
expression for z/. Using the description of £ with the given linear inequalities, we know
that the preferred candidate ¢; wins in (V7,C,€) for some values of the variables t;,; if
and only if these values satisfy the inequalities of A for at least one i € [f(m)]. Thus, our
algorithm solves SWAP BRIBERY by finding a non-negative assignment for the variables in T’
that satisfies both the inequalities A, B, and all inequalities in A} for some 3.

Solving such a system of linear inequalities can be done in linear FPT time, if the
parameter is the number of variables [19]. By |T'| = (m! — 1)m! the theorem follows. O

Similarly, we can also show fixed-parameter tractability for other problems if the pa-
rameter is the number of candidates, for example for POsSIBLE WINNER (this result was
already obtained for several election systems by Betzler et al., [3]), MANIPULATION (both
for weighted and unweighted voters), several variations of CONTROL (this result was already
obtained for Llull and Copeland voting by Faliszewski et al., [13]), or LOBBYING [7] (here,
the parameter would be the number of issues in the election). Since our topic is SWAP
BRIBERY, we will not go into detail here.

Finally, we consider a combined parameter and obtain fixed-parameter tractability.
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Theorem 5. If the minimum cost is 1, then SWAP BRIBERY for k-approval (where k is
part of the input) with combined parameter (|V], 3) admits a kernel with O(|V'|?3) votes and
O(|V|23?) candidates. Here, V is the set of votes and 3 is the budget.

Proof. Let V, C, p € C, and 3 denote the set of votes, the set of candidates, the preferred
candidate, and the budget given, respectively. The idea of the kernelization algorithm is
that not all candidates are interesting for the problem: only candidates that can be moved
within the budget § from a zero-position to a one-position or vice versa are relevant.

Let T" be a set of swaps with total cost at most 3. Clearly, as the minimum possible
cost of a swap is 1, we know that there are only 23 candidates ¢ in a vote v € V for which
score(c, v) # score(c, v') is possible, namely, such a ¢ has to fulfill k — 3+ 1 < rank(e,v) <
k + 3. Thus, there are at most 23|V| candidates for which score(c, V) # score(c, V1) is
possible; let us denote the set of these candidates by C. Let ¢* be a candidate in C \ C
whose score is the maximum among the candidates in C'\ C.

Note that a candidate ¢ € C'\ (C U {c*,p}) has no effect on the answer to the problem
instance. Indeed, if score(p, V') > score(c*, V'), then the score of ¢ is not relevant, and
conversely, if score(p, VI') < score(c*, V') then p loses anyway. Therefore, we can disregard
each candidate in C'\ C except for ¢* and p.

The kernelization algorithm constructs an equivalent instance K as follows. In K, nor
the budget, nor the preferred candidate will be changed. However, we will change the value
of k to be B+ 1, so the kernel instance K will contain a (3 + 1)-approval election®>. We
define the set Vi of votes and the set C'k of candidates in K as follows.

First, the algorithm “truncates” each vote v, by deleting all its positions (together with
the candidates in these positions) except for the 23 positions between k — 3+ 1 and k + .
Then again, we shall make use of dummy candidates (see the proof of Theorem 3); we
will ensure score(d, V') < 1 for each such dummy d. Swapping a dummy with any other
candidate will have cost 1 in K. Now, for each obtained truncated vote, the algorithm inserts
a dummy candidate in the first position, so that the obtained votes have length 23 + 1. In
this step, the algorithm also determines the set C' and the candidate ¢*. This can be done
in linear time. We denote the vgtes3 obtained in this step by V.. We do not change the
costs of swapping candidates of C'U {c*, p} in some vote v € V..

Next, to ensure that K is equivalent to the original instance, the algorithm constructs
a set Vg of votes such that score(c, V.. U V) = score(c, V) holds for each candidate ¢ in
C U {p,¢*}. This can be done by constructing score(c, V) — score(c, V;.) newly added votes
where ¢ is on the first position, and all the next 20 positions are taken by dummies. This
way we ensure score(c, V) = score(c, V) for any set I' of swaps with total cost at most 3.

If D is the set of dummy candidates created so far, then let Crx = C' U {p,c*} UD. To
finish the construction of the votes, it suffices to add for each vote v € V.UV, the candidates
not yet contained in v, by appending them at the end (starting from the (25+1)-th position)
in an arbitrary order. The obtained votes will be the votes Vi of the kernel.

The presented construction needs polynomial time. Using the above mentioned argu-
ments, it is straightforward to verify that the constructed kernel instance is indeed equivalent
to the original one. Thus, it remains to bound the size of K.

Clearly, |C U {p,c*}| < 2|V|B+ 2. The number of dummies introduced in the first phase
is exactly |V,.| = |[V|. As the score of any candidate in V' is at most |V, the number of votes
created in the second phase is at most (2|V|3 + 2)|V|, which implies that the number of
dummies created in this phase is at most (2|V|3 + 2)|V| - 28. Therefore, we obtain |Cx| <
VI+@VIB+2)VI5+1) = O(V[282), and also [Vic| < (2IV]8+3)|V| = O(IV[?8). O

2We use 8 + 1 instead of 8 to avoid complications with the case 8 = 0.
3 Actually, these vectors are not real votes in the sense that they do not contain each candidate, but at
the moment we do not care about this.
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Applying similar ideas, a kernel with (|V|+ k)5 candidates is easy to obtain, which might
be favorable to the above result in cases where k is small.

5 Conclusion

We have taken the first step towards parameterized and multivariate investigations of SWAP
BRIBERY under certain voting systems. We obtained W{[1]-hardness for k-approval if the
parameter is the budget (3, while SWAP BRIBERY could be shown to be in FPT for a very
large class of voting systems if the parameter is the number of candidates. This revaluates
previous NP-hardness results: SWAP BRIBERY could be computed efficiently if the number
of candidates is small, which is a common setting, e.g. in presidential elections.

However, we have shown this via an integer linear program formulation, using a result by
Lenstra, which does not provide running times that are suitable in practice. Here, it would
be interesting to give combinatorial algorithms that compute an optimal swap bribery. This
might be particularly relevant for a scenario described by Elkind et al. [10], where bribery
is not necessarily considered as an undesirable thing, like in the case of campaigning.

As Elkind et al. [10] pointed out, it would be nice to characterize further natural
polynomial-time solvable cases of SWAP BRIBERY. We provided one such example with
Theorem 1 for k-approval in the case where costs are equal to 1. By contrast, already the
case of two different costs d1, do with do > 26; > 0 becomes NP-complete for k-approval
(2 <k <m —2) and W[1]-hard if the parameter is the budget 5. We believe that this can
be generalized to the case of two different (arbitrary) positive costs.

There are plenty of possibilities to carry on our initiations. First, there are more pa-
rameterizations to be looked at, and in particular the study of combined parameters in the
spirit of Niedermeier [22], see e.g. [1], is an interesting approach.

Also, we have focused our attention to k-approval, but the same questions could be
studied for other voting systems, or for the special case of SHIFT BRIBERY which was shown
to be NP-complete for several voting systems [10], or other variants of the bribery problem
as mentioned in the introduction. For instance, we have only looked at constructive swap
bribery, but the case of destructive swap bribery (when our aim is to achieve that a disliked
candidate does not win) is worth further investigation as well.

Acknowledgments. We thank Rolf Niedermeier for an inspiring initial discussion on this
topic.
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Parameterized Control Complexity in Bucklin Voting and
in Fallback Voting*

Gabor Erdélyi and Michael R. Fellows

Abstract

We study the parameterized control complexity of Bucklinivg and of fallback voting, a voting
system that combines Bucklin voting with approval votindgedoral control is one of many different
ways for an external agent to tamper with the outcome of actiele We show that even though the
representation of the votes and the winner determinatidiffesrent, the parameterized complexity of
some standard control attacks is the same. In particulashee that adding and deleting candidates in
both voting systems are [&]-hard for both the constructive and destructive case, patenized by the
amount of action taken by the external agent. Furthermoeestvow that adding and deleting voters in
both Bucklin voting and fallback voting are [@]-hard for the constructive case, parameterized again
by the amount of action taken by the external agent, and @@ nfor the destructive case.

1 Introduction

The study of algorithmic issues related to voting systenssbiecome an important topic in contemporary
computer science, due to the many applications of decidétgyden alternatives, or ranking information, in
a wide variety of contexts.

Rich questions inevitably arise about the tractabilityhe election processes, and their susceptibility to
manipulation. This paper is about this context of research.

We study the complexity of manipulation of elections basedBacklin voting, and ofallback voting a
voting system that combines Bucklin voting with approvaing.

2 Preliminaries

Many different ways of changing the outcome of an electiovehaeen studied with respect to the compu-
tational complexity of the strategy, suchraanipulation[BTT89, BO91, CSL07, HHO7, FHHRO9b], where
a group of voters casts their votes strategicéliihery [FHH09, FHHR09a], where an external agent bribes
a group of voters in order to change their votes, andtrol [BTT92, HHR07, FHHR09a, HHR09, ENRO9,
FHHRO9b, EPR10], where an external agent—which is refdoes “The Chair'—changes the structure of
the election (for example, by adding/deleting/partitapeither candidates or voters).

In this paper, we are concerned withntrol issuegor the relatively recently introduced systenfallback
voting(FV, for short) [BS09] anducklin voting(BV, for short). A voting system is said to lilmuneagainst
a certain type of control if it is impossible to affect the cane of the election via that type of control. If a
voting system is not immune to a type of control, then it isigaibesusceptible When control is possible,
the task of exerting control may still be NP-hard. In thisectge voting system is said to besistantagainst
that type of control. If the chair’s task can be solved in palsnial-time for a type of control then the voting
system is said to beulnerableto that type of control.

1This work was supported in part by the DFG under grants RO /1202 (within the European Science Foundation’s EUROCORES
program LogICCC: “Computational Foundations of Social 89 and RO 1202/11-1. Work done in part while the first antivas
visiting the University of Newcastle.
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We investigate the issues in the framework parameterizetptaxity. Many voting systems present
NP-hard algorithmic challenges. Parameterized compléxi particularly appropriate framework in many
contexts of voting systems because it is concerned withteraalts that exploit the structure of input dis-
tributions. It is not appropriate in political contextsfexample, to algorithmically determine a winner
“approximately”. The computational complexity of contmmoblems under the parameterized complexity
framework has been studied before. Betzler and Uhimann 8pfbved that constructive control by delet-
ing candidates in plurality voting is Y®]-hard with respect to the number of deleted candidates, estuiut-
tive control by deleting candidates in plurality voting is[MWhard with respect to the number of deleted
candidates. They also proved that constructive controlduyray/deleting candidates in Copeland voting is
WI2]-complete with respect to the number of added/deleted dateB. Recently, Liu et al. [LFZL09] proved
that both constructive and destructive control by addingl@dates in plurality voting is \2]-hard with re-
spect to the number of added candidates, constructiveatdiytiadding/deleting voters in Condorcet voting
is W[1]-hard, constructive control by adding voters in approvaingis W[1]-hard, and constructive control
by deleting voters in approval voting is[@J-hard. In all four voter control results they parameteribgdhe
natural parameterization, i.e., the number of added/eleadters.

We study Bucklin voting and fallback voting, a voting systémat combines Bucklin voting with ap-
proval voting. Fallback voting is the natural voting systeith an easy winner-determination procedure, that
currently has the most resistances for control attacks (1®f22) [EPR10].

2.1 Elections and Electoral Control

An election(C,V) consists of a finite set of candidateésnd a finite collection of voteM who express their
preferences over the candidate€inA voting system is a set of rules determining the winnerswadlaction.
\otes can be represented in different ways, depending owdtireg system used. We say that a voter V

has a preferenogeak order= onC, if = is transitive(i.e., for any three distinct candidatey,z€ C, x = y
andy = zimply x = 2) andcompletd(i.e., for any two distinct candidatesy € C, eitherx =yory=x). X =y
means that voter likes x at least as much as If ties are excluded in the voters’ preference rankings, th
leads to dinear orderor strict ranking denoted by-. A strict ranking is always antisymmetric (i.e., for any
two distinct candidateg y € C eitherx > y ory > x holds, but not both at the same time) and irreflexive (i.e.,
for eachx € C the following does not holdx > x). In this paper we will write x y;, instead ofk > .

Definition 2.1. Let (C,V) be an election witH|C|| = m and||V|| = n. Define thestrict majority threshold
(SMT, for short) as the value{M-= |n/2] + 1. In Bucklin voting every voter & V has to provide a strict
ranking.

The votes of a voter v are represented as a list of all candslathere the leftmost candidate is v's most
preferred candidate, the second candidate from left iset®ad most preferred candidate and so on. In our
constructions, we sometimes also insert a subset@into such votes, where we assume some arbitrary,
fixed order of the candidates in B (e.g.,Ci B ¢ " means that g is the voter’s favourite candidates ¢s
the voter's most despised candidate and adt B are in between these two candidates). Let S(E%e(c)
denote the number of voters who rank candidate c on level igirer in election(C,V). Define theBucklin
scoreof candidate c as scogéc) = min{i | scoré{C.V) (c) > M}, i.e., the smallest level i where the level i score
of cis at least as high as the SMT. The candidate with the bBiesklin score is the unique Bucklin winner
of the election. If there are more than one candidates witbveelst Bucklin score, say i, then each candidate
with the highest level i score is the Bucklin winner of thectidm.

Note that there always exists a Bucklin winner.
Approval voting, introduced by Brams and Fishburn [BF788BHs not a preference based voting sys-
tem. Inapproval votingeach voter has to vote “yes” or “no” for each candidate andctredidates with
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the most “yes” votes are the winners of the election. Cleayproval voting completely ignores preference
rankings.

Brams and Sanver [BS09] introduced two voting systems thathine preference-based with approval
voting in a sense that each voter has to specify his or heoappvector and in addition has to give a strict
ranking for the candidates he or she approved of. One of thedems is fallback voting.

Definition 2.2 ([BS09]). Let (C,V) be an election witH|C|| = m and||V|| = n. Define the strict majority
threshold M analogously as for BV. Every voteV has to divide the set of candidates C into two subsets
S, C C indicating that v approves of all candidates ip &d disapproves of all candidates inCS,. S, is
called vs approval strategyln addition, each voter & V provides also a strict ranking of all candidates in
S..

Representation of votes: Let S {ci,Cy,...,C«} for a voter v who ranks the candidates in&s follows.
C1 > Cp = --- = C, Where g is v's most preferred candidate angdis v's least preferred candidate. We denote
the vote v by

€L C - & | C=8,

where the approved candidates to the left of the approva &re ranked from left to the right and the
disapproved candidates to the right of the approval lineraséranked and written as a set-€S,.

Let scorec v (c) = [[{ve V|c € S/}|| denote the number of voters who approve of candidate c, @and le
scoréc’v)(c) be theleveli score ofcin (C,V), which is the number of ¢’s approvals when ranked on position
i or higher.

Winner determination:

1. On the first level, only the highest ranked approved caatdil (if they exist) are considered in each
voters’ approval strategy. If there is a candidate € with scor%cy)(c) > M; (i.e., ce C has a strict
majority of approvals on this level), then c is thnique) level 1 FV winner of the electipand the
procedure stops.

2. Ifthere is no level winner, we "fall back” to the second level, where the two héghranked approved
candidates (if they exist) are considered in each votergrayal strategy. If there is exactly one
candidate c= C with scort%cyv)(c) > M, then c is thunique) level 2 FV winner of the electipand
the procedure stops. If there are at least two such candgjdkeen every candidate with the highest
level2 score is devel 2 FV winner of the electigrand the procedure stops.

3. If we haven't found a levdl or level 2 FV winner, we in this way continue level by level until thexe i
at least one candidate€ C on a level i with scoﬂ&‘v)(c) > M, If there is only one such candidate,
he or she is théunique) levei FV winner of the electionand the procedure stops. If there are at least
two such candidates, then every candidate with the higkest | score is develi FV winner of the
election and the procedure stops.

4. If for no i < |C|| there is a level i FV winner, every candidate with the higlsestrec ) (c) is aFV
winner of (C,V) by score

Note that BV is a special case of FV, where each voter approfreach candidate. Although BV and
FV seem to be alike, there are significant differences betwleem. A voting system is said to Ioeajority-
consistenif the winner of the election is always the majority winnehemnever one exists. (A majority winner
is the candidate who gets ranked first by a strict majorityatéxs.) Clearly, BV is majority-consistent, if a
majority winner exists he or she is also the unique level 1kBoavinner of the election. In contrast, FV is
not majority-consistent. Consider the following electioith three voters and two candidates= a | b,
v,= | b a,andv3= | b a. The FV winner of this election is candidateby score but the majority
winner would be candidate
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We now formally define the computational problems that welstin our paper. In our paper we only
consider the unique-winner model, where we want to havetigxane winner. We consider two different
control types. Irconstructivecontrol scenarios, introduced by Bartholdi, Tovey, andH[BTT92], the chair
seeks to make his or her favourite candidate win the eleciioadestructivecontrol scenario, introduced by
Hemaspaandra, Hemaspaandra, and Rothe [HHRO7], theschad is to prevent a despised candidate from
winning the election. We will only state the constructivees. The questions in the destructive cases can be
asked similarly with the difference that we want the distiistped candidateot to bea unique winner.

We first define control via adding a limited number of candidat

Name Control by Adding a Limited Number of Candidates.

Instance An election(CUD,V), whereC is the set of qualified candidates adds the set of spoiler candi-
dates, a designated candidate C, and a positive integd«

Parameter k.

Question Is it possible to choose a sub&tC D with ||D'|| < k such that is the unique winner of election
(CuD',V)?

In the following control scenario, the chair seeks to redstohher goal by deleting (up to a given number
of) candidates.

Name Control by Deleting Candidates.

Instance An election(C,V), a designated candidate= C, and a positive integé

Parameter k.

Question Is it possible to delete up tocandidates (other thar) from C such that is the unique winner of
the resulting election?

Turning to voter control, we first specify the problem cohbp adding voters.

Name Control by Adding Voters.

Instance An election(C,V UW), whereV is the set of registered voters awdis the set of unregistered
voters, a designated candidate C, and a positive integex.

Parameter k.

Question Is it possible to choose a sub¥ét C W with ||W'|| < k such that is the unique winner of election
(C,VUW’)?

Finally, the last problem we consider, control by deletiogevs.

Name Control by Deleting Voters.

Instance An election(C,V), a designated candidates C, and a positive integéx

Parameter k.

Question Is it possible to delete up th voters fromV such thatc is the unique winner of the resulting
election?

The above defined problems are all natural problems, sedgbesdions in [BEF09, BTT92, HHRO7,
FHHRO9a, HHRO9].

2.2 Parameterized Complexity

The theory of parameterized complexity offers toolkits fiao tasks: (1) the fine-grained analysis of the
sources of the computational complexity of NP-hard prolsleatcording to secondary measurements (the

166



paramete) of problem inputs (apart from the overall input sieand (2) algorithmic methods for exploiting
parameters that contribute favorably to problem compyeXibrmally, a parameterized decision problem is
alanguage? C z* x N. .Z is fixed-parameter tractabl@=PT) if and only if it can be determined, for input
(x,k) of sizen = |(x,k)|, whether(x,k) € . in time O( f (k)n®), for some computable functioh

A parameterized probler® reducedo a parameterized proble” if there (x, k) can be transformed to
(X,K') in FPT time so thatx,k) € . if and only if (X,K') € .#’, wherek’ = g(k) (that is,k' depends only on
K).

The main hierarchy of parameterized complexity classes is

FPT CW[1] CW[2] C--- CW[P| C XP

WI[1] is a strong analog of NP, as tkeStep Halting Problem for Nondeterministic Turing Mactsng com-
plete forW[1] under the above notion of parameterized problem redutgibilhek-Clique problem is com-
plete folW([1], and the parameterized Dominating Set problem is compeW2]. These two parameterized
problems are frequent sources of reductions that showyli@tameterized intractability. See the Downey-
Fellows [DF99] monograph for further background.

2.3 Graphs

Many problems proven to be |&]-hard are derived from problems concerning graphs. We wa@ W2]-
hardness via parameterized reduction from the problem Batinig Set, which was proved to be[2}¢
complete by Downey and Fellows [DF99]. Before the formalmigéin of the Dominating Set problem, we
first have to present some basic notions from graph theory.

An undirected graph Gs a pairG = (V,E), whereV = {vy,...,Vn} is a finite (nonempty) set of vertices
andE = {{vi,vj}|1<i< j<n}is a set of edge$. Any two vertices connected by an edge are called
adjacent The vertices adjacent to a vertexare called theneighboursof v, and the set of all neighbours
of v is denoted byN[v] (i.e., N[v| = {u e V|{u,v} € E}). Theclosed neighbourhoodf v is defined as
Nc[v] = N[v]U {v}. The parameterized version of Dominating Set is defined k.

Name Dominating Set.

Instance A graphG = (V,E), whereV is the set of vertices ard is the set of edges.

Parameter A positive integek.

Question DoesG have a dominating set of size(i.e., a subse¥’ C V with ||V’|| < k such that for all
ueV —V'thereis as € V' such that{u,v} € E)?

3 Results

Table 1 shows our results on the parameterized control axitplof FV and BV. The FPT results in Table 1
are in parenthesis because the two results for FV are tyivigherited from the classical P results given by
Erdélyi and Rothe [ER10], and since BV is a special case oBWinherits the FPT upper bound from FV
in both destructive voter cases. We won't prove thRMhardness results for FV, since BV is a special case
of FV, FV inherits the W2]-hardness lower bound from BV in all six cases.

In all of our results we will prove 2]-hardness by parameterized reduction from th@]womplete
problem Dominating Set defined in Section 2.3. In these swfsrwe will always start from a given Domi-
nating Set instancgG = (B,E),k), whereB = {by, by, ..., by} is the set of vertices with > 2.3 E the set of

2In this paper we will use the symbwl strictly for voters. From the next section on, we will use slyenbolB instead otV for the
set of vertices in a grapB.
3Note that the assumptian> 2 can be made without loss of generality, since the problemiBating Set remains VZ]-complete.
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Fallback Voting Bucklin
Control by Constructive| Destructive || Constructive| Destructive
Adding a Limited Number of Candidate W|[2]-hard W{[2]-hard | W[2]-hard W2]-hard
Deleting Candidates W{2]-hard W/[2]-hard || W[2]-hard W/2]-hard
Adding Voters W{2]-hard (FPT) W{2]-hard (FPT)
Deleting Voters W{2]-hard (FPT) W{2]-hard (FPT)

Table 1: Overview of results.

edges in grapk®s, andk < n is a positive integer. In the following constructions, tlet sf candidates will
always contain the s& which means that for each vertbxe B we will have a candidath; in our election.
We will also refer to candidate sdk[bi], which is the set of candidates corresponding to the veriit&
that are inN[by].

3.1 Candidate Control

Theorem 3.1. Both constructive and destructive control by adding caathd in BV aréN[2]-hard.

Proof. We first prove W2]-hardness of constructive control by adding candidates(&e- (B,E),k) be a
given instance of Dominating Set as described above. DéfmelectionC,V ), whereC = {c,w} UBUXU

YUZ with X = {x1,X0,..., Xn—1}, Y = {Y1,¥2,---,¥n-2}, Z={z1,2,...,Z,_1} is the set of candidates is

the distinguished candidate, avids the following collection of &+ 1 voters:

1. Foreach, 1<i <n, there is one voter of the form:

Ne[bi] X ¢ ((B—Ng[bi]) UYUZ U {w}).

2. There are voters of the form:
Y ¢ w(BUXUZ).

3. There is one voter of the form:
Z w (BUXuYu{c}).

Note that candidates is not a unique Bucklin winner of the electi¢@ — B,V), since only candidates
¢ andw reach the SMT until leveh (namely, exactly on leveh) with scor?‘c_B.V)(w) =n+1<2n=
SCO“{C_B,V) (c) thus,cis the unique leveh Bucklin winner of the electioiC — B,V). Now, letC — B be the
set of qualified candidates and Bbe the set of spoiler candidates.

We claim thatG has a dominating set of sizef and only if w can be made the unique Bucklin winner
by adding at mogk candidates.

From left to right: Suppos& has a dominating set of size Add the corresponding candidates to the
election. Now candidategets pushed at least one position to the right in each af tlotes in the first voter
group. Thus, candidate is the unique Bucklin winner of the election, sineés the only candidate on level
nwho passes the SMT.

From right to left: Suppose can be made the unique Bucklin winner by adding at nkosindidates
denoted byB'. By adding candidates from candidate Bebnly votes in voter group 1 are changed. Note that
candidatec has already a score afon leveln — 1 in voter group 2 thus; cannot have any more approvals
until leveln (else,scorg‘(C_B)UBaV)(c) > n+1 so,c would tie or beatv on leveln). This is possible only if
candidates is pushed in all votes in voter group 1 at least one positidheaight. This, however, is possible
only if G has a dominating set of sike
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For the W2J-hardness proof in the destructive case, we have to do mimamges to the above con-
struction, and we will change the roles of candidatendw®. Let (G = (B,E),k) be a given instance
of Dominating Set as described above. Define the ele¢tiW ), whereC = {c,w} UBUXUY UZ with
X ={x1,%2,.... %01} Y = {y1,¥2,...,¥n—2}, Z={z1,2,...,Z,_2} is the set of candidates,is the distin-
guished candidate, aMlis the following collection of &+ 1 voters:

1. Foreach, 1<i < n, there is one voter of the form:

Ne[bi] X ¢ ((B—Nc[bi))uYUZU{w}).

2. There are voters of the form:
Y ¢ w(BUXUZ).

3. There is one voter of the form:
Z w c (BUXUY).

Note that again only candidatesandw pass the SMT until levet in election(C — B,V), both passing
it on leveln with scoréf‘CiB’V)(w) =n+l<2n+1= scor§0787v)(c) thus,c is the unique Bucklin winner
of the election(C — B,V). Again, letC — B be the set of qualified candidates andBdie the set of spoiler
candidates.

We claim thatG has a dominating set of sieif and only if ¢ can be prevented from being a unique
Bucklin winner by adding at mostcandidates.

From left to right: Suppos& has a dominating s&®’ of sizek. Add the corresponding candidates to
the election. Now candidategets pushed at least one position to the right in each ofi trates in the first
voter group. Thus, on level— 1 none of the candidates pass the SMT, acmr%CfB)uB,?V)(c) =n+1=
SCO@(C_B)UB,V)(W)' i.e., both candidatesandw reach the SMT exactly on level and since their level
score is equak is not a unique Bucklin winner of the election anymore.

From right to left: Suppose can be prevented from being a unique Bucklin winner by addingostk
candidates denoted [Bf. By a similar argument as in the constructive case, this ssipte only ifG has a
dominating set of sizk. O

Theorem 3.2. Both constructive and destructive control by deleting ddatés in BV aréV[2]-hard.

Proof. We will start with the W2J-hardness proof in the constructive case. [Bt= (B,E),k) be a
given instance of Dominating Set. Define the electi@)V), whereC = {c,w} UBU X UY UZ with
_X = {Xl_vX_Zv'"_’anfzi”leNq[bi]H}' Y = {yl,yz,...,_yn,l}, Z = {z1,25,...,27_»} is the set of candidatesy
is the distinguished candidate, avids the following collection of &2+ 1 voters:

1. For each, 1<i < n, there is one voter of the form:
Ne[bi] X w ((B—Ng[bi])U(X=X)uYuzu{c}),
WhereXi = {X; . i_1yn—51-4 [Nefoy ||+ Xin—'_, [INelby -
2. There aran — 1 voters of the form:

Y ¢ (BUXuzu{w}).

4Here, changing the roles ofandw means simply that now not candidatebut ¢ is the distinguished candidate.
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3. There is one voter of the form:
(Y —{y1}) ¢ w (BUXUZU{y1}).

4. There is one voter of the form:
Z w c (BUXUY).

Note that candidateis the unique leveh Bucklin winner of the electiorfiC,V), since onlyc passes the
SMT on leveln among all candidates.

We claim thatG has a dominating set of sizeif and only if w can be made the unique Bucklin winner
by deleting at mosit candidates.

From left to right: Suppos& has a dominating s& C B of sizek. Delete the corresponding candidates.
Now candidatev gets pushed at least one position to the left in each ohthates in the first voter group.
Since candidate reaches the SMT on Ievelandscor%_B,w(w) =n+2>n+1= scor@C_B,’V)(c), and
no other candidate passes the SMT until layetandidatew is the unique Bucklin winner of the resulting
election.

From right to left: Suppose can be made the unique Bucklin winner of the election by dejeit most
k candidates. Since candidatalready passes the SMT on levelw has to beat no later than on leveh.
This is possible only if candidat® is pushed in all votes in voter group 1 at least one positiotnéoleft.
This, however, is possible only @ has a dominating set of sike

For the W2J-hardness proof in the destructive case in Bucklin(@t (B,E),k) be a given instance
of Dominating Set. Define the electid@,V), whereC = {c,w} UBUMUXUY;UY>,UZ; UZ, with M =
{me,mp o mg, X = {1, %, X250 gyt Yo = {Yo Y12, Yin-1h Ya = {Ya 1, Y22, Yok} Z1 =
{znn1,212,..., 2102}, Z2={21,222, ..., 2202} iS the set of candidatesjs the distinguished candidate, and
V is the following collection of 2+ 1 voters:

1. Foreach, 1<i < n, there is one voter of the form:
Ne[bi] Xi w M ((B—N¢[bi)) U(X=X)UY1UYo2UZyUZ,U{c}),
WHereX: = 1y - ayn-si4 Incloyl+ Xin-51_ INcloy
2. There are voters of the form:

YiCc Y, (BUMUXUZlLJZzU{W}).

3. There is one voter of the form:

Zy W e 2 (BUMUX UXUY,UYs).

Note that candidateis the unique leveh Bucklin winner of the electioriC,V), since onlyc passes the
SMT on leveln among all candidates.

We claim thatG has a dominating set of siZeif and only if c can be prevented from being a unique
Bucklin winner by deleting at mogtcandidates.

From left to right: Suppos& has a dominating s& C B of sizek. Delete the corresponding candidates.
Now candidatev gets pushed at least one position to the left in each ohthates in the first voter group.
Since candidate passes the SMT no earlier than on Imdndscor§C78/7V)(w) =n+1l= scor§C73/7V)(c),
candidate is not a unique Bucklin winner of the resulting election ammym
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From right to left: Suppose can be prevented from being a unique Bucklin winner of thetele by
deleting at mosk candidates. Note that deleting one candidate from an etectin move the strict majority
level of another candidate at most one level to the left. @lesthat only candidates can prevent from
winning the election, since is the only candidate other tharwho passes the SMT until leval+ k. In
election(C,V), candidatev passes the SMT no earlier than on leme} 1, candidates not before leveh.
Candidatev could only prevent from winning by reaching the SMT no later than on leneThis is possible
only if candidatew is pushed in all votes in voter group 1 at least one positicthédeft. This, however, is
possible only ifG has a dominating set of sike O

Theorem 3.3. Both constructive and destructive control by adding aneétie candidates in FV aré/[2]-
hard.

3.2 Voter Control
Theorem 3.4. Constructive control by adding voters in BVg2]-hard.

Proof. Let (G = (B,E),k) be a given instance of Dominating Set. Define the eleci@v UW), where
C=BU{wx}uYUZ, withY = {y1,ys,... Ysn INebi]| }» £ ={Z1,2,---,Zn-1} IS the set of candidates,is
the distinguished candidate, addJW is the foI]lowing collection oh+ k — 1 voters:

1. V is the collection ok — 1 registered voters of the form:

XZBwY

2. W is the collection of unregistered voters, where for eadh< i < n, there is one votew; of the form:
(B—Nc[bi]) Yi w x (Ng[biJu(Y-=Y))U2Z),
WhHEreVl = {¥(51-4 ngloy +20 Yy Nl -

Clearly,x is the level 1 Bucklin winner of the electidi€,V).

We claim thatG has a dominating set of sizeif and only if w can be made the unique Bucklin winner
by adding at mosk voters fromw.

From left to right: Suppos& has a dominating s& of sizek. Add the corresponding voters from &t
to the election (i.e., each votey if b; € B'). Now there are R— 1 registered voters, thus the SMTNE = k.
Since until leveln only candidatev passes the SMT, namely on levelw is the unique Bucklin winner of
the resulting election.

From right to left: Suppose can be made the unique Bucklin winner by adding at rkastters (denote
these voters bW’). Note thascoréc‘vuw,)(x) =k— 1. Since if a candidate passes the SMT on level 1, he or
she is the unique winner of the electidn;- 1 cannot be the SMT. This is only possible|[iV'|| > k— 1. If
[IW'[| = k— 1 thenscory, (W) = k—1 < My = k < scorgy,  (X) = 2k— 1. In this case candidate
couldn't be made the unique Bucklin winner of the electiohug, ||W'|| = k. Note thatscorel. ., (W) =

k>k—-1= scorQ‘CVUW,)(x) andk is also a strict majority. Since we could makethe unique Bucklin

winner of the election, none of the candidate8ioan be ranked on the firatpositions by each voter W',
otherwise there would exist a candidéte B with scor«%‘c_vuw/)(b) = k andb would reach the SMT on a

higher level tharw. This is only possible iG has a dominating set of sike O
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Theorem 3.5. Constructive control by deleting voters in BVWI§2]-hard.

Proof. To prove W2J-hardness, we provide again a reduction from Dominating Bet (G = (B,E), k)
be a given instance of Dominating Set. Define the electi@V ), whereC = {c,w} UBUXUY UZ with
X = {Xl, oo ,ijn: H(B*Nc[bi])H}’ Y = {yl, oo ’yzinleNc[bi]H }, Z= {Zl, oo ,Z(k,1)<n+l)} is the set of candidatew,
is the distingwsll”led candidate, avids the following collection of 8+ k — 1 voters:

1. Foreach, 1<i < n, there is one votey; of the form:

Ne[bi] € X ((B—Ne[bi))U(X=X)uYUZ) w,
whereXi = {X, sit a nefoy) X5, | (B-Neloy ) -
2. For each, 1 <i < n, there is one voter of the form:
(B—Nc[bi]) Yi w (Ne[bi]uXU(Y-=Y)uzu{c},
WRETEY: = 1Y, 5t-t el Yy INelo 1
3. There ar& — 1 voters of the form:
C Z (BUXUYU(Z-Z)) w,

whereZ = {z;_1)(ni1)+1:- - Z(ns1) -

Note that since candidate reaches the SMT only on the last level, he or she is not theueriycklin
winner of the election.

We claim thatG has a dominating set of sizef and only if w can be made the unique Bucklin winner
by deleting at most voters.

From left to right: Suppos€ has a dominating s& of sizek. Delete the corresponding voters from the
first voter group (i.e., each voterif b € B'). LetV’ denote the new set of voters. Now on leme} 1 only
candidatev passes the SMT, namely wiﬁmorq‘g\ll,)(w) =n= M. Thus,wis the unique Bucklin winner of
the resulting election. /

From right to left: Suppose can be made the unique Bucklin winner by deleting at nkogbters.
Observe that deleting less thlaroters would make it impossible for candidatéo be the unique winner of
the election. In that case the SMW; > n and sincew is ranked last place in all votes exceptrofotes, he
would reach the SMT on the last level thus, would not be thquaBucklin winner of the election. Clearly,
w has to win the election on leveh-1. Now, since for all with 1 <i <n scort%‘g_\ll)(bi) =n=scor a\ll)(w),
eachb; had to loose at least one point on the fitst 1 levels. Obviously, we cannot delete voters from the
second voter group, else candidatevouldn’t reach the SMT on levai+ 1. So thek voters were deleted
from the first voter group. Since each candidathas lost at least one point, this is only possibl&ifias a
dominating set of sizk. O

Theorem 3.6. Both constructive control by adding and deleting voters Vhdfe W[2]-hard.

4 Conclusions and Open Questions

In this paper we have studied the parameterized complekibyeacontrol problems for the recently proposed
system offallback votingand ofBucklin voting parameterized by the amount of action taken by the chair.
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In the case of constructive control, all of the problems af@]Ward. A natural question to investigate is
whether these problems remain intractable when pararretHly both the amount of action and some other
measure. We have shown that all four problems of constriatid destructive control by adding or deleting
candidates are hard for }8]. What is the complexity when the parameter is both the amafiatttion and the
number of voters? We have also shown that both construaiva by adding and deleting voters are hard
for W[2] in both fallback voting and Bucklin voting, and that both tlestive control by adding and deleting
voters are in FPT in both fallback voting and Bucklin votinghat is the complexity of constructive control
parameterized by both the amount of action and the numberafidates?

Acknowledgments: We thank the anonymous COMSOC-2010 referees for their bletpimments on the
preliminary version of this paper.
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Cloning in Elections!

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko

Abstract

We consider the problem of manipulating elections via cloning candidates. In our
model, a manipulator can replace each candidate ¢ by one or more clones, i.e., new
candidates that are so similar to ¢ that each voter simply replaces c in his vote with
the block of ¢’s clones. The outcome of the resulting election may then depend on
how each voter orders the clones within the block. We formalize what it means for a
cloning manipulation to be successful (which turns out to be a surprisingly delicate
issue), and, for a number of prominent voting rules, characterize the preference
profiles for which a successful cloning manipulation exists. We also consider the
model where there is a cost associated with producing each clone, and study the
complexity of finding a minimum-cost cloning manipulation. Finally, we compare
cloning with the related problem of control via adding candidates.

1 Introduction

In real-life elections with more than two candidates, the winner does not always have broad
political support. This is possible, for example, when the opposing views are represented by
several relatively similar candidates, and therefore the vote in favor of the opposition gets
“split”. For example, it is widely believed that in the 2000 U.S. Presidential election spoiler
candidate Ralph Nader have split votes away from Democratic candidate Al Gore allowing
Republican candidate George W. Bush to win.

One can also imagine scenarios where having several similar candidates may bias the
outcome in their favor. For example, suppose that an electronics website runs a competition
for the best digital camera by asking consumers to vote for their two favorite models from
a given list. If the list contains one model of each brand, and half of the consumers prefer
Sony to Nikon to Kodak, while the remaining consumers prefer Kodak to Nikon to Sony,
then Nikon will win the competition. On the other hand, if each brand is represented by
several similar models, then the “Sony” customers are likely to vote for two models of Sony,
the “Kodak” customers are likely to vote for two models of Kodak, and Nikon receives no
votes.

The above-described scenarios present an opportunity for a party that is interested in
manipulating the outcome of an election. Such a party—most likely, a campaign manager
for one of the candidates—may invest in creating “clones” of one or more candidates in order
to make its most preferred candidate (or one of its “clones”) win the election. A natural
question, then, is which voting rules are resistant to such manipulation, and whether the
manipulator can compute the optimal cloning strategy for a given election.

The first study of cloning was undertaken by Tideman [18], who introduced the concept
of “independence of clones” as a criterion for voting rules. He considered a number of well-
known voting rules, and discovered that among these rules, STV was the only one that
satisfied this criterion. However, STV does not satisfy many other important criteria for
voting rules, e.g., Condorcet consistency. Thus, Tideman [18] proposed a voting rule, the
“ranked pairs rule,” that was both Condorcet-consistent and independent of clones in all but
a small fraction of settings. Subsequently, Zavist and Tideman [19] proposed a modification
of this rule that is completely independent of clones. Later it was shown that some other
voting rules, such as Schulze’s rule [17], are also resistant to cloning.

IThis paper in its preliminary form will be presented at AAAI-2010.
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A related concept of composition consistency as well as its weaker version, cloning con-
sistency, was considered by Laffond at al. [11] and by Laslier [12]. They proved that a
number of tournament solutions such as the Banks Set, the Uncovered Set, the Tournament
Equilibrium Set (TEQ), and the Minimal Covering Set are composition-consistent. They
also demonstrated that various tournament solution concepts and voting rules such as the
Top Cycle, the Slater rule, the Copeland rule, and all scoring rules are not composition-
consistent.

In this paper we take a rather different perspective on cloning: Instead of looking at
cloning as a manipulative action that should be prevented, we view cloning as a campaign
management tool. This point of view raises a number of questions that have not been
considered before(or, have not been considered from this perspective):

What does it mean for cloning to be successful? The campaign manager can pro-
duce clones of existing candidates, but the voters rank them in response. We assume
that clones are similar enough to be ranked as a group by each voter; however, the
order of clones in such groups is specific to a particular voter. Since the campaign
manager cannot control or predict the order of clones in each voter’s ranking, we as-
sume that this order is random (that is, each voter assigns equal probability to each
possible order of the cloned candidates). Thus, the success of a cloning manipulation
is a random event, and we can measure it probability. Let ¢ be some real number be-
tween 0 and 1. We say that manipulation by cloning is g-successful if the probability
of electing the desired candidate is at least g. We focus on two extreme cases: one
where no matter what the voters do, the campaign manager’s preferred candidate p
wins (cloning is 1-successful), and one where there is a non-zero chance that p wins
(by a slight abuse of notation, we will call such cloning is 0-successful).

In which instances of elections can cloning be successful? While previous work
demonstrates that many well-known voting rules are susceptible to cloning, no
attempt has been made to characterize the elections in which a specific candidate can
be made a winner with respect to a given voting rule by means of cloning. However,
from the point of view of a campaign manager who considers cloning as one of the
ways to run the campaign, such characterizations are crucial. Thus, in this paper we
characterize cloning-manipulable elections for several prominent voting rules. Often,
manipulable elections can be characterized in terms of well-known notions of social
choice such as Pareto optimality, Condorcet loser, or Uncovered Set.

Which candidates can be cloned and to what extent? The existing work on cloning
does not place any restrictions on the number of clones that can be introduced, or on
which candidates can be cloned at all. On the other hand, it is clear that in practical
campaign management scenarios these issues cannot be ignored: not all candidates
can be cloned, and creating a clone of a given candidate may be costly. Thus, we
consider settings in which each clone of each candidate comes at some cost, and we
seek a least expensive successful cloning strategy. However, mostly we focus on the
standard model where clones come at zero cost, and on the unit cost model, where all
clones have the same cost.

What is the computational complexity of finding cloning strategies? Finally, we
consider the computational complexity of finding successful cloning strategies. In
practice, it is not sufficient to know that cloning might work: We need to know ex-
actly which strategy to use. We believe that our paper is the first to consider the
computational aspect of cloning. Following the line of work initiated by the semi-
nal papers of Bartholdi, Tovey, and Trick [1, 2], we seek to establish which cloning
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problems are NP-hard for a given voting rule, and which are solvable in polynomial
time.

One might argue that in real-life elections cloning isn’t really a practical campaign man-
agement tool. After all, creating even a single clone may well be too difficult or too costly.
Nonetheless, below we provide two natural examples where our model of cloning is practical
and well-motivated.

First, let us consider an election in which parties nominate candidates for some position,
and each party can nominate several candidates. From the point of view of the voters,
especially those not following the political scene closely, candidates from the same party are
perceived as clones. A party’s campaign manager might attempt to strategically choose the
number of candidates her party should nominate, and, in fact, she might even be able to
affect the number of candidates nominated by other parties (e.g., by accusing them of not
giving the voters enough choice).

Second, let us consider an environment where, as suggested by Ephrati and Rosenschein
in their classic paper [6], software agents vote to choose a joint plan (that is, the candidates
are possible joint plans or steps of possible joint plans). In such a system, the agents can
easily come up with minor variations of the (steps of the) plan, effectively creating clones
of the candidates. (Laslier [12] has given a very similar example regarding a society of
agents choosing a project to implement.) In both cases, the assumption that all clones are
ranked contiguously and the requirement that finding a successful cloning strategy should
be computationally easy are particularly relevant and realistic.

2 Preliminaries

Given a set A of alternatives (also called candidates), a voter’s preference R is a linear order
over A, i.e., a total transitive antisymmetric binary relation over A. An election E with n
voters is given by its set of alternatives A and a preference profile R = (R, ..., R,), where
R; is the preference of voter i; we write F = (A, R). For readability, we sometimes write
>, in place of R;. Also, we denote by |R| the number of voters in the election.

A voting rule F is often defined as a mapping from elections with a fixed set of alterna-
tives A to the set 24 of all subsets of A. However, in this work, we are interested in situations
where the number of alternatives may change. Thus, we require voting rules to be defined
for arbitrary finite sets of alternatives and preference profiles over those alternatives. Most
well-known voting rules (see below) fit this more demanding definition; for ones that do not
(e.g., scoring rules), we explain how to adapt their standard definition to our setting. Thus,
we say that a voting rule F is a mapping from pairs of the form E = (A4, R), where A is
some finite set and R is a preference profile over A, to subsets of A. The elements of F(E)
are called the winners of the election E. Thus, we allow an election to have more than
one winner, i.e., we work with social choice correspondences (also called non-unique winner
model.)

In this paper we consider the following voting rules (for all rules described in terms of
scores the winners are the alternatives with the maximum score):

Plurality. The Plurality score Scp(c) of a candidate ¢ € A is the number of voters that
rank c first.

Veto. The Veto score Scy (c) of a candidate ¢ € A is the number of voters that do not rank
c last.

Borda. Given an election (A, R) with |R| = n, the Borda score Scp(c) of a candidate ¢ € A
is given by Seg(c) =>1"  {a € A|c>=;a}|
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k-Approval. For any k > 1, the k-Approval score Sci(c) of a candidate ¢ € A is the number
of voters that rank ¢ in the top k positions. Plurality is simply 1-Approval.

Plurality with Runoff. In the first stage, all but two candidates with the top two Plural-
ity scores are eliminated. Then the winner is the one of the survivors that is preferred
to the other one by at least half of the voters. We may need to break a tie after the
first round, if more than one candidate has the best or the second best score; to this
end we use the parallel universes tie-breaking rule [4].

Maximin. Given an election (A, R) with |R| = n, for any a,c € A, let W(c,a) = |{i |
¢ »=; a}|. The Mazimin score Scp(c) of a candidate ¢ € A is given by Sep(c) =
minge 4 W(c, a), i.e., it is the number of votes ¢ gets in his worst pairwise contest.

Copeland. The Copeland score Scc(c) of a candidate ¢ € A is [{a | W(c,a) > W(a,c)}| —
[{a | W(a,c) > W(c,a)}|. This is equivalent to saying that for each candidate a, ¢
gets 1 point if she wins the pairwise contest against a, 0.5 point if there is a tie, and
0 if she loses the contest.?

Many results of this paper are computational and thus we assume the reader is some-
what familiar with standard notions of computational complexity such as classes P and
NP, many-one reductions, NP-hardness and NP-completeness. Our NP-hardness results
typically follow by reductions from ExacT COVER BY 3-SETS problem, defined below.

Definition 2.1 ([9]). An instance (G,S) of ExacT COVER BY 3-SETS (X3C) is given by a
ground set G = {g1,...,93x }, and a family S = {S1,...,Sm} of subsets of G, where |S;| = 3
foreachi=1,... .M. It is a “yes”-instance if there is a subfamily ' C S, |S'| = K, such
that for each g; € G there is an S; € S’ such that g; € Sj, and a “no”-instance otherwise.

3 Our Framework

Cloning and independence of clones were previously defined in [14, 18, 19]. However, we
need to modify the definition given in these papers in order to model the manipulator’s
intentions and the budget constraints. We will now describe our model formally.

Definition 3.1. Let E = (A, (R1,...,Ry)) be an election with a set of candidates A =
{c1,...,em}. We say that an election E' = (A’ (R}, ..., R.,)) is obtained from E by replac-
ing a candidate c¢; € A with k clones for some k>0 if A" = A\ {¢;} U {cy), ce cgk)} and
for each i € [n], R} is a total order over A’ such that:

(i) for any a € A\ {c;} and any s € [k] it holds that cgs) =% a if and only if ¢j »; a;
(it) for any a,b e A\ {c;} it holds that a > b if and only if a >; b.

We say that an election E* = (A*,R*) is cloned from an election E = (A, R) if there is
a vector of non-negative integers (k1,...,kmn) such that E* is derived from E by replacing
each cj, j =1,...,m, with k; clones.

Thus, when we clone a candidate ¢, we replace her with a group of new candidates that
are ranked together in all voters’ preferences. Observe that according to the definition above,
cloning a candidate c¢; once means simply changing his name to 0;1) rather than producing
an additional copy of ¢;. While not completely intuitive, this choice of terminology simplifies
some of the arguments in the rest of the paper.

The definition above is essentially equivalent to the one given in [19]; the main difference

is that we explicitly model cloning of more than one candidate. However, we still need to

2The original Copeland rule [5] was applied to tournaments and the score was the number of wins.
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introduce the two other components of our model: a definition of what it means for a cloning
to be successful, and the budget.

We start with the former assuming throughout this discussion that the voting rule is
fixed. We observe that the final outcome of cloning depends on the relative ranking of the
clones chosen by each voter, which is not under the manipulator’s control. Thus, a cloning
may succeed for some orderings of the clones, but not for others. The election authorities
may approach this issue from the worst-case perspective, and consider it unacceptable when
a given cloning succeeds for at least one ordering of clones by voters. Alternatively, they can
take an average-case perspective, i.e.., assume that the voters rank the clones randomly and
independently, with each ordering of the clones being equally likely (due to the similarities
among the clones), and consider it acceptable for a cloning manipulation to succeed with
probability that does not exceed a certain threshold. On the other hand, a (cautious)
manipulator would view cloning as successful only if it succeeds for all orderings.

Definition 3.2. Given a positive real 0 < ¢ < 1, we say that a manipulation by cloning (or
simply cloning) is g-successful if (a) the manipulator’s preferred candidate is not a winner
of the original election, and (b) a clone of the manipulator’s preferred candidate is a winner
of the cloned election with probability at least q.

The two approaches discussed above are special cases of this framework. Indeed, a
cloning succeeds for all orderings if and only if it is 1-successful, and it succeeds for some
ordering if and only if it is g-successful for some ¢ > 0 no matter how small it is; we abuse
notation by referring to such cloning as 0-successful. Saying that cloning is 0-successful is
equivalent to saying that the cloning would be successful if the manipulator could dictate
each voter how to order the clones. We will use this observation very often as it simplifies
proofs.

Observe that, according to our definition, the manipulator succeeds as long as any one
of the clones of the preferred candidate wins. This assumption is natural if the clones
represent the same company (e.g., Coke Light and Coke Zero) or political party. However, if
a campaign manager has created a clone of his candidate simply by recruiting an independent
candidate to run on a similar platform, he may find the outcome in which this new candidate
wins less than optimal. We could instead define success as a victory by the original candidate
(i.e., the clone ¢(M), but, at least for neutral voting rules, this is essentially equivalent to the
previous definition. Indeed, any preference profile in which the original candidate wins can
be transformed into one in which some clone wins, by switching their order in each voter’s
preferences so ¢(!) wins with the same probability as any other clone.

Note that our definition of g-successful cloning is similar in spirit to that of [7], where
voters are bribed to increase their probabilities of voting as the briber wants.

Another issue that we need to address is that of the costs associated with cloning.
Indeed, the costs are an important aspect of realistic campaign management, as the manager
is always restricted by the budget of the campaign. The most general way to model the
cloning costs for an election with the initial set of candidates A = {c1,..., ¢} is via a price
function p: [m] x ZT — Z* U {0} U {oo}, where p(i,j) denotes the cost of producing the
j-th copy of candidate ¢;. Note that p(i,1) corresponds to not producing additional copies
of i, so we require p(i,1) = 0 for all 4 € [m]. We remark that it is natural to assume that
all costs are non-negative (though some of them may equal zero); the assumption that all
costs are integer-valued is made for computational reasons. This is not a real restriction as
monetary values are discrete.

We assume that for some positive integer ¢ the marginal cost of introducing an additional
cloned candidate becomes constant, that is, p(i,7) = p(i,t) for j > t. This ensures that
the price function is succinctly representable. Thus our cost function is in fact a mapping
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p: [m] x [t] = ZT U{0} U{co}. The two natural special cases of our model defined below—
Zero Cost and Unit Cost models—satisfy this condition.

Definition 3.3. An instance of the ¢-CLONING problem for q € [0,1] is given by the initial
set of candidates A = {c1,...,cm}, a preference profile R over A, a manipulator’s preferred
candidate ¢ € A, a parameter t > 1, a price function p: [m] x [t] — ZT U {0} U {}, a
budget B, and a voting rule F. We ask if there exists a q-successful cloning with respect to
F that costs at most B.

For most voting rules that we consider, it is easy to bound the number of clones needed for
0-successful or 1-successful cloning (if one exists); moreover, this bound is usually polynomial
in n and m. We focus on two natural special cases of g-CLONING:

1. ZErO CosT (ZC): p(i,j) = 0 for all i € [m], j € Z™. In this case we would like to
decide whether an election is manipulable at all.

2. UNIT CosT (UC): p(i,j) = 1 for all i € [m], j > 2. This model assumes that creating
each new clone has a fixed cost equal for all candidates.

We say that an election F is g-manipulable by cloning with respect to a voting rule F if
there is a g-successful manipulation by cloning with respect to F in the ZC model. Further,
we say that E is manipulable by cloning with respect to F if it is 0-manipulable with respect
to F, and strongly manipulable by cloning with respect to F if it is l-manipulable with
respect to F.

In the rest of the paper, we discuss the complexity of the ¢-CLONING problem for a
number of well-known voting rules, focusing on the ZC and UC models. Clearly, hardness
results for these special cases also imply hardness results for the general model. Somewhat
less obviously, hardness results for the ZC ¢-CLONING imply hardness results for UC g¢-
CLONING: it suffices to set B = oco.

Note that for polynomial-time computable voting rules 0-CLONING is clearly in NP.
After a moment’s thought, we can also see that ¢-CLONING for such rules is in X5, the
second level of the polynomial hierarchy, for ¢ = 1, and is in NPFF for ¢ € (0,1). However,
in this paper we are interested in P-membership and NP-hardness results only.

4 Plurality and Similar Rules

In this section we focus on ¢-CLONING for Plurality, Plurality with Runoff, Veto, and Max-
imin. Surprisingly, these four rules exhibit very similar behavior with respect to cloning.
4.1 Plurality

We start by considering Plurality, which is arguably the simplest voting rule.

Theorem 4.1. An election is manipulable with respect to Plurality if and only if the ma-
nipulator’s preferred candidate ¢ does not win, but is ranked first by at least one voter.
Moreover, for Plurality 0-CLONING can be solved in linear time.

It is not too hard to strengthen Theorem 4.1 from 0-manipulability to g-manipulability
for any ¢ < 1.

Theorem 4.2. For any q < 1, a Plurality election is q-manipulable if and only if the
manipulator’s preferred candidate ¢ does not win, but is ranked first by at least one voter.
However, no election is strongly manipulable.
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4.2 Veto and Plurality with Runoff

The Veto rule exhibits extreme vulnerability to cloning.

Theorem 4.3. Any election is strongly manipulable with respect to Veto. Moreover, for
Veto both 0-CLONING and 1-CLONING can be solved in linear time.

We now consider Plurality with Runoff. Observe first that cloning any alternative cannot
change what happens in the runoff: indeed, if a beats ¢ in their pairwise contest, a would
also beat any clone of ¢ in the runoff, and if a loses to ¢ in their pairwise contest, a would
also lose in the runoff to any clone of ¢. Thus, if an alternative c is a Condorcet loser, i.e.,
for any a € A\ {c} a strict majority of voters prefers a to ¢, then ¢ cannot be made a winner
by cloning. If it is not a Condorcet loser, then it wins at least one pairwise contest, say
against w. Then, if ¢ and w get to the runoff, ¢ would win the election. Further, ¢ and w
have a non-zero probability to reach the runoff if both are ranked first at least once. Taken
together, these two considerations lead to the following criterion.

Theorem 4.4. An election is manipulable with respect to Plurality with Runoff if and only
if

(1) the manipulator’s preferred candidate ¢ is not a current winner, and

(2) ¢ is not a Condorcet loser and both ¢ and some alternative w that does not beat ¢ in
their pairwise election are ranked first by at least one voter each.

Moreover, for Plurality with Runoff 0-CLONING can be solved in polynomial time.

As for Plurality, we can characterize g-manipulability for ¢ € [0, 1]. The following theorem
can be proved similarly to Theorem 4.2.

Theorem 4.5. For any q < 1, an election is g-manipulable with respect to Plurality with
Runoff if and only if it is manipulable with respect to it. However, no election is strongly
manipulable.

4.3 Maximin

Consider the following election that will be used in this section. Let E = (A4, R) with
A ={a1,...,ax}, R = (Ry,...,Ry), where for i € [k] the preferences of the i-th voter
are given by a; >; Gj41 > ... = Ak =; a1 =; ... =; a;—1. We will refer to any election
that can be obtained from E by renaming the candidates as a k-cyclic election. In this
election, for any ¢ = 1,..., k, there are k — 1 voters that prefer a;_1 to a; (where we assume
ak+1 = a1). Thus, the Maximin score of each candidate in A is 1. Further, this remains true
if we add arbitrary candidates to the election, no matter how the voters rank the additional
candidates. This means that, given a candidate a € A, by cloning a and telling the voters to
order the clones as in a cyclic election, we can ensure that the Maximin score of any clone
of a is 1: in an election with n voters, we create n clones of a and consider the situation
where the voters’ preferences over those clones form an n-cyclic election. This construction
enables us to prove the following result.

Theorem 4.6. An election is manipulable by cloning with respect to Mazimin if and only
if the manipulator’s preferred candidate ¢ does not win, but is Pareto-optimal. Further, for
Mazimin 0-CLONING can be solved in linear time. No election is strongly manipulable

It is not clear if one can strengthen the result of Theorem 4.6 to g-manipulability for
0 < ¢ < 1. This amounts to the following question: suppose that for a fixed n we randomly
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draw n permutations of {1,...,k}. Let P(n, k) be the probability that for each i € [k] there
is a j € [k] such that j precedes i in at least n — 1 permutations. Is it the case that the
probability P(n,k) approaches 1 as k — 0o? Our computations show® that this is unlikely
to be the case. For (n,k) = (5,20) there was only one success out of 10° random trials
and only three for (n,k) = (5,50). For both (n,k) = (7,20) and (n,k) = (7,50) not a
single random trial out of 10° trials was successful. This means that, even if Maximin is
g-manipulable for ¢ > 0, the number of clones needed would be astronomical.

5 Borda, k-Approval, and Copeland

We now consider Borda, k-Approval, and Copeland rules, for which cloning issues get sig-
nificantly more involved.

5.1 Borda Rule

For Borda rule, just as for Maximin, Pareto-optimality of the manipulator’s favorite alter-
native is necessary and sufficient for the existence of successful manipulation by cloning.
However, Borda and Maximin exhibit different behavior with respect to strong manipula-
bility. Moreover, from the point of view of finding an optimal-cost cloning, Borda appears
to be harder to deal with than Maximin.

Theorem 5.1. An election is manipulable by cloning with respect to Borda if and only if
the manipulator’s preferred candidate ¢ does not win, but is Pareto-optimal. Moreover, UC
0-CLONING for Borda can be solved in linear time.

Briefly, an optimal cloning manipulation for Borda in the UC model is to clone ¢ suf-
ficiently many times and ask all voters to order the clones in the same way. However, for
q > 0, cloning c is not necessarily optimal.

Strengthening Theorem 5.1 to g-manipulability for some constant ¢, or to strong manip-
ulability appears to be difficult. We will first characterize the elections that can be strongly
manipulated with respect to Borda by cloning the manipulator’s favorite candidate.

Proposition 5.2. An election is strongly manipulable with respect to Borda by cloning the
manipulator’s preferred candidate c if and only if any candidate whose Borda score is higher
than that of ¢ loses to ¢ in a pairwise contest.

The proof of Proposition 5.2 indicates which orderings of the clones are the most prob-
lematic for the manipulator: these are the orderings that, roughly speaking, grant each clone
the same number of points. But this is exactly the expected outcome if the orderings are
generated uniformly at random! Thus, our proof shows that for Borda, Pareto optimality of
the manipulator’s most preferred candidate c is insufficient for g-manipulability with ¢ > 0
by cloning ¢ only. However, cloning a different candidate may be a better strategy: Suppose
that ¢ is Pareto-optimal, and, moreover, the original preference profile contains a candidate
¢’ that is ranked right under ¢ by all voters (one can think of this candidate as an “inferior
clone” of ¢; however, we emphasize that it is present in the original profile). Then one can
show that by cloning ¢’ sufficiently many times we can make ¢ a winner with probability
1. However, cloning c itself does not have the same effect if the voters order the clones
randomly or adversarially to the manipulator. This is illustrated by the following example.

Example 5.3. Let us consider the following Borda election: C = {a, b, ¢, d}, there are four
voters v1, U2, U3, Vg, and the preference orders of the voters are:

3We are grateful to Danny Chang for his help with these.
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vita=c>b>d Scp(a) =9
vara>=c>b>d Scp(b) =4
vs:a=c-b>d Scp(c) =8
vg:d=c=b>a Scp(d) =3

The winner here is a with 9 points. However, cloning b into three clones by, bs,b3 is a 1-
manipulation in favor of ¢ since the new score of a is 15 while the new score of ¢ is 16, no
matter how clones are ordered. At the same time, no amount of cloning of ¢ can have the
same effect. Indeed, after splitting c into k£ + 1 clones, the expected score of each clone of ¢
is 4(2 + k/2) = 8 + 2k, whereas a’s score is 9 + 3k.

This shows that in general, we may need to clone several candidates that are placed
between ¢ and its “competitors” in a large number of votes, and determining the right
candidates to clone might be difficult. Indeed, it is not clear if a 1-successful manipulation
can be found in polynomial time. We thus propose determining the complexity of identifying
strongly manipulable profiles with respect to Borda as an open problem.

A related question that is not answered by Theorem 5.1 is the complexity of 0-CLONING
in the general cost model. Note that there is a certain similarity between this problem and
that of strong manipulability: in both cases, it may be suboptimal to clone c¢. Indeed, for
general costs, we can prove that ¢-CLONING is NP-hard for any rational q.

Theorem 5.4. For Borda, qg-CLONING in the general cost model is NP-hard for any q €
[0,1]. Moreover, this is the case even if p(i,j) € {0,1,00} for alli € [m],j € ZT.

The cost function used in the proof of Theorem 5.4 is very similar to the UC model,
except that we are not allowed to clone some of the alternatives.

5.2 k-Approval

Plurality, k-approval and Borda are perhaps the best-known representatives of a large family
of voting rules known as scoring rules, i.e., rules in which each voter grants each candidate a
certain number of points that depends on that candidate’s position in the voter’s preference
order. (Formally, Plurality, k-Approval, and Borda are families of scoring rules.) It would be
interesting to characterize scoring rules vulnerable to manipulation by cloning. Recall that
one can define a scoring rule Fy, for any vector w = (w(1),...,w(m)) with w(i) € Rt U{0}
for ¢ € [m] (usually, though not always, it is also required that w(l) > --- > w(m)) as
follows: given a preference profile (R1,..., R,) over a set of alternatives A of size m, the
Fw-score of each alternative ¢ € A is given by

n

Sew(c) = Z w(pos(c, i),

i=1

where pos(c, i) is the position of ¢ in R;, i.e., pos(c,i) =|{a € A | a >; ¢}|+ 1. As usual, the
winners are the alternatives with the maximum score. Note, however, that this description
does not fit our definition of a voting rule, as it only works for a fixed number of alternatives.
To fix this, we will now define scoring rules for infinite rather than finite vectors.

Definition 5.5. Given a profile (R1,...,R,) over a set of alternatives A and a monotone
sequence w = (w(l),...,), i.e., one that satisfies either (i) w(l) < w(2) < ... or (i)
w(l) > w(2) > ..., we define the Fy-score of c € A as Sew(c) = > i, w(|A] —pos(c,i)+ 1)
if w is non-decreasing and Scw(c) = Y1, w(pos(c,i)) if W is non-increasing. The winners
under Fa are the alternatives with the maximum F-Score.

183



Observe that the Borda rule corresponds to the non-decreasing sequence (0,1,2,3,...)
and Plurality corresponds to the non-increasing sequence (1,0, ...), i.e., we need to consider
both non-increasing and non-decreasing sequences to capture well-known scoring rules.

Now, we have observed that even though both Borda and Plurality are susceptible to
manipulation by cloning, they exhibit very different behavior with respect to the cloning
procedure. Indeed, under Plurality the winner will suffer from cloning, while under Borda
her position will usually strengthen (at least as long as we are focusing on manipulability
rather than strong manipulability). Further, while no election is strongly manipulable with
respect to Plurality, there is a large category of elections that are strongly manipulable with
respect to Borda. Thus, an interesting research direction is to determine the relationship
between the properties of the sequence w and the manipulability of the corresponding
scoring rule (compare with the work of Hemaspaandra and Hemaspaandra [10] on voter
manipulation of scoring rules).

However, this problem is far from being trivial. Indeed, we will now demonstrate that
there is a family of scoring rules for which deciding whether a given election is susceptible to
cloning is computationally hard. Specifically, this is the case for k-Approval for any k > 2.
We start by showing this for k£ = 2; subsequently, we will generalize our result to the case
k > 2. Our proof gives a reduction from the problem DOMINATING SET, defined below.

Definition 5.6. An instance of the DOMINATING SET problem is a triple (V, E,s), where
(V, E) is an undirected graph and s is an integer. We ask if there is a set W C'V such that
(a) |[W| <s and (b) for each v € V we have v € W or (v,w) € E for some w € W.

Lemma 5.7. For 2-Approval, it is NP-hard to decide whether a given election is manipulable
by cloning.

It is not hard to modify the construction in the proof of Lemma 5.7 for the case k > 2.

Theorem 5.8. For any giwven k > 2, it is NP-hard to decide whether a given election is
manipulable by cloning with respect to k-Approval.

One can also use ideas in the proof of Theorem 5.8 to show that it is NP-hard to decide
whether an election is strongly manipulable with respect to k-Approval.

Theorem 5.9. For any given k > 2, it is NP-hard to decide whether a given election is
strongly manipulable by cloning with respect to k-Approval.

5.3 Copeland

For an election E with a set of candidates A, its pairwise majority graph is a directed graph
(A, X), where X contains an edge from a to b if more than half of the voters prefer a to b;
we say that a beats b if (a,b) € X. If exactly half of the voters prefer a to b, we say that a
and b are tied (this does not mean that their Copeland scores are equal).

For an odd number of voters, the graph (A, X) is a tournament, i.e., for each pair
(a,b) € A2, a # b, we have either (a,b) € X or (b,a) € X. In this case, we can make use of
a well-known tournament solution concept of Uncovered Set [16, 8, 13], defined as follows.
Given a tournament (A, X), a candidate a is said to cover another candidate b if a beats b
as well as every other candidate beaten by b. The Uncovered Set of (A, X) is the set of all
candidates not covered by other candidates.

It turns out that if the number of voters is odd, the Uncovered Set coincides with the
set of candidates that can be made Copeland winners by cloning.

Theorem 5.10. For any q € [0,1], an election E with an odd number of voters is q-
manipulable with respect to cloning if and only if the manipulator’s preferred candidate c
does not win, but is in the Uncovered Set of the pairwise majority graph of E.
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For elections with an even number of voters, the situation is significantly more compli-
cated. The notion of Uncovered Set can be extended to pairwise majority graphs of arbitrary
elections in a natural way (see, e.g. [3]): we say that u covers ¢ if u beats ¢ and all alterna-
tives beaten by ¢, and, in addition, c loses to all alternatives that beat u. In particular, this
means that u does not cover c if it is beaten by some alternative that is tied with ¢. This
definition generalizes the one for the odd number of voters, However, for an even number
of voters, the condition that c¢ is in the Uncovered Set turns out to be necessary, but not
sufficient for manipulability by cloning.

Example 5.11. Consider an election with A = {a,b, ¢, u,w}. Suppose that a beats u, u
beats b, b beats w, w beats a, © and w beat ¢, and any other pair of candidates is tied.
Note that by McGarvey theorem [15] there are voters’ preferences that produce this pairwise
majority graph. It is easy to see that in this election ¢ cannot be made a winner by cloning
even though it is not covered.

Instead, we can characterize cloning-manipulable profiles in terms of the properties of the
induced (bipartite) subgraph of (A, X) whose vertices are, on the one hand, the candidates
that are tied with ¢, and, on the other hand, the candidates that beat ¢ as well as all
candidates beaten by c¢. However, it is not clear if this characterization leads to a polynomial-
time algorithm. We omit the details due to space constraints.

On the other hand, finding an optimal-cost cloning manipulation is hard even in the UC
model.

Theorem 5.12. For Copeland, UC ¢-CLONING is NP-hard for each q € [0,1].

6 Conclusions

We have provided a formal model of manipulating elections by cloning, characterized manip-
ulable and strongly manipulable profiles for many well-known voting rules, and explored the
complexity of finding a minimum-cost cloning manipulation. The grouping of voting rules
according to their susceptibility to manipulation differs from most standard classifications
of voting rules: e.g., scoring rules behave very differently from each other, and Maximin is
more similar to Plurality than to Copeland. Future research directions include designing
approximation algorithms for the minimum-cost cloning under voting rules for which this
problem is known to be NP-hard, and extending our results to other voting rules.
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On Problem Kernels for Possible Winner
Determination Under the k-Approval Protocol!

Nadja Betzlet

Abstract

The RPossiBLE WINNER problem asks whether some distinguished candidate maynr®eco
the winner of an election when the given incomplete votestiglaorders) are extended into
complete ones (linear orders) in a favorable way. Underktagproval protocol, for every
voter, the besk candidates of his or her preference order get one point. Aidate with
maximum total number of points wins. TheoBsiBLE WINNER problem fork-approval is
NP-complete even if there are only two votes (énd part of the input). In addition, it is NP-
complete for every fixed € {2, ..., m — 2} with m denoting the number of candidates if the
number of votes is unbounded. We investigate the parametecomplexity with respect to the
combined parametédr and “number of incomplete votes; and with respect to the combined
parametek’ := m — k andt. For both cases, we use kernelization to show fixed-paramete
tractability. However, we show that whereas there is a pmiyial-size problem kernel with
respect tqt, k'), itis very unlikely that there is a polynomial-size kernel ¢, k). We provide
additional fixed-parameter algorithms for some speciatsas

1 Introduction

\oting situations arise in political elections, multi-ageystems, human resource departments, etc.
This includes scenarios in which one is interested in findirggnall group of winners (or losers),
such as awarding a small number of grants, picking out adinitumber of students for a graduate
school, or voting for a committee with few members. Suchagitins are naturally reflected by a
variant of approval voting, the-approvalvoting system, where every voter gives one point to each
of thek alternatives/candidates which he or she likes best ancatdidates having the most points
in total win. On the one sidé;-approval extendplurality where a voter gives one point to one
candidate, that i = 1, and, on the other side, it extendstowhere a voter gives one point to all
but one candidate, that i&, = 1 for &’ := m — k andm candidates.

At a certain point in the decision making process one migbe fe situation that the voters
have made up their minds “partially”. For example, for theidien about the Nobel prize for peace
in 2009, a committee member might have already known thabhghg) prefers Obama and Bono
to Berlusconi, but might have not decided on the order of Gband Bono yet. This immediately
leads to the question whether, given a set of “partial pegfees”, a certain candidate may still win.
The formalization of this question leads to the$sI1BLE WINNER problem.

The PossiBLEWINNER problem has been introduced by Konczak and Lang [16] ane $iven
its computational complexity has been studied for sevestihyg systems [2, 3, 5, 18, 19]. Even for
the comparatively simplé-approval voting, it turned out thatd3sIBLE WINNER is NP-complete
except for the special cases of plurality and veto [3], teatdr anyk greater than one and smaller
than the number of candidates minus one. A multivariate dexity study showed that it is NP-
complete if there are only two voters whéns part of the input but fixed-parameter tractable with
respect to the “number of candidates” [5]. In contrast, far &pproval voting variant where each
voter can assign a point tgp tok candidates, it can easily be seen thasBIBLE WINNER can be
solved in polynomial-time. A prominent special case ofSRI1BLEWINNER is the MANIPULATION

1To appear inProceedings of the 35th International Symposium on MathieaiaFoundations of Computer Science
(MFCS 2010)Brno, Czech Republic, August 2010.
2Supported by the DFG, research project PAWS, NI 369/10.
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problem, where the input consists of a set of linear ordedssaset of completely unspecified votes.
For k-approval, it is easy to see thatAMIPULATION is solvable in polynomial time for unweighted
votes but for weighted votes it is NP-complete for all fixeer 1 [15].

The above described hardness results motivate a multiearelysis with respect to the com-
bined parameter “number of voterahd “number of candidates to which a voter gives one/zero
points” for k-approval. Can we efficiently solved2sIBLE WINNER in the case that these parame-
ters are both small? Directly related questions are whetharan ignore or delete candidates which
are not relevant for the decision process and how to idestiéh candidates. In this context, param-
eterized algorithmics [11, 17] provides the concept of kémation by means of polynomial-time
data reduction rules that “preprocess” an instance suchthaize of the “reduced” instance only
depends on the parameters [6, 14].

In this work, we use kernelization to show the fixed-paramtedetability of ROSSIBLEWINNER
for k-approval in two “symmetric” scenarios. First, we consittercombined parameter “number of
incomplete votes! and“number of candidates to which every voter gives zero pbikts= m — k
for m candidates (directly extending the veto voting system Wwith- 1). Making use of a simple
observation we show thatd3sIBLEWINNER admits a polynomial-size problem kernel with respect
to (¢, k') and provide two algorithms: one with exponential runningetifactor2(*") in case of
constant and one with exponential running time fac#f*(*) in case of constarit’. Second, we
consider the combined parameteand k, wherek denotes the “number of candidates to which
a voter gives a point”. We observe that here one cannot asguestrically to the first scenario.
Using other arguments, we give a superexponential-siz@gmokernel showing the fixed-parameter
tractability of PossIBLEWINNER with respect tdt, k). For the special case of 2-approval, we give
an improved polynomial-size kernel with(¢?) candidates. Using a methodology due to Bodlaender
et al. [7], our main technical result shows thab$%5IBLE WINNER is very unlikely to admit a
polynomial-size problem kernel with respect(tok).

2 Preliminaries

A linear voteis a transitive, antisymmetric, and total relation on aGeif candidates angartial
vote a transitive and antisymmetric relation on a éebf candidates. We use to denote the
relation between candidates in a linear vote ando denote the relation between candidates in
a partial vote. We often specify a subgdet C C of candidates instead of single candidates in
a partial vote; for a candidate € C' \ D andD = {d,...,ds}, the meaning of ¢ - D" is

“le = di,e = do,...,e = ds}". Alinear votev! extendsa partial votev? if v» C o', that is, for
everyi, j < m, frome; = ¢; in oP it follows thate; > --- > ¢; in v!. An extensionZ of a set of
partial votesi’? = {v,...,vP} is a mapping fron¥’? to a set of linear vote®" := {v},... v\ }
such that! extendsv? for everyi. Given a set of partial voteE? on C, a candidate € C'is a
possible winneif there exists avinning extensiot, that is,c wins in £ with respect to a considered
voting system. For any voting systeR) the underlying decision problem is defined as follows.

PossSIBLEWINNER
Given: A set of candidate€’, a set of partial vote¥ on C, and a distinguished candidate C.
Question: Is there an extensiof of V' such that wins with respect ta? in E?

We focus on the voting systefrapprovalwhere, given a sét” of linear votes on a sét' of candi-
dates, the first candidates within a vote get one point and the remainingidates get zero points.
For every candidateé € C, one sums up the points over all votes frdfrto obtain itsscores(c’)
and the candidates with maximum score win. We call the firgbsitions of a vote@ne-positions
and the remaining positior=ero-positions All results are given for thenique winnercase, that
is, looking for a single candidate with maximum score, but ba adapted easily to hold for the
“co-winner” case where several candidates may get the maxistore and all of them win.
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A parameterized problem is a subset oE* x ¥* for some finite alphabéet [11, 17]. An in-
stance of a parameterized problem consist&op) wherep is called the parameter. We mainly
consider “combined” parameters which are tuples of pasititegers. A parameterized prob-
lem is fixed-parameter tractabl@ it can be solved in timef(|p|) - poly(|z|) for a computable
function f. A kernelization algorithm consists of a set (@fata) reduction rulesvorking as fol-
lows [6, 14, 17]. Given an instande, p) € X* x ¥*, they output in time polynomial if| + |p|
an instancéz’,p’) € ¥* x ¥* such that the following two conditions hold. Firgt;, p) is a yes-
instance if and only ifz’, p’) is a yes-instance (termeundnegs Second|z’| + |p'| < g(|p|)
whereg is a computable function. § is a polynomial function, then we say that the parameterized
problem admits @olynomial kernel

Some of the reduction rules given in this work will not dilgaiecrease the instance size by
removing candidates or votes but instead only decreasaithber of possible extensions of a vote,
for example, by “fixing” candidates. Tix a candidate at a certain position means to specify its
relation to all other candidates. Clearly, a candidate nwiybe fixed at every position in a specific
partial vote. To take this into account, an important concethe notation ohiftinga candidate.
More precisely, we say a candidatecan shift a candidat€’ to the left (right) in a partial vote if
"= (¢ = ") inv, thatis, setting’ to a one-position (zero-position) implies settirigto a one-
position (zero-position) as well. For every candidédte C and a partial vote € V, let L(v, ') :=
{"eC | inviandR(v,c) :={c" € C | = ¢"inv}. Then, fixing a candidat€ € C
as good as possibimeans to add.(v, ') = ¢ = C'\ (L(v, ) U {c'}) tov. Analogously, fixing a
candidateas bad as possiblis realized by adding’ \ (R(v,c) U {c'}) = ¢ = R(v,d)tow. Ifa
candidate’ € C'is fixed in all partial votes, this implies that also its scef€) is fixed.

The votes of an input instance 0bBsIBLEWINNER can be partitioned into a (possibly empty)
set of linear votes, callet’, and a set of proper (non-linear) partial votes, calléd We state all
our results for the parameter= |V?|. All positive results also hold for the parameter number of
total votesn := |V!| + |V?|. Due to the space restrictions, several (parts of) pro&slaferred to
a full version of this work.

3 Fixed number of zero-positions

For (m — k')-approval witht’ < m, k’ denotes the number of zero-positions. We give a polynomial
kernel with respect tdt, k') for PossiBLE WINNER wheret is the number of partial votes. In
addition, we provide two parameterized algorithms for sgde@ases.

3.1 Problem kernel

Consider a BssIBLE WINNER instance with candidate sét, vote setl’ = V! U V?, and distin-
guished candidate € C for (m — k’)-approval. We start with a simple reduction rule that is a
crucial first step for all kernelization results in this work

Rule 1. For every votey; € V?, if |L(v;, ¢)| < m — K/, fix c as good as possible in.

The soundness and polynomial-time running time of Rule lasyeo verify. The condi-
tion |L(v;,c)| < m — k' is crucial since otherwise might shift a candidate’ to a one-position
whereas: is assigned to a zero position and this could catide beatc. After applying Rule 1,
the score of: is fixed at the maximum possible value since it makes one fo@t votes in which
this is possible. Now, for every candidatec C'\ {c}, by counting the points that makes within
the linear votes/!, compute the number of zero positions thamust assume within the partial
votesV'? such that it is beaten by Let this number be(¢’) andZ;. := {¢’ € C\ {c} | z(¢) > 0}.
Since there are onlgk’ zero positions ifi/?, one can observe the following.

Observation 1. In a yes-instance} ., o (.} 2(¢’) < tk" and|Z, | < ¢k’

189



Initialization:

ForeveryD’ € D\ {(d1,...,d,)}, setT'(0, D) = 0.

SetT'(0, (d1,...,dp)) = 1.

Update:

For0<i<t-1,

foreveryD’ = (dy,...,d,) € D,

T(i+1,D’) = 1if there are two candidates, z;, that can take the zero-positionsin,

and7'(i, D") = 1 with D" := {d{,...,d;} and
dj =djforje{l,...,q} \{g,h}, d; <d,+1,andd; <dj + 1.

Output:

“yes"if T'(t, (0,...,0)) = 1, “no” otherwise

Figure 1: Dynamic programming algorithm forn — 2)-approval.

Observation 1 provides a simple upper bound for the numbeawndidates inZ,.. By formu-
lating a data reduction rule bounding the number of remgigendidates and replacing the linear
votesV! by a bounded number of “equivalent votes” we can show thewviatig theorem. The basic
idea is that since a remaining candidate frém, (Z; U {c}) can be set arbitrarily in every vote
without beating:, it is possible to replace the set of all remaining candislhigk’? “representative
candidates”.

Theorem 1. For (m — k’)-approval,PossIBLE WINNER with ¢ partial votes admits a polynomial
kernel with at mostk’? + tk’ + 1 candidates.

3.2 Parameterized algorithms

We give algorithms running in®(®) - poly(n, m) time withp denoting eithek’ or t where the other
parameter is of constant value. Note that the kernelizdtimm the previous subsection does not
imply such running times.

Constant number of partial votesor two partial votes, there can be at md&t candidates that
must take a zero-position in a yes-instance (see Obsemvhtidranching into the two possibilities
of taking the zero-position in the first or in the second vatedvery such candidate, results in a
search tree of size?*" = 4%, For every “leaf” of the search tree it is easy to check if ¢hisra
corresponding extension. Using similar arguments, orieesrat the following.

Proposition 1. For a constant numberof partial votes POSSIBLEWINNER for (m — k')-approval
can be solved iat**" - poly(n, m) time.

Constant number of zero-positiorfor constant’ the existence of an algorithm with running time
20(%) . poly(n, m) seems to be less obvious than for the case of constane start by giving a
dynamic programming algorithm fd@rn — 2)-approval. Employing an idea used in [4, Lemma 2],
we show that it runs i - poly(n, m) time and space.

As in the previous subsection, fixaccording to Rule 1 such that it makes the maximum possible
score and leZ := {z1, ..., 2,} denote the set of candidates that take at least one zertiopdai
a winning extension. Let,,...,d, denote the corresponding number of zero-positions that mus
be assumed and 1€ := {(d},...,d},) | 0 < d; < d;for0 < j < p}. Then, the dynamic
programming tablg" is defined byr'(i, D’) for 1 < i < tandD’ = (dy,...,d,) € D. Herein,
T(i,D’) = 1 if the partial votes from{vy, ..., v;} can be extended such that candidatéakes at
leastd; — d’; zero-positions foil. < j < p; otherwiseT'(i, D’) = 0. Intuitively, d’; stands for the
number of zero-positions which, must still take in the remaining votds; 1, ..., v }. Clearly, if
T(t,(0,...,0)) =1 foran instance, then it is a yes-instance. The dynamic grogring algorithm
is given in Figure 1. By further extending it to work for anynstants’ we can show the following.
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Theorem 2. For (m — 2)-approval with¢ partial votes,PossIBLE WINNER can be solved id! -
poly(n,m) time andO(t-4') space. Fo(m —k’)-approval witht partial votes,POSSIBLEWINNER
can be solved iR°®) . poly(n, m) time for constant’.

4 Fixed number of one-positions

We study P®ssIBLEWINNER for k-approval with respect to the combined paramgi@nd numbet

of partial votes. The problem can be considered as “fillitigbne-positions such that no candidate
beatsc. In the previous section, we exploited that the number ofldates that must take a zero-
position is already bounded by the combined paranteaed “number of zero-positions” in a yes-
instance (Observation 1). Here, we cannot argue analogoDsk combined parametét, k) only
bounds the number of one-positions but there can be an udiedutumber of candidates that may
take a one-position in different winning extensions of thetial votes. Hence, we argue that if there
are too many candidates that can take a one-position, tleea thust be several choices that lead
to a valid extension. We show that it is sufficient to keep ao$étepresentative candidates” that
can take the required one-positions if and only if this issilile for the whole set of candidates.
This results in a problem kernel of super-exponential dimevéng fixed-parameter tractability with
respect tdt, k). We complement this result by showing that it is very unlkslat there is a kernel
of polynomial size. In addition, we give a polynomial kerméth O(¢?) candidates foz-approval.

4.1 Problem kernels

We first describe a kernelization approach farg218LE WINNER for k-approval in general and
then show how to obtain a better bound on the kernel size &gitoval.

Problem kernel for k-approval. In order to describe more complicated reduction rules, \sarag
that a considered instance is exhaustively reduced wiglert$o some simple rules. To this end, we
fix the distinguished candidateas good as possible by Rule 1 (using that- ¥’ = k). Afterwards,

we apply a simple reduction rule to get rid of “irrelevanthciidates and check whether an instance
is a trivial no-instance:

Rule 2. First, for every candidate’ € C'\ {c}, if making one point in the partial votes causés
not to be beaten by, then fixc’ as bad as possible in every vote. Second, compute th® sét
candidates that can be deleted: For every candidate C'\ {c} with |L(v,¢’)| > kforall v € V7,
if the scores(c’) is at leasts(c), then output “no solution”, otherwise add to D. DeleteD and
replaceV! by an equivalent set.

The soundness of Rule 2 is easy to see: Every candidate fixduebyrst part cannot be as-
signed to a one-position in any winning extension. For tleesd part, every winning extension of
an unreduced instance can easily be transformed into angrextension for the reduced one by
deleting the candidates specified by Rule 2 giwg versa A set of equivalent linear votes can be
found according to [3, Lemmal]

In the following, we assume that Rule 2 has been applied.shatl remaining candidates can
make at least one point in an extension without beatinfp state further reduction rules, a partial
vote v is represented as a digraph with vertex §6t| ¢ € C \ {c} and|L(v,c")| < k}. All
other candidates are considered as “irrelevant” for thie wince they cannot take a one-position.
The vertices are organized infolevels. For0 < j < k—1,letLj(v) := {¢ | ¢ € C\
{c} and|L(v, )| = j} containing all candidates that shift exacjlgandidates to a one-position if
they are assigned to the best possible position. There ieatéd arc from’ to ¢” if and only if
d’ € L(v,c). Figure 2 displays an example for the representation of éapaote for 3-approval.

3Herein, it might be necessary to add one new candidate. Hawis will not affect the following analysis and will be
discussed in more detail in the full version of this work.
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d
v: a>=b>d> o= ®
e~ f, /i
g fryre e f
a>h ::>0
g

Figure 2: Example for 3-approval: Partial vai€left-hand side) and corresponding digraph with
levels0, 1, and2. Arcs following by transitivity are omitted. Note thaf y, andc do not appear in
the digraph since they are irrelevant for

In general, the number of candidates per level is unbourtdedever, for some cases it is easy
to see that one can “delete” all but some representativeidates. The following reduction rule
provides such an example using the fact that in any vote adatedrom the first level can be set to
an arbitrary one-position without shifting any other catade.

Rule 3. For v € VP with |Lo(v)| > tk, consider any subsdt’ C Lo(v) with |L'| = tk. Add
L'~C\ L tow.

To see the soundness of Rule 3 consider a winning extetsimn a non-reduced instance and
avotev € VP with |Lo(v)| > tk. Since there arg: one-positions in the partial votes, there must be
at leastk candidates froni.’ not having assumed a one-position within the other votes. Setting
thesek candidates to the one-positionsidneads to a winning extension of the reduced instance.
The other direction is obvious.

If Rule 3 applies to all partial votes, then in a reduced instaat most?k candidates are not
fixed at zero-positions i¥? and the remaining candidates can be deleted by Rule 2. Hesmce,
consider the situation that there is a partial voteith |Ly(v)| < tk. Then, we cannot ignore the
candidates from the other levels but replace them by a balndeber of representatives. We first
discuss how to find a set of representatives for 2-approvéitlaen extend the underlying idea to
work for generak.

For 2-approval, for a vote with |Lo(v)| < 2t, it remains to bound the size @f (v). This is
achieved by the following reduction rule: Fix all ltin-neighbors of every candidate frofg (v)
at zero-positions. To see the soundness, we show, givenrangiextensior¥ for the non-reduced
instance, how to obtain a winning extensiah for v after the reduction (the other direction is
obvious). Clearly, inE(v) the first position must be assigned to a candidateom Ly (v) and¢
can also be assigned to the first positionfif(v). If there is another candidate frofy (v) that
takes the second position ii(v), one can do the same Y (v). Otherwise, distinguish two cases.
First,¢’ has less tha?t in-neighbors, then the reduction rule has not fixed any citdithat shifts’
to the first position and thuscan be extended in the same way a&irSecond¢’ has at leas?t in-
neighbors. Since there are ordliyone-positions andt non-fixed in-neighbors, the second position
of v can be assigned to a candidate that does not take a onespasitiny other vote of.

Altogether, for2-approval, one ends up with up 46> non-fixed candidates per vote and hence
with O(¢3) non-reduced candidates in total. For gengraixtend this approach iteratively by bound-
ing the number of candidates for every level:

Rule 4. Consider a partial vote € V? with |Lo(v)| < tk. Start withi = 1 and repeat untif = k.

- For every candidate’ € L;(v), if there are more thank candidates in_;(v) which have the same
neighborhood ag’ in Lo(v) U L1 (v) U---U L;_1(v), fix all buttk of them as bad as possible.
-Seti :=1i + 1.

Using Rule 4 one can show the following.

Theorem 3. For k-approval,PossiBLE WINNER admits a problem kernel with size bounded by a
computable function ik and the number of partial votes
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Improved problem kernel for 2-approval. As discussed above, the kernelization as stated-for
approval in general leads to a polynomial kernel witt¢?) candidates foe-approval. To give a
kernel withO(#?) candidates, we use some properties of bipartite graphs Bipartite grapliG U
H, E) with vertex set7 U H and edge sek C {{g,h} | ¢ € G andh € H}, amatchingdenotes
a subsetM C E such that foralk,e’ € M,ene’ = (. A vertex contained ir for ane € M is
calledmatching vertexand, for{g, h} € M, g andh arematching neighborsA maximum matching
is a matching with maximum cardinality. Th®pen neighborhoodf a vertexg € G is denoted
by N(g) := {h | {g,h} € E} and, forG’' C G, N(G") := e N(9)-

Lemma 1. For a bipartite graph(G U H, E) with maximum matching/, there is a partition of7
into G; W G2, such that the following holds. First, all neighbors@f are part of A/. Second, every
vertex fromGs has a matching neighbor outsidé(G ).

Now, we employ Lemma 1 to design a reduction rule. Note thatlar arguments are used in
several works, see [9, 17]. In the following, we assume thdeR and Rule 2 have been applied.
We define a bipartite grapiG U H, F) as follows. For a partial profile with partial votas?
and candidate set, let V' := {v' € VP | |Lo(v')] < 2t}. Foreveryv, € V', forl < j <
|Lo(v})], add a vertexy/ to G. Intuitively, for every candidate that can take a first positin v
there is a corresponding vertex@h If a candidate can take the first position in several votem t
there are several vertices corresponding to this candidEte vertex setd contains one vertex
for every candidate frondJ,, ., L1(v")) \ (U, ey Lo(v')). There is an edge betwegh € G
andh € H if setting the candidate correspondingditto the second position if shifts the candidate
corresponding t@f to the first position. Now, we can state the following.

Rule 5. Compute a maximum matchidd in (G U H, E). Fix every candidate corresponding to a
non-matched vertex il as bad as possible in every vote fréth

Lemma 2. Rule 5 is sound and can be carried outQ| E| - |GU H| + |V| - |C]) time.

Proof. A winning extension for an instance reduced with respectul@ B is also a winning exten-
sion for an unreduced instance. Now, we show the other @iredBiven a winning extensiof for

an unreduced instance, we construct a winning extenijofor a reduced instance. Since Rule 5
does not fix any candidate which can take the first positiort irast one vote, the first positions
in £, can be assumed by the same candidates As Ihremains to fix the second positions without
beatingc. For every votey;, let g¢ denote the candidate that takes the first positios iim £. For
the corresponding vertgy one can distinguish two cases: Firgt,€ G;. In this case, none of the
neighbors oy¢ have been fixed and, thus, the candidate which takes thedeosition inv; in £
can also take the second positiBn. Secondyg; € Gs. Inthis case, set the candidate corresponding
to the matching neighbor fromg to the second position. Now, it is not to hard to see thains

in E,.: The only candidates that possibly make more poinf8,ithan inE are the candidates corre-
sponding to the matching neighbors of vertices fr@m Due to the matching property, every such
candidate makes at most one poinflih By definition,G only contains vertices that can make at
least one point and for all votes frol® \ V' one can easily find a winning extension which does
not assign the “matching-candidates” to one-positions fade 2). It follows that also wins in the
extensionE,.. The claimed running time follows since a maximum bipani@tching can be found
inO(|E| - |G U HJ) time. O

Bounding the size of candidates in level 0 by Rule 3 and thm#reing) candidates in level 1
by Rule 5 one arrives at the following.

Theorem 4. For 2-approval witht partial votes,PossIBLE WINNER admits a polynomial kernel
with less thanit? candidates.
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4.2 Kernel lower bound

In the previous subsection, we provided a kernel of suppoeeantial size with respect 1@, k)
for PossiBLE WINNER underk-approval. Here, we complement this result by showing that f
k-approval, ®ssiBLE WINNER cannot have a polynomial kernel with respect#dc) under some
reasonable assumptions from classical complexity thdarthis end, we apply a method introduced
by Bodlaender et al. [7] and Fortnow and Santhanam [13] wisibhiefly described in the following.

Definition 1. [7] A composition algorithnfior a parameterized problet C ¥* x N is an algorithm
that receives as input a sequer{¢e:, p), . . ., (zq,p)) With (x;, p) € £* x N for eachl < i < g,
uses time polynomial ix7_, |z;| + p, and outputgy, p’) € * x N with

e (y,p') € L < (x;,p) € Lforsomel <i < gand

e p' is polynomial inp.

A parameterized problem ompositionalf there is a composition algorithm for it. Note that
this definition directly extends to parameters that are t@onssize tuples of integers. For a parame-
terized problent., theunparameterized versioh® is the languagéz#1* | (z, k) € L} wherel
is an arbitrary fixed letter ix and# ¢ X.

Theorem 5. [7, 13] Let L be a compositional parameterized problem whose unparainetever-
sion is NP-complete. Then, unles&NP C NP / poly, there is no polynomial kernel fak.

For PossiBLE WINNER parameterized with respect (g k), it is easy to see that the unparam-
eterized version is NP-complete as well. Hence, the maikwmapply Theorem 5 is to achieve a
composition algorithm. Composition algorithms have bemvided for several fundamental com-
binatorial problems, see for example [8, 10]. In particulzom et al. [10] introduced a general
framework to build composition algorithms employing sdled “identifiers”. One of the necessary
conditions to apply this framework, is the existence of ajodthm running in2?" - poly time for
the considered parameteand a fixed constant. Considering the combined parameter “number of
ones”k and “number of partial voteg'for POSSIBLEWINNER underk-approval, there is no known
algorithm running ir2(**)” . poly time. Hence, we apply the following overall strategy (whiciyht
be also useful for other problems).

Overall strategy. We employ a proof by contradiction. Assume that there is grmpmhial kernel
with respect tdt, k). Then, since for BSsiBLE WINNER there is an obvious brute-force algorithm
running inm!* - poly(n, m) time form candidates and votes, there must be aigorithm S with
running timepoly (¢, k)** - poly(n, m) < 2" . poly(n, m) for an appropriate constant In the
next paragraph, we use the existence of Algorithto design a composition algorithm for the com-
bined parametdl, k). Since itis easy to verify that the unparameterized versi®®0SSIBLEWIN -
NER is NP-complete, it follows from Theorem 5 that unles®NP C NP / poly there is no poly-
nomial kernel with respect t@, k), a contradiction under the assumption thaP ¢ NP / poly.
Altogether, it remains to give a composition algorithm.

Composition algorithm. Consider a sequencézy, (¢,k)), ..., (x4, (¢, k))) of ¢ POSSIBLEWIN-
NER instances fok-approval. To simplify the construction, we make two asstioms. First, we
assume that there is no “obvious no-instance”, that is, atainte in which a candidaté is not
beaten byc even if ¢ makes zero points in all of the partial votes. This does nostitute any
restriction since such instances can be found and removedeérpolynomial iny~?_, |;|. Second,
we assume that far;, 1 < j < ¢, within the partial votes the distinguished candidate rsalexo
points in every extension. Since it follows from known couostions [3, 5] that the unparameterized
version of the problem remains NP-complete for this case afsumption leads to a non-existence
result for this special case and thus also for the general cas
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The overall structure of the composition algorithm is diésamt as follows. Ifg > 2(t%)” for ~
as specified for Algorithnd, the composition algorithm appli€sto every instance. This can be
done within the running time bound required by Definition Jeride, in the following, we assume
that the number of instances is at mast)”. As suggested by Dom et al. [10], this can be used
to assign an “identifier” of sufficiently small size to evengiance. Basically, the identifiers, which
will be realized by specific sets of candidates, rely on thealyi representation of the numbers
from {1,...,¢}. The size of an identifier will be linear in:= [log ¢] which is polynomial in the
combined parametét, k) sinceq < 2(t%)",

Now, we provide a composition algorithm for the case that 2(**)". Compose the sequence
of instances to one big instance

(X, (354 4,2t)) with X = (C,VIU VP ¢)
as follows. Forl <i < g, letx; be(C;, V! UV/P ¢;). Then,
C:= [ Ci\{c})¥{c}wDWZWAWUB
1<i<q
with
o D:={dj,...,d°}u{d},...,d},
o Z:=Uicje Ziwith Zj :={2) ; [0 < h < s}U{z, ;|0 < h < s},
e A:={ai,...,aq},and
e asetB with |B| :=2s+3 — k.

The candidates fro» andZ will be used as identifiers for the differentinstances. Mgpecifically,
every instance; is uniquely identified by the binary code of the integer bo-20+b,-2' +- - -+b,-2°
with b, € {0, 1} leading to the following definition.

Definition 2. A subsetD; C D identifiesz; whend;, € D; if and only ifb, = 1 andd) € D; if
and only ifb, = 0.

LetD, := D \ D;. Similarly, for everyl < j < t, the setZ; ; denotes the candidates fraof
that identifyi, that is,

Zij={z | he{0,...,s}andb, =0} U{z, ;| h €{0,...,s} andb, = 1}.
LetZ; ; := Z; \ Z;; denote the remaining candidates fram

The set of partial vote®”? consists of two subsetg” and V', both containing partial votes.
The basic idea is that a winning extensionlgf “selects” an instance; and there is a winning
extension for; if and only if V.’ can be extended such thawvins. The se¥/}’ contains the vote

{Zi1UD;UZ;iy=a;|1<i<q}, DUZUA=C\(DUZUA),

meaning that the vote contains the constraifits U D; U Z; ; = a; for everyi. Furthermore, for
everyj € {2,...,t}, the set/? contains the vote

{Z;;UD;UZ;;—1%+a;|1<i<q}, DUZUA>C\(DUZUA).

The setVy consists of the partial votes;, ..., v;. Every votev; € VI “composes” the votes
v} fori € {1,...,q} wherev] denotes theth vote from instance; after deletinge;. Then, for
je{1,...,t}, the votev; is

B> (C\B), {v] |1<i<q}, {D;i = C;\{e:i} | 1 <i<q}, C\(AUZU{c}) = AUZU{c}.

One can construct a s&t of linear votes polynomial inC| and|V?| such that the following
hold [3, Lemma 1].
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VP Zwy >Dy >Zwy  >aw >C\(Zu1UDyUZyy)
Zw,j > Dw > Z11),j—1 > Ay > C\ (Zw,j U Dw U Zw,j—l) for 2 S] S t
VY: B > Dy, > w, >C\(BUD,U(Cy\{cw})) forl<j<t

Figure 3: Extension foX in which ¢ wins. For a winning extensioR(z,,) = wi, ..., w, of z,
letw; denotes the linear order given by restricted to the candidates fraif, \ {c}. The remaining
subsets of candidates are fixed in any transitivity presgreider.

e Fori € {1,...,q}, the maximum partial score of every candidetez C; \ {c¢;} equals the
maximum partial score af in x;.

e For every candidate from U D U B, the maximum partial score is

e For every candidate frorff, the maximum partial score is one.

Lemma 3. The constructed instanck is a yes-instance fof3s + 4)-approval if and only if there
isani € {1,...,q} suchthat; is a yes-instance fdt-approval.

Proof. “<": Assume there is an instance, for which ¢ is a possible winner. LeE(xz,,) =
wi, ..., w; denote a winning extension far, and recall that”,, denotes the set of candidates
from z,,. Then, extend the partial votes frod as indicated in Figure 3. Since there 8re+ 4
one-positions per voteD;| = s + 1, and|B| = 2s + 3 — k, in every extended vote froii/,
there arek one-positions that are assumed by candidates &rgm {c,, }. Because of this and due
to the equivalence of the partial orders in the correspandates, the candidates froffy, \ {c. }
make exactly the same number of points in the extensioXfas in E(x,,) and are beaten by
The remaining “instance candidates”, nameyy;éw C; \ {c;} do not make any points in the given
extension and thus are beatendyrhe candidates fromv can be partitioned into the two disjoint
subsetsD,, andD,,. The candidates fromv,, maket points inV}’ and zero points i’ whereas
the candidates from,, make zero points iy’ andt points inV. Thus, all candidates froi are
beaten by. Regarding the candidates fraff), every candidate appears eitherdp ; or in m
and thus makes exactly one point and is beaten. b@learly, all candidates from U B are also
beaten by:. Hence is a possible winner foX .

Finally, we briefly discuss that fixing the order within theen subsets of candidates in Figure 3
can be done without violating the restriction provided by gartial orders. For; in V' such an
extension is

B> Dy >w;>Dy>|JCi\{ai} > A>Z>{c}
i#]
where, the candidates from, D,,, D,,, A, andZ can be fixed in an arbitrary order since there are
not any internal constraints in;. The remaining candidates froy,_,,, C; \ {c;} can be ordered
such thatC; \ {c;} > C, \ {cs} fori > s,4i # w, ands # w and withinC; \ {c;}, for every
i # w, the candidates can be ordered according to any extensign 8f“complete” extension for
the votes fronl/” can be obtained similarly.

“=": Consider an extension of in which ¢ wins. First, by proving the following claim, we show
that within v one instance;,, must be “selected”.

Claim: There must be & € {1,...,¢} such that every candidate from,, is assigned to a one-
position in every extended vote frof’ whereas every candidate frabh, makes zero points ifi}".

Proof of Claim: Since there ar8s+4 one-positions per vote, Vi’ there are altogeth@st -+ 4¢ one-
positions that must be filled. The candidates frgman take at mostst + 2t of them sinceZ| =
2t(s + 1) and each candidate frod can make at most one point without beating By using
some argumentation including the votes fréffi, we can show that the candidates fratncan
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take at mostt + ¢ of the one-positions i}’ in a winning extension: In every vote frof’, by
construction, the firses + 3 — k positions are assumed by candidates frBrand the remaining
s+ k+ 1 one-positions can only be assigned to candidates [r};qkq C; \ {c;} UD. Since every
candidate fromJ,,., Ci \ {¢;} shiftss + 1 candidates fronD to the left by assuming a one-
position, it directly follows that the total number of onesitions assumed by candidates fr@m
within V' is at least (s + 1). Since|D| = 2s + 2 and every candidate frof? can make at most
points, the candidates frol can take at most(2s + 2) — t(s + 1) = st + ¢ of the one-positions
in V{ in a winning extension.

Summarizing, in a winning extension, 1y’ at most3st + 3¢ one-positions can be assigned to
candidates fronD U Z. Hence, at least one-positions must be assigned to candidates fiom
Furthermore, a candidatg from A shifts3s + 3 candidates fronD U Z to one-positions ifi; takes
a one-position. Thus, at most one candidate frbiwan take a one-position in an extended vote. It
follows that in every vote; € V' exactly one candidate from A must take a one position thereby
shifting the candidates frod; ; U D; U Z; j_; (or Z; 1 U D; U Z; , for j = 1) to one-positions.

Now, we show forl < j <t¢—1thatifthe candidate,, € A takes a one-position iny;, thena,,
also takes a one-positionin, ;. Assume that in;, a,, and thus also the candidates fréfp ; take
a one-position. As discussed aboveyjn; a candidate frord must shifts + 1 further candidates
from Z;. Since every candidate fromcan make at most one point, the set of these candidates must
be disjoint fromZ,, ;. The only set of candidates fulfilling this i,, ; and is shifted only by,,.
Analogously, ifa,, takes a one-position iy, then it also must take a one-positioninbecause of
the candidates fror#;. This finishes the proof of the Claim.

Now, as direct consequence of the Claim, withifi each candidate from,, can still maket
points whereas the candidates frdpy), cannot make any points without beatingHence, in every
vote from VY, we can only set candidates frof, to the one-positions since setting any other
candidates would shift a candidate frdmy,. This means that one can extelifl such that, in every
vote, k one-positions are assigned to candidates fegm {c,, } without beating:. Since the partial
relations between the candidate€lp \ {c,,} are the same in th#h vote ofz,, and X andc makes
zero points in both cases, a winning extensionXodirectly gives a winning extension faf,,. [

By using Lemma 3 it is easy to verify that the given composititgorithm fulfills all require-
ments of Definition 1. Hence, Theorem 6 follows from our ollestaategy.

Theorem 6. For k-approval,PossiBLE WINNER parameterized by the combined paramétend
“number of partial votes” does not admit a polynomial probiid&ernel unles®’P C coNP / poly.

5 Outlook

We provided fixed-parameter tractability results basedernddization. It seems interesting whether
similar results can be obtained for “more general” probleomsh as AP BRIBERY [12] or the
counting version of BssIBLEWINNER[1]. Another interesting scenario might be as follows. Give
a numbers of winners in the input, for example, the size of a committee is interested in the
candidates such that each of them has more points than tlaéniemcandidates. For this scenario,
the negative results fordssiBLEWINNER for k-approval as given in this work and related work [3,
5] can be adapted by adding- 1 fixed candidates that always win, but as to the algorithngalts,

it is open whether they extend to this scenario.
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Possible Winners When New Alternatives Join:
New Results Coming Up!

Lirong Xia, Jérome Lang, and Jerdome Monnot

Abstract

In a voting system, sometimes multiple new alternativesjuiih the election after the voters’
preferences over the initial alternatives have been rede&omputing whether a given alter-
native can be a co-winner when multiple new alternativestjoe election is called thgossible
co-winner with new alternatives (PcCWNg@joblem, introduced by Chevaleyre et al. [5, 6]. In
this paper, we show that the PCWNA problems ldfe.complete for the Bucklin, Copelapd
and Simpson (a.k.a. maximin) rule, even when the numbenwfatiernatives is no more than
a constant. We also show that the PCWNA problem can be saivedlynomial time for plu-
rality with runoff. For the approval rule, we define thredeliént ways to extend a linear order
with new alternatives, and characterize the computaticowplexity of the PCWNA problem
for each of them.

1 Introduction

In many real-life situations, a set of voters have to chooseramon alternative out of a set that
can grow during the process. For instance, when a commitieéter decide which proposal should
be granted, some applications might arrive late (due to peeted delay in mailing system, etc).
Suppose that we have already elicited the preference ofdtezs/(members in the committee) on
the initial proposals. It is important for the applicantskimow whether they are already out (so
that they can submit the same proposal to other foundingssuight away without waiting for the
committee members to make the final decision). A recent payp€&hevaleyre et al. [5] considers
the following problem:suppose that the voters’ preferences about a set of initial@atives have
already been elicited, and we know that a given nuntbef new alternatives will join the election;
we ask who among the initial alternatives can possibly wadlection in the endThis problem

is a special case of th@ossible winner problerf9, 12, 11, 3, 4, 2], restricted to the case where the
incomplete profile consists of a collection of full rankirmeer the initial alternatives (nothing being
known about the voters’ preferences about the new alteegtisomehow dual of another special
case of the problem where the incomplete profile consistsaaillaction of full rankings over all
alternatives for a subset of voters (nothing being knowruabite remaining voters’ preferences),
which itself is equivalent to the coalitional manipulatiproblem. The problem is also related to
control by adding candidates [1], as discussed in [5].

Chevaleyre et al. [5, 6] investigated the complexity of caiing possible winners with new al-
ternatives, and laid the focus on scoring rules, obtainiify polynomiality andNP-completeness
results, depending on the scoring rule used and the numimevolternatives. Their results, how-
ever, did not go beyond scoring rules. Here we go further arelrgsults for several other common
rules, especially some common rules that are basqrhowise electionsAfter giving some back-
ground in Section 2, each of the following sections is dedotethe PCWNA problem for a specific
voting rule. In Section 3, we focus on approval voting. Sitheenotion of a complete profile (includ-
ing the new alternatives) extending a partial profile overitfitial alternatives is not straightforward,
we propose three possible definitions, which we think areftree most reasonable definitions. We
show that PCWNA problems are trivial for two of these defors, andNP-complete for the third
one. In Sections 4, 5 and 6 we show that the probleNMRscomplete for, respectively, the Bucklin
rule, the Copeland rule, and the Simpson (a.k.a. maximie) and finally in Section 7 we focus
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on plurality with runoff, for which the problem is iR (due to the space constraint, the proof of this
result is omitted).

2 Preliminaries

Let C be the set oflternatives(or candidates), withC| = m. LetZ(C) denote the set of votes.
Most often, the set of votes is the set of all linear orders 6veAn n-profile P is a collection ofn
votes for some: € N, thatis,P € Z(C)™. A voting ruler is a mapping that assigns to each profile
a set of winning alternatives, that isjis a mapping from{§)} UZ(C) UZ(C)? U ... to 2¢. Some
common voting rules are listed below. For all of them (ex¢bptapproval rule)7(C) is the set of
all linear orders ove€; for the approval rule, the set of votes is the set of all stdstC, that is,
I(C)={S:5CCC}.

(Positional) scoring rules Given ascoring vectors = (v(1),...,v(m)), for any voteV' € L(C)
andany € C, lets(V, ¢) = v(j), wherej isthe rank ot:in V. For any profileP? = (V3,...,V,,), let
s(P,c) = > 1, s(Vi,c). The rule will select € C so thats(P, c) is maximized. Some examples of
positional scoring rules aigorda, for which the scoring vectorign —1,m—2,...,0); l-approval

(I < m), for which the scoring vector is(1) = ... = v(l) = 1 andvy;41 = ... = v, = 0; and
plurality, for which the scoring vector igl, 0, ..., 0).

Approval: Each voter submits a set of alternatives (that is, the redtéres that are “approved”
by the voter). The winner is the alternative approved by #rgdst number of voters. Note that
the approval rule is different from thHeapproval rule, in that for thé-approval rule, a voter must
approvel alternatives, whereas for the approval rule, a voter camosepan arbitrary number of
alternatives.

Bucklin: The Bucklin score of an alternativas the smallest numbersuch that more than half of
the votes rank among top positions. The alternatives that have the lowest Bucklaresgvin. (We
do not consider any further tie-breaking for Bucklin.)

Copeland, (0 < a < 1): For any two alternatives; andc;, we can simulate pairwise election
between them, by seeing how many votes preféo c;, and how many prefet; to ¢;; the winner
of the pairwise election is the one preferred more often.nThea alternative receives one point for
each win in a pairwise election, points for each tie, and zero point for each loss. The alte®
that have the highest scores win.

Simpson (a.k.a. maximin) Let Np(c¢;, ¢;) denote the number of votes that ranlahead ot;; in P.
The Simpson score of alternatives C' in profile P is defined asimp(c) = min{Np(c,d) : ¢ €
C'\{c}}. A Simpson winner folP is an alternative, € C such thatSimp(co) = max{Simp(c) :
ce C}.

Plurality with runoff : The election has two rounds. In the first round, all altéwestare eliminated
except the two with the highest plurality scores. In the sécmund (runoff), the winner is the
alternative that wins the pairwise election between them.

Let C denote the set of original alternatives, ¥etdenote the set of new alternatives. For any
linear order” overC, a linear orde’”’ overC U {V'} extendV, if in V’, the pairwise comparison
between any pair of alternativesthis the same as i. Thatis, for any,d € C, ¢ =y d if and
only if ¢ =y d.

Given a voting rule-, an alternative, and a profileP overC, we are asked whether there exists
a profileP’ overC U'Y such that”’ is an extension of” andc € »(P’). This problem is called the
possible co-winner with new alternatives (PcWNw9blem [5, 6].

Similarly, we letPWNAdenote the problem in which we are asked whethér a possible
(unique) winner, that isy(P’) = {c}. Up to now, the PCWNA and PWNA problems are well-
defined for all voting rules studied in this paper (excepiahproval rule). For the approval rule, we
will introduce three types of extension, and discuss thepmdational complexity of the PCWNA
and PWNA problems under these extensions.
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In this paper, alNP-hardness results are proved by reductions from the ExaeQy 3-Sets
problem (denoted by X3C) or the BWMENSIONAL MATCHING problem (denoted by 3DM). An
instancel = (S, V) of X3C consists of a s&f = {v1,...,vs,} of 3¢ elements and > ¢ 3-sets
S = {51,..., S} of V, ie, forany: < ¢ 5; C Vand|S;| = 3. Foranyv € V, letd;(v)
denote the number of 3-sets containing elememt instancel. Let A(/) = max,ey dr(v). We
are asked whether there exists a subset {1, ..., ¢} such thatJ| = g and{J;. ; S; = V (indeed,
the setsS; for j € J form a partition ofV). This problem is known to b&P-complete, even
if A(I) < 3 (problem [SP2] page 221 in [8]). In this paper, we will use acsal case of 3DM
that is also a special case of X3C, defined as follbv@iven A, B, X, whereA = {a1,...,a,},
B =A{b1,....0¢}, X ={a1,...,20}, T C Ax Bx X, T = {S1,...,5} witht > ¢q. We are
asked whether there existé C T such thatM| = ¢ and for any(a, b1, x1), (a2, be, z2) € M, we
havea; # ao, by # bo, andxy # xo. Thatis, M corresponds to an exact covendt= AU BU X.
This problem with the restriction where no elementddf) B U X occurs in more than 3 triples (i.e,
A(I) < 3) is known to be NP-complete (problem [SP1] page 221 in [8]).

It is straightforward to check that the PCWNA (respectiy&WNA) problems for all voting
rules studied in this paper are in NP, because given an eateasa profile P, it is polynomial to
verify if the given alternative is a co-winner (respectively, unique winner) for all rulésdsed in
this paper (again, we discuss the approval rule separaf€hgrefore, in this paper we only show
NP-hardness proofs.

To prove that the PCWNA and PWNA problems &te-hard, we first prove that another useful
special case of 3DM (as well as X3C) remaliB-complete.

Proposition 1 3DM is NP-complete, even if is even{ = 3¢/2, andA(I) < 6.

Proof of Proposition 1: Let] = (T, A x B x X) be an instance of 3DM witll = {a1,...,a4},
B={by,....0}, X ={x1,...,24}, T CAxBxX, T ={5,...,5}andA(I) < 3. We
next show how to build an instandé = (7", A’ x B’ x X') of 3DM in polynomial time, with
|A'| =|B'| = |X'| =¢,T" C A x B"x X’ and|T’| = ¢’ such thaty’ is even,t’ = 3¢’/2, and
A(I') < 6.

e If ¢ is odd, then we add to the instance 3 new eleméatsd], =)} with A" = A U {da}},
B' = BU{b}, X' = X U{z}} and one new tripleta}, b}, }).

e Suppose thaty is even. |Ift > 3¢/2, then we add6(t — 3¢/2) new elements
{al, .. aby gy o)} 1O A ), by g0} 1O By {@), . Ty, 0} 1O X ANA2(E — 3¢/2)
new triples{ Sy, ..., 55, 5,2}, Where for anyi < 2(t — 3¢/2), S = (a}, b}, 27). If t < 3¢/2,
then we addq/2 — t dummy triples tal" by duplicating3q/2 — ¢ triples of T once each. We note
thatt > ¢ implies thatt > 3¢/2 — ¢.

Itis easy to check ii’, ¢’ is evenyt’ = 3¢’/2, andA(I’) < 6. The size of the input of the new
instance is polynomial in the size of the input of the old amste. Moreover] is a yes-instance if
and only ifI’ is also a yes-instance. O

3 Approval

Since the input of the approval rule is different from theutpf other voting rules studied in this
paper, we have to define the set of possible extensions of pnoag profile overC. Let P =
(V4,...,V,) be an approval profile ovel, where eacly; is a subset of . An extension ofP; over
CuY isacollectionV/,..., V) whereV; C CUY is an extension of;. Now, we have to define

what it means to say that’ C C UY is an extension of/ C C. We can think of three natural
definitions:

1Generally, 3DM is not a special case of X3C.
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Definition 1 (extension of an approval vote, definition 1)V C C UY is an extension o¥ C C
ifv'nCc="V.

In other words, under this definitio®]’ is an extension ot/ if V/ = V UY’, whereY’ C Y.
This definition coincides with the definition used in [10] (mely, Definition 4.3) for the control
of approval voting by adding candidates. The problem withird@on 1 is that it assumes that
any alternative approved il is still approved inV’’. However, in some contexts, extending the
choice with alternatives df” may change the “approval threshold”. Moreover, since wemagre
alternatives, this threshold should either stay the sam®oe upwards: some alternatives that were
approved initially may become disapproved. This leadsédaliowing definition of extension:

Definition 2 (extension of an approval vote, definition 2)V’ C C U Y is an extension of’ C X
if one of the following conditions holds: () =V’; 2) V' NY # 0 andV' NC C V.

Lastly, we may also allow the acceptance threshold to movedards, even though the set
of alternatives grows, especially in the case where the H@snatives are particularly bad, thus
rendering some alternatives@acceptable after all. This leads to the third definition dkesion:

Definition 3 (extension of an approval vote, definition 3)V’ C C UY is an extension o¥ C C
if one of the following conditions holds: ()’ NC c VandV'NY # (; 2) V c V' n¢, and
Y\V' £0;3)V'NnC=V.

Under Definition 3, either the threshold moves upward, inchitdase all alternatives which were
disapproved i are still disapproved ift’, and obviously, at least one alternativerins approved;
or the threshold moves downward, in which case all altevaatihat were approved W are still
approved inl’’, and obviously not all alternatives iri are approved. Note that in the case where
V' NC =V, the threshold can have moved upward, or downward, or resdahe sante

Let us give a brief summary of the three definitions of extemsDefinition 1 assumes that the
threshold cannot move; Definition 2 assumes that the thieslam stay the same or move upward
(because the set of alternatives grows); and Definition@mss that the threshold can stay the same,
move upward, or move downward. Next, we show an examplelthatrates these definitions. Let
C ={a,b,c,d}, Y = {y1,92}, andV = {a, b}.

o V) ={a,b} andVyj = {a, b, y1 } are extensions df under any definition;

o V' = {a,y1} is an extension o/ under definitions 2 and 3 but not under definition 1 (the
threshold has moved upward, siriceas approved i and is no longer approved IH');

o V' ={a,b,c,y1} is an extension oF under definition 3 but neither under definitions 1 nor 2
(the threshold has moved downward, sieagas not approved ifY and becomes approved W —
note that, intuitivelyy, must be a very unfavored alternative for this to happen);

o V' = {a,b,c} is an extension o/ under definitions 3 but neither under definitions 1 nor 2,
for the same reason as above;

e IV = {a} is not an extension di" under any of the definitions: to havedisapproved iri/’
and approved iV, the threshold has to move upward, which cannot be the casedllternative of
Y is approved;

o V' = {a,b,c,y1,y=2} is not an extension of under any of the definitions: to havedisap-
proved inV and approved iv’, the threshold has to move downward, which cannot be theafase
all alternatives ol” are disapproved;

2The rationale behind Definition 3 is that the threshold mayetiel on the average quality of candidates, and therefore
may go down after some bas new candidates have been addethsfeoice, suppose a voter hates red meat, and has the
preference relatiom of u >~ fi sh > chi cken >~ beef > nut t on; if the initial set of candidates i§t of u, fi sh,
chi cken}, itis perfectly reasonable that he should apprévef u, fi sh }, while he would approvét of u, fi sh,
chi cken} afterbeef andnut t on have been added in the set of candidates. This is perfecgraement with the notion
of sincere ballot in approval voting (seeg, [7] and references therein).
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e V' = {a,c,y1} is not an extension of under any of the definitions: the threshold cannot
simultaneously move upward and downward.

It is straightforward to check that the PCWNA and PWNA profeare inP for approval under
definition 1: an alternative € C is a possible (co-)winner i if and only if it is a (co-)winner for
approval inP (this is because for any € P, the scores of alternatives éhwill not change from
V to its extensior/’). However, when we adopt definition 2 of extension, the protd become
NP-complete.

Theorem 1 Under Definition 2, PCWNA and PWNA problems &le-complete for the approval
rule.

Proof of Theorem 1: We first prove the hardness of the PCWNA problem by a redudtimm
X3C. For any X3C instancé = (S, V), we construct the following PCWNA instance.

Alternatives: VU {c} UY, whereY = {y1,..., 54}

Votes: for anyi < t, we have a vot&; = S;; and we have an additional voté,; = {c}. That
is, P = (Vvl7 ceey Vi, V;ngl).

Suppose the X3C instance has a solution, denotefdhy . . ., S;, }. Then, take the following
extensionP’ of P: foranyj < q, let Vi’j =V;,. Foranyi <t suchthat # i; forany;j < g, we let
V' be a singleton containing exactly one of the new alternativetV,, ; = {c}. Foranyv € V,
because appears exactly in on§;,, v is approved by exactly one voter. SocisNow, there are
exactlyt — ¢ votesV; wherei is not equal to one of thg’s. Therefore, the total approval score of
the new alternatives is— ¢, and it suffices to approve every new alternative exactheomterefore
cis a co-winner inP’, and thus a possible co-winner ih

Conversely, supposeis a possible co-winner faP and letP’ be an extension af for which
c is a co-winner. We note thatis approved at most once iR’. Therefore, every alternative in
VYUY must be approved at most once. Without loss of generalgyras that every votg’ in P’ is
either of the formV/; or of the form{y;} (if not, remove every alternative (except ong from V;/;

c will still be a co-winner in the resulting profile). Since wavet — g new alternatives, each being
approved at most once iR’, we have at least votesV, in P’ such that;/ = V;. If we had more
thang votesV such that/ = V;, then more thaBq points would be distributed t8; alternatives
and one of them would get at least 2, which meansdhaiuld not be a co-winner i#’. Therefore
we have exactly; votesV; such thatly = V;, and3q points distributed t3q alternatives; since
none of them gets more than one point, they get one point @dabh implies that the collection of
all S; such that; = V! forms an exact cover af.

For the PWNA problem, we add one more vdig, = {c} to the profileP. O

Now, let us consider Definition 3. Notice that the profit¢ where every voter addsto her
vote (if she was not already voting fo} is an extension of”, and obviously is a co-winner in
P’, therefore every alternative 6fis a possible co-winner faP, which means that the problem is
trivial.

4 Bucklin

Theorem 2 The PWNA and PcWNA problems a&@-complete for Bucklin, even when there are
three new alternatives.

Proof of Theorem 2: We prove theNP-hardness of the PCWNA problem by a reduction from the
special case of 3DM mentioned in Proposition 1. Given any 3iDMance wherg¢A| = |B| =

|X| =g, qgisevent = 3q/2, and no element il U B U X appears in more than 6 elementdin
we construct a PCWNA instance as follows. Without loss ofagality, assume > 5; otherwise the
instance 3DM can be solved in linear time.

Alternatives: AUBUX UY UDU({c}, whereY = {y1,y2,ys} is the set of new alternatives, and
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D = {d,...,dy,} is the set of auxiliary alternatives.

Votes: For any: < 2¢ + 1, we define a votd/;. Let P = (Vi,...,Va,41). Instead of defining
these votes explicitly, below we give the properties thatatisfies. The votes can be constructed in
polynomial time.

(i) For anyi < ¢, cis ranked in the first position. SuppoSe = (a, b, z). Then, leta, b, x be
ranked in thg3q + 1)th, (3¢ + 2)th, and(3¢ + 3)th positions inV;, respectively.

(i) For any i such thaty < i < 3q/2 = t, ¢ is ranked in the3¢ + 4)th position. Suppose
S; = (a,b,z). Then, leta, b, = be ranked in th€3q + 1)th ,(3¢ + 2)th, and(3¢ + 3)th positions in
V;, respectively.

(iii) For any ¢ such thaBq/2 < i < 2q + 1, let ¢ be ranked in thé3¢ + 4)th position, and no
alternative inA U B U X is ranked in thg3¢ + 1)th, (3¢ + 2)th, or (3¢ + 3)th position inV;.

(iv) For anyj < 3g¢, v; is ranked within toBq + 3 positions for exactly; 4 1 times inP.

(v) Foranyd € D, d is ranked within toBq + 4 positions at most once.

The existence of a profil® that satisfies (iv) is guaranteed by the assumption thater8hiM
instanceg > 5, no element is covered more than 6 times, and there are epmsgions within top
3q + 3 positions in all votes to fit in all alternatives ¢h with each alternative appeays+ 1 times.
We note that there are in tota4? auxiliary alternatives, and the total number of ap+ 4 positions
in all votes is(3q + 4)(2¢ + 1) < 9¢2. Therefore, (v) can be satisfied. It follows that there exast
profile P that satisfies (i), (ii), (iii), (iv), and (v), and such a ptefcan be constructed in polynomial
time (by first putting the alternatives to their positiongided in (i), (ii), and (iii), then filling out
the positions using remaining alternatives to meet comuit{iv) and (v)). The Bucklin score ofis
3¢+ 4in P. For anyj < ¢, the Bucklin score of; (resp.,b;, z;) is at most3¢ + 3 in P, and for
anyj < 9¢2, the Bucklin score ofl; € D is at leasBg + 4 in P. Observe that the Bucklin score of
any alternative cannot be decreased in any extensiéh of

Suppose that the 3DM instance has a solution, denotddby j € J}, whereJ C {1, ..., ¢}.
For anyj € J, we letV/ be the extension of; in whichyy,y2, y; are ranked in thé3q + 1)th,
(3¢ +2)th, and(3q + 3)th positions, respectively. For afye {1,...,2¢+1}\ J, we letV/ be the
extension ofV; where{y:, y2, y3} are ranked in the bottom positions. Liét = (V/,..., V5, ). It
follows that in P’, the Bucklin score of is 3¢ + 4, and the Bucklin score of any other alternative is
at least3q + 4. Therefore¢ is a co-winner for Bucklin for?’, which means that there is a solution
to the PCWNA instance.

Conversely, suppose that there is a solution to the PcWN#Aanee, denoted by’ =
(V{,...,Va,11)- We recall that in order foe to be a co-winner, the Bucklin score of any alter-
native inAU B U X must be at leaslq + 4 (since the Bucklin score afcannot decrease iR’). We
note that there are only three new alternatives, an{3he 1)th, (3¢+2)th, and(3¢+ 3)th positions
in V; are occupied by some alternatives/i It follows that for everys € A and everyi such that
t < i < 2¢q+ 1, it cannot be the case thatis ranked within toBq + 3 positions inV;, anda is
ranked lower than thé3¢ + 3)th position inV;. Therefore, for every € A, there exists < ¢ such
thata is ranked within to@Bq + 3 positions inV;, and is ranked lower than tH8q + 3)th position
in V/. It follows that in each of sucl’} wherea is ranked lower than thé8¢g + 3)th position, the
new alternatives must be ranked within ®p+ 3 positions. Therefore, each new alternative must
be ranked within to@q + 3 positions inV4, ..., V; for ¢ times (one for each € A). Because: is
a co-winner, no alternative iff is ranked within toBq + 3 positions inP’ for more thany times.
Therefore, in exactly votes inP’, the alternatives i” are ranked within toBq + 3 positions. We
let{V;,,...,V; } denote these votes.

We claim that{S;,,...,S;, } is a solution to the 3DM instance. If not, then there exists
B U X that does not appear in a}f,. However, it follows that is ranked within top3q + 3
positions for exactly times, which means that the Bucklin scoreca$ at most3q + 3. Therefore,
the Bucklin score ot is lower than the Bucklin score of This contradicts the assumption thas
a co-winner forP’. Therefore, the PCWNA problem P-hard for Bucklin.
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For PWNA, we make the following changes. In conditions (igl &) that P should satisfy, we
require thau, b, = are in the(3¢ + 2)th, (3¢ + 3)th, and(3¢ + 4)th positions, respectively. [

5 Copelanq

For any profile P, the Copeland score of an alternativec C in profile P is denoted by

CSp(c) = |{¢ € C : Np(c,c') > n/2}] (recall that we focus on Copelandvhich means that
the tie in a pairwise election gives 0 point to both partitipgalternatives). We have the following
straightforward observation.

Property 1 For any profileP’ overC U {y} that is an extension of profil®, the following inequal-
ities hold:
VeeC, CSp(c) < CSpi(c) <CSp(c)+1 Q)

We prove that a useful restriction of X3C remalB-complete.

Proposition 2 X3C is NP-complete, even if = 2¢ — 2 and A(I) < 6.

Proof of Proposition 2: The proof is similar to the proof for Proposition 1. LEt= (S,V) be
an instance of X3C, wherg = {v1,...,v3,} andS = {51,...,S;}. We next show how to build
an instancd’ = (S’,V’) of X3C in polynomial time, with|V’'| = 3¢’ and|S’| < 6 such that
t'=2¢ —2andA(I') <6.

o If t < 2¢ — 2, then we ad@q — 2 — ¢t dummy 3-sets t& by duplicating2qg — 2 — t sets ofS
once each. It follows from > g that2q — 2 —t < ¢ — 2 < t.

o If t > 2¢— 2, then we add(t — 2¢ + 2) new elementsy, .. andt —2q +2 3-sets

. ’Ué(t—2q+2)

{1, vs, ”:/3.}7 ) {vé(t—2q+2)—27 vg(t—_2q+2)—17 1')1/3(1‘,—2(1—&-2)}" ) ) .
The size of the input of the new instance is polynomial in ike of the input of the old instance.

Moreover,] is a yes-instance if and only If is also a yes-instance. Finally, in the new instafce

we have:|V'| = |V| = 3¢gandt’ = |S§'| = t+(2¢—2—1t) = 2¢—2 = 2¢' — 2 in the first case, while

3¢ = |X'| = 3¢+3(t—2¢+2) = 3(t—g+2) andt’ = |S'| = t+(t—2¢+2) = 2(t—q+1) = 2(¢'-1)

in the second case. Moreovéy, (v) < 2d;(v) < 6if v € V, andd; (v) = 1if v € V' \ V. O

Theorem 3 The PCWNA problem iP-complete for Copelandeven when there is one new alter-
native.

Proof of Theorem 3: The proof is by a reduction from X3C. Lét= (S, V), wheret = 2¢—2 and
A(I) < 6 be an instance of X3C as described in Proposition 2. As pusijpassume > 8; hence
A(I) < g — 2. For any X3C instance, we construct the following PCWNA amste for Copelangd
Alternatives: VU D UY U {c}, whereD = {d;,...,d;} andY = {y} is the set of the new
alternative.

Votes: For any: < t, we define the followin@t votes.

Vi=[di = (D\{di}) = (V\ S;) = ¢~ Si]

V! = [rev(S;) = rev(V \ S;) = rev(D \ {d;}) = ¢ = d;]

Here the elements in a set are ranked according to the ordéreofsubscripts, i.e., if5; =
{va, v5,v7}, then the elements are rankedw@ws> vs; > v;. For any setX such thatX c V
or X C D, let re( X) denote the linear order where the element&Xiare ranked according to the
reversed order of their subscripts. For example({rey, vs, vr}) = vr = vs > vo.

We also define the following= 2¢ — 2 votes.

Wi=..=W,1=[V=Ds
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Wi=...=W, , =[re\(D) - rev(V) > ¢

LetP = (Vi,V{, ..., Vi, V/ Wi, WY, ... W1, W)_y).

We note that there af# votes in the instance. We recall that by assumptiof2 = 3¢ — 3. We
make the following observations on the functidip.

e Foranyd € D, d beatsc: this holds becaus®p(c, d) = 1.

e Foranywv € V, v beatsc: this holds becaus&p(c,v) = d;(v) < ¢ —2 < 3¢ — 3.

e Foranyd € D andv € V, d andv are tied this holds becaus&¥p(v,d) =t+¢q—1 = 3q—3.

e Foranyv,v’ € V (v' # v), vandv’ are tied this holds becaus¥p (v, v’) = t+q—1 = 3¢—3,
because for any < ¢, v > v’ eitherinV; orin V.

e Foranyd,d € D (d' # d), d andd’ are tied this holds becaus&’p(d,d’) = 3¢ — 3.

From these observations we have the following calculatiothe Copeland scores:

e CSp(c) =0

e Foranyv € V, CSp(v

e Foranyd € D, CSp(d

Now, assume thait (
|J| = qandU
alternativey. N

e Foranyj € J,weletV; = [d; = D\ {d;} >~ V\S; > ¢ >y > S;] be the completion of;.

e Foranyi < t, weletV/ = [rev(S;) = rev(V' \ S;) = rev(D \ {d;}) = ¢ = y > d;] be the
completion ofV;.

e For any vote not mentioned above, we pui the top position.

e Finally, let P’ denote the profile obtained in the above way.

It follows thaty loses toc in their pairwise election, and for any other alternative C (¢’ # y
andc’ # c), ¢ andy are tied in their pairwise election. Therefore, the Copeélscore is 1 for,
any alternative in/, and any alternative i; the Copeland score of is 0. It follows thatc is a
co-winner.

Next, we show how to convert a solution to the PCWNA instarce solution to the X3C
instance. Let?’ = (Vi,..., Vi, V{, ..., V/, Wy, W], ... Wq 1,W’ 1) be a profile with the new
alternative, such that becomes a co-winner according to the Cope[iairmie We denoteP?] =
(Vi,..., Vi), Py = (V/,...,V/)andP} = Wy, W1, ..., Wq 1, / 1). It follows from the above
observations on Copeland scores of alternatives in prBféed inequalities (1) of Property 1, that
CSp/(c) =1,V¢ e DUV,CSp/(c) =1and CS(y) <1

We now claim the following.

(a) Vo € V, Np:(v,y) < 3¢ — 3, Np:(y,¢) = 3¢ — 2 andVd € D, Np/(d,y) = 3q — 3.
Np; (¢,y) =t = 2¢q — 2. Moreover, forany < ¢, ¢ = y > d; in XN/{.

(b) Vv €V, Npjupy(v,y) > Npjupy(c, ).

For (a). Sincec is a co-winner forP’, ¢ must beay in their pairwise election. Meanwhile, any
¢ € VU D cannot beay in their pairwise elections. Therefore, we must have fkat(c,y) >
3¢ — 2, and for any¢’ € VU D, Np/(c',y) < 3q — 3. For anyd; € D, in profile P’, we have
thatd, > ¢ exceptinV;, which means thaVp: (d;, y) > Np:(c,y) — 1 by transitivity in each vote.
Hence3q—3 > Npi(d;,y) > Np/(c,y) —1 > 3q — 3, which means tha¥p/ (d;, y) = 3¢ — 3 and
Np/(c,y) = 3¢ — 2. From these equalities, we deduce thétc D, Np/(d,y) = Np/(c,y) — 1 and
then, for anyi < ¢, we have that > y > d; in V.

For (b). Since inP’, v = ¢ except for some votes i/, we have that for alb € V,
Npyupy(v,y) > Npgups(c,y).

LetJ = {j <t:c»> yinV;}. We will prove that.J| = ¢ andU;c;S; = V. First, note that
| /| < g becauseJ| = Np;(c,y) < Np:(c,y) — Npy(c,y) = ¢ fromitem(a).

Now, for anyv € VletJ, = {j <t :y = vinV;}. We claim:Yo € V, J N J, # 0.
Otherwise, there exists* € V with J N J,~ = (). This means that = y impliesv* = y in votes in

)
) =
S, V) is a yes-instance of X3C; hence, there exists {1,...,t} with

;esS; = V. Next, we show how to make a co-winner by introducing one new
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Pj. Hence,Np, (v*,y) > Np;(c,y). By adding this inequality with the inequality in iteth) (let
v = v*), we obtain thatVp (v*,y) > Np/(c,y). Now, combining the inequalities in item (a), we
have thaBq — 3 > Np/ (v*,y) > Np/(c,y) = 3¢ — 2, which is a contradiction. Therefore, for all
v eV, JnJ, # 0. Finally, since|V| = 3¢, |S;] = 3 and|J| < ¢, we deduce that/| = ¢ and
J={j<t:c»y»>S;inV;}. Also, because foralt € V, J N J, # 0, we have J,.; S; = V.
In conclusion,] = (S,V) is a yes-instance of X3C. This completes Nie-hardness proof for the
PcWNA problem for Copeland O

6 Simpson

To prove theNP-hardness of the PCWNA problem for Simpson, we first makedheviing obser-
vation, whose proof is straightforward.

Property 2 Let P be a profile ovelC, P’ be a profile ovelC U {y}, P’ is an extensiorP. The
following (in)equalities hold:

(i) Ve € C, Simp/(¢) = min{Simp(c), Np:(c,y)}.

(79) Ve € C, Simp/(c) < Simp(c).

Theorem 4 PcCWNA and PWNA problems alP-complete for Simpson, even when there is one
new alternative.

Proof of Theorem 4: We first prove theNP-hardness for the PCWNA problem by a reduction
from X3C. Let] = (S, V) with ¢t = 2¢ — 2 andA(I) < 6 be an instance of X3C as described in
Proposition 2. Without loss of generality, assugne 8; in particular, we deducA(I) < g —2. We
define a PCWNA instance for Simpson as follows:

Alternatives: V U {c, d} U {y}, wherey is the new alternative.

Votes: For anyi < t, we define the following voteV; = [V \ S;) > d > ¢ > S;]. For any

Jj < ¢ — 1, we define the following voteW; = --- = W,_; = [c¢ > rev(V) > d|. We also let
W, =[rev(V) = d > ¢|. LetP, = (V,...,V}), P, = (Wh,...,W,),andP = P, U P.

We make the following observation on the Simpson scoreseoélternatives beforgis added.

e Simp(c) = q— 1. IndeedNp(c,d) = g —1andVv € V, Np(c,v) =q—1+d;(v) > q.

e Simp(d) < 6 < ¢ — 2. Thisis because for anyc V, v is covered by the 3-sets for no more
thang — 2 times (the assumption of the input X3C instance), which re¢hat inP;, d > v for at
mostq — 2 times, i.e., Np(d,v) = d;(v) <6 < q— 2.

e For anyv € V, Simp(v) > q. Actually, Np(v,d) = Np(v,c) =t —dr(v) +q > 3q —
2—(g—2) > q. Now, assume = v;. If i < j, thenNp(v,v;) = Np, (v,vj) >t —dr(v) >
2¢—2—(¢g—2)=gqandifj > i, Np(v,vj) = Np,(v,v;) = ¢.

Now, assume that = (S,V) is a yes-instance of X3C; hence, there i§ & {1,...,t} with
|J| = gandJ,. ; S; = V. We show how to makea co-winner by introducing one new alternative
Y.

e Foranyj € J,weletV; = [(V\ S;) = d = c>y =S|

eForanyj € {1,...,t}\ J,weletV/ = [y = (V\S;) = d > c > Sj].

e Foranyj < q—1,weletW; = [c = y >~ rev(V) = d].

elLetW; = [y - rev(V) = d > .

e Finally, let P’ = (V/,...,V/, W{,..., W,).

In P’, the Simpson score afis ¢ — 1 (viac), because = 2¢ — 2, which means that—q+ 1 =
q — 1; the Simpson score afis ¢ — 1 (via d); the Simpson score afis no more thag — 1 (via any
of v € V); and the Simpson score of anye V is ¢ — 1 (viay). Thereforeg is a co-winner for the
Simpson rule.

Next, we show how to convert a solutidt to the above PCWNA instance for the Simpson rule
to a solution to the X3C instance. LBt = (V{,..., V), W{,... W/ with P = (V/,...,V/) and
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Py = (Wi,..., W) be a profile such that becomes a co-winner according to the Simpson rule
when alternative is introduced.

We make the following observations.

(a) Vv € V,Npi(v,y) <q—1,

(b) Npr(y,c) < g —landNp/ (y,d) > g,

(c)y = cin Wy.

For item (a): Sincec is a winner, we have that for anye V, Simp:(v) < Simp/(c). Thus,
using Property 2Simp(c) = ¢ — 1 andSimp(v) > q. We have the following calculation.

min{Np(v,y),q} = Simp(v) < Simp/(c) < Simp(c) -1

=4q
For item(b): First from(a), we deduce that foranye V, Np/(y,v) > t+q— Np/(v,y) > q.
Thus, we obtain:

Simp/(y) = min{Np:(y,c), Np:(y,d)} < Simp:(c) < Simp(c) =q—1 ()

Now, assumeVp:(y,d) < q — 1. Then,Np,(d,y) = q — Np;(y,d) > q — Np/(y,d) > 1.
Hence, there exists < ¢ such that ini¥/, we have that for any € V, v > d > y. Moreover,
Np;(d,y) =t — Np/(y,d) >2¢—2—(q— 1) =q— 1. LetJy C {1,...,t} (with | Jo| = ¢ — 1)
be the subscripts of arbitragy— 1 votes inP;, whered - y. BecausgV| = 3¢ and|S;| = 3,
there existe* € V \ U,c,, S;- We deduce that for alf € Jo, v* = y in V/. In conclusion,
Np/(v*,y) > |Jo| + 1 = ¢, which contradicts itenfa). Using inequality (2), itentb) follows.

Foritem(c): Otherwise, by the definition df;, we deduce:

Yo eV, Npj(v,y) > 1 3)

On the other hand, using/p, (y,c) < Np/(y,c) and item(b), we haveNp, (c,y) = t —
NP{(yvc) >t — NP’(yac) >t - (q - 1) =q— 1. LetJO - {L»t} (Wlth |J0‘ =q— 1)

be the subscripts of arbitragy— 1 votes inP], wherec > y. We haveV \ UJEJ0 S; # 0 since
[V| = 3¢ and|S;| = 3. Hence, there exists" € V' \ [, , S; such that:
Npi(v*,y) > [Jol = q—1 (4)

Summing up inequalities (3) (let= v*) and (4), we get obtain a contradiction with itén).

From items(b) and(c), we getNp, (y,c) = Np/(y,c) — Npy(y,c) <qg—1—1=¢g—2. Thus,
Np;(c,y) =t — Np/(y,c) >t — (¢ —2) = ¢q. LetJ denote the subscripts of arbitragyotes in
P[ wherec - y. We claimlJ,. ; S; = V. Otherwise, there exists’ € V' \ ., S;. It follows
that for anyj € J, v* € (V\ U;c; ;) €V \ S;, which means that* >~ ¢ > y in V;. Hence,
Np:(v*,y) > Np;(v*,y) > |J| = g, which contradicts itenfa). In conclusion,/ = (S,V) is a
yes-instance of X3C. Therefore, PCWNAN$-complete for Simpson.

For the PWNA problem, we make the following change. Uét = [re\(V) > ¢ > d]. Then,
before the new alternative is introduced, the Simpson sabtés ¢. Then, similarly we can prove
theNP-hardness of the PWNA problem. O

7 Plurality with runoff

In this section, we focus on possible co-winners, which redhat ties are never broken, neither in
the first round nor in the second round. If a tie occurs in the found, then all possible compatible
second rounds are considered: for instance, if the plyrsdibres, ranked in decreasing order, are
x1 — 8,29 — 6,23 — 6,24 — 5..., then the set of co-winners contains the majority winner
betweenr; andx, and the majority winner between andzs.
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Proposition 3 Determining whethee € C is a possible (co-)winner for plurality with runoff is in
P.

The proof does not present any particular difficulty, and uthe lack of space, we only give a
very brief sketch for the PCWNA problem. It proceeds in twepstas follows. Let-4, be the weak
majority relation induced by a profilB. Let P be a profile ove€. ¢ is a possible co-winner i if
and only if one of the following two conditions hold:

1. There exists a completid of P such that and somel € C\ {c} are possible second round
competitors, and =%, d.

2. There exists a completioR’ of P such that- and some; € Y are possible second round
competitors, and =%, y.

For each of these two conditions we can find equivalent, potyial-time computable character-
izations.

For the PWNA problem, the algorithm is similar: we need to ealtre that the pairs of alterna-
tives that enter the second round must&el), wherec -£, d.

8 Conclusion

In this paper we have gone much beyond existing results oncoimeplexity of the possible
(co-)winner problem with new alternatives. While [5, 6] ée@d on scoring rules, we have identified
three new rules for which the PCWNA problenN&-complete (Bucklin, Copeland, and Simpson).
We also showed that the PCWNA problem has a polynomial tigerahm for plurality with runoff,
and as far as approval voting is concerned, we have givee theénitions of the extension of a
profile to new alternatives and shown that depending on theearhdefinition, the problem can be
trivial or NP-complete. Our NP-completeness proofs and algorithms$®PCWNA problems can
also be extended to the PWNA problems for approval, Bucimpson, and plurality with runoff.
The results are summarized in the following table.

Voting rule PcCWNA | PWNA
Borda P [6]
2-approval P [6]
I-approval { > 3) NP-complete’ [6]
P (Definition 1)
Approval NP-complete (Definition 2)
Trivial (Definition 3)
Bucklin NP-complete?
Copelang NP-complete® | ?
Simpson NP-complete®
Plurality with runoff P

Table 1: Complexity of PCWNA and PWNA problems for some commoting rules.

An obvious and interesting direction for future researc$tiglying the computational complex-
ity of the PCWNA (PWNA) problems for more common voting ruléscluding Copelang (for
somea # 0), ranked pairs, and voting trees. Even for Copejarnide complexity of the PWNA
problem still remains open.

2Even with 3 new alternatives.
SEven with 1 new alternative.

209



Acknowledgements

Lirong Xia is supported by a James B. Duke Fellowship and N&fevaward number 11S-0812113.

References

(1]
[2]
(3]
(4]

(3]

(10]
(11]

(12]

J. Bartholdi, C. Tovey, and M. Trick. How hard is it to conitan election?Social Choice and Welfayd 6(8-9):27-40,
1992.

D. Baumeister and J. Rothe. Taking the final step to a fielhatomy of the possible winner problem in pure scoring
rules. InProceedings of the 19th European Conference on Atrtificidlligence (ECAI 2010)2010. To appear.

N. Betzler and B. Dorn. Towards a dichotomy of finding gbkswinners in elections based on scoring rulesPtac.
MFCS 2009 volume 5734 ot ecture Notes in Computer Scienpages 124—-136. Springer, 2009.

N. Betzler, S. Hemmann, and R. Niedermeier. A multivieriaomplexity analysis of determining possible winners
given incomplete votes. IRroc. IJCAI-09 pages 53-58, 2009.

Y. Chevaleyre, J. Lang, N. Maudet, and J. Monnot. Possitathners when new candidates are added: the case of
scoring rules. IrProceedings of AAAI 201@010. To appear.

Y. Chevaleyre, J. Lang, N. Maudet, J. Monnot, and L. Xiavw\candidates welcome! Possible winners with respect to
the addition of new candidates. Submitted to MSS, 2010.

U. Endriss. Vote manipulation in the presence of mudtipincere ballots. IRroceedings of TARK-Qpages 125-134,
2007.

M. Garey and D. JohnsorComputers and intractability. A guide to the theory of NFPaptetenessFreeman, 1979.

K. Konczak and J. Lang. Voting procedures with incomgleteferences. IRroc. IJCAI-05 Multidisciplinary Workshop
on Advances in Preference Handlir2p05.

R. Meir, A. Procaccia, J. Rosenschein, and A. Zohar. flerity of strategic behavior in multi-winner elections.
Artif. Intell. Res. (JAIR)33:149-178, 2008.

M.S. Pini, F. Rossi, K. Brent Venable, and T. Walsh. Imgdeteness and incomparability in preference aggregation
Proceedings of IJCAI'O7pages 1464-1469, 2007.

L. Xia and V. Conitzer. Determining possible and neeggvinners under common voting rules given partial orders.
In Proceedings of AAAI-Q$ages 196-201, 2008.

Lirong Xia

Department of Computer Science
Duke University

Durham, NC 27708, USA

Email:| xi a@s. duke. edu

Jérdme Lang

LAMSADE

Universite Paris-Dauphine

75775 Paris Cedex, France

Email:l ang@ ansade. dauphi ne. fr

Jérdbme Monnot

LAMSADE

Universite Paris-Dauphine

75775 Paris Cedex, France

Email:j er one. nonnot @ ansade. dauphi ne. fr

210



Bypassing Combinatorial Protections:
Polynomial-Time Algorithms for Single-Peaked
Electorates”

Felix Brandt, Markus Brill, Edith Hemaspaandra, and Lane A. Hemaspaandra

Abstract

For many election systems, bribery (and related) attacks have been shown NP-hard using con-
structions on combinatorially rich structures such as partitions and covers. It is important to
learn how robust these hardness protection results are, in order to find whether they can be
relied on in practice. This paper shows that for voters who follow the most central political-
science model of electorates—single-peaked preferences—those protections vanish. By using
single-peaked preferences to simplify combinatorial covering challenges, we show that NP-
hard bribery problems—including those for Kemeny and Llull elections—fall to polynomial
time. By using single-peaked preferences to simplify combinatorial partition challenges, we
show that NP-hard partition-of-voters problems fall to polynomial time. We furthermore show
that for single-peaked electorates, the winner problems for Dodgson and Kemeny elections,
though ©%-complete in the general case, fall to polynomial time. And we completely clas-
sify the complexity of weighted coalition manipulation for scoring protocols in single-peaked
electorates.

1 Introduction

Elections are perhaps the most important framework for preference aggregation. An election (rule)
is a mapping that takes as input the preferences of the voters with respect to the set of candidates
(alternatives) and returns a set of “winners,” which is some subset of the candidate set. Elections
are central in preference aggregation among humans—in everything from political elections to se-
lecting good singers on popular television shows. Elections are rapidly increasing in importance in
electronic settings such as multiagent systems, and have been used or proposed for such varied tasks
as recommender systems and collaborative filtering [23], web spam reduction and improved web-
search engines [12], and planning [13]. In electronic settings, elections may have huge numbers of
voters and alternatives.

One natural worry with elections is that agents may try to slant the outcome, for example, by
bribing voters. Motivated by work from economics and political science showing that reasonable
election systems always allow manipulations of certain types, starting in 1989, Bartholdi, Tovey,
and Trick [3, 4] made the thrilling suggestion that elections be protected via complexity theory—
namely, by making the attacker’s task NP-hard. This line has been active ever since, and has resulted
in NP-hardness protections being proven for many election systems, against such attacks as bribery
(the attacker has a budget with which to buy and alter voters’ votes [16]), manipulation (a coalition
of voters wishes to set its votes to make a given candidate win [3]), and control (an agent seeks
to make a given candidate win by adding/deleting/partitioning voters or candidates [4]). The book
chapter [18] surveys such NP-hardness results, which apply to many important election systems
such as plurality, single transferable vote, and approval voting.

In the past few years, a flurry of papers have come out asking whether the NP-hardness protec-
tions are satisfying. In particular, the papers explore the possibility that heuristic algorithms may
do well frequently or that approximation algorithms may exist. The present paper questions the
NP-hardness results from a completely different direction. In political science, perhaps the most

*This paper appeared in the proceedings of AAAI-2010.
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“canonical” model of electorates is the unidimensional single-peaked model, in which the electorate
has preferences over some one-dimensional spectrum (e.g., “very liberal through very conservative”)
along which the candidates are also located, and in which each voter’s preferences (loosely put) have
a peak, with affinity declining as one moves away from the peak. A brilliant paper by Walsh [26]
recently asked whether NP-hardness protections against manipulation fall apart if electorates are
single-peaked. For the case Walsh looked at, the answer he proved is “no”; he looked at a par-
ticular NP-hardness manipulation protection and proved it holds even for single-peaked societies.
Faliszewski et al. [17], inspired by Walsh’s work, looked at a range of election systems and came
to the sharply differing conclusion that for many crucial cases, NP-hardness protections against
manipulation and control vanish for single-peaked electorates.

Those two papers [17, 26] are the only two papers we know of that study the implications of
single-peakedness on the complexity of manipulation and control. The present paper seeks to take
this young line of research in new directions, and to improve one existing direction, via the following
contributions:

(1) We show that checking who the winner is in Dodgson, Young, and Kemeny elections, which
is ©F-complete in the general case, is in polynomial time for single-peaked electorates.

(2) We for the first time study the effect of single-peaked electorates on the complexity of
bribery. We show that many NP-hardness protections against bribery in the general case vanish
for single-peaked electorates. To show this, we give polynomial-time bribery algorithms for single-
peaked electorates in many settings. Our polynomial-time algorithms apply to approval voting and to
the rich range of “weak-Condorcet consistent” election systems and even to systems that are merely
known to be weak-Condorcet consistent when the electorate is single-peaked, including weakBlack,
weakDodgson, Fishburn, Kemeny, Llull, Maximin, Schwartz, Young, and two variants of Nanson
elections.

The practical lesson is that we should be very skeptical about NP-completeness results if our
electorate may have limitations (such as single-peakedness) on the ensembles of votes it produces.

(3) We for the first time study the effects of single-peaked electorates on the complexity of
control by partition of voters, in which the voters are partitioned into two groups that vote on the
candidates in “primary” elections, and only the winners of the primaries compete in the final election.
This is one of the seven types of control introduced in the seminal control paper of Bartholdi et al.
[4], but control by partition of voters has not been previously addressed for the single-peaked case.
We show that some known NP-hardness protections against control-by-partition vanish for single-
peaked electorates

The shared technical theme here and in the bribery case is that single-peakedness can be used
to tame the combinatorial explosion (of partitions and covers) that in the general case protected
elections from attack, and in particular single-peakedness yields polynomial-time attack algorithms.

(4) Our final contribution is a strong extension of an important result from Faliszewski et al.
[17]. For the broad class of election systems known as scoring protocols, Faliszewski et al. gave a
complete characterization of the computational complexity of the (weighted, coalition) manipulation
problem in the case of single-peaked elections with three candidates. Such characterizations are
important as they tell both which systems are manipulable and what it is about the systems that
makes them manipulable. We extend this by providing, for single-peaked electorates, a complete
characterization of easy manipulability of scoring protocols.

Proofs omitted due to space constraints can be found in the full version of this paper [6].

2 Preliminaries
Election Systems, Preferences, and weakCondorcet-Consistency An election system is a map-

ping from a finite set of candidates C' and a finite list V' of voter preferences over those candidates
to a collection W C C called the winner set. For all but one of the election systems we cover, each
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voter’s preference is a linear order (by which we always mean a strict linear order: an irreflexive,
antisymmetric, complete, transitive relation) over the candidates. For the election system called
approval voting, each voter votes by a bit-vector, approving or disapproving of each candidate sep-
arately. Voter’s preferences are input as a list of ballots (i.e., votes), so if multiple voters have the
same preference, the ballot of each will appear separately in V.

We now very briefly describe the election systems considered in this paper. In approval voting,
preferences are approval vectors, and each candidate who gets the highest number of approvals
among the candidates belongs to the winner set. In all the other systems we use, voters will vote by
linear orders. A candidate is said to be a Condorcet winner (respectively, weak Condorcet winner), it
that candidate is preferred to each other candidate by a strict majority (respectively, by at least half)
of the voters. In Condorcet voting the winners are precisely the set of Condorcet winners. In the
election system weakCondorcet, the winners are precisely the set of weak Condorcet winners. It has
been known for two hundred years that some election instances have neither Condorcet winners nor
weak Condorcet winners [7]. And of course, no election instance can have more than one Condorcet
winner, whereas there might be several weak Condorcet winners.

For a rational number « € [0, 1], Copeland® is the election system where for each pair of distinct
candidates we see who is preferred between the two by a strict majority of the voters. That one gets
one “Copeland point” from the pairwise contest and the other gets zero “Copeland points.” If they
tie in their pairwise contest (which can happen only when the number of voters is even), each gets
o points. Copeland” is known as Llull elections, a system defined by the mystic Ramon Llull in the
thirteenth century, and is known to be remarkably resistant, computationally, to bribery and control
attacks [19].

An important class of elections is the class of scoring protocols. Each scoring protocol has a
fixed number m of candidates and is defined by a scoring vector o = (a1, aa,...,qn), a1 >
Qg > ... > quy. Voters’ votes are linear orders, and each voter contributes «; points to his or her
most preferred candidate, ais points to his or her next most preferred candidate, and so on. Each
candidate whose total number of points is at least as great as the totals of each other candidate is
a winner. For example, m-candidate plurality voting is the scoring protocol defined by the scoring
vector « = (1,0,...,0). And m-candidate Borda voting is the scoring protocol defined by the
scoring vector & = (m — 1,m —2,...,0).

In Black elections (respectively, weakBlack elections), if there is a Condorcet winner (respec-
tively, if there are weakCondorcet winners), then that defines the winners, and otherwise Borda’s
method is used to select the winners. Black elections were introduced by Black [5] and weak-
Black elections (somewhat confusingly called Black elections there) were introduced by Fishburn
[20]. In Dodgson elections (respectively, weakDodgson elections), whichever candidates can by the
fewest repeated transpositions of adjacent candidates in voters’ orders become Condorcet winners
(respectively, weakCondorcet winners) are the winners. Dodgson elections were introduced in the
1800s by Dodgson and weakDodgson elections (somewhat confusingly called Dodgson elections
there) were introduced by Fishburn [20]. In Young elections (respectively, strongYoung elections),
whichever candidates can by the deletion of the fewest voters become weakCondorcet (respectively,
Condorcet) winners are the winners. Young elections were introduced by Young and strongYoung
elections (somewhat confusingly called Young elections there) were introduced by Rothe et al. [25].

Nanson elections are runoff methods based on Borda’s scoring protocol. In Nanson’s original
definition, a series of Borda elections is held and all candidates who at any stage have not more
than the average Borda score are excluded unless all candidates have identical Borda scores, in
which case these candidates are declared the winners of the election. There exist two variants of
Nanson due to Fishburn and Schwartz, which exclude candidates with the lowest Borda score and
candidates whose Borda score is less than the average score, respectively. Maximin (a.k.a. Simpson)
elections choose those candidates that fare best in their worst pairwise comparison against any other
candidate. The remaining three election systems are based on the pairwise majority relation. In
Schwartz elections (sometimes also called the top cycle), the winners are defined as the maximal
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elements of the asymmetric part of the transitive closure of the majority relation. The winners in
Fishburn elections are the maximal elements of the Fishburn relation F', which is defined by letting
a F b if every candidate that beats a in a pairwise comparison also beats b and there exists a
candidate that beats b but not a. Finally, Kemeny elections are based on the smallest number of
reversals in the voters’ pairwise preferences such that the majority relation becomes transitive and
complete. The Kemeny winners are the maximal elements of such minimally modified majority
relations.

An important notion in this paper is that of being weakCondorcet-consistent. An election system
is said to be weakCondorcet-consistent (which we earlier wrote, equivalently, as weak-Condorcet
consistent), if on every input that has at least one weak Condorcet winner, the winners of the
election system are exactly the set of weak Condorcet winners. Some of our bribery results will
hold for all election systems that are weakCondorcet-consistent, and even for all election systems
that when restricted to single-peaked electorates are weakCondorcet-consistent on those.

Fishburn [20] has noted that the election systems weakBlack, weakDodgson, Fishburn, Max-
imin, and Young are weakCondorcet-consistent. We add to that the observation that Llull elec-
tions are easily seen from their definition to be weakCondorcet-consistent. We also make the
(new) observation that the election systems Kemeny, Schwartz, and the two variants of Nanson
are weakCondorcet-consistent when restricted to single-peaked electorates. (By Fishburn [20] and
Niou, those systems are known not to be weakCondorcet-consistent in the general case.) We also
observe that Black, Dodgson, strong Young, the original version of Nanson, and for each a € [0, 1),
Copeland® elections are not weakCondorcet-consistent even when restricted to single-peaked elec-
torates.

Single-Peaked Preferences This paper’s theme is that combinatorial protections crumble for the
case of single-peaked electorates. We now briefly define what single-peaked preferences are and
what their motivation is. The single-peaked preference model was introduced over half a century ago
by Black [5] and has been influential ever since. The model captures the case where the electorate
is polarized by a single issue or dimension, and each voter’s utility along that dimension has either
one peak or just rises or just falls. Candidates have positions (locations) along that dimension. And
a voter’s preferences (in the linear order model) simply order the candidates by utility (except with
no ties allowed). Since the utility curves are very flexible, what this amounts to is that there is an
overall societal ordering L of the candidates, and each voter can be placed in some location such that
for all the candidates to his or her right the preferences drop off and the same to the left, although
within that framework, the right and the left candidates can be interspersed with each other. A
picture will make this clearer. Figure 1 shows an electorate with four voters and five candidates,
in which society’s polarization is on a (liberal-to-conservative) axis. From the picture, we can see
that v; has preferences c5 > ¢4 > c3 > co > c1, v9 has preferences ¢c; > co > ¢c3 > ¢4 > cs,
vs has preferences (note the interleaving) co > c3 > ¢; > c4 > cs, and vy has preferences
Cq4 > C5 > C3 > Co > C1.

Formally, there are many equivalent ways to capture this behavior, and we use the following as
our definition. A collection V' of votes (each a linear ordering P; of the candidates) over candidate
set C' is said to be single-peaked exactly if there exists a linear ordering L over C such that for each
triple of candidates a, b, and ¢, it holds that (a Lb L¢V ¢ LbLa) = (Vi) [a P;b = b P; c|.

The single-peaked model has been intensely studied, and has both strengths and limitations. On
the positive side, it is an excellent rough model for a wide range of elections. Votes on everything
from American presidential elections to US Supreme Court votes to hiring votes within a CS de-
partment are often shockingly close to reflecting single-peaked preferences. It certainly is a vastly
more reasonable model in most settings than is assuming that all voters are random and independent,
although the latter model has been receiving a huge amount of study recently. In fact, a wide range
of scholarly studies have argued for the value of the single-peaked model [5, 10, 24], and the model
is one of the first taught to students in positive (i.e., theoretical) political science courses. On the
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utility

C1 C2 C3 C4 Cs
liberal candidate conservative

Figure 1: Example of a single-peaked electorate of four voters

other hand, some electorates certainly are driven by multidimensional concerns, and even a heavily
unidimensional electorate may have a few out-of-the-box voters.

The single-peaked model also makes sense for approval voting [17]: There, a voter intuitively
may be thought to have some utility threshold starting at which he or she approves of candidates.
What this means is that each voter’s “approved” candidates must be contiguous within society’s
linear order L.

Although we will assume that society’s linear order is part of the input in our single-peaked
winner, bribery, manipulation, and control problems, we mention in passing that given an election
instance, one can in polynomial time tell whether the voters are single-peaked and when so can also
in polynomial time compute a societal linear order instantiating the single-peakedness (Bartholdi
and Trick [2] and Doignon and Falmagne [11] for linear-order preferences and Faliszewski et al.
[17] for approval preferences).

3 Bypassing Winner-Problem Complexity

The main results sections of this paper study whether single-peakedness bypasses complexity-
theoretic protections against attacks on elections. Before moving to those sections, we quickly
present some results showing that single-peakedness also bypasses the complexity results some sys-
tems have for even telling who won. Unlike the “protection from attack™ complexity-shield bypass-
ings, which are in some sense bad news (for the security of the election systems), these “winner-
hardness” complexity-shield bypassings are good news—taming the complexity of election systems
such as Dodgson and Kemeny for the single-peaked case, despite the fact that they are known to
have NP-hard winner problems in the general case.

For a given election system &, the winner problem takes as input an election, (C, V'), and a
candidate p € C, and asks if p is a winner in the election whose candidates are C' and whose votes
are V. When we speak of the single-peaked case of the winner problem, the input will also contain a
linear order L relative to which the election is single-peaked. Note that the weakCondorcet winner
problem is in P in the general case and thus certainly in the single-peaked case. Furthermore,
something used often in our paper’s proofs is the following standard fact about Condorcet voting
and medians.

Fact 1. Associate each voter with the candidate at the top of that voter’s preference ordering. If
we order the voters with respect to L in terms of that association, then if |V|| is odd, the weak-
Condorcet and Condorcet winner set is the top preference of the median voter, and if | V|| is even,
the weakCondorcet winner set is the set of all candidates who in L fall in the range, inclusively,
between the top preferences of the two median voters (and if those two coincide, then that candidate
is the Condorcet winner and otherwise there is no Condorcet winner).
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An immediate consequence is the well-known fact that for single-peaked elections, there is al-
ways at least one weak Condorcet winner (we are tacitly here assuming C' # ()). Since we earlier
noted that the winner problem is in P for weakCondorcet elections, the following holds.

Theorem 1. For each election system E that is weakCondorcet-consistent when restricted to single-
peaked electorates, the winner problem is in P when restricted to single-peaked elections.

Of course, for many such systems the winner problem is obviously in P even in general. Yet we
do get some interesting consequences from Theorem 1.

Corollary 1. When restricted to single-peaked electorates, the winner problems for Kemeny, Young,
and weakDodgson elections are in P.

In contrast, the general-case Kemeny winner problem problem was proven by Hemaspaandra
et al. [22] to be ©F-complete. And we prove in the full version of this paper that the general-case
winner problems for Young and weakDodgson elections are ©5-complete as well. Thus, Theorem 1
implies sharp complexity simplifications for these three election systems.

The “identify with weakCondorcet” approach that just worked on Young and weakDodgson
elections does not apply to Dodgson and strongYoung elections. However, we have constructed
direct algorithms that solve their winner problems in polynomial time in the single-peaked case.

Theorem 2. When restricted to single-peaked electorates, the winner problems for Dodgson and
strongYoung elections are in P.

Our algorithm that shows this for Dodgson elections is a good example of the general technical
theme of this paper: That single-peakedness often precludes combinatorial explosion. In this par-
ticular case, single-peakedness simplifies the seemingly exponential-sized search space over “series
of exchanges to provide upper bounds on Dodgson scores,” and will allow us to instead search over
a polynomial-sized possibility space related to a particular, simple set of exchanges happening and
limited to at most two voters.

Both claims in Theorem 2 contrast directly with the known ©%-completeness of the general
case Dodgson [21] and strongYoung [25] winner problems, and thus reflect a substantial complexity
simplification that holds when electorates are single-peaked.

4 Bribery of Single-Peaked Elections

This section shows that single-peakedness undercuts many, although not all, NP-hardness protec-
tions for bribery problems.

All bribery notions presented here, except negative approval bribery, are from the paper that
started the complexity-theoretic study of bribery [16]. Given an election system &, the £-bribery
problem takes as input C, V,p € C, and k € {0,1,2,...}, and asks if, by changing the votes of at
most k members of V', p can be made a winner of this election with respect to £. That is the basic
bribery problem. And it can be modified by any combination of the following items: “$” means
each voter has a price (belonging to {1,2,3,...}) and the question is whether there is some set of
voters whose total price is at most & such that by changing their votes we can make p be a winner.
The intuition for prices is that some voters can be swayed more easily than others. “Weighted”
means each vote has a weight (belonging to {1,2,3,...}), and each weight w vote is bribed as an
indivisible object, but when applying &, is viewed as w identical “regular” votes. For the case where
V consists of linear orders, by “negative” we mean that if we bribe a voter then after the bribe the
voter must not have p as his or her top choice unless p already was the top choice before the bribe.
The intuition is that in negative bribery one is trying to stay under the radar by not directly helping
one’s candidate. For approval-vector votes, by “negative” we mean that when you bribe a voter,
his or her after-bribe vector can approve p only if his or her before-bribe vector approved p. By
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“strongnegative” we mean that when you bribe a voter the voter after being bribed cannot approve p.
These can occur in any combination, e.g., we can speak of Llull-negative-weighted-$bribery.

When we speak of the single-peaked case of any of the above, we require that all bribes must
result only in votes that are consistent with the input societal order L.

4.1 Approval-Bribery Results

As our main result for approval-bribery, we prove that the bribery protection that complexity gives
there fails on single-peaked electorates.

Theorem 3 (Faliszewski et al. [16]). Approval-bribery is NP-complete.
Theorem 4. Approval-bribery is in P for single-peaked electorates.

The specific technical reason we can obtain polynomial-time bribery algorithms is that the NP-
hardness proofs were based on the combinatorially rich structure of covering problems (whose core
challenge is the “incomparability” of voters), but we use single-peakedness to create a “directional”
attack on covering problems that has the effect of locally removing incomparability.

By the same general approach—using a “directional” attack to in the single-peaked setting tame
the incomparability challenges of covering problems—we can establish the following two additional
cases in which NP-hard bribery problems fall to P for the single-peaked case.

Theorem 5. 1. Approval-negative-bribery and approval-strongnegative-bribery are NP-
complete.

2. For single-peaked electorates, approval-negative-bribery and approval-strongnegative-
bribery are in P.

4.2 Llull-Bribery and Kemeny-Bribery Results

We now state the following eight-case result. The P cases below are proved by direct algorithmic
attacks using the connection between weakCondorcet and median voters, and the NP-complete cases
are shown by using the problem to capture a partition instance.

Theorem 6. For single-peaked electorates, weakCondorcet-weighted-$bribery, weakCondorcet-
negative-weighted-bribery, and weakCondorcet-negative-weighted-$bribery are NP-complete, and
the remaining five weakCondorcet bribery cases are in P.

Theorem 6 is most interesting not for what it says about weakCondorcet elections, but for its
immediate consequences on other election systems, since all weakCondorcet-consistent election
systems coincide for single-peaked electorates due to the nonemptiness of the set of weakCondorcet
winners.

Corollary 2. Let £ be any election system that is weakCondorcet-consistent on single-peaked inputs.
Then the three NP-completeness and five P results of Theorem 6 hold (for single-peaked electorates)
for .

From our discussions earlier in the paper, Corollary 2 applies to the Llull, Kemeny, Young,
weakDodgson, Maximin, Schwartz, weakBlack, Fishburn, and the two variants of Nanson election
systems. In light of this, Corollary 2 is quietly establishing a large number of claims about NP-
hardness shields failing for single-peaked electorates. For example, we have the following claims.

Theorem 7 (Faliszewski et al. [16]). Llull-bribery, Llull-$bribery, Llull-weighted-bribery, and Llull-
weighted-$bribery are each NP-complete.
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Theorem 8 (follows from Corollary 2). For single-peaked electorates, Llull-bribery, Llull-$bribery,
Llull-weighted-bribery, and Llull-weighted-$bribery are each in P.

To the best of our knowledge, bribery of Kemeny elections has never been studied. Note, how-
ever, that the winner problem for any election system £ many-one reduces to each of the eight types
of bribery problems mentioned in Theorem 6, except with “weakCondorcet” replaced by “£.” This
holds because we can ask whether the preferred candidate wins given the bribe limit of 0, and this
captures the winner problem. So, from the known ©%-completeness of the winner problem for Ke-
meny elections [22], we have the following result, which gives us eight contrasts of hardness (three
between ©-hardness and NP membership and five between ©%-hardness and P membership).

Theorem 9 (corollary, in light of the comments just made, to Hemaspaandra et al. [22]). For Kemeny
elections, all eight types of bribery mentioned in Theorem 6 are ©5-hard.

Theorem 10 (follows from Corollary 2). For single-peaked electorates, Kemeny-weighted-$bribery,
Kemeny-negative-weighted-bribery, Kemeny-negative-weighted-$bribery are NP-complete, and the
remaining five types of bribery of Kemeny elections are in P.

S Control of Single-Peaked Electorates

The control problems for elections ask whether by various types of changes in an election’s structure
a given candidate can be made a winner. The types of control that were introduced by Bartholdi
et al. [4], and that (give or take some slight refinements) have been studied in subsequent papers, are
addition/deletion/partition of voters/candidates. However, the only previous paper that studied the
complexity of control for single-peaked electorates, Faliszewski et al. [17], focused exclusively on
additions and deletions of candidates and voters.

We for the first time study the complexity of partition problems for the case of single-peaked
electorates. And we show that for a broad range of election systems the control by partition of
voters problem is in P for single-peaked electorates. Among the systems we do this for are Llull
and Condorcet elections, whose control by partition of voters problem is known to be NP-complete
for general electorates. Our proofs again work by using single-peakedness to tame combinatorial
explosion—in this case, the number of partitions that must be examined is reduced from an expo-
nential number of partitions to a polynomial number of classes of partitions each of which can be
checked as a block.

The control by partition of voters problem for an election system £ takes as input an election
instance (C, V') and a candidate ¢ € C' and asks whether there is a partition of votes (V7, V5) such
that if the “appropriate candidates” move forward from the preliminary elections (C, V1) and (C, V)
to a final election in which those candidates are voted on by V, then ¢ “wins.” How one clarifies the
quoted strings determines the precised type of voter control one studies. In particular, one can study
the nonunique-winner model or the unique-winner model. And as to the “appropriate candidates”
move forward means, one can study the Ties Promote (TP) model (all winners of the preliminary
elections move forward) or the Ties Eliminate (TE) model (only unique winners move forward).
Our results hold for all four combinations of these models.

We will briefly mention control results about adding and deleting voters and candidates. The
definitions of those are just what one would expect, and we refer the reader to Faliszewski et al. [19]
for those definitions. The following is our main result for this section.

Theorem 11. For weakCondorcet elections, (constructive) control by partition of voters is in P for
single-peaked electorates.

The technical challenge here is the exponential number of partitions, and our algorithm circum-
vents this by using single-peakedness to allow us to in effect structure that huge number of partitions
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into a polynomial number of classes of partitions such that for each class we can look just at the class
rather than having to explore each of its member partitions. Let us note some consequences of this
theorem.

Corollary 3. Let £ be any election system that is weakCondorcet-consistent on single-peaked inputs.
Then for election system &, (constructive) control by partition of voters is in P for single-peaked
electorates. In particular, this holds for the election systems Llull, Kemeny, weakDodgson, Maximin,
Schwartz, weakBlack, Fishburn, and the two variants of Nanson.

For Llull elections, this provides a clear contrast with the known NP-completeness for that same
control type in the general case. We now state a result that will quickly give us a number of additional
contrasts between general-case control complexity and single-peaked control complexity.

Theorem 12. For weakCondorcet elections, (constructive) control by adding voters and (construc-
tive) control by deleting voters are each in P for single-peaked electorates.

The full version of this paper contains similar results for Condorcet elections.

6 Manipulation of Single-Peaked Electorates

Faliszewski et al. [17] completely characterized, for three-candidate elections, which scoring proto-
cols have polynomial-time constructive coalition weighted manipulation problems and which have
NP-complete constructive coalition weighted manipulation problems. We achieve a far more sweep-
ing dichotomy theorem—our result applies to all scoring protocols, regardless of the number of
candidates. In the constructive coalition weighted manipulation problem, the input is the candidate
set C, the nonmanipulative voters (each a preference order over C' and a weight), the manipulative
voters (each just a weight), and a candidate p € C, and the question is whether there is a way of
setting the preferences of the manipulative voters such that p is a winner under the given election
rule when all the manipulative and nonmanipulative voters vote in a weighted election.

Our extension of this three-candidate, single-peaked electorate result to the case of any scor-
ing protocol over single-peaked electorates is somewhat complicated. Yet, since it is a complete
characterization—a dichotomization of the complexities, in fact—it is in some sense simply reflect-
ing the subtlety and complexity of scoring systems.

Theorem 13. Let o = (a1,a0,...,qmn) be an m-candidate scoring protocol and consider the
constructive coalition weighted manipulation problem for single-peaked electorates.

o Ifag > A m_iig and there exist integers my, ma > 0, 41,12 > 1 such that m; +mo +1 =
2
m, iy <my + 1, i <ma + 1, and (1 — iy ) (a1 — iy) > (Qiy — iy 1) (@i, — Qipp1),
then the problem is NP-complete.

o Ifay = O m_t o and oy > g > Quy and (ag > Qp—1 0r a1 — @y > 2(a — uy)), then
the problem is NP-complete.

o In all other cases, the problem is in P.

The “P” cases of Theorem 13’s dichotomy align with our theme of single-peakedness often
foiling combinatorial protections.

7 Related Work and Additional Discussion

The two papers most related to our work are Walsh [26] and Faliszewski et al. [17]. Walsh’s paper
first raised the issue of the effect of single-peaked electorates on manipulation, and for the particular

219



case he looked at—weighted coalition manipulation under single transferable vote elections—he
showed that manipulation remains hard even for single-peaked electorates. Faliszewski et al. showed
cases where single-peakedness removes complexity shields against manipulation, and also opened
the study of (nonpartition) control. Our paper in contrast with Walsh’s stresses cases where single-
peakedness removes combinatorial protections. And we go beyond Faliszewski et al. by for the first
time studying bribery of single-peaked electorates and partition-control of single-peaked electorates.

Although [26] and [17] are by far the most related work, other work is much worth mentioning.
Bartholdi and Trick [2], Doignon and Falmagne [11], and Escoffier et al. [14] provided efficient
algorithms for finding single-peaked orderings. And Conitzer [8] studied the effect of single-peaked
electorates on preference elicitation. Two of the papers just mentioned [14, 8] raise the issue of
nearly single-peaked electorates, and we commend as a particularly important open issue the ques-
tion of what effect nearly single-peaked electorates have on complexity.

The literature now contains many papers on the complexity (when single-peaked preferences are
not assumed) of manipulation and control (as a pointer to those, see [18] and the citations therein),
and contains a few papers on the younger topic of the complexity of bribery (e.g., Faliszewski et al.
[16] and Faliszewski et al. [19]). Although the nonunique-winner model and the unique-winner
model very typically have the same complexity results, Faliszewski et al. [15] (drawing also on
Conitzer et al. [9]) show that this is not always the case.

A worry that comes immediate to the minds of social choice theorists can be expressed as fol-
lows: Since it is known that, for single-peaked electorates, “median voting” leaves voters with voting
sincerely being an optimal strategy, single-peaked elections are not interesting in terms of other elec-
tion systems, since median voting should be used. A detailed discussion of this worry would itself
fill a paper. But we briefly mention why the above objection is not as serious as it might at first
seem. First, the nonmanipulability claims regarding single-peaked elections and median voting are
about manipulability, and so say nothing at all about, for example, control. Indeed, weakCondorcet
in effect is a type of median voting on single-peaked electorates, and our partition of voters al-
gorithm makes it clear that control can be exercised in interesting ways. Second, even if median
voting does have nice properties, the simple truth is that in the real world, society—for virtually
all elections and electorates—has chosen (perhaps due to transparency, comfort, or tradition) to use
voting systems that clash sharply with median voting. The prominence of plurality voting is the
most dramatic such case. So since in the real world we do use a rich range of election systems,
it does make sense to understand their behavior. Third, one must be very careful with terms such
as “strategy-proof.” The paper people most commonly mention as showing that median voting is
strategy-proof is Barbera [1]. But that paper’s results are about “social choice functions” (election
rules that always have exactly one winner), not—as this paper is—about election rules that select a
set of winners. So one cannot simply assume that for our case median voting (say, weakCondorcet
elections) never gives an incentive to misrepresent preferences. We should further stress that discus-
sions of strategy-proofness typically assume that manipulators come in with complete preference
orders, but in the Bartholdi et al. [3] model (which this paper and most complexity papers use when
studying manipulation), the manipulative coalition is a blank slate with its only goal being to make
a certain candidate p be a winner.)

8 Conclusions

The theme of this paper is that single-peaked electorates often tame combinatorial explosion. We
saw this first for the case of the winner problem. In that case, this taming is good. It shows that
for single-peaked electorates, election systems such as Kemeny have efficient winner algorithms,
despite their ©%-hardness in the general case. But then for bribery and control (and in part, ma-
nipulation), we saw many cases where NP-hard problems fell to polynomial time for single-peaked
electorates, via algorithms that bypassed the general-case combinatorial explosions of covers and
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partitions. Since those NP-hardness results were protections against attacks on elections, our results
should serve as a warning that those protections are at their very core dependent on the extreme flex-
ibility of voter preference collections the general case allows. For single-peaked electorates, those
protections vanish.
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The Efficiency of Fair Division with
Connected Pieces

Yonatan Aumann and Yair Dombb

Abstract

We consider the issue of fair division of goods, using the cake cutting abstraction, and
aim to bound the possible degradation in social welfare due to the fairness require-
ments. Previous work has considered this problem for the setting where the division
may allocate each player any number of unconnected pieces. Here, we consider the
setting where each player must receive a single connected piece. For this setting, we
provide tight bounds on the maximum possible degradation to both utilitarian and
egalitarian welfare due to three fairness criteria — proportionality, envy-freeness and
equitability.

1 Introduction

Cake Cutting. The problem of fair division of goods is the subject of extensive literature
in the social sciences, law, economics, game theory and more. The famous “cake cutting”
problem abstracts the fair division problem in the following way. There are n players wishing
to divide between themselves a single “cake”. The different players may value differently the
various sections of the cake, e.g. one player may prefer the marzipan, another the cherries,
and a third player may be indifferent between the two. The goal is to obtain a “fair” division
of the cake amongst the players. There are several possible definitions to what constitutes a
“fair” division, with proportionality, envy-freeness and equitability being the major fairness
criteria considered (these notions will be defined in detail later). Many previous works
considered the problem of obtaining a fair devision under these (and other) criteria.

Social Welfare. While fairness is clearly a major consideration in the division of goods,
another important consideration is the social welfare resulting from the division. Clearly,
a division may be envy-free but very inefficient, e.g. in the total welfare it provides to the
players. Accordingly, the question arises what, if any, is the tradeoff between these two
desiderata? How much social welfare does one have to sacrifice in order to achieve fairness?
The answer to this question may, of course, depend on the exact definition of fairness, on
the one hand, and the social welfare of interest, on the other.

The first analysis of such questions was provided in [CKKKO09], where Caragiannis et
al. consider the three leading fairness criteria — proportionality, envy-freeness and equi-
tability — and quantify the possible loss in utilitarian social welfare due to such fairness
requirements. Here we continue this line of research, extending the results in two ways.
Firstly, the [CKKKO09] analysis allows dividing the cake into any number of pieces, pos-
sibly even infinite. Thus, each player may get a collection of pieces, rather than a single
one. While this may be acceptable in some cases, it may not be so in others, or at least
highly undesirable , e.g. in the division of real estate, where players naturally prefer getting
a connected plot. Similarly, in the cake scenario itself, allowing unconnected pieces may
lead to a situation where, in Stromquist’s words [Str80], “a player who hopes only for a
modest interval of the cake may be presented instead with a countable union of crumbs”.
Accordingly, in this work, we focus on divisions in which each player gets a single connected
piece of the cake. In addition, we consider both the utilitarian and the egalitarian social
welfare functions, whereas Caragiannis et al. considered only utilitarian welfare. For each
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of these welfare functions, we give tight bounds on the possible loss in welfare due to the
three fairness criteria.

1.1 Definitions and Notations

We consider a rectangular cake that can be divided by making parallel cuts. The cake can
thus be represented by the interval [0, 1], where each cut is some point p € [0,1]. The cake
needs to be divided to n players (we use the notation [n] for the set {1,...,n}), each of
which has a valuation function v;(-) assigning a non-negative value to every possible interval
of the cake. As customary, we require that for all 4, v;(+) is a nonatomic measure on [0, 1]
having v;(0,1) = 1. Every set of valuation functions {v;(-)}7_; defines an instance of the
cake cutting problem.

Since we consider only divisions in which every player gets a single connected interval,
a division of the cake to n players can be represented by a vector

= (1,...,00_1,7) €[0,1]"" 1 x S,

with 0 <z < z9 < --- < x,_1 < 1. Here, x; determines the position of the i-th cut, and
7 is a permutation that determines which piece is given to which player. For convenience,
we denote xp = 0 and z,, = 1, so we can write that player ¢ € [n] receives the interval
(T (i)—1,Tr(i)). We use the notation u;(x) for the utility that player ¢ gets in the division ,
i.e. ui(r) = vi(Tr(i)—1,Tx(i)). We denote by X the set of all possible division vectors, and
note that X is a compact set.

Fairness Criteria. We say that a division z € X is:

e Proportional if every player gets at least % of the cake (by her own valuation).
1
=

Formally, z is a proportional division if for all i € [n], u;(z) >

e Envy-Free if no player prefers getting the piece alloted to any of the other players.
Formally, = is an envy-free division if for all i # j € [n], ui(z) = vi(Tri)—1, Tr)) >
vi(‘r'rr(j)—lv x‘fr(_]))

e Equitable if all the players get the exact same utility in « (by their own valuations).
Formally, x is an equitable division if for all 7, j € [n], u;(x) = u;(z).

Stromquist [Str80], showed that for every instance of the cake cutting problem there exists
an envy-free division with connected pieces. Since one can easily observe that every envy-
free division is in particular proportional, this implies that such proportional divisions also
always exist. In this paper we show (Theorem 6) that equitable divisions also always exist
for connected pieces (for the case where players need not get a single interval, this is well
known).

Social Welfare Functions. For a division € X, we denote by u(z) the utilitarian social
welfare of z, i.e.

u(z) = Z ui(x) .

1€[n]

Likewise, we denote by eg(z) the egalitarian social welfare of z, which is

eg(x) = min u;(x) .
i€[n]

Note that both these social welfare functions are continuous and thus have maxima in X.
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The Price of Fairness. As described above, we aim to quantify the degradation in
social welfare due to the different fairness requirements. This is captured by the notion
of Price of Fairness, in its three forms — Price of Proportionality, Price of Envy-freeness
and Price of Fquitability, defined as follows. The Price of Proportionality (resp. Envy-
Freeness, Equitability) of a cake-cutting instance I, with respect to some predefined social
welfare function, is defined as the ratio between the maximum possible social welfare for the
instance, taken over all possible divisions, and the maximum social welfare attainable when
divisions must be proportional (resp. envy-free, resp. equitable). When considering divisions
with connected pieces, this restriction is applied to both maximizations. For example, if
Xgr C X is the set of all (connected) envy-free divisions of an instance, the egalitarian
Price of Envy-Freeness for this instance is

maxgex eg(z)
maXyeXpp eg(y)

In this work we show bounds on the maximum utilitarian and egalitarian Price of Propor-
tionality, Envy-Freeness and Equitability of any instance.

1.2 Results

We analyze the utilitarian and egalitarian Price of Proportionality, Envy-Freeness and Eq-
uitability for divisions with connected pieces. We provide tight bounds (in some cases, up to
an additive constant factor) for all six resulting cases. The results are summarized in Table
1; the last row presents the relevant previous results by Caragainnis et al. in [CKKKO09], for
comparison. The meaning of the upper bounds is that the respective price of fairness of any
possible instance is never greater than the bound. The meaning of the lower bound is that
there ezists an instance that exhibits at least this price of fairness (for the respective class).

Price of: Proportionality | Envy-Freeness Equitability
. Vn _ .
Utilitarian UB: ¥ +1-o0(1) UB: n ) connected
LB: v LB: n—-14- pieces
Egalitarian 1 n 1 (this work)
(tight) 2
X — . _ I . -
Utilitarian UB: 2\/\7; 1| UB: nf 5 UB: ( ﬁ)? non-connected
LB: M LB: %= LB: pieces [CKKKO09]

Table 1: All results

Utilitarian Welfare. For the utilitarian social welfare, we show an upper bound of 4 +
1 — o(1) on the price of envy-freeness, for any possible instance. This, we believe, is the
first non-trivial upper bound on the Price of Envy-Freeness. It seems that such bounds
are hard to obtain since on the one hand we need to consider the “best” possible envy-free
division, while on the other hand no efficient method for explicitly constructing any envy-
free divisions is known. We show that the same upper bound also applies to the Price of
Proportionality.

For the Price of Equitability, we show that it is always bounded by n (though simple,
this does require a proof since an equitable division need not even give each player 1/n).
We also provide an almost matching lower bound, showing that for any n there exists an
instance with utilitarian Price of Equitability arbitrarily close to n — 1 + %
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Egalitarian Welfare. When considering the egalitarian social welfare, we show that there
is no price for either proportionality or equitability. That is, for any instance there exist
both proportional and equitable divisions for which the minimum amount any player gets
is no less than if there were no fairness requirements. While perhaps not surprising, the
proof for the Price of Equitability is somewhat involved, especially since we require that the
divisions be with connected pieces. We note that we are not aware of any previous proof
that altogether establishes the existence of an equitable division with connected pieces.

For the Price of Envy-Freeness, we show that it is bounded by n/2, and provide a
matching family of instances that exhibits this price, for any n.

Paper Organization. In Section 2, we present bounds on the Price of Proportionality and
the Price of Envy-Freeness. We begin in 2.1 by presenting the upper bound on the utilitarian
Price of Envy-Freeness, and complement it by an example already given in Caragiannis et
al. [CKKKO09], which is tight up to a small additive factor. Both these upper and lower
bounds apply also to the utilitarian Price of Proportionality. In 2.2 we show a simple upper
bound of % for the egalitarian Price of Envy-Freeness, together with a matching (tight)
lower bound. We also show that the egalitarian Price of Proportionality is trivially 1. In
Section 3 we present bounds on the Price of Equitability. In addition to the (mentioned
above) proof that the egalitarian price is 1, we provide a simple upper bound of n on the
utilitarian Price of Equitability, together with a lower bound of n — 1 4 % In Section 4 we
consider the reverse question to that of the Price of Fairness — namely, how much fairness
may one have to give up to achieve social optimality. Finally, we conclude this work and
present some open questions in Section 5.

1.3 Related Work

The problem of fair division dates back to the ancient times, and takes many forms. The
piece of property to be divided may be divisible or indivisible: Divisible goods can be “cut”
into pieces of any size without destroying their value (like a cake, a piece of land, or an
investment account), while indivisible goods must be given in whole to one person (e.g. a
car, a house, or an antique vase). Since such items cannot be divided, the problem is
usually to divide a set of such goods between a number of players. Fair division may also
relate to the allocation of chores (of which every party likes to get as little as possible); this
problem is of a somewhat different flavor from goods allocation, and also has the divisible
and indivisible variants.

Modern mathematical treatment of fair division started at the 1940s [Ste49], and was
initially concerned mainly with finding methods for allocation of divisible goods. Differ-
ent algorithms — both discrete and continuous (“moving knife algorithms”) — were pre-
sented (e.g. [Str80, EP84] and [BT95], which also surveys older algorithms), as well as
non-constructive existence theorems [DS61, Str80]. In the past fifteen years, several books
appeared on the subject [BT96, RW98, Mou04]. Following the evaluation and cut queries
model suggested by Robertson and Webb [RW98], much attention was given to the question
of lower bounds on the number of steps or cuts required for such divisions in this and other
models [MIBKO03, EP06, SWO03, Str08, Pro09]. In particular, Stromquist [Str08] proves that
no finite protocol (even unbounded) can be devised for an envy-free division of a cake among
three or more people in which each player receives a connected piece. However, we note
that this result applies only to the model presented in that work (which resembles the one
suggested by Robertson and Webb), and not for cases where, for example, some mediator
has full information of the players’ valuation functions and proposes a division based on this
information.
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Unlike most of the work on cake cutting, the different notions of the price of fairness
are not concerned with procedures for obtaining divisions, but rather with the ezistence of
divisions with different properties (relating to social optimality and fairness). These notions,
namely the Price of Proportionality, the Price of Envy-Freeness and the Price of Equitability,
were first presented in a recent paper by Caragiannis et al. [CKKKO09]. This line of work has
some resemblance to the line of work on the Price of Stability [ADK™'04], which attracted
much attention in the past decade. The work in [CKKKO09] analyzes the price of fairness (via
the above three measures) with the utilitarian welfare function for divisible and indivisible
goods and chores, giving tight bounds (up to a constant multiplicative factor) in most cases.
However, unlike in this work, no special attention was given to the case of connected pieces
in divisible goods. The results of [CKKKO09] for divisible goods are summarized in the last
row of Table 1.

2 The Price of Envy-Freeness and Proportionality

2.1 Utilitarian Welfare

Theorem 1. For every cake-cutting instance with n players, the utilitarian Price of Envy-
Freeness with connected pieces is bounded from above by \/Tﬁ +1—o0(1).

In fact, we prove an even stronger claim: The above bound applies not only to the
distance of the “best” envy-free division from utilitarian optimality, but also to the distance
from (utilitarian) optimality of any envy-free division.

Proof. Let x be an envy-free division of the cake, and u(z) = > ¢, ui(®) its utilitar-
ian social welfare. We show that any other division to connected pieces y has u(y) <

(4 +1- m> -u(z). Our proof is based on the following key observation:

Assume that for some i € [n], u;(y) > a - u;(x). Since i values any other piece
in the division x at most as much as her own, it has to be that in y, i gets
an interval that intersects pieces that belonged to at least [« different players
(possibly including i herself).

We will say that in the division y, player i gets the j-th cut of x if in y, i is given
a piece starting at a point p < z; and ending at the point p’ > x;. A more formal
statement of our observation is therefore that if in y, 7 gets at most « cuts of x, it holds that
u;(y) < (a+1) - ui(x). We can thus bound the ratio % by the solution to the following
optimization problem, which aims to find values {u;(z)}?_; and {a;}?_; (the number of cuts
of x each player gets) that maximize this ratio.

2oz (@i + Dui(x)

maximize - (1)
iy wi()
subject to Zai =n-—1
i=1
1 .
ui(x) > — vi<i<n (2)
n
(i + Duy(z) <1 V1<i< (3)
a;€{0,...,n—1} Vi<i<n

(2) is a necessary condition for the envy-freeness of = that provides a lower bound for the
denominator, and (3) is equivalent to u;(y) < 1.
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We therefore concentrate on bounding the solution to the above optimization problem.
To this end, the following observations are useful:

1. For any choice of values {u;(z)}" ,, the optimal assignment for the a; variables is
greedy, i.e. giving each player 4, in non-increasing order of u;(x) the maximum possible
value for «; that does not violate any of the constraints. (This holds since otherwise
there are players i, j with u,;(x) > u;(z) and «; > 1 such that increasing «; by one at
the expense of «; is feasible and yields an increase of u;(x)—u;(x) > 0 in the numerator
of (1), without affecting the denominator.) We thus can divide the players into two
groups: Those with “high” wu,(z) values, who receive strictly positive a; values, and
those with “low” u;(z) values, for which «; = 0.

2. Since the players with low u;(x) values add the same amount to both the numerator
and the denominator in the objective function, maximum is obtained when these values
are minimized; i.e. in the optimal solution u;(z) = % for all these players.

3. The solution to the problem above is clearly bounded from above by the solution to
the same problem where the «; variables need not have integral values. Clearly, in the

optimal solution to such a problem, all the players with a; > 0 have (a; + 1)u;(z) = 1.

We can thus bound the solution to our optimization problem by the solution to the
following problem. Let K be a variable that denotes the number of players that will have
a; > 0; by observation (3) above, for every such player, («; + 1)u;(z) = 1, and thus their
total contribution to the numerator is K. We therefore seek a solution for:

K+(n-K) L
n 4
SR ui(@) +(n—K) -t (4)

1
subject to Z ( -1

= \ui(?)

maximize

=n-—1 (5)

N——

K<n

It can be verified (e.g. using Lagrange multipliers) that for any value of K < n this is
maximized when u;(z) = u;(z) for all i,j € [K], i.e. when u;(z) = WLKH for all ¢ € [K].
We thus conclude that the maximum solution to the above problem maximizes the ratio

K+(n-K)-L1

n

K i +(n—K)- 3

)

by elementary calculus this is maximized at K = /i, where the value is

(nyn+n—yn)(n+yn—1)  (n?Vn—nyn+3gn)+(2n®—2n+/n) - 3n
n24(n—n)(n+yn—1 2n?2 —2n++/n
vn n vn

S VAL O L AT e
R R A B R

as stated. O

Since every envy-free division is in particular proportional, we immediately get that the
bound on the utilitarian Price of Envy-Freeness also applies to the Price of Proportionality:

Corollary 2. For every cake-cutting instance with n players, the utilitarian Price of Pro-

portionality in connected pieces is bounded from above by 4 +1-o0(1).
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We conclude by showing that these bounds are essentially tight (up to a small additive
factor). The construction we show is identical to the one in [CKKKO09], and we provide it
here again for completeness.

Proposition 3. The utilitarian Price of Proportionality (and thus also the utilitarian Price

/n

of Envy-Freeness) in connected pieces is larger than 5

Proof. For some integer m, consider n = m? players with the following valuation functions.
For i = 1,...,4/n, player i assigns a value of 1 to the piece (%, —=) and 0 to the rest

n

of the cake (we call these players the “focused players”). All other players (players i =
(vV/n+1),...,n, the “indifferent players”) assign a uniform value to the entire cake. In any

proportional division, the indifferent players must get a total of at least “—Y= of the physical
1

cake, and their total utility is less than 1. This leaves the focused players with at most T

of the physical cake, and so they obtain (together) a total utility of at most 1; the utilitarian
value of a proportional division is therefore less than 2. On the other hand, the division
giving each of the focused players the entire interval they desire (and leaving nothing to the
indifferent players) has a utilitarian social welfare of y/n. The Price of Proportionality for

this case is therefore larger than ‘/Tﬁ, as stated. O

2.2 Egalitarian Welfare

Proposition 4. For every cake-cutting instance, the egalitarian Price of Proportionality is
1.

Proof. Let x be a proportional division, and y the egalitarian optimal division. By pro-
portionality, every player i has u;(x) > 1, and thus eg(z) > 1. Since y is the egalitarian
optimal division, we have that for every i € [n], u;(y) > eg(y) > eg(z) > Li; this implies
that y is proportional as well. O

Theorem 5. The egalitarian Price of Envy-Freeness for cake-cutting instances with n play-

ers and connected pieces is 5. In particular, this is also an upper bound on the egalitarian

Price of Envy-Freeness for n players and non-connected pieces.
Proof. First, note that if the egalitarian optimal division is itself envy-free, the Price of
Envy-Freeness is 1, and that every division with egalitarian welfare of % is envy-free. We
therefore assume that this is not the case, and that in the egalitarian optimal y division
some player ¢ has u;(y) < % Let = be some envy-free division, then z is in particular
proportional and thus has u;(x) > %; the upper bound follows.

It remains to show a lower bound for the connected case. Let € > 0 be an arbitrarily small
constant, and consider n players with the following valuation functions. Fori =1,...,(n—1),
player ¢ assigns a value of % + € to the piece (i — €,i + €) (her “favorite piece”), a value of

1 — € to the piece (1 — 2cEL 2L 1+ ¢) (her “second-favorite piece”), and value of 0

—el1—
‘520 the rest of the cake. Finally, player n assigns a uniform value to the entire cake.

In order for player n to get utility of «, this player needs to receive an « fraction of
the cake (in physical size). However, every connected piece of physical size at least % + 2¢
necessarily contains some other player’s “favorite piece”, and it is immediate that if a single
player receives the entire favorite piece of another player, there is envy. Thus, in every
envy-free division of the cake, player n gets utility of less than % + 2¢. However, there exists
a division in which every player gets utility of at least % — €. Such a division is achieved
by giving players i = 1...[251] their favorite pieces, players i = (|251] +1)...(n — 1)
their second-favorite pieces, and player n the interval (% +€,1) (the remaining parts of the
cake can be given to any of the players closest to them). The stated bound follows as e
approaches zero. O
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3 The Price of Equitability

In order to talk about the Price of Equitability, we first have to make sure that the concept is
well-defined. When non-connected pieces are concerned, it is known that every cake cutting
instance has an equitable division [DS61]. However, the proof of Dubins and Spanier allows
a “piece” of the cake to be any member of the o-algebra of subsets, which is quite far from
our restricted case of pieces that are all single intervals. Another result by Alon [Alo87]
establishes the existence of an equitable division giving every player exactly % by each
measure; however, such a division may require up to n?2 — 1 cuts. The question thus arises
whether equitable divisions with connected pieces always exist; to the best of our knowledge,
this question has not been addressed before, and we answer it here to the affirmative.
Furthermore, we show that such a division requires no sacrifice of egalitarian welfare.

Theorem 6. For every cake-cutting instance there exists an equitable division of the cake
with connected pieces. Furthermore, there always exists such a division in which the egali-
tarian social welfare is as high as possible in any division with connected pieces.

This holds even for cake cutting instances that do not have v;(0,1) =1 for all i (i.e. even if
some players’ valuation of the entire cake is not 1).

Proof. Recall that the egalitarian welfare is a continuous function and X is compact, and
thus eg(-) has a maximum in X; we denote OPT = max,cx eg(x). We also denote by
Y C X the set of divisions with egalitarian value OPT, i.e.

Y = {y: W15y Yn—1,m) € X | eg(y):OPT}.

We note that Y is a compact set; this follows from the fact that it is a closed subset
of X (which is compact itself). To show that Y is closed, we show that Y = X \ Y is
open. Let z € Y be some division not in Y; then the division z must have egalitarian
value smaller than OPT and in particular there must exist a player ¢ and € > 0 such that
u;i(z) < OPT — e. Since player i’s valuation of the cake is a nonatomic measure, there
must exist dr,dr > 0 such that extending i’s piece to the interval (zr(;y—1 — 01, 2r(;) + ORr)
increases i’s utility (compared to the original division z) by less than e. Therefore, in the
ball of radius § = min{d.,0r} around z (e.g. in Lo), every division still gives ¢ utility
smaller than OPT, and thus this ball does not intersect Y. It thus follows that Y is an
open set, and so Y is closed and compact.

Recall that our aim is to show that Y contains an equitable division; to that end, we
define a function A : Y — R by setting

A(y) = max {u;(y) — u;(y)} = max {u;(y) — OPT} .

i,j€[n] i€[n]

We complete the proof by showing that for any e, there exists a devision y(¢ € Y, such
that A(y(9)) < e. Since Y is a compact set and A(-) is continuous, the image of Y is also
compact. We therefore conclude that there must be some y* € Y with A(y*) = 0 (since the
image of Y is in particular a closed subset of R containing a point p < € for every € > 0);
such y* is clearly equitable.

It remains to prove that for any €, y(¢) exists. We prove this by induction on the number
of players n. For n = 1 there is only one possible division, which obtains exactly OPT for
the single player. Assume for n — 1, we prove for n. Let y be any division in Y (assuming
w.l.o.g. that y uses the identity permutation). We first construct a division y’ such that for
i=1,...,n—1,u;(y) = OPT, by sequentially moving the border y; (between players ¢ and
i+ 1) to the left as far as possible while keeping that u;(y’) > OPT. This is possible since
in y, u;(y) > OPT and the borders only need to move to the left. Consider the resulting
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y'. If u,(y') < OPT + € we are finished; otherwise, let 3y be the division obtained from
y’' by moving the border y!_; (between players n — 1 and n) as far right as necessary so
that u,(y”) = OPT + e. Now, omit the rightmost piece (that of player n), and consider
the (n — 1)-player cake cutting problem, on the remaining cake. (Note that the players’
valuation of the entire new cake need not be identical to their valuation of the original cake,
and that the new cake has a different set Y’ of egalitarian-optimal divisions.)

Now, it cannot be the case that for this new problem the egalitarian maximum is more
than OPT, as that would induce an egalitarian maximum greater than OPT for the entire
problem. On the other hand, egalitarian value of OPT is clearly attainable, as it is obtained
by 3" (reduced to the first n — 1 players). Hence, OPT is also the egalitarian maximum for
the new (n — 1)-player problem. Thus, by the inductive hypothesis, there exists a division
for this problem that obtains egalitarian welfare OPT and such that no player gets more
than OPT +¢. Combining this solution with the piece (y/_;,1) given to player n, we obtain
y(©) € Y, such that no player gets more than OPT + e. O

Theorem 7. The utilitarian Price of Equitability in connected pieces is upper-bounded by
n, and for any n there is an example in which it is arbitrarily close tom — 1 + %

Proof. We begin by showing an upper bound on the utilitarian Price of Equilibility. From
Theorem 6 we have that there always exists an equitable egalitarian-optimal division with
connected pieces. Since there also always exists a proportional division (whose egalitarian
social welfare is at least %), the egalitarian-optimal division must have an egalitarian social
welfare of at least % and thus a utilitarian social welfare of at least 1. Clearly, the maximum
utilitarian social welfare attainable in any non-equitable division is less than n, and thus
the utilitarian Price of Equitability is also less than n.

For the lower bound, fix some small ¢ > 0 and consider n players with the following
valuation functions. For ¢ = 1,...,(n — 1), player i assigns value of 1 to the interval
(% — € % +¢€) and 0 to the rest of the cake. Finally, player n assigns uniform value to the
entire cake.

Since any connected piece of (physical) size % + 2¢ necessarily contains the entire desired
piece of at least one player i € [n — 1], the utility of player n in any equitable division must
be strictly smaller than % + 2¢; the utilitarian welfare of such a division is therefore smaller
than 14 2ne. Now, consider the following (non-equitable) division: give player 1 the interval
(0, % +€), players i = 2,...,(n — 1) the interval (= +¢, £ 4 ¢€), and player n the interval
(= +¢€,1). The utilitarian welfare of this division is n — 1 + % — €. By appropriately
choosing €, the Price of Equitability can be arbitrarily close to n — 1 + % O

4 Trading Fairness for Efficiency

The work on the Price of Fairness is concerned with the trade-off between two goals of
cake division: Fairness, and efficiency (in terms of social welfare). However, the results
we presented so far, as well as the results in [CKKKO09], concentrate on one direction of
this trade-off, namely how much efficiency may have to be sacrificed to achieve fairness.
We now turn to look at the analogue question of how much fairness may have to be given
up to achieve social optimality; sadly, it seems that at least for the connected-pieces case,
the results are somewhat pessimistic, except for equitability and proportionality with the
egalitarian welfare.

In order to answer such questions, one first has to quantify unfairness. The following
definitions seem natural:

We say that a division x:

e is a-unproportional if some player i € [n] has u;(z) < .
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e has envy of « if there exist players i, € [n] for which
Vi(Tr(j)—1,Tr(j)) = Q- Vi (Tr(i)—1, Tr(s)) = - ui(x) ,
i.e. if some 7 feels that j # i received a piece worth a-times more than the one she got.
o is a-inequitable if there are players ¢, j € [n] with u;(z) > o - u;(x).
Using these “unfairness” notions, we can obtain the following simple results:

Proposition 8. There are cake-cutting instances where an utilitarian-optimal division is
necessarily infinitely unfair, by all three measures above.

Proof. Consider the cake cutting instance from the proof of Proposition 3. In this instance,
the unique utilitarian-optimal division gives no cake at all to the “indifferent players”;
it follows that this division is infinitely unproportional and inequitable, and has inifinite
envy. o

We already know (Proposition 4 and Theorem 6) that egalitarian optimality is not in
conflict with neither proportionality nor equitability. However, this is not the case for envy:

Proposition 9. There are cake-cutting instances where an egalitarian-optimal division nec-
essarily has envy arbitrarily close to n — 1, and this is the maximum possible envy for such
divisions.

Proof. Let € > 0 be an arbitrarily small constant, and consider n players with the following
valuation functions, which are fairly similar to those in the proof of Theorem 5. For i =
1,...,(n —1), player i assigns a value of 1 — % — ¢ to the piece (i — 5,7 + §) (her “favorite
piece”), a value of L +¢ to the piece (1—25tL — £ 1— 2L 4 &) (her “second-favorite piece”),
and value of 0 to the rest of the cake. Finally, player n assigns uniform value to the entire
cake.

It is clear that there is no way for the egalitarian value to exceed % + €: In order for that
to happen, player n must get a connected piece of physical size larger than % + €, which
must contain the entire favorite piece of some player i < n, and so player i can get utility at
most % + €. However, egalitarian welfare of % + € can be easily achieved, and in such case
player n indeed devours the entire favorite piece of some player i < n; this player receives a
piece worth (in her eyes) only % + € while she values the piece n receives as worth 1 — % —e.
The envy in every egalitarian-optimal division is therefore %, which can be arbitrarily
close to n — 1 with an appropriate choice of e.

Since the egalitarian-optimal division is always proportional, every player must get at
least % of the cake in it; therefore, in this player’s view, another player may get at most
”T*I. It thus follows that in every such division the maximum possible envy is n — 1. O

5 Conclusions and Open Problems

In this work we analyzed the possible degradation in social welfare due to fairness require-
ments, when requiring that each player obtain a single connected piece. We obtain that
the results vary considerably, depending on the fairness criteria used, and the social welfare
function in consideration. The bounds range from provably no degradation for propor-
tionality and equitability under the egalitarian welfare, through an O(y/n) degradation for
envy-freeness and proportionality under the utilitarian welfare, to an O(n) degradation for
equitability under the utilitarian welfare and for envy-freeness under the egalitarian welfare.
We have also seen that if we seek to trade fairness to achieve social optimality, the “exchange
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rate” may (at the worst case) be infinite for utilitarian welfare (for all three fairness criteria),
or linear for egalitarian welfare and envy-freeness.
Many open questions await further research, including:

o Small number of connected pieces. One motivation for considering cake cutting with
connected pieces is the desire to avoid situations where a player receives “a pile of
crumbs” for his fair share of the cake. On the other hand, requiring that each player
receives a single connected interval may be too strict a requirement. A natural middle
ground is to require that each player receives only a small number of pieces, e.g. a
constant number. The question thus arises to bound the degradation to the social
welfare under such requirements. In such an analysis it would be interesting to see
how the bounds on degradation behave as a function of the number of permissible
pieces.

e The Egalitarian Price of Fairness with non-connected pieces. [CKKKO09] provide
bounds on the Price of Fairness using the utilitarian welfare function, for the setting
that non-connected pieces are permissible. Bounding the egalitarian Price of Fairness
in this setting remains open. A trivial upper bound on the Price of Envy-freeness is
5, and we have examples of instances where this price is strictly larger than 1, but
obtaining tight bounds seems to require additional work and techniques.

e The egalitarian Price of Proportionality and Price of Equitability for indivisible goods.
[CKKKO09] provide analysis for the utilitarian Price of Fairness for such goods. A
simple example can be constructed to show a tight bound of 4 for the egalitarian
Price of Envy-Freeness for this case. It thus remains open to determine the egalitarian
Price of Proportionality and Equitability for such goods.

e The Price of Fairness for connected chores. As we already mentioned, fair division of
chores has a somewhat different flavor from division of goods, and may require some-
what different techniques. One possible motivation for requiring connected division of
chores may be, for example, a case in which a group of gardeners need to maintain
a large garden, and so would like to give each of them one (connected) area to be
responsible for.

Acknowledgement. We thank Ariel Procaccia for providing helpful comments on an
earlier draft of this work.
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Truth, Justice, and Cake Cutting'

Yiling Chen, John K. Lai, David C. Parkes, and Ariel D. Procaccia

Superman: “I'm here to fight for truth, justice, and the American way.”
Lois Lane: “You’re gonna wind up fighting every elected official in this country!”

Superman (1978)

Abstract

Cake cutting is a common metaphor for the division of a heterogeneous divisible
good. There are numerous papers that study the problem of fairly dividing a cake;
a small number of them also take into account self-interested agents and consequent
strategic issues, but these papers focus on fairness and consider a strikingly weak
notion of truthfulness. In this paper we investigate the problem of cutting a cake
in a way that is truthful and fair, where for the first time our notion of dominant
strategy truthfulness is the ubiquitous one in social choice and computer science. We
design both deterministic and randomized cake cutting algorithms that are truthful
and fair under different assumptions with respect to the valuation functions of the
agents.

1 Introduction

The need for resource allocation arises in many Al domains, and in particular in multiagent
systems. This has led to a wide interest in the field known as Multiagent Resource Allocation,
and to various applications of resource allocation techniques (see the survey by Chevalyere
et al. [7]). Resource allocation problems deal with either divisible or indivisible resources,
where the distinction is based on whether any fraction of a resource can be given to an
agent.

Cutting a cake is often used as a metaphor for allocating a divisible good. The difficulty
is not cutting the cake into pieces of equal size, but rather that the cake is not uniformly
tasty: different agents prefer different parts of the cake, depending, e.g., on whether the
toppings are strawberries or cookies. The goal is to divide the cake in a way that is “fair”;
the definition of fairness is a nontrivial issue in itself, which we discuss in the sequel. The
cake cutting problem dates back to the 1940s, and for over sixty years has attracted the
attention of mathematicians, economists, and political scientists. While most of the work
in artificial intelligence, and computer science in general, has focused on the allocation of
indivisible resources, recent years have seen an increasing interest among computer scientists
in the allocation of divisible resources (see, e.g, [9, 10, 15]).

Slightly more formally, the cake is represented by the interval [0,1]. Each of n agents
has a valuation function over the cake, which assigns a value to every given piece of cake
and is additive. The goal is to find a partition of the cake among the agents (while possibly
throwing a piece away) that satisfies one or several fairness criteria. In this paper we consider
the two most prominent criteria. A proportional allocation is one where the value each agent
has for its own piece of cake is at least 1/n of the value it assigns to the entire cake. An

LA version that is similar to this extended abstract will appear in the proceedings of AAAI’10. The full
version of the paper, which includes all omitted proofs and a longer exposition, will shortly be available
online. The paper was presented in the Harvard EconCS seminar (February 2010) and in a workshop on
prior-free mechanism design in Guanajuato, Mexico (May 2010).
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envy-free (EF) allocation is one where the value each agent assigns to its own piece of cake
is at least as high as the value it assigns to any other agent’s piece of cake. There is a rather
large body of literature on fairly cutting a cake according to these two criteria (see, e.g., the
books by Robertson and Webb [16] and Brams and Taylor [6]).

So far we have briefly discussed “justice”, but have not yet mentioned “truth.” Taking
the game-theoretic point of view, an agent’s valuation function is its private information,
which is reported to a cake cutting algorithm. We would like an algorithm to be truthful, in
the sense that agents are motivated to report their true valuation functions. Like fairness,
this idea of truthfulness also lends itself to many interpretations. One variation, referred to
as strategy-proofness in previous papers by Brams et al. [4, 5], assumes that an agent would
report its truthful valuation rather than lie if there exist valuations of the other agents such
that reporting truthfully yields at least as much value as lying. In the words of Brams et
al., “...the players are risk-averse and never strategically announce false measures if it does
not guarantee them more-valued pieces. ... Hence, a procedure is strategy-proof if no player
has a strategy that dominates his true value function.” [5, page 362].

The foregoing notion is strikingly weak compared to the notion of truthfulness that is
common in the social choice literature. Indeed, strategy-proofness is usually taken to mean
that an agent can never benefit by lying, that is, for all valuations of the other agents
reporting truthfully yields at least as much value as lying. Put another way, truth-telling
is a dominant strategy. This notion is worst-case, in the sense that an agent cannot benefit
by lying even if it is fully knowledgeable of the valuations of the other agents. It is also
the predominant one in the computer science literature, and in particular in the algorithmic
mechanism design literature [14]. In order to prevent confusion we will avoid using the
term “strategy-proof,” and instead refer to the former notion of Brams et al. as “weak
truthfulness” and to the latter standard notion as “truthfulness.”

To illustrate the difference between the two notions, consider the most basic cake cutting
algorithm for the case of two agents, the Cut and Choose algorithm.? Agent 1 cuts the cake
into two pieces that are of equal value according to its valuation; agent 2 then chooses
the piece that it prefers, giving the other piece to agent 1. This algorithm is trivially
proportional and EF.3 It is also weakly truthful, as if agent 1 divides the cake into two
pieces that are unequal according to its valuation then agent 2 may prefer the piece that is
worth more to agent 1. Agent 2 clearly cannot benefit by lying. However, the algorithm is
not truthful. Indeed, consider the case where agent 1 would simply like to receive as much
cake as possible, whereas the single-minded agent 2 is only interested in the interval [0, €]
where € is small (for example, it may only be interested in the cherry). If agent 1 follows
the protocol it would only receive half of the cake. Agent 1 can do better by reporting that
it values the intervals [0, €] and [e, 1] equally, since then it would end up with almost the
entire cake by choosing to cut pieces [0, €], [, 1].

In this paper we consider the design of truthful and fair cake cutting algorithms. To
the best of our knowledge we are the first to do so. However, there is a major obstacle
that must be circumvented: regardless of strategic issues, and when there are more than
four agents, even finding a proportional and EF allocation in a bounded number of steps
with a deterministic algorithm is a long-standing open problem! See [15] for an up-to-date
discussion.* We shall therefore restrict ourselves to specific classes of valuation functions
where efficiently finding fair allocations is a non-issue; the richness of our problem stems
from our desire to additionally achieve truthfulness.

2This algorithm is described here with the agents taking actions; equivalently, the algorithm acts on
behalf of agents using the reported valuations.

3Proportionality and envy-freeness coincide if there are two agents and the entire cake is allocated.

4To be precise, previous algorithmic work assumed that the entire cake has to be allocated, but this does
not seem to be a significant restriction in the context of fairness.

236



Our results. We first consider deterministic algorithms. We restrict ourselves to the case
where the agents hold piecewise uniform valuation functions, that is, each agent is interested
in a collection of subintervals of [0, 1] with the same marginal value for each fractional piece
in each subinterval. This is the case when some parts of the cake satisfy a certain property
and an agent desires as much of these parts as possible. Our main result is a deterministic
algorithm for any number of agents that is truthful, proportional, EF, and polynomial-time.
The proof requires many ingredients, including an application of the classic Max-Flow Min-
Cut Theorem.

We next consider randomized algorithms. We slightly relax truthfulness by asking that
the algorithm be truthful in expectation, that is, an agent cannot hope to increase its expected
value by lying for any reports of other agents. For general valuations, we present a simple
randomized algorithm that is truthful in expectation, and always outputs an allocation that
is proportional and EF. We further establish that this algorithm is tractable under the
relatively weak assumption that the agents hold piecewise linear valuation functions, that
is where the marginal value in each subinterval of interest is a linear function.

Related work. We have recently learned of an independent working paper by Mossel and
Tamuz that asks similar questions about truthful and fair cake cutting [13], but they focus
on existence theorems. In particular, under general assumptions they show that there exists
a mechanism that is truthful in expectation and guarantees each agent a value of more than
1/n in expectation. The results are then extended to the case of indivisible goods. The
technical overlap between the two papers is very small; we refer the reader’s attention to
this overlap in a footnote in Section 4.

Thomson [17] showed that in general a truthful and Pareto-optimal algorithm must be
dictatorial in the slightly different setting of pie-cutting. Note that Pareto-optimality is not
a fairness property and neither implies, nor is implied by, envy-freeness or proportionality.

Our deterministic algorithm is related to a method proposed by Bogomolnaia and
Moulin [3] in the context of the random assignment problem, and the network flow tech-
niques we employ in our analysis generalize the reinterpretation of this method in terms of
network flow due to Katta and Sethuraman [11]. We elaborate in Section 3.

2 Preliminaries

We consider a heterogeneous cake, represented by the interval [0,1]. A piece of cake is a
finite union of subintervals of [0,1]. We sometimes abuse this terminology by treating a
piece of cake as the set of the (inclusion-maximal) intervals that it contains. The length
of the interval I = [x,y], denoted len(I), is y — z. For a piece of cake X we denote
len(X) =3¢ x len(I).

The set of agents is denoted N = {1,...,n}. Each agent i € N holds a private valuation
function V;, which maps given pieces of cake to the value agent 7 assigns them. Formally, each
agent 7 has a value density function, v; : [0,1] — [0, 00), that is piecewise continuous. The
function v; characterizes how agent i assigns value to different parts of the cake. The value
of a piece of cake X to agent i is then defined as Vi(X) = [y vi(z)dz = > o [; vi(x)dx.
We note that the valuation functions are additive, i.e. for any two disjoint pieces X and
Y, Vi(XUY) =Vi(X) + Vi(Y), and non-atomic, that is V;([z,z]) = 0 for every z € [0, 1].
The last property implies that we do not have to worry about the boundaries of intervals,
i.e., open and closed intervals are identical for our purposes. We further assume that the
valuation functions are normalized, i.e. V;([0,1]) = fol vi(x)de = 1.

A cake cutting algorithm is a function f from the valuation function of each agent to
an allocation (Ay,...,A,) of the cake such that the pieces are pairwise disjoint. For each
i € N the piece A; is allocated to agent 4, and the rest of the cake, i.e., [0,1] \ U;cn As,
is thrown away. Here we are assuming free disposal, that is, the algorithm can throw away
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Figure 1: An illustration of special value density functions.

resources without incurring a cost.

We say that an allocation Ay, ..., A, is proportional if for every i € N, V;(A;) > 1/n,
that is, each agent receives at least a (1/n)-fraction of the cake according to its own valuation.
We say that an allocation is envy-free (EF) if for every i,j € N, V;(A4;) > V;(4,), i.e., each
agent prefers its own piece of cake to the piece of cake allocated to any other agent. A
proportional (resp., EF) cake cutting algorithm always returns a proportional (resp., EF)
allocation.

Note that when n = 2 proportionality implies envy-freeness. Indeed, V;(A;)+V;(As_;) <
1, and hence if V;(A;) > 1/2 then V;(As_;) < 1/2. Under the free disposal assumption the
converse is not true. For example, an allocation that throws away the entire cake is EF but
not proportional. In general, when n > 2 proportionality neither implies nor is implied by
envy-freeness.”

A cake cutting algorithm f is truthful if when an agent lies it is allocated a piece of
cake that is worth, according to its real valuation, no more than the piece of cake it was
allocated when reporting truthfully. Formally, denote A; = f;(V4,...,V,,), and let V be a
class of valuation functions. The algorithm f is truthful if for every agent ¢, every collection
of valuations functions V1,...,V,, € V, and every V/ € V, it holds that V;(f;(V1,...,V,,)) >
VilfitVi, oo Vi, Vi Viga, 0, Vi),

3 Deterministic Algorithms and Piecewise Uniform
Valuations

As noted in the introduction, in general there are no known bounded deterministic propor-
tional and EF cake cutting algorithms for more than four agents, even if one is not concerned
about strategic issues. Therefore, in this section we restrict ourselves to a specific class of
valuation functions.

We say that a valuation function V; is piecewise constant if and only if its corresponding
value density function v; is piecewise constant, that is [0, 1] can be partitioned into a finite
number of intervals such that v; is constant on each interval (see Figure 1(a)). We say that
Vi is piecewise uniform if moreover v; is either some constant ¢ € R4 (the same one across
intervals) or zero. See Figure 1(b) for an illustration.

Piecewise uniform valuation functions imply that agent ¢ € IV is uniformly interested in
a finite union of intervals, which we call its reference piece of cake and denote by U,. For
example, in Figure 1(b), U; = [0,0.25] U [0.6,0.85]. Given a piece of cake X, it holds that
Vi(X) =len(X NU;)/len(U;). From the computational perspective, the size of the input to
the cake cutting algorithm is the number of bits that define the boundaries of the intervals
in the agents’ reference pieces of cake.

5If free disposal is not assumed, that is, the entire cake is allocated, then envy-freeness implies propor-
tionality for any n.
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In the rest of this section we assume that the valuation functions are piecewise uniform.
We believe that piecewise uniform valuations are very natural. An agent would have such a
valuation function if it is simply interested in pieces of the good that have a certain property,
e.g., a child only likes portions of the cake that have chocolate toppings, and wants as much
cake with chocolate toppings as possible. We consider more general valuations in the next
section on randomized algorithms.

3.1 A deterministic algorithm

Before introducing our algorithm we present some required notation. Let S C N be a subset
of agents and let X be a piece of cake. Let D(S, X) denote the portions of X that are valued
by at least one agent in S. Formally, D(S,X) = (UiES Ui) N X, and is itself a union of
intervals.

Let avg(S,X) = len(D(S, X))/|S| denote the average length of intervals in X desired
by at least one agent in S. We say that an allocation is exact with respect to S and X
if it allocates to each agent in S a piece of cake of length avg(S, X) comprised only of
desired intervals. Clearly this requires allocating all of D(S, X) since the total length of
allocated intervals is avg(S, X) - |S] = len(D(S, X)). Suppose S = {1,2} and X = [0,1]: if
Uy = Uy =[0,0.2] then agents 1 and 2 receiving [0,0.1] and [0.1, 0.2] respectively is an exact
allocation; but if Uy = [0, 0.2], Uz = [0.3,0.7] then there is no exact allocation.

The deterministic algorithm for n agents with piecewise uniform valuations is a recursive
algorithm that finds a subset of agents with a certain property, makes the allocation decision
for that subset, and then makes a recursive call on the remaining agents and the remaining
intervals. Specifically, for a given set of agents S C N and a remaining piece of cake to be
allocated X, we find the subset S’ C S of agents with the smallest avg(S’, X). We then give
an exact allocation of D(S’, X) to S’. We recurse on S\ S’ and the intervals not desired by
any agent in S, i.e. X \ D(5’, X). The pseudocode of the algorithm is given as Algorithm
1.

Algorithm 1 (V4,...,V,)
1. SuBRouTINE({1,...,n},[0,1],(Vi,..., Vn))

SUBROUTINE(S, X, Vi,...,V,):
1. If S = 0, return.

2. Let Smin € argmin avg(S’, X) (breaking ties arbitrarily).
s’cs

3. Let F1,..., En be an exact allocation with respect to Smin, X (breaking ties arbitrarily). For
each i € Smin, set A; = E;.

4. SUBROUTINE(S \ Smin, X \ D(Smin, X), (V1,...,Va)).

In particular, Steps 2 and 3 of SUBROUTINE imply that if S = {i} then A; = D(S, X).
For example, suppose X = [0,1], U; = [0,0.1], U3 = [0,0.39], and Us = [0,0.6]. In this
case, the subset with the smallest average is {1}, so agent 1 receives all of [0,0.1] and we
recurse on {2,3},[0.1,1]. In the recursive call, set {2} has average 0.39 - 0.1 = 0.29, set {3}
has average 0.6 - 0.1 = 0.5, and set {2,3} has average (0.6 — 0.1)/2 = 0.25. As a result,
the entire set {2,3} is chosen as the set with smallest average, and an exact allocation of
[0.1,1.0] is given to agents 2 and 3. One possible allocation is to give agent 2 [0.1,0.35] and
agent 3 [0.35,0.6]. Note that, if agent 1 uniformly values [0, 0.2] instead, the first call would
choose {1,2} as the subset with the smallest average, equally allocating [0, 0.39] between
agents 1 and 2 and giving the rest, [0.39,0.6], to agent 3.

An analysis of the two agent algorithm. To gain intuition, consider the case of two
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Figure 2: The flow network induced by the example.

agents; designing truthful, proportional and EF algorithms even for this case is nontrivial.
Assume that len(Uy) < len(Us) for ease of presentation. If in addition, len(Uy) > len(U; U
Us)/2 then set {1,2} has the smallest average and we divide Uy UU; exactly, with each agent
getting all of U; \ Us_; and sharing U; N Uz in a way that len(A4;) = len(As). Otherwise,
agent 1 gets all of U; and agent 2 gets Uy \ Uy. The algorithm tries to give both agents
the same length, with each agent always getting at least half of its desired intervals, leading
to proportionality and EF because of piecewise uniform valuations. For sufficient overlap
in desired intervals, each receives exactly half of U; U Us. For totally disjoint reference
pieces, each receives just its reference piece. We defer a discussion of truthfulness to the
general algorithm; the crux here is to note that each agent i receives all of U; \ Us_;, and
the algorithm precludes overclaims through providing a nonincreasing share of U; NUs_; as
len(U;) increases.

Exact Allocations and Maximum Flows. Before turning to properties of truthfulness
and fairness, we point out that so far it is unclear whether Algorithm 1 is well-defined. In
particular, the algorithm requires an exact allocation E with respect to the subset Sy, and
X, but it remains to show that such an allocation exists, and to provide a way to compute
it. To this end we exploit a close relationship between exact allocations and maximum flows
in networks.

For a given set of agents S C N and a piece of cake to be allocated X, define a graph
G(S,X) as follows. We keep track of a set of marks, which will be used to generate nodes
in G(S,X). First mark the left and right boundaries of all intervals that are contained
in X. For each agent i € N and subinterval in U;, mark the left and right boundaries of
subintervals that are contained in U; N X. When we have finished this process, each pair
of consecutive markings will form an interval such that each agent will either uniformly
value the entire interval or value none of the interval. In G(S, X), create a node for each
interval I formed by consecutive markings, and add a node for each agent i € N, a source
node s, and a sink node t. For each interval I, add a directed edge from source s to I with
capacity equal to the length of the interval. Each agent node is connected to t by an edge
with capacity avg(S, X). For each interval-agent pair (1,4), add a directed edge with infinite
capacity from node I to the agent 7 if agent ¢ desires interval I.

For example, suppose Uy = [0,0.25] U [0.5,1] and Uy = [0.1,0.4]. If X = [0,1] then
the interval markings will be {0,0.1,0.25,0.4,0.5,1}. Agent 1 values [0,0.1], both agents
value [0.1,0.25], agent 2 values [0.25,0.4], neither agent values [0.4,0.5] and agent 1 values
[0.5,1]. Tt holds that len(D({1,2},[0,1])) = 0.9. Average values are 0.75, 0.3 and 0.45 for
sets {1},{2} and {1,2} respectively. See Figure 2 for an illustration of the induced flow
network.
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Lemma 1. Let S C N, and let X be a piece of cake. There is a flow of size len(D(S, X))
in G(S,X) if and only if for all S" C S, avg(S’, X) > avg(S, X).

Below we only prove the “if” direction, which is the one we need, using an application
of the classic Max-Flow Min-Cut Theorem (see, e.g., [8]).

Proof of “if”. Assume that for all S’ C S, avg(S’, X) > avg(S, X). By the Max-Flow Min-
Cut Theorem, the minimum capacity removed from a graph in order to disconnect the source
and sink is equal to the size of the maximum flow. The only edges with finite capacity in
G(S, X) are the ones that connect agent nodes to the sink, and the ones that connect the
source to the interval nodes.

Construct a candidate minimum cut by disconnecting some set of agent nodes T' C S
from the sink at cost |T| - avg(S, X) and then disconnecting all the (s,I) connections to
interval nodes I desired by an agent ¢ € S\ 7. This means that the total additional capacity
we need to remove is len(D(S \ T, X)), the total length of intervals desired by at least one
agent in S\ T. By assumption, this is at least |S'\ T| - avg(S, X). As a result, this cut has
capacity of at least |T|-avg(S, X)+|S\T|-avg(S, X) = |S|-avg(S, X) = len(D(S, X)). O

The following lemma establishes that this flow of size len(D(S, X)) in G(S, X) is, in
particular, characterizing an exact allocation. We omit the proof, which follows from the
construction of the network.

Lemma 2. Let S C N, and let X be a piece of cake. There exists an exact allocation with
respect to S, X if and only if there exists a mazimum flow of size len(D(S, X)) in G(S, X).

By combining Lemma 1 and Lemma 2 we see that the algorithm is indeed well-defined:
if S has the smallest average then there exists an exact allocation with respect to S, X.6
Moreover, we obtain a tractable algorithm for computing an exact allocation, by computing
the maximum flow and deriving an exact allocation. A maximum flow can be computed
in time that is polynomial in the number of nodes, that is, polynomial in our input size
(see, e.g., [8]). We remark without proof that it is also possible to implement Step 2 of
SUBROUTINE in polynomial time, using similar (but slightly more involved) network flow
arguments. Therefore, Algorithm 1 can be implemented in polynomial time.

Truthfulness and fairness. Our main tool in proving that Algorithm 1 is truthful, pro-
portional and EF is the following lemma (we omit its proof).

Lemma 3. Let S1,...,S, be the ordered sequence of agent sets with the smallest average
as chosen by Algorithm 1 and X1,...,X,, be the ordered sequence of pieces to be allocated
in calls to SUBROUTINE. That is, X1 = [0,1], X2 = X1 \ D(S1,X1),..., Xon = X1\
D(Spm—1,Xm-1). Then for alli > j, avg(S;, X;) > avg(S;j, X;), and agents that are members
of later sets receive weakly more in desired lengths.

Envy-freeness now follows immediately from the lemma. Indeed, consider an agent
i € N. By “chosen” we mean that the agent was part of the subset with smallest average.
The agent does not envy agents chosen in the same call to SUBROUTINE since all agents
receive the same length in desired intervals and their valuations are piecewise uniform. By
Lemma 3, the agent does not envy agents chosen in earlier calls because the amount agents
receive weakly increases with each call. The agent does not envy agents chosen in later calls
because all intervals desired by the agent are removed from consideration when the agent
receives its allocation.

6Note that the network in Figure 2 does not satisfy the average minimality requirement and does not
provide a corresponding exact allocation.
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We provide a sketch of truthfulness, which follows by showing that an agent ¢ € N has no
incentive to change the choice of Sy, and cannot profitably manipulate the exact allocation
for a given Shin-

1. Manipulations that change Spi,. Consider two subcases.

(a) When ¢ reports truthfully, Spmin = 57,4 ¢ S’. An agent cannot affect avg(T, X)
if i ¢ T, so the agent cannot cause some other S” i ¢ S” to be chosen. The
agent can cause S”,i € S”, to be chosen, but then avg(S”, X) < avg(S’, X) and
it follows from Lemma 3 that the agent does not gain.

(b) When i reports truthfully, Spin = S’,¢ € S’. Assume without loss of gener-
ality that |S| > 2. In this case, all agents in S’, including i, receive exactly
avg(S’, X) = k in intervals. Agent i can cause selection of some S” by misstating
its valuation. If ¢ € S”, then avg(S”, X) > k for this to be profitable. If i ¢ S”,
then S” was not chosen when ¢ reports truthfully, so avg(S”, X) > k. In either
case, agents j € S’ \ {i} previously received k, but now receive at least k by
observing that avg(S”, X) > k and applying Lemma 3. Agent i receives at most
len(D(S’, X)) minus the intervals received by agents j € S”\ {i}.” These agents
receive weakly more if ¢ manipulates, and thus, manipulations are not profitable.

2. Manipulations that change the exact allocation for a given Sy, ¢ € Smin. By defini-
tion each agent in Sy, receives exactly avg(Smin, X) in desired intervals. If agent i
decreases this value, it receives strictly less. If agent ¢ increases this value by lying,
then other agents receive more of the actual D(Spin, X ), leaving less for agent i.

We omit the proof of proportionality, but it follows after establishing that no desired pieces
are thrown away. Overall, we have the following theorem.

Theorem 4. Assume that the agents have piecewise uniform valuation functions. Then
Algorithm 1 is truthful, proportional, EF, and polynomial-time.

Relation to work on the random assignment problem. Consider a setting where
indivisible items must be assigned to agents. In the random assignment problem items
can be assigned to agents randomly, i.e., a random assignment is a probability distribution
over deterministic assignments. A random assignment that gives an item to an agent with
probability p can be interpreted as assigning a p-fraction of the item to the agent. Crucially,
in the papers discussed below the assumption is that each agent is only interested in receiving
one item.

Bogomolnaia and Moulin [3] consider the random assignment problem when the agents
have dichotomous preferences over the items, in the sense that for each agent the set of items
can be partitioned into acceptable and unacceptable items (where all acceptable items have
value 1 and unacceptable items have value 0). They provide a random assignment method
called the egalitarian assignment solution and show that it is truthful, EF, and satisfies
other highly desirable properties.

Interestingly, the cake cutting problem under piecewise uniform valuation functions is
similar to a random assignment problem, as one can mark the beginning and end of each
agent’s desired intervals and treat the subintervals between consecutive marks as items.
However, there are two fundamental differences between our setting and [3]. First, in our
setting agents are interested in receiving as much of their desired “items” as possible (rather
than just one item). Second, in our setting dichotomous preferences would mean that agents

"Lemma 3 also applies to agent i, but since it lies, it may receive intervals that are not desired and
outside of D(S’, X).
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value all desired subintervals equally, which is clearly not the case since these subintervals
have different lengths.® Nevertheless, it turns out that the egalitarian assignment solution
is very similar to the special case of Algorithm 1 under this strong assumption. Katta
and Sethuraman [11] observe that the egalitarian assignment solution can be computed in
polynomial time using network flow techniques, so our arguments above are an independent
generalization of this observation. Interestingly, it is noted in [11] that the egalitarian assign-
ment solution is identical to another independent algorithm for finding a lexicographically
optimal flow in a network due to Megiddo [12].

In earlier work Bogomolnaia and Moulin [2] study random assignments under strict ordi-
nal preferences, and propose a solution that satisfies a weaker notion of truthfulness (which
does not imply truthfulness in our setting) as well as envy-freeness and other properties. In
terms of the agents’ preferences this setting is incomparable to ours since agents may be in-
different between subintervals. However, in our setting agents cannot hold arbitrary ordinal
preference profiles over subintervals between consecutive marks, since if two agents desire
two subintervals, both agents would value the longer subinterval more than the shorter.

The results of [2] were extended by Katta and Sethuraman [11] to the case where agents
are allowed to be indifferent between items. While the assumptions of [11] regarding prefer-
ences are weaker than ours, they establish that in this more general setting even Bogomolnaia
and Moulin’s weaker notion of truthfulness is in fact incompatible with envy-freeness and
an additional efficiency requirement; the algorithm that they propose satisfies the last two
properties and hence is not (even weakly) truthful.

4 Randomized Algorithms and Piecewise Linear Valu-
ations

In the previous section we saw that designing deterministic truthful and fair algorithms is
not an easy task, even if the valuation functions of the agents are rather restricted. In this
section we shall demonstrate that by allowing randomness we can obtain significantly more
general results.

A randomized cake cutting algorithm outputs a random allocation given the reported
valuation functions of the agents. There are very few previous papers regarding randomized
algorithms for cake cutting. A rare example is the paper by Edmonds and Pruhs [9],
where they give a randomized algorithm that achieves approximate proportionality with
high probability. We are looking for a more stringent notion of fairness. We say that a
randomized algorithm is universally proportional (resp., universally EF) if it always returns
an allocation that is proportional (resp., EF).

One could also ask for universal truthfulness, that is, require than an agent may never
benefit from lying, regardless of the randomness of the algorithm. A universally truthful
algorithm is simply a probability distribution over deterministic truthful algorithms. How-
ever, asking for both universal fairness and universal truthfulness would not allow us to
enjoy the additional flexibility that randomization provides. Therefore, we slightly relax
our truthfulness requirement. Informally, we say that a randomized algorithm is truthful in
expectation if, for all possible valuation functions of the other agents, the expected value
an agent receives for its allocation cannot increase by lying, where the expectation is taken
over the randomness of the algorithm.

We remark that while truthfulness in expectation seems natural, fairness (i.e., propor-
tionality and envy-freeness) is something that we would like to hold ex-post; fairness is a

8In general no discretization of the cake would necessarily yield subintervals of equal length that corre-
spond to dichotomous preferences. If we assume that desired intervals have rational endpoints then such
a discretization can be found, but the number of subintervals would be exponentially large, leading to
computational intractability.
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property of the specific allocation that is being made, and continues to be relevant after
the algorithm has terminated. Interestingly enough, if we were to turn this around, then
achieving universal truthfulness and envy-freeness/proportionality in expectation is trivial:
simply allocate the entire cake to a uniformly random agent!

4.1 A randomized algorithm

In order to design a randomized algorithm that is truthful in expectation, universally propor-
tional, and universally EF, we consider a very special type of allocation. In the following we
will not require the free disposal assumption, that is, we will consider partitions X1, ..., X,
of the cake such that |J; X; = [0,1]. We say that a partition X1,..., X, is perfect if for all
i,j € N, v;(X;) = 1/n. Consider the following randomized algorithm.

Algorithm 2 (V4,...,V,,)
1. Find a perfect partition X1,...,X,.

2. Draw a random permutation m over N.

3. For each i € N, set A; = X ;).

Lemma 5. Algorithm 2 is truthful in expectation, universally proportional, and universally
EF.°

Proof. The fact that the algorithm is universally proportional and universally EF follows
from the definition of perfect partitions: every agent has value 1/n for every piece!

We turn to truthfulness in expectation. The value an agent ¢ € N obtains by reporting
truthfully is exactly 1/n. If agent ¢ lies then the algorithm may choose a different partition
X1,..., X, . However, for any partition X7,..., X/ the expected value of agent ¢ when given
a random piece is

Z%'Vi(xﬂl’) :% D Vi) | = %

JEN JEN

where the second equality follows from the fact that the valuation functions are additive. [

Finding perfect partitions. Lemma 5 holds much promise, in that it is valid for all
valuation functions. But there still remains the obstacle of actually finding a perfect par-
tition given the valuation functions of the agents. Does such a partition exist, and can
it be computed? More than two decades ago, Noga Alon [1] proved that if the valuation
functions of the agents are defined by the integral of a continuous probability measure then
there ezists a perfect partition; this is a generalization of his famous theorem on necklace
splitting. Unfortunately, Alon’s elegant proof is nonconstructive (which is unusual for a
proof in combinatorics), and to this day there is no known constructive method under gen-
eral assumptions on the valuation functions. This is not surprising since a perfect partition
induces an EF allocation, and finding an EF allocation in a bounded number of steps for
more than four agents is an open problem.

To obtain a computational method, we consider valuation functions that are piecewise
linear. A valuation function V; is considered piecewise linear if and only if its corresponding
value density function v; is piecewise linear on [0, 1]. Piecewise linear valuation functions
are significantly more general than the class of piecewise constant valuation functions. A
piecewise linear valuation function can be concisely represented by the intervals on which
v; is linear, and for each interval the two parameters of the linear function. The following

9Mossel and Tamuz [13] make the same observation.

244



lemma provides us with a tractable method of finding a perfect partition when the agents
have piecewise linear valuation functions.

Lemma 6. Assume that the agents have piecewise linear valuation functions. Consider the
following procedure. We make a mark at 0 and 1, and for each agent i € N make a mark
at the left and right boundaries of each interval where v; is linear. Next, we divide each
interval I; between two consecutive marks into 2n consecutive and connected subintervals
I;, e IJ?” of equal length. For each such I; and every i € N add the subintervals I} and

I?"f”l to X;. Then the overall partition is perfect.

The lemma’s proof is omitted. By combining Lemma 6 with Lemma 5 we obtain the
following result.

Theorem 7. Assume that the agents have piecewise linear valuation functions. Then there
exists a randomized algorithm that is truthful in expectation, universally proportional, uni-
versally EF, and polynomial-time.

5 Discussion

We have made progress on truthful and fair algorithms for cake cutting. In unpublished
work, we show the nonexistence of simpler methods that make only contiguous allocations
(and look closer to generalizations of the classic cut-and-choose algorithm) even for two
agents both of whom are uniformly interested in a single (but different) subinterval. In future
work we would like to generalize the deterministic algorithm to piecewise constant valuations
and drop the free-disposal assumption. For practical settings, allowing more expressiveness
(e.g., piecewise linear but a requirement that intervals are above some threshold length)
seems important.
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Online Cake Cutting

Toby Walsh

Abstract

We propose an online form of the cake cutting problem. This models situations where
players arrive and depart during the process of dividing a resource. We show that well
known fair division procedures like cut-and-choose and the Dubins-Spanier moving
knife procedure can be adapted to apply to such online problems. We propose some
desirable properties that online cake cutting procedures might possess like online
forms of proportionality and envy-freeness, and identify which properties are in fact
possessed by the different online cake procedures.

1 Introduction

Congratulations. Today is your birthday so you take a cake into the office to
share with your colleagues. At tea time, people slowly start to arrive. However,
as some people have to leave early, you cannot wait for everyone to arrive before
you start sharing the cake. How do you proceed fairly?

This is an example of what we call an online cake cutting problem. Most previous studies
of cake cutting procedures have assumed that all the players are available at the time of
the division. Here, players arrive and depart (either with their cake or perhaps after they
have eaten their cake) as the cake is being divided. Such online problems occur in the real
world as in our birthday example, but also on the internet where agents are often connecting
asynchronously.

Online cake cutting poses some new challenges. On the one hand, the online aspect of
such problems makes fair division more difficult than in the offline case. How can we ensure
that a player does not envy another player when we may have to distribute cake to the
second player before the first player is present (and we can hope to determine information
about their valuation function)? On the other hand, the online aspect of such problems may
make fair division easier than in the offline case. If players don’t see cake that has already
been distributed before they arrive, perhaps they do not envy it?

2  Online cake cutting

As is common in the literature [2], we will often assume that each player is risk averse so
they maximize the minimum value of the cake that they will receive, regardless of what
the other players do. A risk averse player will not choose a strategy that could yield more
value if it also entails the possibility of getting less value. We will also usually assume that
each player is ignorant of the value functions of the other players. We disuss relaxing these
assumptions in the conclusions.

We formulate cake cutting as dividing the unit interval between the different players,
where each player has a (typically additive and continuous) valuation function on the in-
tervals that they are allocated. We do not suppose that players assigns the same value
to the whole cake. Although we can normalize the valuation functions, we shall see that
is not necessary as all the cake cutting procedures are scale invariant. Depending on the
application, we may demand that players receive a continuous slice of cake or some union
of slices.
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In an online cake cutting problem, the players arrive in some given order. Players are
allocated their cake and then depart. The order in which players depart can be fixed or
can be change according to how they value the cake. For example, the player present who
most values a cut slice of cake might be the next to depart. Alternatively, the player to
depart might always be the player who arrived the longest time ago. We will assume that
at least one player departs before the last player arrives (otherwise we can formulate this
as an offline cake cutting procedure). To prevent trivial allocations, we also assume that
at least one player receives some cake. However, we do not assume that all players receive
cake or that all the cake is allocated. Formally an online cake cutting problem is defined
by a procedure which given the valuation functions of the players who are present in the
room and the number of players who will take part in total either allocates some cake to
one of the present players (who then departs) or indicates that we wait until the next player
arrives. This can model both a fixed arrival and departure order, as well as one in which
the order depends on the valuation functions.

An important dimension of online cake cutting is what is known and by whom about
the total number of players. For example, the total number of players might be known
by all players. On the other hand, the players might only know a bound on the total
number of players (e.g. you've invited 20 work colleagues to share your birthday cake but
not all of them might turn up). However, there are several other possibilities (e.g. certain
players might have complete certainty about n whilst others have complete uncertainty).
In addition, an interesting generalization is when cake is being allocated before the total
number of players is fixed.

3 Desirable properties

What properties do we want from an online cake cutting procedure? The literature on cake
cutting studies various notions of fainerness like proportionality and envy freeness, as well as
various forms of strategy proofness. The generalization of cake cutting to an online setting
gives rise to some natural extensions of these notions.

3.1 Proportionality

A cake cutting procedure is proportional iff each of the n players assigns at least % of the
total value to their piece(s). Unfortunately, as we shall show, online cake cutting procedures
cannot always be proportional. Suppose you only like icing. The problem is that you may
not be able to prevent all the cake that is iced being distributed before you enter the room.
We therefore consider weaker forms of proporitionality that are achievable. One more limited
form of proportionality is that any player receives a fair proportion of the cake that remains
when they arrive. A cake cutting procedure is forward proportional iff each player assigns
at least —— of the total value of the cake to their pieces where r is the fraction of the total
value assigned by the player to the (remaining) cake when they arrive and k is the number
of players who have already left at this point.

3.2 Envy freeness

A stronger notion of fairness is envy freeness. A cake cutting procedure is envy free iff
no player values another player’s pieces more than their own. Note that envy freeness
implies proportionality but not vice versa. With online cake cutting, envy freeness is also
impossible to achieve in general. We therefore consider weaker forms of envy freeness that
are achievable. A cake cutting procedure is forward envy free iff no player values the pieces
of cake allocated to other players after their arrival more than their own. Players can,
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however, value the cake allocated to players who have already departed more than our own
cake. This models situations where, for instance, we do not envy cake we don’t see being
allocated, or players eat their cake before departing and we do not envy cake that has already
been eaten. Note that forward envy freeness implies forward proportionality but not vice
versa. Similarly, envy freeness implies forward envy freeness but not vice versa. An even
weaker form of envy freeness is when a player does not envy cake that is allocated to other
players whilst they are in the room. A cake cutting procedure is immediately envy free iff
no player values the pieces of cake allocated to another player after their arrival and before
their departure more than their own. Note that forward envy freeness implies immediate
envy freeness but not vice versa.

3.3 Equitability

Another fairness property is equitability. A cake cutting procedure is equitable iff all players
assign the same value to the pieces of cake to which they are allocated (and so no player
envies anothers valuation). For 3 or more player, equitability and envy freeness can be
incompatible [2]. Equitability is a difficult property to achieve, even more so in our online
setting. Unlike proportionality or envy freeness, there seems little merit in considering
weaker forms of equitability. Either all players assign the same value to their allocated cake
or they do not. There is no advantage to ignoring the value of the cake allocated to players
who have already departed.

3.4 Efficiency

Another important notion is efficiency. Efficiency is also called Pareto optimality. A cake
cutting procedure is Pareto optimal iff there is no other allocation to the one returned
that is more valuable for one player and at least as valuable for the others. Note that
Pareto optimality does not in itself ensure fairness since allocating all the cake to one player
is Pareto optimal. A cake cutting procedure is weakly Pareto optimal iff there is no other
allocation to the one returned that is more valuable for all players. A cake cutting procedure
that is Pareto optimal is weakly Pareto optimal but not vice versa.

3.5 Strategy proofness

Another consideration is whether players have an incentive to act truthfully. A cake cutting
procedure is weakly truthful iff a player will do at least as well by telling the truth whatever
valuations are held by the other players [1]. A stronger notion (often called strategy proof-
ness in social choice) is that players must not be able to profit even when they know how
others value the cake. As in [3], we say that a cake cutting procedure is truthful iff there
are no valuations where a player will do better by lying.

4 Other properties

We consider some other properties of (online) cake cutting procedures.

4.1 Surjectivity

This property has been studied in social choice but appears to have received less attention
in fair division. It indicates whether the cake can be divided in every possible way. A cake
cutting procedure is surjective iff there are valuation functions for the players such that
every possible partition of the cake into n pieces is possible. Note that this definition only
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considers allocations where each player receives one continuous slice of cake. However, the
definition of surjectivity could be easily extended to allocations where players can receive
multiple slices. Our definition of surjectivity also ignores which player receives a particular
slice. If an online cake cutting procedure is surjective, then there is an arrival ordering of
the players and valuation functions such that any given player can receive a particular slice.

4.2 Scale invariance

Players may have different scales for their valuation functions. Scale invariance indicates
that this is unimportant. A cake cutting procedure is scale invariant iff the allocation of
cake is unchanged when a player’s valuation is uniformly multiplied by a constant factor. It
turns out that scale invariance is not difficult to achieve. Indeed, all the online cake cutting
procedures we shall consider here are scale invariant.

4.3 Sequentiality

In some situations we may want cake to be cut from one end. This may be the case, for
instance, when the cake represents time on a shared device. An onlike cake cutting procedure
is sequential iff the slice given to any player is to the left of any slice given to a player who
is later to depart.

4.4 Order monotonicity

A player’s allocation of cake typically depends on their arrival order. We say that a cake
cutting procedure is order monotonic iff a player’s valuation of their cake does not decrease
when they are moved earlier in the arrival ordering (and all other players have the same
arrival ordering). Note that as the moved player can receive cake of greater value, players
who depart after them may now receive cake with less value. A positive interpretation of
order monotonicity is that players are encouraged to participate as early as possible. On
the other hand, players who have to arrive late may receive less value.

5 (General results

The fact that some players may depart before others arrive place some fundamental limita-
tions on the fairness of online cake cutting procedures.

Theorem 1. No online cake cutting procedure is proportional, envy free or equitable.

Proof: Suppose the procedure is proportional. Then every player is allocated some cake.
As the cake cutting procedure is online, at least one player departs before the final player
arrives. Since the valuation function of the final player to arrive is not known when the
first player departs, the cake allocated to the first player to depart cannot depend on the
valuation function of the final player to arrive. Similarly, the valuation function of the final
player to arrive cannot change who is the first player to depart. Consider the situation in
which the final player to arrive has a valuation function that only values the cake allocated
to the first player to depart. Whatever cake is allocated to the final player to arrive will be
of no value to them. Hence the cake cutting procedure cannot be proportional.

Suppose the procedure is envy free. We consider the case where all players have valu-
ation functions that assign some value to every slice. Every player is allocated some cake
otherwise they will envy the players who are allocated cake (and by assumption a cake
cutting procedure must allocate cake to at least one player). As before, the cake allocated
to the first player to depart cannot depend on the valuation function of the final player to
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arrive. We now modify the valuation function of the last player to arrive so that the value
of the cake remaining when the first player departs is # of the value it was before. Even if
we allocate all the remaining cake to the last player to arrive, the value of this cake cannot
now equal the value they assign to the cake allocated to the first player to depart. Hence
the last player to arrive will envy the first player to depart. By a similar argument, the
procedure cannot be equitable. &

Online cake cutting procedures can, however, possess many of the other properties.

Theorem 2. Online cake cutting procedures can be forward proportional, forward envy free,
weakly Pareto optimal, truthful, scale invariant, sequential and order monotonic.

Proof: Consider the online cake cutting procedure which allocates all the cake to the first
player to arrive. ©

Unfortunately, allocating all the cake to one player is not very fair to the other players.
We therefore consider some specific online cake cutting procedures which divide the cake
more equitably. It remains an important open problem to identify natural axioms that these
procedures satisfy which are not satisfied by the trivial allocation of all cake to one player.

6 Online Cut-and-Choose

The cut-and-choose procedure for two players dates back to antiquity. It appears nearly
three thousand years ago in Hesiod’s poem Theogeny where Prometheus divides a cow and
Zeus selects the part he prefers. Cut-and-choose is also enshrined in the United Nation’s 1982
Convention of the Law of the Sea where it is put forward to divide the seabed for mining.
In cut-and-choose, one player cuts the cake and the other takes the “half” that they most
prefer. Cut-and-choose is proportional, envy free, Pareto optimal, weakly truthful, and
surjective. However, it is not equitable, nor it is truthful.

We can use cut-and-choose as the basis of an online cake cutting procedure. The first
player to arrive cuts the cake and waits for the next player to arrive. Either the next player
to arrive chooses this piece and departs, or the next player to arrive declines this piece and
the waiting player takes this piece and departs. If more players are to arrive, the remaining
player cuts the cake and we repeat the process. Otherwise, the remaining player is the last
player to be allocated cake and departs with whatever is left. We assume that all players
know how many players will arrive.

Running Example:. Suppose there are three players, the first player values only [%,1],
the second player values only [%, 1], and the third player values only [0, %] We suppose
that they uniformly value slices within these intervals. If we operate the online version of
cut-and-choose, the first player will arrive and cut off the slice [0, %] as they assign this slice
L the total value of the cake. The second player then arrives. As they assign this slice with
g the total value of the cake and they are only expecting % of the total, the second player
s happy to take this slice and depart. The first player then cuts off the slice [%, %] as they
assign this % of the total value of the cake (and % of the value remaining after the second
player departed with their slice). The third player then arrives. As they assign the slice [%, %]
with all of the total value of the remaining cake and they are only expecting % of whatever
remains, the third player is happy to take this slice and depart. The first player now takes
what remains, the slice [%, 1]. It can be claimed that everyone is happy as the first player
received a “fair” proportion of the cake, whilst the other two players received slices that were
of even greater proportional value to them.

This online version of the cut-and-choose procedure has many (but not all) of the desir-
able properties described earlier.
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Theorem 3. The online cut-and-choose procedure is forward proportional, immediately envy
free, weakly truthful, surjective, scale invariant and sequential. However, it is not propor-
tional, (forward) envy free, equitable, (weakly) Pareto optimal, truthful or order monotonic.

Proof: Consider the player cutting the cake. As they are risk averse, and as there is
a chance that they will have to take the slice of cake that they cut, they will cut a slice
that is at least % of the total remaining value where k is the number of players still to be
allocated cake. Similarly they will not cut a slice that is more than % of the total remaining
value for fear that the next player to arrive will take it, leaving behind cake that if it is
divided proportionally gives them a slice of small value. Hence, the procedure is forward
proportional and weakly truthful. It is also immediately envy free since each slice that
the cutting player sees being allocated has the same value. To demonstrate surjectivity,
consider the partition that allocates the ith player with the slice [a;, a;+1] where a; = 0 and
an+1 = 1. We construct a valuation for the ith player (i < n — 1) that assigns a value 0
to [0, a;], a value 1 to [a;, a;+1], a value 0 to [a;t1,air2], a value n — i to [a;42,1]. For the
n — 1th player, we construct a valuation function that assigns a value 0 to [0,a,—1], and
values of 1 to both [a,—1,a,] and [ay, 1]. Finally, we construct a valuation function for the
nth player that assigns a value 0 to [0, a,], and a value of 1 to [a,, 1]. With these valuation
functions, the ith player gets the slice [a;, a;+1]. Finally, it is easy to see that the procedure
is scale invariant and sequential.

To show that this procedure is not proportional, (forward) envy free, equitable, (weakly)
Pareto optimal truthful or order monotonic consider 4 players and a cake in which the first

player places a value of 3 units on [0, 4] 1 unit on [§, 3] and 8 units on [2,1], the second
player places a value of 0 units on [0, 1], 4 units on [4, 3], 8 units on [1, 2], and 0 units on
[2,1], the third player places a value of 6 units on [0, 1] 0 units on [, 1], 1 unit on [1, 2],
2 units on [g, §], and 3 units on [2,1], and the fourth player places a value of 0 units on
[0, 1], 9 units on [, ], 1 unit on [3, 3], and 2 units on [3,1].

If we apply the online cut-and-choose procedure, the first player will cut off and keep
the slice [0, 1], the second player will cut off and keep [, 3], The third player will now cut

the cake into two pieces: [, 2] and [2,1]. The fourth player will take the slice [2, 1], leaving
the third player with the slice [$, 3]

The procedure is not proportional as the fourth player only receives % of the total value
of the cake, not (forward) envy free as the first player envies the fourth player, and not
equitable as players receive cake of different value. The procedure is not (weakly) Pareto
optimal as allocatlng the first player with [2,1], the second player with [%,2], the third
player with [0, ] and the fourth player with [ 1 2] gives all players a slice of greater value.

The proceure is not truthful as the second player can get a larger and more valuable
slice by misrepresenting their preferences and cutting the cake into the slice [1 I 8] Finally,
the procedure is not order monotonic as the value of the cake allocated to the fourth player
decreases from 2 units to % units when they arrive before the third player. ©

7 Online moving knife

Another class of procedure for cutting cakes uses one or more moving knives. For example,
in the Dubins-Spanier procedure for n players [6], a knife is moved across the cake from left
to right. When a player shouts “stop”, the cake is cut and this player takes the piece to the
left of the knife. The procedure then continues with the remaining n — 1 players until just
one player is left (who takes whatever remains). This procedure is proportional but is not
envy-free. However, only the first n — 2 players to be allocated slices of cake can be envious.

We can use the Dubins-Spanier procedure as the basis of an online moving knife proce-
dure. The first k players (k > 2) to arrive perform one round of a moving knife procedure
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to select a slice of the cake. Whoever chooses this slice, departs. At this point, if all players
have arrived, we continue the moving knife procedure with k& — 1 players. Alternatively the
next player arrives and we start again a moving knife procedure with k players. As before,
we assume that all players know how many players will arrive.

Running Example:. Consider again the example in which there are three players, the first
player values only [3, 1], the second player values only [%, 1], and the third player values only
[0, %] If we operate the online version of the moving knife procedure, the first two players
will arrive and perform one round of the moving knife procedure. The second player will be
the first to call “cut” and will depart with the slice [0,3] (as this has & of the total value
of the cake for them). The third player will now arrive and perform a round of the moving
knife procedure with the first player using the remaining cake, [3,1]. The third player will

9>
be the first to call “cut” and will depart with the slice [g, %] (as this has % the total value
of the remaining value for them). The first player will then depart with what remains, the

slice [%] It can be claimed that everyone is happy as the second and third players received

a “fair”’ proportion of the cake that was left when they first arrived, whilst the first player
recetved an even greater proportional value.

This online version of the moving knife procedure has the same desirable properties as
the online version of the cut-and-choose procedure.

Theorem 4. The online moving knife procedure is forward proportional, immediately envy
free, weakly truthful, surjective, scale invariant and sequential. However, it is not propor-
tional, (forward) envy free, equitable, (weakly) Pareto optimal, truthful or order monotonic.

Proof: Suppose j players (7 > 1) have still to be allocated cake. Consider any player who
has arrived. They will call “cut” as soon as the knife reaches * of the value of the cake left
for fear that they will will receive cake of less value at a later stage. Hence, the procedure
is weakly truthful and forward proportional. The procedure is also immediately envy free
as they will assign less value to any slice that is allocated after their arrival and before their
departure. To demonstrate surjectivity, consider the partition that allocates the ith player
with the slice [a;, a;11] where a; = 0 and a,+1 = 1. We construct a valuation for the ith
player (i < n) that assigns a value 0 to [0, a;], a value 1 to [a;, a;41], & value n—i to [ajt+1,1].
Finally, we construct a valuation function for the nth player that assigns a value 0 to [0, a,,],
and a value of 1 to [an,1]. With these valuation functions, the ith player gets the slice
[ai,ai+1]. Finally, it is easy to see that the procedure is scale invariant and sequential.

To show that this procedure is not proportional, (forward) envy free, equitable, (weakly)
Pareto optimal truthful consider again the example with 4 players used in the last proof.
We suppose that k = 2 (i.e. at any one time, two players are watching the knife). The
first player calls “cut” and departs with the slice [0, i] The second player calls “cut” and
departs with the slice [%, %] Finally, the third player calls “cut” and departs with the slice
[%, %], leaving the fourth player with the slice [%, 1].

The procedure is not proportional as the fourth player only receives % of the total value
of the cake, not (forward) envy free as the first player envies the fourth player, and not
equitable as players receive cake of different value. The procedure is not (weakly) Pareto
optimal as allocating the first player with [2,1], the second player with [1,2], the third
player with [0, %] and the fourth player with [%, %] gives all players a slice of greater value.

The proceure is not truthful as the second player can get a larger and more valuable
slice by misrepresenting their preferences and not calling “cut” until the knife is about to
reach gth of the way along the cake.

Finally, to show that the procedure is not order monotonic consider 3 players and a cake
in which the first player places a value of 2 units on each of [0,1], [, 2], and [2,1], the

3
second player places a value of 0 units on [0, ], 3 units on each of [#, £] and [2,1], and the

253



third player places a value of 2 units on [0, 1], 0 units on each of [§, 1] and [3, 2], and 4 units
on [%, 1]. As before, we suppose that k = 2 (i.e. at any one time, two players are watching
the knife). The first player calls “cut” and departs with the slice [0, 3] The second player
calls “cut” and departs with the slice [3, 2], leaving the third player with the slice [2,1].
On the other hand, if the third player arrives ahead of the second player then the value of
the cake allocated to them drops from 4 units to 2 units. Hence the procedure is not order
monotonic. ©

8 Online Mark-and-Choose

A possible drawback of both of the online cake cutting procedures proposed so far is that
the first player to arrive can be the last player to depart. What if we want a procedure in
which players can depart soon after they arrive? The next procedure has such a property.
Players will depart as soon as the next player arrives (except for the last player to arrive
who takes whatever cake remains). However, the new procedure is no longer sequential. It
may not allocated cake from one end. In addition, the new procedure does not necessarily
allocate continuous slices of cake.

In the online mark-and-choose procedure, the first player to arrive marks the cake into
n pieces. The second player to arrive selects one piece to give to the first player who then
departs. The second player then marks the remaining cake into n — 1 pieces and waits for
the third player to arrive. The procedure repeats in this way until the last player arrives.
The last player to arrive selects which of the two halves marked by the penultimate player
should be allocated to the penultimate player. The last player then takes whatever remains.

Running Example Consider again the example in which there are three players, the first

player values only [ 1], the second player values only [ 1], and the third player values only
[0, ] If we operate the online version of the mark-and- choose procedure, the first player will
arrive and mark the cake into 3 equally valued pieces: [0, 2], [2,3], and [2,1], The second

player then arrives and selects the least valuable piece for the first player to take. In fact,
both [2,2] and [2,1] are each worth % of the total value of the cake to the second player.
They will therefore choose between them arbitrarily. Suppose the second player decides to
give the slice [3, 6] to the first player. Note that the first player assigns this slice with 1
of the total value of the cake. This leaves behind two sections of cake: [0,2] and [2, ]
The second player then marks what remains into two equally valuable pz‘eces: the first is the
interval [0, 5] and the second contains the two intervals [5, 2] and [3,1]. The third player
then arm'ves and selects the least valuable piece for the second player to take. The first piece
is worth {5 of the total value of the cake to the third player. As this is over half the total
value, the other piece must be worth less. In fact, the second piece is worth * 7 of the total
value. The third player therefore gives the second piece to the second player. Thzs leaves the
third player with the remaining slice [0, 12] It can again be claimed that everyone is happy
as the first players received a “fair”’ proportion of the cake that was left when they arrived,
whilst both the second and third player received an even greater proportional value.

This procedure again has the same desirable properties as the online version of the
cut-and-choose and moving knife procedures.

Theorem 5. The online mark-and-choose procedure is forward proportional, immediately
envy free, weakly truthful, surjective, and scale invariant. However, it is not proportional,
(forward) envy free, equitable, (weakly) Pareto optimal, truthful, order monotonic or sequen-
tial.

Proof: Any player marking the cake will divide it into slices of equal value (for fear that
they will be allocated one of the less valuable slices). Similarly, a player selecting a slice for
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another player will select the slice of least value to them (to maximize the value that they
will receive next). Hence, the procedure is weakly truthful and forward proportional. The
procedure is also immediately envy free as they will assign less value to the slice that they
select for the departing player than the value of the slices that they mark. To demonstrate
surjectivity, consider the partition that allocates the ith player with the slice [a;, a;+1] where
a1 = 0 and a,+1 = 1. We construct a valuation for the ith player (i < n) that assigns a
value 0 to [0,a;], a value 1 to [a;,a;11], a value n — 4 to [a;+1,1]. Finally, we construct a
valuation function for the nth player that assigns a value 0 to [0, a,], and a value of 1 to
[an,1]. With these valuation functions, the ith player gets the slice [a;, a;41]. Finally, it is
easy to see that the procedure is scale invariant.

To show that this procedure is not proportional, (forward) envy free, equitable, (weakly)
Pareto optimal or truthful consider again the example with 4 players used in the last two
proofs. The first player marks and is assigned the slice [0, 4] by the second player. The
second player then marks and is assigned the slice [% T 2] The third player then marks and
is assigned the slice [, 4] leaving the fourth player with the slice [2,1].

The procedure is again not proportional as the fourth player only receives % of the total
value of the cake, not (forward) envy free as the first player envies the fourth player, and not
equitable as players receive cake of different value. The procedure is not (weakly) Pareto
optimal as allocating the first player with [2,1], the second player with [4,2], the third
player with [0, 1], and the fourth player with [ %, %] gives all players a slice of greater value.

The proceure is not truthful as the second player can get a larger and more valuable
slice by misrepresenting their preferences and marking the cake into the slices [%, %], [%, %],
and [3 7,1]. In this situation, the third player will allocate the second player with the slice
[}1, 8] which is of greater value to the second player. It is also easy to see that the procedure
is not sequential.

Finally, to show that the procedure is not order monotonic consider 3 players and a cake
in which the first player places a value of 4 units on each of [0, 1], [, 2] and [2, 1], the second
player places a value of 0 units on [0, ], 6 units on [%, 2], and 3 units on each of [3, 6] and
[%, 1], and the third player places a Value of 2 unit on [0, %], 0 units on each of [6, 3] and
(3, 2], and 5 units on each of [2, 3] and [3,1]. The first player marks and is allocated the
slice [0, 3] The second player marks and is allocated the slice [3, 3] leaving the third player
with the slice [2 1]. On the other hand, suppose the third player arrives ahead of the second
player. In this case, the third player marks the cake into two slice, [3, 2] and [2,1]. The
second player allocates the third player the slice [%, 1]. Hence, the value of cake allocated
to the third player drops from 10 units to 5 units when they go second in the arrival order.
Hence the procedure is not order monotonic. ©

9 Bounded number of players

One variation of online cake cutting is when the number of players is not known but all
players have the (same) upper bound, 7,4, on the number of persons to be allocated cake.
We consider three cases: players know their arrival position and when the last player arrives;
players do not know their arrival position but do know when the last player arrives; players
do not know when the last player arrives.

9.1 Known arrival order and last player

In this case, each player knows how many players have arrived before them, and players
know when no more players are to arrive. In this case, we can still operate the online cut-
and-choose procedure. Given the risk averse nature of the players, each player will cut off a
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slice of cake of value ——— of the total where & is the number of players who have already
been allocated cake.

9.2 Unknown arrival order but known last player

In this case, players do not know how many players have arrived before them, but do
know when no more players are to arrive. We can again operate the online cut-and-choose
procedure. The first player will cut off a slice of cake of value —k of the total where k&
is the number of players already allocated cake (e.g. in the first round the first player cuts
off a slice of value of the total, if this is accepted by the second player, they then cut

max
i

off a slice of value ;—— of the total, and so on).

We can suppose that the second player to arrive will look at the cake and deduce they
are the second player to arrive (since they will assign the total value of the cake to the two
pieces). If they are not the last player to arrive, they will accept the offered slice if it is
greater than or equal to —— of the total. If they are the last player to arrive, they will

accept the offered slice if it is greater than or equal to = of the total. Otherwise, if there
are no more players are to arrive, they will take Whatever cakes remain. If there are more
players to arrive, they will cut off a new slice of value - — of the total where j is the

number of players already allocated cake (e.g. the second pléyer first cuts off a slice of value
of the total, if this is accepted by the next player to arrive, the second player then

Nmax —1 1

cuts off a slice of value ——— of the total, and so on).

We can suppose that the third (or any later) player to arrive can only deduce that they
are not the first or second player to arrive. If they are not the last player to arrive, they will
accept the offered slice if it is greater than or equal to nmalrl of the total. If they are the

last player to arrive, they will accept the offered slice if it is greater than or equal to % of the
total. Otherwise, if there are no more players are to arrive, they will take whatever cakes
remain. If there are more players to arrive, they will cut off a new slice of value — L — of

the total where j is the number of players already allocated cake (e.g. they first cut off a

slice of value m of the total, if this is accepted by the next player to arrive, they then
1

cut off a slice of value — 5 of the total, and so on).

9.3 Unknown last player

In the third case, players do know when no more players are to arrive. We now have a
potential deadlock problem in operating the online cut-and-choose procedure. We need
some mechanism to ensure that the last player to arrive is allocated cake. One option is to
introduce a clock. If a player waits longer than a certain time, then they can take whatever
cake remains. With this modification, we can again operate the online cut-and-choose
procedure.

9.4 Moving knife procedures

We can also use the online moving knife procedure when there is only a bound on the number
of players to be allocated cake. The results are very similar to the online cut-and-choose
procedure, and depend on whether players know when the last player arrives and on whether
players know how many players have been allocated cake before them.
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10 Related work

There is an extensive literature on fair division and cake cutting procedures. See, for in-
stance, [2] for an introduction. There has, however, been considerably less work on fair
division problems similar to those considered here.

Thomson considers a generalization of fair division problems where the number of players
may increase [7]. He explores from an axiomatic perspective whether it is possible to have
a procedure in which players’ allocations are monotonic (i.e. their values do not increase as
the number of players increase) combined with other common properties like weak Pareto
optimality.

Cloutier et al. consider a different generalization of the cake cutting problem in which the
number of players is fixed but there are multiple cakes [5]. This can model situations where,
for example, players wish to choose shifts across multiple days. Note that this problem can
be reduced to multiple single cake cutting problems unless the players’ valuations across
cakes are linked (e.g. you prefer the same shift each day compared to different shifts).

A number of authors have studied distributed mechanisms for fair division (see, for
example, [4]). In such mechanisms, players typically agree locally on deals to exchange
some of the goods in their possession. The usual goal is to identify conditions under which
the system converges to a fair or envy free allocation.

11 Conclusions

We have proposed an online form of the cake cutting problem. This permits us to explore
the concept of fair division when players arrive and depart during the process of dividing
a resource. It can be used to model situations, such as on the internet, when we need to
divide resources asynchronously. There are many possible future directions for this work.
One extension would be to indivisible goods. Another extension would be to undesirable
goods (like chores) where we want as little of them as possible. In addition, it would
be interesting to consider variants of the online cake cutting problem where players have
information about the valuation functions of the other players.
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Three Hierarchies of Simple Games
Parameterized by “Resource” Parameters

Tatiana Gvozdeva, Lane A. Hemaspaandra, and Arkadii Slinko

Abstract

This paper contributes to the program of numerical characterization and classifica-
tion of simple games outlined in the classic monograph of von Neumann and Mor-
genstern (1944). We suggest three possible ways to classify simple games beyond
the classes of weighted and roughly weighted games. To this end we introduce three
hierarchies of games and prove some relations between their classes. We prove that
our hierarchies are true (i.e., infinite) hierarchies. In particular, they are strict in
the sense that more of the key “resource” (which may, for example, be the size or
structure of the “tie-breaking” region where the weights of the different coalitions
are considered so close that we are allowed to specify either winningness or nonwin-
ningness of the coalition), yields the flexibility to capture strictly more games.

1 Introduction

A simple game is a mathematical object that is used in economics and political science
to describe the distribution of power among coalitions of players [10, 11]. Recently simple
games have been studied as access structures of secret sharing schemes [2]. They have
also appeared in a variety of mathematical and computer science contexts under various
names, e.g., monotone boolean [5] or switching functions and threshold functions [6]. Simple
games are closely related to hypergraphs, coherent structures, Sperner systems, clutters,
and abstract simplicial complexes. The term “simple” was introduced by von Neumann and
Morgenstern (1944) because in this type of games players strive not for monetary rewards
but for power, and each coalition is either all-powerful or completely ineffectual. However
these games are far from being simple.

An important class of simple games—well studied in economics—is the weighted majority
games [10, 11]. In such a game every player is assigned a real number, his weight. The
winning coalitions are the sets of players whose weights total at least ¢, a certain threshold.
However, it is well known that not every simple game has a representation as a weighted
majority game [10]. The first step in attempting to characterize nonweighted games was the
introduction of the class of roughly weighted games [9]. Formally, a simple game G on the
player set P = [n] = {1,2,...,n} is roughly weighted if there exist nonnegative real numbers
w1, ..., w, and a real number g, called the quota, not all equal to zero, such that for X € 27
the condition ),y w; > ¢ implies X is winning, and ),y w; < ¢ implies X is losing.
This concept realizes a very common idea in social choice that sometimes a rule needs an
additional “tie-breaking” procedure that helps to decide the outcome if the result falls on
a certain “threshold.” Taylor and Zwicker [9] demonstrated the usefulness of this concept.
Rough weightedness was studied by Gvozdeva and Slinko [4], where it was characterized in
terms of trading transforms, similar to the characterization of weightedness by Elgot [3] and
Taylor and Zwicker [8].

It might seem that nonweighted games and even games without rough weights are weird.
However, an important observation of von Neumann and Morgenstern [10, Section 53.2.6]
states that they “correspond to a different organizational principle that deserves closer
study.” In some of these games, as they noted, all the minimal winning coalitions are
minorities and at the same time “no player has any advantage over any other” (e.g., the
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Fano game introduced later). This is an attractive feature for secret sharing as in the case
of large number of users it is advantageous to keep minimal authorized coalitions relatively
small. This is may be why weighted threshold secret sharing schemes were largely ignored
and were characterized only recently [1].

The parameter of the first hierarchy reflects the balance of power between small and
large coalitions; the larger this parameter the more powerful some of the small coalitions
are. Gvozdeva and Slinko [4] proved that for a game G that is not roughly weighted there
exists a certificate of nonweightedness (see the definition in Section 2) of the form

TZ(Xl,...,Xj,P;Yl,...,}/j,Q), (1)

where X1,..., X, are winning coalitions of G, P is the grand coalition, and Yi,...,Y; are
losing coalitions. However, sometimes it is possible to have more than one grand coalition
in the certificate. This may occur when coalitions Xi,...,X; are small but nonetheless
winning.

A certificate of nonweightedness of the form

T=(Xy,...,X;,P5Y1,..., V5,09 (2)

will be called ¢-potent of length j + ¢. Fach game that possesses such a certificate will be
said to belong to the class of games Ay, where ¢ = ¢/(j + ¢). The parameter ¢ can take
values in the open interval (0, %) We will show that 4, O A, for any p and ¢ such that
0<p<g< % and that the inclusion A, 2 A, is strict as soon as p < g.

Another hierarchy emerges when we allow several thresholds instead of just one in the
case of roughly weighted games. We say that a simple game G belongs to the class By, k €
{1,2,3,...}, if there are k thresholds 0 < ¢1 < g2 < --- < g and any coalition with total
weight of players smaller than ¢; is losing, any coalition with total weight greater than gy
is winning . We also impose an additional condition that, if a coalition X has total weight
w(X) which satisfies ¢1 < w(X) < gx, then w(X) = ¢; for some i. All games of the class
By are roughly weighted. In fact, as we’ll prove in Section 4 almost all roughly weighted
games to this class: By is exactly the class of roughly weighted games with nonzero quota.
We will show that the Fano game [4] belongs to Bz but does not belong to B;. We prove
that B-hierarchy is strict, that is,

BicB & CB G-y

with the union of these classes being the class of all simple games.

Yet another way to capture more games is by making the threshold “thicker.” We here
will not use a point but rather an interval [a, b] for the threshold, a < b. That is, all coalitions
with total weight less than a will be losing and all coalitions whose total weight is greater
than b winning. This time—in contrast with the k limit of By—we do not care how many
different values weights of coalitions falling in [a,b] may take on. A good example of this
situation would be a faculty vote, where if neither side controls a 2/3 majority (calculated
in faculty members or their grant dollars), then the Dean would decide the outcome as he
wished. We can keep weights normalized so that the lower end of the interval is fixed at 1.
Then the right end of the interval o becomes a “resource” parameter. Formally, a simple
game G belongs to class C, if all coalitions in G with total weight less than 1 are losing
and every coalition whose total weight is greater than « is winning. We show that the
class of all simple games is split into a hierarchy of classes of games {Ca }ae[1,00) defined by
this parameter. We show that as « increases we get strictly greater descriptive power, i.e.,
strictly more games can be described, that is, if @ < 3, then C, € Cg. In this sense the
hierarchy is strict. This strict hierarchy result, and our strict hierarchy results for hierarchies
A and B, have very much the general flavor of hierarchy results found in computer science:
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more resources yield more power (whether computational power to accept languages as in a
deterministic or nondeterministic time hierarchy theorem, or as is the case here, description
flexibility to capture more games).

The strictness of the latter hierarchy was achieved because we allowed games with arbi-
trary (but finite) numbers of players. The situation will be different if we keep the number
of players n fixed. Then there is an interval [1,s(n)] such that all games with n players
belong to Cy,) and s(n) is minimal with this property. There will be also finitely many
numbers ¢ € [1, s(n)] such that the interval [1, ] represents more n-player games than any
interval [1,¢] with ¢’ < g. We call the set of such numbers the nth spectrum and denote it
Spec(n). We also call a game with n players critical if it belongs to C, with a € Spec(n)
but does not belong to any Cs with 3 < a. We calculate the spectrum for n < 7 and also
produce a set of critical games, one for each element of the spectrum. We also try to give a
reasonably tight upper bound for s(n).

All three of our hierarchies provide measures of how close a given game is to being a
simple weighted voting game. That is, they each quantify the nearness to being a simple
weighted voting game (e.g., hierarchies B and C quantify based on the extent and structure
of a “flexible tie-breaking” region). And the main theme and contribution of this paper
is that we prove for each of the three hierarchies that allowing more quantitative distance
from simple weighted voting games yields strictly more games, i.e., the hierarchies are proper
hierarchies.

2 Preliminaries

Definition 1. A simple game is a pair G = (P,W), where W is a subset of the power set
2F satisfying the monotonicity condition:

fXeW and X CY CP, thenY e W,
and W ¢ {0,2F} (nontriviality assumption).

Elements of the set W are called winning coalitions. We also define the set L = 2F \ W
and call elements of this set losing coalitions. A winning coalition is said to be minimal if
every its proper subset is a losing coalition. Due to monotonicity, every simple game is fully
determined by the set of its minimal winning coalitions. A player which does not belong to
any minimal winning coalitions is called dummy.

For X C P we will denote its complement P — X as X°.

Definition 2. A simple game is called proper if X € W implies that X¢ € L and is called
strong if X € L implies that X¢ € W. A simple game that is proper and strong is called a
constant-sum game.

The following definition is given as it has appeared in [4].

Definition 3. A simple game G = (P,W) is called roughly weighted if there exist non-

negative real numbers wy, ..., w, and a nonnegative real number q, not all equal to zero,
such that for X € 2 the condition Yiex Wi < q implies X € L and ), w; > q implies
X € W. We say that [q;w1,...,wy,] is a rough voting representation for G; the number q

is called the quota.

Example 1 (The Fano game). This important example first appeared in [10, Section 53.2.6].
Let P = [7] be identified with the set of seven points of the projective plane of order two,
called the Fano plane. Let us take the seven lines of this projective plane as minimal winning
coalitions:

{1,2,3}, {3,4,5}, {1,5,6}, {1,4,7}, {2,5,7}, {3,6,7}, {2,4,6}. (3)

261



We will denote them by Xi,..., Xy, respectively. This, as is easy to check, defines a
constant-sum game the Fano. As we will see slightly later, it has no rough voting represen-
tation. As we can see from the list of minimal winning coalitions they are all minorities,
yet symmetry makes all players equal in this example.

We remind the reader that a sequence of coalitions

T:(Xl,...,Xj;Yl,...,}/j) (4)
is a trading transform [9] if the coalitions X7, ..., X; can be converted into the coalitions
Yi,...,Y; by rearranging players. This can also be expressed as

Hi:ae X} ={i:ae€Y} for all @ € P.
We say that the length of 7 is j.

Definition 4. A trading transform (Xi,...,X;;Y1,...,Y;) with all coalitions X1,...,X;
winning and all coalitions Y1, ...,Y; losing is called a certificate of nonweightedness. This
certificate is said to be potent if the grand coalition P is among X1,...,X; and the empty
coalition is among Y1,...,Y;.

Elgot proved (using a different terminology) that the existence of a certificate of non-
weightedness implies that the game is not weighted and that every nonweighted game has
one. Taylor and Zwicker [9] showed that for a nonweighted game with n player this cer-
tificate can be found of length at most 22”; Gvozdeva and Slinko [4] lowered this bound to
(TL 4 1)2%n10g2 n.

Theorem 1 (Criterion of rough weightedness [4]). A simple game G with n players is
roughly weighted iff for no positive integer j < (n + 1)2%"10332" does there exist a potent
certificate of nonweightedness of length j.

In Example 1 the following eight winning coalitions X, ..., X7, P of the Fano game can
be transformed into the following eight losing coalitions: X¢,..., X%, 0. So the sequence
(X1,..., X7, P; XY, ..., X5,0) (5)

is a potent certificate of nonweightedness for this game. So the game is not roughly weighted,
thanks to Theorem 1.

Theorem 2 ([4]). The following games are roughly weighted:
e cvery game with 4 or less players,
e cvery strong or proper game with 5 or less players, and
e cvery constant sum game with 6 or less players.

Definition 5 ([9], p. 6). We say that a player p in a game is a dictator if p belongs to
every winning coalition and to no losing coalition. If all coalitions containing player p are
winning, this player is called a passer. A player p is called a vetoer if p is contained in the
intersection of all winning coalitions.

Proposition 1 ([4]). Suppose G is a simple game with n players. Then G is roughly
weighted if any one of the following three conditions holds:

(a) G has a passer.
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(b) G has a vetoer.
(¢) G has a losing coalition that consists of n — 1 players.

Due to Proposition 1(a) there is one trivial way to make any game roughly weighted.
This can be done by adding an additional player and making her a passer. Then we can
introduce rough weights by assigning weight 1 to the passer and weight 0 to any other player
and setting the quota equal to 0. Note, that if the original game is not roughly weighted,
then such rough representation is unique. In our view, adding a passer trivializes the game
but does not make it closer to a weighted majority game; this is why in definitions of our
hierarchies B and C we disallow thresholds to be equal 0.

As in [4] we would like to represent trading transforms algebraically. Let T'= {—1,0,1}
and let 7" =T x T x ---T (n times). With any pair (X,Y) of subsets X,Y € [n] we define

vxy =x(X)—x()eTm,

where x(X) and x(Y) are the characteristic vectors of subsets X and Y, respectively.

Let now G = (P, W) be a simple game. We will associate an algebraic object with G. For
any pair (X,Y), where X is winning and Y is losing, we put the pair in correspondence with
the vector vx y. The set of all such vectors we will denote I(G) and will call the ideal of the
game. Saying that (Xi,...,X;;Y7,...,Y;) is a certificate of nonweightedness is equivalent
to saying that the following vector sum of the ideal is 0: vx, y; +Vvx, v, + - +Vx,y; = 0.
An (-potent certificate (X1,..., X;, P%;Y1,...,Y;, 0 will be represented as

VX, Y1 T VX ye T VXY, +£-1=0,

where 1 is a vector whose entries are each 1.

3 The A-Hierarchy

This hierarchy of classes A, tries to capture the richness of the class of games that do
not have rough weights, and does so by introducing a parameter a € (0, %) As we al-
ready discussed, the larger this parameter the more power is given to some relatively small
coalitions. Our method of classification is based on the existence of potent certificates of

nonweightedness for such games [4].

Definition 6. Let g be a rational number. A game G belongs to the class Aq of A-hierarchy
if G possesses a potent certificate of nonweightedness

(Xl,...,Xm;Yl,...,Ym), (6)

with £ grand coalitions among X1, ..., X,, and £ empty coalitions among Y1, ...,Y,,, such
that ¢ = ¢/m. If « is irrational,we set A, = ﬂq<a A,y

It is easy to see that, if ¢ > %, then A, is empty. Indeed, suppose ¢ > % and A, is not
empty. Then there is a game GG with a certificate of nonweightedness

T:(Xl,...,X}c,Pm;Yl,...,Yk,@m) (7)

with m > k. This is not possible since m copies of P contain more elements than are
contained in the sets Y1, ...,Y, taken together and so (7) is not a trading transform. So
our hierarchy consists of a family of classes {Aa}qe(o, 1y- We would like to show that this
hierarchy is strict, that is, a smaller parameter captures more games.
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Proposition 2. If 0 < o < 8 < 3, then Ay 2 Ag.

Proof. Tt is sufficient to prove this statement when o and g are rational. Suppose that
we have a game G in Ag that possesses a certificate of length n, with k; grand coalitions
and 8 = k1/n1. Let o = ka/na. We can then represent these numbers as 8 = my/n and
a = ma/n, where n = lem (nq,n2). Since o < 3, we have ma < my. Since n = nih and
my = kph for some integer h, we can now combine h certificates for G to obtain one with
length n and m; grand coalitions. We reclassify the m; — mo grand coalitions into ordinary
winning coalitions, and we will get a certificate for G of length n with mo grand coalitions.
So G e A,. O

We say that a game G is critical for A, if it belongs to A, but does not belong to any
Ag with 8 > a.
Theorem 3. If0 < a < 3<%, then Ay 2 Ag.
Proof. First, we will construct a two-parameter family of simple games. For any integers

a>2and b>2let G = ([a®>+a+b+1],W) be a simple game for which a coalition X
is winning, exactly if |X| > a® + 1 or X contains a subset whose characteristic vector is a

cyclic permutation of (1,...,1,0,...,0).
—— ——
a+1 a?+b
Let Xi,...,Xs24404p41 be winning coalitions, whose characteristic vectors are cyclic
permutations of (1,...,1,0,...,0). Also let Y1,...,Y,2144p11 be losing coalitions, whose
—— ——
a+1 a?+b

characteristic vectors are cyclic permutations of

(1,...,1,0,1,...,1,0,1,...,1,0,...,1,...,1,0,0,1,0,...,0),
—— = = —— —
a a a a b—1
where there are a groups of symbols 1,...,1,0.
—

a
This game possesses the following potent certificate of nonweightedness

2

2
T = (le s »Xa2+a+b+1» PN Y, aYa2+a+b+1v 0” 7(1)' (8)

SoGe A .2, . Let us prove that G is critical for this class, that is, it does not belong to
2a2+b+1

any Ay for ¢’ > ¢. Note that the vectors v; = v, y; belong to the ideal of this game. Note

also that the sum of all coefficients of v; is v; - 1 = a — a® and that for any other vector

v € I(G) from the ideal of this game we have v -1 > a — a?.

Suppose G also has a potent certificate of nonweightedness

(Al,...,AS,Pt;Bl,...,BS,@t). (9)
with ¢’ = o5 > 2(1%2_%77;‘“ = ¢. The latter is equivalent to % > 2 Letu; =va, B, €

I(G), then (9) can be written as
u+u+---+us+1t-1=0.

Asu;-1 > a—a?, taking the dot product of both sides with 1 we get t(a?>+a+b+1) < s(a®—a),

a’+a+b+1

which is equivalent to *—3=>

< %, so we have reached a contradiction.

We will now show that any rational number between 0 and % is representable as %

,%) Then ¢ — 2p > 0 and it is

possible to choose a positive integer k such that k*p(q — 2p) — kq — 3 > 0. Take a = kp and
2

for some positive integers a > 2 and b > 2. Let % e (0

b= k*p(q — 2p) — kq — 1. Substituting these values we get T = %. O
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4 B-Hierarchy

The B-hierarchy generalizes the idea behind rough weightedness to allow more “points of
flexibility.”

Definition 7. A simple game G = (P,W) belongs to By if there exist real numbers 0 <
g1 < g2 < -+ < g, called thresholds, and a weight function w: P — RZ° such that

(a) if > ,cx w(i) > qr, then X is winning,

(b) if > ex w(i) < qu, then X is losing,

(¢) if a1 < Tiex w(0) < aus then w(X) = Xy w(i) € {a -}
Games from By, will be sometimes called k-rough.

The condition 0 < g1 in Definition 7 is essential. If we allow the first threshold ¢; be
zero, then every simple game can be represented as a 2-rough game. To do this we assign
weight 1 to the first player and 0 to everyone else. It is also worthwhile to note that adding
a passer does not change the class of the game, that is, a game G belongs to By, iff the
game G’ obtained from G by adding a passer belongs to By. This is because a passer can be
assigned a very large weight. Thus By consists of the roughly weighted simple games with
nonzero quota.

Example 2. We know that the Fano game is not roughly weighted. Let us assign weight
1 to every player of this game and select two thresholds ¢ = 3 and g2 = 4. Then each
coalition whose weight falls below the first threshold is in L, and each coalition whose total
weight exceeds the second threshold is in W. If a coalition has total weight of three or four,
i.e., its weight is equal to one of the thresholds, it can be either winning or losing. Thus the
Fano is a 2-rough game.

Theorem 4. For every natural number k € NT | there exists a game in By i1 \ By.

Proof. We will construct a simple game that is a (k 4+ 1)-rough but not k-rough. Let
Gr+1,n = ([n], W) be a simple game with n = 2k +4 players. We have k+ 2 types of players
with the ith type consisting of two elements 2¢ — 1 and 2i. The set of minimal winning
coalitions of this game is W™ = {{2i —1,2i} |i=1,2,...,k+2}.

If we assign weight 1 to every player, then Gyy1,,, is (k+ 1)-rough game with thresholds
G =2,q =3, ..., qgt1 = k+ 2. Let us assume that this game is j-rough for some
j < k+1, and let w be the new weight function and let ry,...,r; be the new thresholds. By
max{a, b} let us denote the element of the set {a,b}, that has the bigger weight (relative to
w). We know that w(max{2i —1,2i}) > r;/2 > 0 for each type i. Consider losing coalition
{max{1,2}, max{3,4}} with one player from the first type and one from the second type.
It has weight

w({max{1,2}, max{3,4}}) = w(max{1,2}) + w(max{3,4}) > %1 + %1 =7

Assume the worst-case scenario, i.e., that w({max{1, 2}, max{3,4}}) is equal to r;. Let us
then create a new losing coalition {max{1, 2}, max{3,4}, max{5,6}} by adding a new player
from the third type. It is easy to see that

r1 = w({max{1,2}, max{3,4}}) < w({max{1,2}, max{3, 4}, max{5,6}}).

So the weight of the new coalition is at least 2. Assume the worst-case scenario again, and
make the weight of {max{1,2}, max{3,4}, max{5,6}} be equal to ro. Proceed by adding a
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player from the next type to the losing coalition in this manner. At the jth step we will
have
r; =w({max{1,2},...,max{2j + 1,25 + 2}}) <
w({max{1,2},..., max{2j + 1,2j + 2}, max{2j + 3,25 + 4}}).
The coalition that was constructed last is losing since it does not contain two players

from the same type. So it cannot have weight greater then r;, which it does. This is a
contradiction. Thus Gj41,, is not j-rough for any j < k + 1. O

In all examples above the number of thresholds of a simple game is equal to the cardi-
nality of the largest losing coalition minus the cardinality of the smallest minimal winning
coalition plus one. This is not always the case.

Example 3. Let G = ([7],W) be a simple game with minimal winning coalitions
{1,2},{6,7},{3,4,5} and all coalitions of four players except {2,3,4,6}. This game is not
roughly weighted, because we have the following potent certificate of nonweightedness

T ={{1,2}7,{3,4,5}°, P;{2,3,5}%,{2, 3,4},
{2,3,6},{2,3,7},{1,3,4},{1,3,5},{1,4,5}° 0}.
Let us assign weight 0 to the third player and % to everyone else. Then the following hold:
e w({1,2}) =w({6,7}) = w({3,4,5}) =1 and w({2,3,4,6}) = 3.
o If X is winning coalition with four or more players, then w(X) > %
o If X is losing coalition with three players, then w(X) € {1,3}.
o If X is losing coalition with fewer than three players, then w(X) < 1.

Thus G is a 2-rough game with thresholds 1 and % Note that the third player has weight
zero but he is not a dummy.

5 (C-hierarchy

Let us consider another extension of the idea of rough weightedness. This time we will
use a threshold interval instead of a single threshold or (as in B-hierarchy) a collection of
threshold points. It is convenient to “normalize” the weights so that the left end of our
threshold interval is 1. We do not lose any generality by doing this.

Definition 8. We say that a simple game G = (P, W) is in the class Co, o € RZ1, if there
exists a weight function w: P — RZ% such that for X € 2¥ the condition w(X) > « implies
that X is winning, and w(X) < 1 implies X is losing. Games from C, will be sometimes
called rough, .

The roughly weighted games with nonzero quota form the class C;. From Example 2 we
can conclude that the Fano game is in C4 /3 (by giving each player weight 1/3). We also note
that adding or deleting a passer does not change the class of the game.

Definition 9. We say that a game G 1s critical for C,, if it belongs to C,, but does not belong
to any Cz with f < a.

It is clear that if o < 3, then C, C C3. However, we can show more.
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Proposition 3. Let ¢ and d be natural numbers with 1 < d < c. Then there is a simple
game G that is roughe,q, but that for each oo < c/d is not rough,,.

Proof. Define a game G = (P, W), where P = [cd]. Similarly to the proof of Theorem 4 we
have ¢ types of players with d players in each type and the different types do not intersect.
Winning coalitions are sets with more than ¢ + 1 players and also sets having at least d
players from the same type. By i; we will denote the ¢th player of jth type.

If we assign weight 1/d to each player, then the lightest winning coalition (d players
from the same type) has weight 1 and the heaviest losing coalition has weight ¢/d. Thus G
belongs to C. 4.

Let us show that G is not rough,, for any o < ¢/d. Suppose G is rough,, relative to a
weight function w. Let max{1;,...,d;} be the element of the set {1,,...,d;} that has the
biggest weight relative to w.

For any type j we know that w(max{1;,2;,...,d;}) > 4. The coalition

Y = {max{1;,...,d1},...,max{1.,...,d.}}

is losing by definition. Moreover, it has weight w(Y) > ¢/d. So ¢/d is the smallest number
that can be taken as « so that G is rough,,. O

Theorem 5. For each 1 < o < 3, it holds that C, C Cg.

Proof. We know that C, C Cg. If (3 is a rational number, then by Proposition 3 there exists
a game G that is roughg but is not rough,. If 3 is an irrational number, then choose a
rational number r, such that a < r < 3. By Proposition 3 there exists a game G that is
rough, but is not rough,. So C, € C,. All that remains to notice is that C, C Cg. O

Theorem 6. Let G be a simple game that is not roughly weighted and is critical for C,.
Suppose G also belongs to Ay for some 0 < g < % Then

1—gq

> .
a71—2q

Proof. Obviously we can assume that ¢ is rational. Since G is in Ay, it possesses a certificate
of nonweightedness 7 of the kind

T = (Xl,...,Xt,PS;Yl,...,}/t,@S).

Suppose we have a weight function w: P — RZ? instantiating G € C,. Then since w(X;) > 1
and w(P) > a, we have

w(Xy) + -+ w(Xy) + sw(P) >t + sa. (10)

On the other hand, w(Y;) < a and

wY1) + - +w(y) <ta. (11)
From these two inequalities we get t+sa < ta or a > # Since ¢ = 7 we obtain a > 117;2({1,
which proves the theorem. |

6 Degrees of Roughness of Games with Small Number
of Players

First, we will derive bounds on the largest number s(n) of the spectre Spec(n).
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Theorem 7. | %] < s(n) < 252

Proof. Let G be a game with n players. Without loss of generality we can assume that G
doesn’t contain passers. Moreover the maximal value of s(n) is achieved on games that are
not roughly weighted. By Proposition 1 the biggest losing coalition contains at most n — 2
players and the smallest winning coalition has at least two players. If we assign weight % to
every player, then G is in C(,_g)/2-

We can use a game similar to the one from Theorem 4 to prove the lower bound. Suppose
our game has n players. If n is odd, then one player will be a dummy. The remaining 2 L%J
players will be divided into [%| pairs: {1,2}, {2,3}, ..., {m — 1,m}, where m = |%].
These pairs are declared minimal winning coalitions. Given any weight function w we have
w(max{2i — 1,2i}) > 1 for each i. Then

w({max{1,2},...,max{m —1,m}) > %,

while this coalition is losing. So s(n) > m/2 which proves the lower bound. O

Now let us calculate the spectra for n < 6. By Theorem 2 all games with four players
are roughly weighted. Since we may assume that the game does not have passers we may
assume that the quota is nonzero. Hence we have Spec(4) = {1}.

Let G = ([n],W) be a simple game. The problem of finding the smallest « such that
G € C, is a linear programming question. Indeed, let W™ and L™2* be the set of minimal
winning coalitions and the set of maximal losing coalitions, respectively. We need to find
the minimum « such that the following system of linear inequalities is consistent:

w(X)>1 for X € Wmin,
w(Y) <a forY e L™

This is equivalent to the following optimization problem:

Minimize: wp1.
Subject to: > ,cyw; > 1land Y,y w; —wpy1 <05 X € WY € L™Me?,

Theorem 8. Spec(5) = {1,2,1,2,5}.

Proof. Let G be a critical game with five players. If G has a passer, then as was noted, the
passer can be deleted without changing the class of G, hence G € C;. If G has no passers
and does not belong to Cq, then it is not roughly weighted. By Theorem 2 each game that
is not roughly weighted is not strong (recall Definition 2) and is not proper. Thus we have
a winning coalition X such that X¢ is also winning and a losing coalition Y such that Y is
also losing.

By Proposition 1 we may assume that the cardinalities of both X and Y are 2. Without
loss of generality we assume that X = {1,2} and X¢ = {3,4,5}. Note that ¥ cannot be
contained in X ¢ as otherwise Y¢ contains X and is not losing. So without loss of generality
we assume that Y = {1,5},Y° = {2,3,4}.

We have two levels of as yet unclassified coalitions, which can be set either losing or
winning:

level 1:{1,3,4},{1,3,5},{1,4,5},{2,3,5},{2,4,5},
level 2: {1,3},{1,4},{2,5},{3,5}, {4,5}.

We wrote Maple code using the “LPSolve” command. First we choose losing coalitions
on level 1 and delete all subsets of them from level 2. We add every unclassified coalition

268



« | Minimal winning coalitions and maximal losing coalitions | Weight representation

9 wmin = {{1,2},{1,3,5},{1,4,5},{3,4,5}}, wy = 2wy = 5, w5 = 3,
8 Lmer — {{1,5},{1,3,4},{2,3,4},{2,3,5},{2,4,5}} wy =wy = 2

s W =1{{1,2},{2,5}, 1,3, 4}, {3,4,5}}, wy = ws = 2,wy = 7,

7 Lmae = {{1,3,5},{1,4,5},{2,3,4}} wy =wy = 2

; W = {{1,2},{1,4,5},{3,4,5}}, wy =wy = 3,

6 | Lmer = {{1,3,4},{1,3,5},{2.3,4},{2,3,5},{2,4,5}} w3 =wy = w5 = 2

5 W = {{1,2},{1,3},{1,4},{2,5}, 13,5}, {4,5}}, wy =ws = 3,

5 Lmaer = {{1,5},{2,3,4}} Wy = w3 =wy = 2

Table 1: Examples of critical simple games for every number of 5th spectrum

from level 1 to winning coalitions. After that we choose losing coalitions on level 2. We run
through all possible combinations of losing coalitions on both levels and solve the respective
linear programming problems.

The results of these calculations are displayed in Table 1. O

Theorem 9. The Gth spectrum Spec(6) is the set
{134567899101111121313131414151516161717171718}

airgaZaga6777755)?73)E7H3E7H7E3ﬁ7ﬁ3ﬁ7ﬁ’ﬁ7ﬁ7ﬁ3ﬁ7ﬁ’ﬁ7ﬁ
Proof. Is omitted due to lack of space. The code and the list of critical games are available
from the authors. O

7 Conclusion and Further Research

FEconomics has studied extensively weighted majority games. This class was previously
extended to the class of roughly weighted games [9, 4]. However, many games are not even
roughly weighted and some of these games are important both for theory and applications.
In this paper we introduce three hierarchies, each of which partitions the class of games
without rough weights according to some parameter that can be viewed as capturing some
resource - either a measure of our flexibility on the size and structure of the tie-breaking
region or allowing certain types of certificates of nonweightedness. It is important to look
for further connections between the classes of the three hierarchies, and we commend that
direction to the interested reader.

In this paper we studied only the C-spectrum here. Some interesting questons about
this spectrum still remain, especially the bounds for s(n) are of considerable interest. It is
interesting to study both the A-spectrum and B-spectrum as well.
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Optimal Partitions in Additively Separable
Hedonic Games!

Haris Aziz, Felix Brandt, and Hans Georg Seedig

Abstract

We conduct a computational analysis of partitions in additively separable hedonic
games that satisfy standard criteria of fairness and optimality. We show that com-
puting a partition with maximum egalitarian or utilitarian social welfare is NP-hard
in the strong sense whereas a Pareto optimal partition can be computed in polyno-
mial time when preferences are strict. Perhaps surprisingly, checking whether a given
partition is Pareto optimal is coNP-complete in the strong sense, even when prefer-
ences are symmetric and strict. We also show that checking whether there exists a
partition which is both Pareto optimal and envy-free is ¥5-complete. Furthermore,
checking whether there exists a partition which is both envy-free and Nash stable is
NP-complete when preferences are symmetric.

1 Introduction

Ever since the publication of von Neumann and Morgenstern’s Theory of Games and Eco-
nomic Behavior in 1944, coalitions have played a central role within game theory. The
crucial questions in coalitional game theory are which coalitions can be expected to form
and how the members of coalitions should divide the proceeds of their cooperation. Tradi-
tionally the focus has been on the latter issue, which led to the formulation and analysis of
concepts such as the core, the Shapley value, or the bargaining set. Which coalitions are
likely to form is commonly assumed to be settled exogenously, either by explicitly specifying
the coalition structure, a partition of the players in disjoint coalitions, or, implicitly, by as-
suming that larger coalitions can invariably guarantee better outcomes to its members than
smaller ones and that, as a consequence, the grand coalition of all players will eventually
form.

The two questions, however, are clearly interdependent: the individual players’ payoffs
depend on the coalitions that form just as much as the formation of coalitions depends on
how the payoffs are distributed.

Coalition formation games, as introduced by Dréze and Greenberg (1980), provide a
simple but versatile formal model that allows one to focus on coalition formation as such.
In many situations it is natural to assume that a player’s appreciation of a coalition structure
only depends on the coalition he is a member of and not on how the remaining players are
grouped. Initiated by Banerjee et al. (2001) and Bogomolnaia and Jackson (2002), much of
the work on coalition formation now concentrates on these so-called hedonic games.

The main focus in hedonic games has been on notions of stability for coalition structures
such as Nash stability, individual stability, contractual individual stability, or core stability
and characterizing conditions under which they are guaranteed to be non-empty (see, e.g.,
Bogomolnaia and Jackson, 2002; Burani and Zwicker, 2003). The most prominent examples
of hedonic games are two-sided matching games in which only coalitions of size two are
admissible (Roth and Sotomayor, 1990).

LA preliminary version of this work was invited for presentation in the session ‘Cooperative Games and
Combinatorial Optimization’ at the 24th European Conference on Operational Research (EURO 2010) in
Lisbon. This material is based on work supported by the Deutsche Forschungsgemeinschaft under grants BR-
2312/6-1 (within the European Science Foundation’s EUROCORES program LogICCC) and BR 2312/7-1.
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General coalition formation games have also received attention from the artificial intel-
ligence community, where the focus has generally been on computing partitions that give
rise to the greatest social welfare (see, e.g., Sandholm et al., 1999). The computational
complexity of hedonic games has been investigated with a focus on the complexity of com-
puting stable partitions for different models of hedonic games (Ballester, 2004; Dimitrov
et al., 2006; Cechlarovd, 2008). We refer to Hajdukova (2006) for a critical overview.

Among hedonic games, additively separable hedonic games (ASHGs) are a particularly
natural and succinct representation in which each player has a value for any other player
and the value of a coalition to a particular player is computed by simply adding his values
of the players in his coalition.

Additive separability satisfies a number of desirable axiomatic properties (Barbera et al.,
2004). ASHGs are the non-transferable utility generalization of graph games studied by Deng
and Papadimitriou (1994). Sung and Dimitrov (2010) showed that for ASHGs, checking
whether a core stable, strict-core stable, Nash stable, or individually stable partition exists
is NP-hard. Dimitrov et al. (2006) obtained positive algorithmic results for subclasses of
additively separable hedonic games in which each player divides other players into friends
and enemies. Branzei and Larson (2009) examined the tradeoff between stability and social
welfare in ASHGs.

Contribution In this paper, we analyze concepts from fair division in the context of
coalition formation games. We present the first systematic examination of the complexity
of computing and verifying optimal partitions of hedonic games, specifically ASHGs. We
examine various standard criteria from the social sciences: Pareto optimality, utilitarian
social welfare, egalitarian social welfare and envy-freeness (see, e.g., Moulin, 1988).

In Section 3, we show that computing a partition with maximum egalitarian social welfare
is NP-hard. Similarly, computing a partition with maximum utilitarian social welfare is NP-
hard in the strong sense even if preferences are symmetric and strict.

In Section 4, the complexity of Pareto optimality is studied. We prove that checking
whether a given partition is Pareto optimal is coNP-complete in the strong sense even for
strict and symmetric preferences. By contrast, we present a polynomial-time algorithm
for computing a Pareto optimal partition when preferences are strict. Thus, we identify a
natural problem in coalitional game theory where verifying a possible solution is presumably
harder than actually finding one.? Our computational hardness results imply computational
hardness of equivalent problems for hedonic coalition nets (Elkind and Wooldridge, 2009).

In Section 5, we consider complexity questions regarding envy-free partitions. We show
that checking whether there exists a partition which is both Pareto optimal and envy-free
is X8-complete. We present an example which exemplifies the tradeoff between satisfying
stability (such as Nash stability) and envy-freeness and use the example to prove that
checking whether there exists a partition which is both envy-free and Nash stable is NP-
complete even when preferences are symmetric.

Our computational hardness results imply computational hardness of equivalent prob-
lems for hedonic coalition nets (Elkind and Wooldridge, 2009).

2 Preliminaries

In this section, we provide the terminology and notation required for our results.

2This is also the case for an unrelated problem in social choice theory (Hudry, 2004).
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2.1 Hedonic games

A hedonic coalition formation game is a pair (N, P) where N is a set of players and P is a
preference profile which specifies for each player ¢ € N the preference relation =, a reflexive,
complete and transitive binary relation on set N; = {S C N |i € S}.

The statement S =; T means that ¢ strictly prefers S over T. Also S ~; T means that
i is indifferent between coalitions S and T'. A partition 7 is a partition of players N into
disjoint coalitions. By 7(i), we denote the coalition in 7 which includes player i.

A game (N, P) is separable if for any player i € N and any coalition S € A; and for any
player j not in S we have the following: SU{j} =; S if and only if {7, j} >; {i}; SU{j} <; S
if and only if {7, 5} <; {i}; and SU{j} ~; S if and only if {i,j} ~; {i}.

We consider utility-based models rather than purely ordinal models. In additively sepa-
rable preferences, a player i gets value v;(j) for player j being in the same coalition as i and
if 7 is in coalition S € N;, then i gets utility > jes\qiy vild)-

A game (N, P) is additively separable if for each player i € N, there is a utility function
v; : N — R such that v;(4) = 0 and for coalitions S,T € N;, S =; T if and only if
ZjES ’Ul(j) Z EjeT Ul(j)

A preference profile is symmetric if v;(j) = v;(i) for any two players ¢, € N and is
strict if v;(7) # 0 for all 4,5 € N such that 7 # j. We consider ASHGs (additively separable
hedonic games) in this paper. Unless mentioned otherwise, all our results are for ASHGs.
For any player 4, let F(i) = {j | vi(j) > 0} be the set of players which ¢ strictly likes.
Similarly, let F(i) = {j | vi(j) < 0} be the set of players which ¢ strictly dislikes.

2.2 Fair and optimal partitions

In this section, we formulate concepts from the social sciences especially the economics and
the fair division literature for the context of hedonic games. For a utility-based hedonic
game (N,P) and partition 7, we will denote the utility of player i € N by u,(i). The
different notions of fair or optimal partitions are defined as follows.?

1. The utilitarian social welfare of a partition is defined as the sum of individual utilities
of the players: wuy:(m) = Y,y Ur (). A mazimum utilitarian partition maximizes the
utilitarian social welfare.

2. The elitist social welfare is given by the utility of the player that is best off: ue(7) =
max{u, (i) | « € N}. A mazimum elitist partition maximizes the utilitarian social
welfare.

3. The egalitarian social welfare is given by the utility of the agent that is worst off:
Ueg(m) = min{u,(¢) | ¢ € N}. A mazimum egalitarian partition maximizes the egali-
tarian social welfare.

4. An  ordered wutility wvector associated with partition 7 is given by
(ur(p(1)),...,uz(p(n))) where p is a permutation of players such that
ur(p(i)) < ux(p(j)) where p(i) < p(j). Then a partition 7 with the mazimum
leximin social welfare is one which has lexicographically the greatest ordered utility
vector. We refer to 7 as a mazimum leximin partition.

5. A partition w of N is Pareto optimal if there exists no partition 7’ of N which Pareto
dominates , that is for all ¢« € N, 7'(¢) ZZ; w(i) and there exists at least one player
J € N such that j € N, 7'(j) =, n(j).

3 All welfare notions considered in this paper (utilitarian, elitist, egalitarian, and leximin) are based on
the interpersonal comparison of utilities. Whether this assumption can reasonably be made is debatable.
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6. Envy-freeness is a notion of fairness. In an envy-free partition, no player has an
incentive to replace another player.

For the sake of brevity, we will consider all the notions described above as optimality
criteria although envy-freeness is more concerned with fairness. We consider the following
computational problems with respect to the optimality criteria defined above.

OPTIMALITY: Given (N,P) and a partition 7w of N, is 7w optimal?
EXISTENCE: Does an optimal partition for a given (N, P) exist?
SEARCH: If an optimal partition for a given (N, P) exists, find one.

EXISTENCE is trivially true for all criteria of optimality concepts. By the definitions,
it follows that there exist partitions which satisfy maximum utilitarian social welfare, eli-
tist social welfare, egalitarian social welfare and leximin ordering respectively. The partition
consisting of the grand coalition and the partition of singletons satisfy envy-freeness. During
our computational analysis, we will assume familiarity of the reader with basic computa-
tional complexity classes. We recall that a problem is said to be NP-hard in the strong
sense if it remains so even when its numerical parameters are bounded by a polynomial in
the length of the input.

3 Complexity of maximizing social welfare

In this section, we examine the complexity of maximizing social welfare in ASHGs. Our
first result is the following one.

Theorem 1. Computing a mazximum utilitarian partition is NP-hard in the strong sense
even with symmetric and strict preferences.

Proof. We prove Theorem 1 by a reduction from the MAXCUT problem. Before defining
the MAXCUT problem, recall that a cut is a partition of the vertices of a graph into two
disjoint subsets. The cut-set of the cut is the set of edges whose end points are in different
subsets of the partition. In a weighted graph, the weight of the cut is the sum of the weights
of the edges in the cut-set. Then, MAXCUT is the following problem:

MaxCut

INSTANCE: An undirected weighted graph G = (V, E) with a weight function w : E — R™
and an integer k.

QUESTION: Does there exist a cut of weight at least k in G?

We present a polynomial-time reduction from MAXCUT to UTILSEARCH, the problem
of computing a maximum utilitarian partition. Consider an instance I of MAXCUT with
a connected undirected graph G = (V, E) and positive weights w(i, j) for each edge (4, j).
Let W = 3", ;yepw(i,j). We show that if there is there a polynomial-time algorithm for
computing a maximum utilitarian social welfare partition, then we have a polynomial-time
algorithm for MAXCuUT.

Consider the following method which in polynomial time reduces I to an instance I’
of UTILSEARCH. I’ consists of |V| + 2 players N = {mi,...,my|,s1,s2}. For any two
players m; and mj, vm,(m;) = v, (m;) = —w(i,j). For any player m; and player s;,
Um, (85) = vs; (my) = W. Also v, (s2) = vs,(51) = =W (|V] +1).

We first prove that partition 7* with maximum utilitarian social welfare u* consists
of exactly two coalitions with s; and s, in different coalitions. We do so by proving two
claims. The first claim is that every player m; is either in a coalition with s; or ss. Assume
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this is not true and there exists a partition 7 such that wu,.(7) = u* and m; is not in the
same coalition with s; or sp. Then, if m; joins 7(s1), uu(7w) increases at least by 2W
and it decreases by at most 2Zj€N w(t,j) < 2W. Therefore, u,(m) increases which is a
contradiction. The second claim is that s; and sy are in different coalitions in 7*. Assume
this is not true and there exists a partition 7 with utilitarian social welfare u* such that
s1 and sy are together in a coalition. Then the welfare of m can be increased by at least
2(|V] + 1)(W) = 2|V|W = 2W if sy breaks up and forms a singleton coalition. This is a
contradiction.

We are now ready to present the reduction. Assume there exists a polynomial-time
algorithm which computes a feasible maximum utilitarian social welfare partition 7. From
the two claims above, we can assume that partition 7 has two coalitions with s; and s
in different coalitions. Then, uy(m) = 2(X +>_,, or( (my) ~Vm (m;)) where X = —W +
(IV]+ )W > 2W if |V| > 2. We also know that Zmigw(mj) —Upm,; (m;)) < W. We can
obtain a cut (A, B) from m where A = {i | m; € nw(s1)} and B = {i | m; € 7w(s2)}.
Let the weight of the cut (A4,B) be ¢. We know that ¢ < ¢* where ¢* is the weight
of the maxcut for instance I. It is now shown that (A, B) is a maxcut if and only if
Uyt () = w*. Assume uy(m) = u* but (A, B) is a not a maxcut. In that case there
exists a maxcut (C, D) such that ZZECJED w(i,j) > ZleAJGBw(z 7). Therefore, there
exists a partition 7’ {s1U{m; | i € A}},{s2U{m; | i € B}}} where uuf(w) =

2(X + Zm gn(m,) vmi( i) > 2(X + Zmigw(m,-) —Up,, (m;)). This is a contradiction as
Uyt () = u*

Now assume that (A4, B) is a maxcut but wu,.(7) < w*. Then there exists another
partition 7 such that w.(7') = 2(X + > ., srs(m,) —Vm, (m;)) = u”. Therefore, the graph
cut corresponding to 7* has a bigger maxcut value than (A, B) which is a contradiction.

O

Computing a maximum elitist partition is much easier.

Proposition 1. There exists a polynomial-time algorithm to compute a mazximum elitist
partition.

Proof. Recall that for any player i, F'(i) = {j | vi(j) > 0}. Let f(i) = > ;cp(; vi(j)- Both
F(i) and f (i) can be computed in linear time. Let k& € N be the player such that f(k) > f(i)
for all i € N. Then m = {{{k} UF(k)}, N\ {{k} U F(k)}} is a partition which maximizes
the elitist social welfare. O

As a corollary, we can verify whether a partition 7 has maximum elitist social welfare
by computing a partition 7* with maximum elitist social welfare and comparing ue;(7) with
e (m*). Just like maximizing the utilitarian social welfare, maximizing the egalitarian social
welfare is hard:

Theorem 2. Computing a mazimum egalitarian partition is NP-hard in the strong sense.

Proof. We provide a polynomial-time reduction from the following NP-hard problem (Woeg-
inger, 1997):

MAXMINMACHINECOMPLETIONTIME

INSTANCE: A set of m identical machines M = {M,..., M}, a set of n independent
jobs J = {Jy,...,Jn} where job J; has processing time p;.

OUTPUT: Allot jobs to the machines such that the minimum processing time (without
machine idle times) of all machines is maximized.
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Let I be an instance of MAXMINMACHINECOMPLETIONTIME and let P = Y " | p;.
From I we construct an instance I’ of EGALSEARCH. The ASHG for instance I’ consists of
N={i| M; € M}U{s; | J; € J} and the preferences of the players are as follows: for all
i=1,...mandall j=1,...,nlet v;(s;) = p; and vy, (i) = P. Also, for 1 <i,i" <m,i # i’
let v;(i") = —(P+1) and for 1 < j,5" <n,j # j' let vy, (vs,,) = 0. Each player i corresponds
to machine M; and each player s; corresponds to job J;.

Let 7 be the partition which maximizes ucq(m). We show that players 1,...,m are in
separate coalitions and each player s; is in m(¢) for some 1 < ¢ < m. We do so by proving
two claims. The first claim is that for ¢, j € {1,...m} such that ¢ # j, we have that ¢ ¢ 7(j).
Assume there exist exactly two players ¢ and j for which this is not the case. Then we know
that u, (i) = —(P+1)+Zsjeﬂ(i) p;. Since Zsjeﬂ(i) pj < P, we know that u, (i) = u-(j) <0,
ur(a) > 0 for all @ € N\ {4,j} and thus uey(m) < 0. However, if i deviates and forms a
a singleton coalition in new partition 7', then u,/ (i) = 0 and u,/(j) > 0 and the utility of
other players has not decreased. Therefore, ucy(7’) > 0 which is a contradiction.

The second claim is that each player s; is in a coalition with a player 7. Assume this was
not the case so that there exists at least one such player s;. Since we already know that all
is are in separate coalitions, then ur(a) > 0 for all a € N \ {s;} and ueq4(7) = ux(s;) = 0.
Then s; can deviate and join 7(¢) for any 1 <14 < m to form a new partition n’. By that,
the utility of no player decreases and w./(s;) > 0. If this is done for all such s;, we have
Ueg(m") > 0 for the new partition 7" which is a contradiction.

A job allocation Alloc(r) corresponds to a partition 7w where s; is in m () if job J; is
assigned to M; for all j and i. Note that the utility ux(i) = >, cr)vi(s;) = 225 cn(i) Pi
of a player corresponds to the total completion time of all jobs assigned to M; according
to Alloc(w). Let 7* be a maximum egalitarian partition. Assume that there is another
partition 7’ and Alloc(n’) induces a strictly greater minimum completion time. We know
that wq«(s;) = uxv(sj) = P for all 1 < j <n and ux-(i) < P for all 1 < i < m. But then
from the assumption we have ueg(7') > uey(7*) which is a contradiction. O

Since a maximum leximin partition is also a maximum egalitarian partition, we have the
corollary that computing a partition with maximum leximin social welfare is NP-hard.

4 Complexity of Pareto optimality

We now consider the complexity of computing a Pareto optimal partition. The complexity
of Pareto optimality has already been considered in several settings such as house alloca-
tion (Abraham et al., 2005). Bouveret and Lang (2008) examined the complexity of Pareto
optimal allocations in resource allocation problems. We show that checking whether a par-
tition is Pareto optimal is hard even under severely restricted settings.

Theorem 3. The problem of checking whether a partition is Pareto optimal is coNP-
complete in the strong sense, even if preferences are symmetric and strict.

Proof. The reduction is from E3C (EXACT-3-COVER) to deciding whether a given
partition is Pareto dominated by another partition or not. We recall the E3C problem.

E3C (EXACT-3-COVER):

INSTANCE: A pair (R, S), where R = {1,...,r} is a set and S is a collection of subsets of
R such that |R| = 3m for some positive integer m and |s| = 3 for each s € S.

QUESTION: Is there a sub-collection S’ C S which is a partition of R?

It is known that E3C remains NP-complete even if each » € R occurs in at most three
members of S. Let (R, S) be an instance of E3C where R is a set and S is a collection of
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Figure 1: A graph representation of an ASHG derived from an instance of E3C. The (sym-
metric) utilities are given as edge weights. Some edges and labels are omitted: All edges
between any y° and 2" have weight 1 if » € s. All 2", 2" with r’ # r” are connected with

weight i R\l—l' All other edges missing in the complete undirected graph have weight —4.

subsets of R such that |R| = 3m for some positive integer m and |s| = 3 for each s € S.
(R, S) can be reduced to an instance ((IV,P), ), where (N, P) is an ASHG defined in the
following way. Let N = {w®,z°,y* | s € S} U{z" | »r € R}. The players preferences are
symmetric and strict and are defined as follows:

o Uys(2°) =vys(y®) =3 forallse S
o vys (W) = vys (W) = —1 for all 5,8 € S

o vys(2") =1ifr € sand vys(2") =—1if r ¢ s and
e v,-(2")=1/(|R| - 1) for any r,7’ € R
o v,(b) = —4 for any a,b € N and a # b for which v, (b) is not already defined,

The partition 7 in the instance ((N,P),n) is {{z®,y°}, {w®} | s € S}} U{{z" | r € R}}.
We see that the utilities of the players are as follows: u,(w®) = 0 for all s € S; u,(z®) =
ur(y®) =3 for all s € S; and u,(z") =1 for all r € R.

Assume that there exists S’ C S such that S’ is a partition of R. Then we prove that 7
is not Pareto optimal and there exists another partition 7’ of N which Pareto dominates .
We form another partition

' ={{z*,w} | s € STU{{y", 21, 25,2} | s € S'AdL g k€ sPU{{a”, y° ) {w’} | s € (S\S")}}.

In that case, u, (w®) = 3forall s € S'; uy (w®) = 0for all s € S\S"; ur(z*) = ur(y°) =3
forall s € S; and u,(2") = 14+2/(|R| —1) for all r € R. Whereas the utilities of no player in
7' decreases, the utility of some players in 7’ is more than in 7. Since 7’ Pareto dominates
m, 7 is not Pareto optimal.

We now show that if there exists no S’ C S such that S’ is a partition of R, then 7 is
Pareto optimal. We note that —4 is a sufficiently large negative valuation to ensure that
if v4(b) = wvp(a) = —4, then a,b € N cannot be in the same coalition in a Pareto optimal
partition. For the sake of contradiction, assume that 7 is not Pareto optimal and there
exists a partition 7’ which Pareto dominates m. We will see that if there exists a player
i € N such that u,s > u,, then there exists at least one 5 € N such that u, < u,. The
only players whose utility can increase are {z°* | s € S}, {w® | s € S} or {z" | » € R}.
We consider these player classes separately. If the utility of player x*® increases, it can only
increase from 3 to 6 so that z° is in the same coalition as y® and w®. However, this means
that y° gets a decreased utility. The utility of y° can increase or stay the same only if it
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forms a coalition with some 2"s. However in that case, to satisfy all z”s, there needs to exist
an S’ C S such that S’ is a partition of R.

Assume the utility of a player w?® for s € S increases. This is only possible if w? is in the
same coalition as x*. Clearly, the coalition formed is {w®, 2°} because coalition {w*, 2%, y*}
brings a utility of 2 to y®. In that case y® needs to form a coalition {y*, z;, z;, 2} where
s = {i,j, k}. If y® forms a coalition {y°, z;, 2;, 2 }, then all players y* for s € (S\{s}) need
to form coalitions of the form {ysl7 Zir, zjr, 2 } such that " = {7, j', k'}. Otherwise, their
utility of 3 decreases. This is only possible if there exists a set S’ C S of R such that S’ is
a partition of R.

Assume that there exists a partition 7’ that Pareto dominates 7 and utility of a player
Unpr (27) > ugp(2") for some r € R. This is only possible if each 2" forms the coalition of
the form {27, 2", 2" ,y*} where s = {r,r/,r”}. This can only happen if there exists a set
S’ C S of R such that S’ is a partition of R. O

The fact that checking whether a partition is Pareto optimal is coNP-complete has no
obvious implications on the complexity of computing a Pareto optimal partition. In fact
we present a polynomial-time algorithm to compute a partition which is Pareto optimal for
strict preferences.

Theorem 4. For strict preferences, a Pareto optimal partition can be computed in polyno-
mial time.

Proof. We first describe the algorithm. Set RemainingPlayers to IV and set ¢ to 1. Take any
player [; € RemainingPlayers and form a coalition S; in which players j € RemainingPlayers
such that vy, (j) > 0 are added. Player I; will be called the leader of coalition S;. Remove S;
from RemainingPlayers. Increment ¢ by 1 and repeat until RemainingPlayers = (). Return
{51,...,8m}.

We now prove the correctness of the algorithm via induction on the number of coalitions
formed. The induction hypothesis is: Consider the kth first formed coalitions Si, ..., Sk.
Assume, there exists a partition ©’ # w, such that ©’ Pareto dominates 7. Then Sq,...,S) €
7', Less formally and in other words, the hypothesis can be stated as follows: Assume that

the first k coalitions S1,. .., Sk have formed. Then neither of the following can happen:

1. Some players from Sy, ..., S move out of their respective coalitions and cause a Pareto
improvement.
2. Some players from N\Uie{l)m’k} S; mowve to players in coalitions S1, ..., Sk and cause

a Pareto improvement.

Base case: Consider the coalition S;. Then [, the leader of S has no incentive to leave.
If he leaves with a subset of players in S7, he can only become less happy. Other players
from S; cannot leave S; because their leaving makes at least one player less happy. The
only possibility left is if Sy joins B C (N \ S7) to cause a Pareto improvement. We know
that this is not possible as player I; would be worse off. Similarly, no player j can move
from N\ S; and cause a Pareto improvement because l; becomes worse off.
Induction step: Assume that the hypothesis is true. Then we prove that the same holds
for the formed coalitions S = Si,..., Sk, Sk+1. By the hypothesis, we know that player
cannot leave coalitions Si,...,S; and cause a Pareto improvement and since preferences
are strict, no player can move from N \ Uie{l,...,k} S; move to coalitions in Sq,..., S, and
cause a Pareto improvement as at least one player in Sy dislike him.

Now consider Siy1. The leader of Si41 is lx4+1. We first show that I cannot cause
a Pareto improvement by moving to a coalition outside of Siy1. This is clear because I 1
can only lose utility when he leaves coalition Sjy; with a subset of or all of the players.
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Similarly, other players in Siy1 cannot move out of Si41 without decreasing the payoff of
some player in Sk41. Similarly, since the preferences are strict, no player can move from
N\ Uieq1,.. k413 Si and cause a Pareto improvement. O

A standard criticism of Pareto optimality is that it can lead to inherently unfair allo-
cations. To address this criticism, the algorithm can be modified to obtain less lopsided
partitions. Whenever an arbitrary player is selected to become the ‘leader’ among the re-
maining players, choose a player that does not get extremely high elitist social welfare among
the remaining players. Nevertheless, even this modified algorithm may output an partition
that fails to be individually rational.*

Another natural algorithmic question is to check whether it is possible for all players
to attain their maximum possible utility at the same time. We observe that this problem
can be solved in polynomial time for any separable game. We will omit the details of the
algorithm but the general idea behind the algorithm is to build up coalitions and ensure
that a player ¢ and F'(i), all the player ¢ likes are in the same coalition. While ensuring this,
if there is a player j and a player ;' € E(j) (disliked by 7), then return ‘no.’

5 Complexity of envy-freeness

Envy-freeness is a well-sought criterion in resource allocation, especially cake cutting.
Lipton et al. (2004) proposed envy-minimization in different ways and examined the com-
plexity of minimizing envy in resource allocation settings. Bogomolnaia and Jackson (2002)
mentioned envy-freeness in hedonic games but focused on stability in hedonic games. We
already know that envy-freeness can be easily achieved by the partition of singletons.’?
Therefore, in conjunction with envy-freeness, we seek to satisfy other properties such as
stability or Pareto optimality. A partition is Nash stable is there is no incentive for a player
to be deviate to another (possibly empty) coalition. For symmetric ASHGs, it is known
that Nash stable partitions always exists and they correspond to partitions for which the
utilitarian social welfare is a local optimum (see, e.g., Bogomolnaia and Jackson, 2002).
We now show that for symmetric ASHGs, there may not exist any partition which is both
envy-free and Nash stable.

Example 1. Consider an ASHG (NN, P) where N = {1,2,3} and P is defined as follows:
v1(2) = v2(1) = 3, v1(3) = v3(1) = 3 and v2(3) = v3(2) = —4. Then there exists no partition
which is both envy-free and Nash stable.

We use the game in Example 1 as a gadget to prove the following.%

Theorem 5. For symmetric preferences, checking whether there exists a partition which is
both envy-free and Nash stable is NP-complete in the strong sense.

Proof. The problem is clearly in NP since envy-freeness and Nash stability can be verified
in polynomial time. We reduce the problem from E3C. Let (R, S) be an instance of E3C
where R is a set and S is a collection of subsets of R such that |R| = 3m for some positive
integer m and |s| = 3 for each s € S. (R,S) can be reduced to an instance (N,P) where
(N,P) is an ASHG defined in the following way. Let N = {y® | s € S}U{z], 25, 2% | r € R}.
We set all preferences as symmetric. The players preferences are as follows:

41t can be shown that, for general preferences, computing a partition that is Pareto optimal and individ-
ually rational at the same time is weakly NP-hard.

5The partition of singletons also satisfies individual rationality.

6Example 1 and the proof of Theorem 5 also apply to the combination of envy-freeness and individual
stability and to that of envy-freeness and contractual individual stability where individual stability and
contractual individual stability are variants of Nash stability (Bogomolnaia and Jackson, 2002).
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o Forall 7 € R, v.r(25) = vop(2]) = 3, vop(25) = 3 and vp(25) = vy (25) = —4.
o For all s = {i,j,k} € 8, vy (=) = v (o) = .4 (=) = e (1) = 030 (21) = v () =
1.

e For all a,b € N for which valuations have not been defined, v, (b) = vp(a) = —4

We note that —4 is a sufficiently large negative valuation to ensure that if v, (b) = vp(a) =
—4, then a and b will get negative utility if they are in the same coalition. We show that
there exists an envy-free and Nash stable partition for (N, P) if and only if (R, S) is a ‘yes’
instance of E3C.

Assume that there exists S’ C S such that S’ is a partition of R. Then there exists a
partition m = {{y*, 2%, 2], 2%} | s = {i,7,k} € STU{{z5}, {25} | r € Ry U {{s} | s € S\ S}
It is easy to see that partition 7 is Nash stable and envy-free. Players 27 and z5 both had
an incentive to be with each other when they are singletons. However, each 2] now gets
utility 3 by being in a coalition with 2!, 2" and y* where s = {r,7’,7"} € S. Therefore
27 has no incentive to be with 2§ and 25 has no incentive to join {z’l”/, z{/, z{”, y°} because
Var (=) = vzg(zf”) = v,7(y®) = —4. Similarly, no player is envious of another player.

Assume that there exists no partition S’ C S of R such that S’ is a partition of R. Then,
there exists at least one r € R such that 2! is not in the coalition of the form {27, z{/, z{”, y°}
where s = {r,7’,r""} € S. Then the only individually rational coalitions which 2] can form
are the following {27}, {27, 25}, {27, 25} or {27, 27"} where r,7' € s for some s € S. In the
first case, z] wants to deviate to {z5}. In the second case, 2} is envious and wants to replace
z5. In the third case, 2§ is envious and wants to replace z5. In the fourth case, z3 is envious
and wants to replace z{'. Therefore, there exists no partition which is both Nash stable and
envy-free. O

While the existence of a Pareto optimal partition and an envy-free partition is guaran-
teed, we show that checking whether there exists a partition which is both envy-free and
Pareto optimal is hard (Corollary 1). To prove the result, we first define the resource allo-
cation setting. A resource allocation problem is a tuple (I, X, w) where I is a set of players
(agents), X is the set of indivisible objects and w : I x X — (R) is the weight function. A
resource allocation a : I — 2% is such that for all i and j # i, a(i) Na(j) = 0. A resource
allocation a dominate a if and only if 1) for all a(i) =; a'(i) and 2) there exists ¢ such
that a(é) 7Z; a’(#). A resource allocation is Pareto optimal if it is not dominated by another
resource allocation.

Theorem 6. (Theorem 2, de Keijzer et al. (2009)) The problem 3-EEF-ADD of checking
the existence of an envy-free and Pareto optimal resource allocation is 35 -complete.

We can use the result from de Keijzer et al. (2009) to prove the following.

Corollary 1. Checking whether there exists a partition which is both Pareto optimal and
envy-free is Xb-complete.

Proof. The problem has a yes instance if there exists an envy-free partition that Pareto
dominates every other partition. Therefore the problem is in the complexity class NPNY =
Y5, We now prove that the problem is ¥8-hard. We provide a polynomial-time reduction 3-
EEF-ADD to the problem of checking whether there exists a partition which is both Pareto
optimal and envy-free.

Consider an instance (I,X,w) of a resource allocation problem. Let W =
Zz‘el,xjeX |w(i,z;)|. The instance (I, X,w) can be reduced to an instance of an ASHG
G where N = I U X and
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e Forallic I, z; € X, vi(z;) = w(i,z;) and vy, (i) = 0.
e For all xj, 2y, va, (25) = Vg, (z5) = 0.
e Foralli,j €I, v;(j) =v;(3) =-W|[TUX]|.

It is clear that for any Pareto optimal partition 7, there exist no 7,5 € I C N such that
1 # j and j € w(i). Assume that this were not the case and there exist ¢,j € I C N such
that ¢ # j and j € m(¢). Then i and j both get negative value because Zker(i) vi(k) =
Dhe(rngy vilk) =W < 0 and 32, ooy vi (k) = Ppemn iy vilk) =W < 0. Then i
and j can be separated to form singletons to get another partition 7/, where the value of
every other player k € (N \ {i,j}) gets the same value while ¢ and j get at least zero value.
Therefore there is a one-to-one correspondence between any such partition 7 and allocation
a where a(i) = 7(i) \ {i}. It now easy to see that 7 is Pareto optimal and envy-free in G if
and only if a is a Pareto optimal and envy-free allocation. O

The results of this section show that, even though envy-freeness can be trivially satisfied
on its own, it becomes much more delicate when considered in conjunction with other
desirable properties.

6 Conclusions

In this paper, we studied the complexity of partitions in additively separable hedonic games
that satisfy standard criteria of fairness and optimality. We showed that computing a
partition with maximum egalitarian or utilitarian social welfare is NP-hard in the strong
sense whereas a Pareto optimal partition can be computed in polynomial time when pref-
erences are strict. Interestingly, checking whether a given partition is Pareto optimal is
coNP-complete even in the restricted setting of strict and symmetric preferences. We also
showed that checking the existence of partition which satisfies not only envy-freeness but an
additional property like Nash stability or Pareto optimality is computationally hard. The
complexity of computing a Pareto optimal partition for ASHGs with general preferences
is still open. Since the grand coalition has special significance in coalitional game theory,
it would be interesting to study the complexity of checking whether the grand coalition is
Pareto optimal. Other directions for future research include approximation algorithms to
compute maximum utilitarian or egalitarian social welfare for different representations of
hedonic games.
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Fractional Solutions for NTU-Games

Péter Biré' and Tamaés Fleiner?

Abstract

In this paper we survey some applications of Scarf’s Lemma. First, we introduce the
notion of fractional core for NTU-games, which is always nonempty by the Lemma.
Stable allocation is a general solution concept for games where both the players and
their possible cooperations can have capacities. We show that the problem of finding
a stable allocation, given a finitely generated NTU-game with capacities, is always
solvable by a variant of Scarf’s Lemma. Finally, we describe the interpretation of
these results for matching games.

1 Introduction

Complex social and economic situations can be described as games where the players may
cooperate with each other. Most studies in cooperative game theory focus on the issue of
how the participants form disjoint coalitions, and sometimes also on the way the members
of coalitions share the utilities of their cooperations among themselves (in case of games
with transferable utility). However, in reality, an agent in the market (or any individual in
some social situation) may be involved in more than one cooperation at a time, moreover,
a cooperation may be performed with different intensities. For instance, an employer can
have several employees and their working hours can be different (but within some reasonable
limits).

Scarf [20] proved that every balanced NTU-game (i.e, cooperative game with non-
transferable utilities) has a nonempty core. His theorem was based on a lemma, which
became known as Scarf’s Lemma, as its importance has been recognised for its own right.

In this paper, we give a new interpretation of the fractional solutions which are obtained
by the Scarf algorithm for different settings. First we consider the original setting of the
Lemma for finitely generated NTU-games, and we describe the meaning of the output in
terms of fractional core. We show the correspondence between this notion and the concept
of fractional stable matchings for hypergraphs. We conclude Section 2 by explaining how
the normality of a hypergraph implies the nonemptiness of the core for the corresponding
NTU-games. In Section 3, we define the stable allocation problem for hypergraphs, which
corresponds to the problem of finding a fractional core for NTU-games where the players
can be involved in more than one coalition and the joint activities can be performed at
different intensity levels (up to some capacity constrains). We show that a variant of the
Scarf Lemma implies the existence of the latter solution as well. In Section 4, we apply
these results for matching games and we derive some well-known theorems in this context.
Finally, we present some important open problems and new research directions.

2 Fractional core - fractional stable matchings

In this section, first we describe Scarf’s Lemma and we give a new interpretation of the
fractional results obtained by the Lemma.

ISupported by EPSRC grant EP/E011993/1 and by OTKA grant K69027.
2Supported by OTKA grant K69027.
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2.1 Definitions, preliminaries

We recall the definition of n-person games with nontransferable utility (NTU-game for short).

Definition 1. An NTU-game is given by a pair (N, V), where N = {1,2,...,n} is the set
of players and V is a mapping of a set of feasible utility vectors, a subset V(S) of RY to
each coalition of players, S C N, such that V(0) =0, and for all S C N, S # (:

a) V(S) is a closed subset of RS
b) V(S) is comprehensive, i.e. if uS € V(S) and @° < u® then @° € V(9)

¢) The set of vectors in V(S) in which each player in S receives no less than the mazimum
that he can obtain by himself is a nonempty, bounded set.

One of the most important solution concepts is the core.

Definition 2. A utility vector u’¥ € V(N) is in the core of the game, if there exists no
coalition S C N with a feasible utility vector W € V(S) such that ulN < @5 for every player
1 € S. Such a coalition is called blocking coalition.

An NTU-game (N, V) is superadditive if V(S) x V(T) C V(SUT) for every pair of
disjoint coalitions S and T. In what follows, we restrict our attention to superadditive
games.

Partitioning games are special superadditive games. Given a set of basic coalitions
B C 2V, that contain all singletons (i.e. every single player has the right not to cooperate
with the others), a partitioning game (N, V,B) is defined as follows: if II5(.S) denotes the
set of partitions of S into basic coalitions, then V' (S) can be generated as:

V(S) = {u® € R|3n = {B1, Ba,..., By} € I5(S) : u® € V(By) x V(Bg) x --- x V(By)}

This means that u° is a feasible utility vector of S if there exist a partition 7 of S into
basic coalitions such that each utility vector u°|p, can be obtained as a feasible utility vector
by basic coalition B; in 7.

Given an NTU-game (N, V), let U(S) be the set of Pareto optimal utility vectors of the
coalition S, i.e. u¥ € U(S) if there exists no @° € V(9), where u® # @9 and u® < @°.

A utility vector v € V(S) is separable if there exist a proper partition m of S into
subcoalitions S, Sa, ..., Sy such that u®|s, is in V(S;) for every S; € m. A utility vector
that is non-separable, Pareto-optimal and in which each player receives no less than the
maximum that he can obtain by himself is called an efficient vector. A coalition S is essential
if V(S) contains an efficient utility vector. In other words, a coalition S is essential, if its
members can obtain an efficient utility vector that is not achievable independently by its
subcoalitions. The set of essential coalitions is denoted by E(N, V).

We say that a coalition S is not relevant if for every utility vector u® € V/(S) there exists
a proper subcoalition 7' C S such that u|p is in V(T). The set of relevant coalitions is
denoted by R(N,V). The idea behind this notion is that if a non-relevant coalition S is
blocking with a utility vector u®, then one of its subcoalitions, say T}, must be also blocking
with utility vector u™ = u®|7,. Moreover, if T} is not relevant or u’ is separable, then we
can find another coalition T C T1, such that u”® = u”'|7, = u”|z,, an so on. Continuing
this argument, it is clear that there must be a relevant coalition 7; C S, that is blocking

with a non-separable vector ¢ = u”|z,. This observation implies the following Proposition:

Proposition 1. A utility vector u™N € V(N) is in the core if and only if it is not blocked by
any relevant coalition with an efficient utility vector.
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Obviously, if a coalition is not essential, then it cannot be relevant either. In a par-
titioning game, the set of essential coalitions must be a subset of the basic coalitions by
definition.

Proposition 2. For every partitioning game (N,V,B), R(N,V,B) C E(N,V,B) C B holds.

Scarf [20] observed that the previously introduced notions are purely ordinal in character:
they are invariant under a continuous monotonic transformation of the utility function of
any individual. Hence, without loss of generality, we may assume that U = {0} for every
singleton, and all the efficient utility vectors are nonnegative. Moreover, the discussion can
be carried out on an abstract level with the outcomes for each individual represented by
arbitrary ordered sets, as we describe this in detail below.

Suppose that in order to obtain a particular non-separable vector u** in U(S), the
members of S have to perform a joint activity, say a®*. Let A° denote the set of activities
that yield efficient utility vectors in U(S). The preference of a player over the possible
activities in which he can be involved is determined by the utilities that he obtains in these
activities. Formally, we suppose that a>F <; a7 «— ufk < u?’l for any pair of activities
a®* and a”!, where i 