
Fair rent division on a budget revisited

Stéphane Airiau, Hugo Gilbert, Umberto Grandi,
Jérôme Lang, and Anaëlle Wilczynski

Abstract

Rent division consists in simultaneously computing an allocation of rooms to agents
and a payment, starting from an individual valuation of each room by each agent.
When agents have budget limits, envy-free solutions do not necessarily exist. We
propose two solutions to overcome this problem. In the first one, we relax envy-
freeness to account for budget disparities. In the second one, we allow fractional
allocations, in which agents may change rooms during the duration of the lease.

1 Introduction

A set of n agents agree to pay collectively the rent of a flat that contains n rooms. Rooms
are not alike: an agent prefers some rooms to others. We assume preferences are modeled by
valuations representing the maximum amount that a given agent is willing to pay for a given
room. How should we assign rooms to agents and how should the rent be divided? This is
the standard rent division problem. It is known that, provided that the valuations given to
the different rooms by a given agent sum up to the rent, there always exists an allocation
that is individually rational (no agent should pay more for a room than her maximum
payment for that room), envy-free (no agent would prefer the allocation to another agent
– room and payment – to their own), and that maximises both utilitarian and egalitarian
social welfare [11]. This solution is implemented in the Spliddit platform [12] and is its most
popular application.

The standard problem is often not realistic, because agents usually have a budget, that
is, a maximum amount of money they can afford to pay. Searching for individually rational
envy-free solutions to rent division with individual budgets is nontrivial [18] and may result
in a failure to meet both conditions, as shown in the following example.

Example 1. Two agents whose valuations are shown below. The rent for the flat is 1000.

room r1 room r2 budget
agent 1 800 400 600
agent 2 800 400 500

If r2 is assigned to 1, and r1 to 2, then individual rationality implies that 1 pays at
most 400, therefore 2 has to pay at least 600, which exceeds her budget. Thus r1 must be
assigned to 1, and r2 to 2. Because of her budget constraint, agent 1 cannot pay more than
600. Because of individual rationality, 2 cannot pay more than 400 for r2; so, to reach the
total rent of 1000, 1 must pay 600 and 2 must pay 400. Assuming utilities are quasi-linear,
1’s utility is 800 − 600 = 200 (her valuation for r1 minus her payment), and 2’s utility is
400 − 400 = 0. However, the utility 2 would enjoy from 1’s share is 800 − 600 = 200 > 0,
and hence 2 envies 1.

Example 1 shows that we cannot simultaneously satisfy individual rationality, budget
limits, and envy-freeness.1 Should we conclude that the agents should give up renting the
flat and look for another one? We believe not, and propose two solutions:

1A similar example can be constructed even if, for each agent, the sum of all valuations is equal to the
rent.

1

1. Allocate r1 to 1 with payment 600 and r2 to 2 with payment 400. The allocation is
individually rational and respects individual budgets. It is not envy-free in the classical
sense, but we may argue that 2’s envy towards 1 is not justified: if 2 was allocated r1 with
payment 600, she would not be able to pay. Therefore, this allocation satisfies a weakening
of envy-freeness, that we call budget-friendly envy-freeness (B-EF).

2. Allocate r1 to 1 and r2 to 2 for the first half of the year and then swap the rooms for the
second half, asking a payment of 500 to each agent. This fractional allocation is envy-free
(provided preferences do not depend on time), is individually rational, and respect budgets.

We explore these two ways of enlarging the set of fair allocations: budget-friendly envy-
freeness and fractional allocations. After discussing related work, we present the basic
definitions in Section 3. Section 4 defines B-EF, and shows algorithms to find a B-EF
solution if either payments or the allocation is fixed. Section 5 turns to fractional envy-free
allocations, which can be computed in polynomial time when they exist, and considers the
temporal implementation of fractional allocations, with the aim to minimise the number of
times agents have to change room. Last, we experimentally show in Section 6 that relaxing
EF to B-EF and considering fractional allocations make it possible to enlarge significantly
the set of instances for which a fair solution to a rent division problem exists.

2 Related Work

Rent division The rent division problem was first studied in the economics literature
and more recently became the most used application on the Spliddit webpage. Initially,
Spliddit implemented an algorithm by Abdulkadiroğlu et al. [2], which was updated based
on the work of Gal et al. [11], who provided a linear program that finds a solution that both
maximises the utility of the worst-off agent and minimises the gap between the best and the
worst-off agent. For a unifying treatment of contributions in rent division in economics and
computer science we refer to recent work by Velez [20].

Envy-freeness with budgets Our work takes its roots in the contribution of Procaccia
et al. [18], who developed a polynomial algorithm to compute the maximin envy-free solution
for rent division under budget. In the presence of individual budgets, the algorithm of Gal
et al. [11] cannot be used as the existence of payments making any efficient allocation of
rooms envy-free is not guaranteed. Our paper tackles the problem left open by Procaccia
et al. [18] of what solution to propose when no envy-free solution exists. To the best of
our knowledge the work of Velez [22] is the only other paper considering budgets. The
solution proposed is to lift the assumption of quasi-linearity of preferences and ask agents
to report their marginal disutility for exceeding their budget. Velez [21] investigates the
incentive-compatibility of such mechanisms. Our notion of budget-friendly envy-freeness
draws inspiration from work on envy-freeness in fair division with budgeted bidders [3, 4,
14, 15], and is related (in spirit) to justified envy-freeness in two-sided matching [1].

Randomised matching and fair division Allowing randomised solutions is a thor-
oughly studied idea in fair division and matching problems [6, 16]. Indeed, allowing more
expressive solutions through, e.g., time sharing mechanisms, makes it possible to increase
fairness guarantees and to bypass impossibility results [5, 7]. Randomised solutions for
the rent division problem (without budgets) have been already investigated by Dufton and
Larson [9], who studied to which extent randomised mechanisms can be strategy-proof
and provide envy-freeness guarantees once a deterministic solution is sampled. Technically
speaking, a fractional allocation and a randomized allocation are identical objects, but their

2

interpretations differ. Also, our focus is not on strategyproofness but on envy-freeness: we
determine if an envy-free fractional solution exists when agents have budgets and we seek
for an implementation of such a solution that minimises the number of room swaps.

3 The Model

In this section, we present the model of rent division with individual budgets, and the
properties of individual rationality and envy-freeness that are the focus of this paper.

3.1 Basic definitions

We consider a set R of n rooms that need to be allocated to a set A of n agents. Each agent
i ∈ A has a valuation vij ∈ R+ over each room j ∈ R, and L is the total rent that needs
to be paid to secure the rooms. Note that differently than previous work we do not assume
that

∑
j vij = L. A rent division problem is a tuple 〈n, V, L〉 where V = (vij)i∈A,j∈R.

A solution to a rent division problem consists of an assignment σ : A→R and a payment
vector p : A→R, such that

∑
i pi = L. Note that payments can possibly be negative. An

assignment σ is efficient if
∑
i viσ(i) is maximal over all possible allocations. Now we add a

budget bi ∈ R+ for each agent i. A solution is affordable if pi ≤ bi for all i ∈ A. Without
loss of generality we assume that

∑
i bi ≥ L (the agents can afford the total rent). A rent

division problem with individual budgets is a tuple 〈n, V, L, b〉, where b = (b1, . . . , bn).

3.2 Envy-freeness

In line with previous work, we assume that agents have quasi-linear utilities, and say that
a solution (σ, p) is envy-free (EF) if no agent can increase her utility by exchanging her
assigned room and payment with another agent: (σ, p) is EF if viσ(i) − pi ≥ viσ(j) − pj for
all agents i, j. While a rent division problem with unlimited budgets always admits an EF
solution [19], this is not true in our setting, as shown by the following example.

Example 2. Consider two rooms r1 and r2, and two agents with budget 500 each. Both
agents value r1 at 600 and r2 at 400. The total rent is 1000, hence each agent has to pay
500, and the agent who gets r2 envies the agent who gets r1.

3.3 Individual rationality

A solution (σ, p) is individually rational (IR) if for all agents i we have that viσ(i) − pi ≥ 0.
Under our assumptions EF does not imply IR, as can be seen in the following example.

Example 3. Consider the following 2-agent rent division problem where L = 1000:

room r1 room r2 budget
agent 1 600 100 700
agent 2 100 300 300

Let σ assign r1 to 1 paying 700 and r2 to 2 paying 300. (σ, p) is not IR, since the utility
of 1 is -100, but it is EF: 2 (resp. 1) would have utility -600 (resp. -200) if she received r1

and pay 700 (resp. received r2 and pay 300), which is less than their current utility.

IR solutions to a rent division problem under budget can be found in polynomial time
by solving a matching problem.

3

Proposition 1. We can determine if there exists an IR and affordable allocation in poly-
nomial time.

Proof sketch. Consider the bipartite graph ((A,R), E). Add arcs ea,r ∈ E between each
vertex a ∈ A and r ∈ R with weight min{ba, va,r}. This weight is the maximal price that
agent a can pay for room r in an IR affordable allocation. It is sufficient to test if the
matching of maximal weight on ((A,R), E) has total payoff greater than L, otherwise no
individually rational and affordable allocation exists.

4 Budget-Friendly Envy-Freeness

When individual payments are bounded by a budget, the notion of envy can be restricted
to rooms that are affordable to an agent, obtaining a natural relaxation of envy-freeness.

Definition 1. A solution (σ, p) is budget-friendly envy-free (B-EF) if for all agents i we
have that:

viσ(i) − pi ≥ viσ(j) − pj for all agents j ∈ A s.t. pj ≤ bi.

If for agents i, j ∈ A, we have that viσ(i) − pi < viσ(j) − pj and pj ≤ bi, we will say that
agent i is B-envious of agent j.

Example 4. Consider a two-agent rent division problem with rent L = 800. The individual
valuations and budgets are given in the following table:

room r1 room r2 budget
agent 1 500 200 500
agent 2 700 300 300

Let σ allocate r1 to agent 1 and r2 to agent 2, and let p1 = 500 and p2 = 300. In (σ, p),
1 does not envy 2, but 2 envies 1 because she would get utility 700-500 = 200 if she was
assigned r1 with payment 500, therefore (σ, p) is not EF. However, (σ, p) is B-EF: 2 does
not envy 1 under Definition 1 because 1’s payment (500) exceeds 2’s budget (300).

Observe that the allocation σ in Example 4 is not efficient. This contrasts with the clas-
sical setting of rent division where EF solutions are necessarily based on efficient allocations.
Still, we can show that in a B-EF solution, both the allocation (ignoring payments) and the
solution are Pareto-optimal:

Proposition 2. If (σ, p) is a B-EF solution then the allocation σ is Pareto-optimal, i.e.,
there is no allocation θ such that for all i ∈ A we have that viθ(i) ≥ viσ(i), and such that
viθ(i) > viσ(i), for some agent i ∈ A.

Proof. Suppose θ is an allocation that Pareto-dominates σ. Then, there is an improvement
cycle, without loss of generality, i = 1, . . . , k, such that θ(i) = σ(i + 1) for all i < k,
θ(k) = σ(1), and (1) viθ(i) ≥ viσ(i) for all i and (2) v1θ(1) > v1σ(1). Denote [i+ 1] = i+ 1 if
i < k and [k + 1] = 1. Consider the envy in (σ, p) between agents in the cycle. Since σ is
B-EF, for each i = 1, . . . , k there are two possible cases.

• Assume p[i+1] ≤ bi, then there should be no envy, thus viσ(i) − pi ≥ viσ([i+1]) − p[i+1].
Using (1) and (2) we obtain p[i+1] ≥ pi for all i ≤ k, and p2 > p1.

• Assume p[i+1] > bi. By affordability of (σ, p) we have pi ≤ bi, therefore, p[i+1] > pi.

In both cases we have p2 > p1, p3 ≥ p2, . . . , pk ≥ pk−1, and p1 ≥ pk, implying p1 > p1.

4

Proposition 3. If (σ, p) is a B-EF solution then (σ, p) is a Pareto-optimal solution, i.e.,
there is no solution (θ, q) such that for all i ∈ A we have viθ(i) − qi ≥ viσ(i) − pi, and such
that viθ(i) − qi > viσ(i) − pi, for some agent i ∈ A.

Proof. Let (σ, p) be a B-EF solution. Let us assume towards a contradiction that there
exists another solution (θ, q) that Pareto-dominates (σ, p).

We first prove that all rooms are paid the same price in (σ, p) and (θ, q). Let us assume
there exists a room j for which the price is strictly larger in (θ, q) than in (σ, p). Let k, l be
the two agents such that θ(k) = σ(l) = j. Our assumption is that qk > pl.

We obtain that:

vkσ(k) − pk ≤ vkθ(k) − qk (Pareto-domination of (σ, p) by (θ, q))

< vkσ(l) − pl (qk > pl and θ(k) = σ(l)).

Since pl < qk ≤ bk, agent k B-envies l in σ, yielding a contradiction. Hence no room has a
larger price in (θ, q) than in (σ, p). As

∑
i∈A qi =

∑
i∈A pi = L, this entails that all rooms

have exactly the same price in both solutions.
Let k ∈ A be such that vkσ(k) − pk < vkθ(k) − qk (such an agent exists by Pareto

dominance). Let l ∈ A be such that σ(l) = θ(k). We obtain that:

vkσ(k) − pk < vkθ(k) − qk
= vkσ(l) − pl (as σ(l) = θ(k) and pl = qk)

Since pl = qk ≤ bk, k B-envies l in (σ, p), yielding a contraction.

An IR and B-EF solution can be found by solving a mixed-integer linear program (see
the Appendix for a detailed formulation). Note however that a B-EF solution does not
always exist, as can be seen in the introductory example by Procaccia et al. [18]:

Example 5. Consider a two-agent rent division problem with L = 1000 and b1 = b2 = 500.
Both agents evaluate r1 at 800 and r2 at 500. The agent who receives room r1 has to pay
500, producing (budget-friendly) envy in the other agent who receives r2 at a price of 500.

In what follows we give two algorithms that find B-EF solutions in pseudopolynomial
(respectively, polynomial) time when the allocation (resp., the payment vector) is fixed.2

4.1 Computing B-EF solutions: fixed allocation

Here, we fix an allocation and we check in pseudo-polynomial time whether a B-EF solution
exists, and when it does, we output a corresponding price vector. To obtain our pseudo-
polynomiality result we restrain in this subsection the input parameters L, vij and bi to Z+

for all i ∈ A and j ∈ R.
We first define a weakening of budget envy-freeness: given a solution (σ, p), we say that

agent i strongly B-envies (SB-envies) j if pj < bi and viσ(j)−pj > viσ(i)−pi; and that (σ, p)
is weakly budget envy-free (WB-EF) if no agent SB-envies another one. Remark that if i
B-envies j but does not strongly B-envies j then pj = bi and viσ(j) − pj > viσ(i) − pi.

Our result uses Algorithm 1 of Kempe et al. [15], which finds minimal payments for
a given allocation to make the resulting solution WB-EF, and runs in pseudo-polynomial
time. As Kempe et al. [15] do not have the constraint of a rent to be paid, we add a final
processing stage guaranteeing that the payments sum up to the rent, and that the solution
is B-EF (not only WB-EF).

2Complete proofs of Theorems 1 and 2 can be found in the appendix.

5

Algorithm 1: B-EF payment, allocation fixed

Data: instance 〈n, V, L, b〉, allocation σ
1 Start from pi = L−

∑
k∈A\{i} bk,∀i ∈ A;

2 Run Strong B-Envy Removal (cf. Algorithm 1 of Kempe et al. [15]);
3 Run Final Payment Increase;
4 return (σ, p)

Algorithm 2: Strong B-Envy Removal

Data: instance 〈n, V, L, b〉, allocation σ, payment p
1 while There exists edge (i, j) ∈ Gp with pj < pi − λij do
2 pj ← min{bi, pi − λij};
3 if pj = bi then delete (i, k) from Gp for all (i, k) such that pk ≥ bi;
4 if pj > bj or pj > vjσ(j) then return no solution;

5 if
∑
i pi > L then return no solution;

6 return (σ, p)

Algorithm 1 of Kempe et al. [15] starts from a lower bound on initial agents’ payments,
and iteratively increases payments in order to eliminate SB-envy relations by reasoning on
a weighted envy graph Gp: given an allocation σ and a payment vector p, Gp is defined by
taking n nodes and add edge (i, j) if pj < bi, and label existing edges with λij = viσ(i)−viσ(j).
That is, Gp contains an edge from i to j if i can afford the price paid by j. Observe that
the labels of the edges do not depend on the payments: they only represent the potential
envy generated by the allocation σ.

Theorem 1. Given a fixed allocation σ, we can determine in pseudo-polynomial time if
there exists a payment vector p such that (σ, p) is affordable, IR, and B-EF.

Proof sketch. Our Algorithm 1 starts from an initial payment vector p = (L −∑
k∈A\{1} bk, ..., L−

∑
k∈A\{n} bk) and draws the envy graph Gp. It then uses Algorithm 2

(which corresponds to Algorithm 1 in Kempe et al. [15]) to remove SB-envy, if possible,
among the agents. If the algorithm does not output a payment vector, or if the sum of
payments exceeds the rent, then no solution exists. If Algorithm 2 returns a solution such
that the sum of the payments is lower than the rent, then we increase it uniformly (up to the
budget or the valuation of the assigned room) to obtain a B-EF solution using Algorithm 3.
If this is not possible because of an incompatibility with B-EF, budget limits, or IR, then
we output that there is no solution.

We explain our proposed algorithm on the following example:

Example 6. Let n = 3, R = {r1, r2, r3}, L = 1000, valuations and budgets as follows:

room r1 room r2 room r3 budget
agent 1 340 300 500 300
agent 2 290 350 470 380
agent 3 200 370 485 400

Consider the allocation σ(i) = ri for i = 1, 2, 3. We start from initial payments p =
(220, 300, 320), and draw the corresponding envy graph Gp:

6

Algorithm 3: Final Payment Increase

Data: instance 〈n, V, L, b〉, allocation σ, payments p
1 A′ ← {i ∈ A : pi < min{bi, viσ(i)}};
2 while

∑
i∈A pi < L do

3 if A′ = ∅ then return no solution;

4 ∀i ∈ A′, mi ← min
{
bi, viσ(i),minj∈A\A′ st pj≤bi viσ(i)−viσ(j)+pj

}
;

5 q ← max{0,min
{
L−

∑
i∈A pi
|A′| ,mini∈A′{mi − pi}

}
};

6 for each i ∈ A′ do pi ← pi + q ;
7 A′ ← {i ∈ A′ : pi < mi};
8 if (σ, p) is not B-EF then return no solution;
9 return (σ, p)

1 2

3

60

285 -120
115

Then, when we run Algorithm 2, we can select the edge (2, 1) in Gp such that p1 <
p2−λ21, i.e., λ21 = 60 < 300−220 = 80. We treat this edge by updating p1 to min{300, 300−
60} = 240. Then, we can select edge (2, 3) where p3 < p2−λ23, i.e., −120 < −20. We treat
this edge by updating p3 to min{380, 300− (−120)} = 380, hence, removing edge (2, 3) from
Gp. We finally obtain payment p = (240, 300, 380). This payment generates no SB-envy,
and the sum of the payments is lower than the rent.

Now we increase the payment of the agents to reach the rent using Algorithm 3. We
can first uniformly increase the payment of all agents by 20, reaching payment p =
(260, 320, 400), implying that agent 3 reaches her budget (and thus she will not be part
of subset A′ anymore). Finally, we can uniformly increase the payment of agents 1 and 2
by 10, reaching payment p = (270, 330, 400) to exactly reach the rent.

In Algorithm 2, we have at most n2 edges to check at each iteration of the while loop, and
we will have at most (

∑
i∈A bi) iterations. So the algorithm runs in (

∑
i∈A bi)n

2 operations.
In Algorithm 3, the while loop runs for at most n iterations, and each iteration of the loop
requires n2 operations due to Line 4. Hence, the algorithm runs in O(n3) operations. To
sum up, we obtain a pseudo-polynomial algorithm, running in time O((

∑
i∈A bi)n

3), which
is very reasonable. Obtaining a polynomial algorithm would be even better. We thought of
reusing Algorithm 2 of [15], which is claimed to compute a WB-EF solution in polynomial
time, but we have doubts about its correctness (and no proof is given in Kempe et al. [15]).

Still, now that we know that given an initial allocation, we can compute a payment
vector that satisfies B-EF, whenever there exists one, in time O((

∑
i∈A bi)n

3). This implies
that given the valuations, the rent and the budgets, we can compute a solution, if any, in
time O((

∑
i∈A bi)n!n3). In everyday rent division problems, n is low (typically, no more

than 5), therefore we can compute a solution in a reasonable amount of time.

4.2 Computing B-EF solutions: fixed payments

In practice, agents looking for flat-sharing will often search for apartments with a rent
corresponding to their accumulated budget. In such a case, the payments are fixed as each

7

agent i must pay bi to reach the total rent L. We show that, more generally, given any fixed
payment vector p, we can efficiently determine if there exists an assignment σ of agents to
rooms such that (σ, p) is affordable, IR, and B-EF.

Theorem 2. Given a fixed payment vector p, we can determine if there exists an assignment
σ of agents to rooms such that (σ, p) is affordable, IR, and B-EF in polynomial time.

Proof sketch. First, we can easily check whether the payments are compatible with an af-
fordable solution which meets the rent. Our algorithm tries to build an IR and B-EF
assignment in a greedy fashion considering agents in decreasing order w.r.t. payments, as
follows: We partition the set of agents into k groups (B1, . . . , Bk), i.e.,

⋃k
`=1B` = A and

B` ∩ B`′ = ∅ for every ` 6= `′ ∈ [k], such that for all agents i, j ∈ B`, pi = pj , and for
all agents i ∈ B` and j ∈ B`′ with ` < `′, we have that pi > pj . Then, we consider sets
B` with increasing values of ` (hence, with decreasing payments), and try to assign each
agent i in B` to a room in top(i), the set compounded of her most preferred rooms within
the remaining ones. This is done by considering a bipartite graph and determining if there
exists a perfect matching in this graph. If there is no such an assignment, or if it violates
an IR or B-EF constraint, then we conclude that no valid solution exists.

One can prove that this algorithm returns an assignment σ such that (σ, p) is affordable,
IR and B-EF iff such an assignment exists. The key idea is that, for an assignment to be
IR and B-EF, each agent i must receive a room in top(i).

The algorithm described in the proof of Theorem 2 is illustrated in the next example.

Example 7. Consider the following 4-agent rent division problem where L = 1000:

r1 r2 r3 r4 budget = payment
agent 1 100 450 600 300 400
agent 2 400 400 700 200 250
agent 3 400 100 500 250 250
agent 4 300 100 400 300 100

The budgets sum to the rent, therefore the payment pi for each i is fixed to her budget. The
agents are partitioned into 3 groups w.r.t. their payments: B1 = {1}, B2 = {2, 3}, and
B3 = {4}. We can define for each agent her top subset of rooms, i.e., their most preferred
rooms among the remaining ones by considering the agents in the order of their group:
top(1) = {r3}, top(2) = {r1, r2}, top(3) = {r1}, and top(4) = {r4}. A perfect matching,
that satisfies the IR and B-EF constraints, can be found at each step ` ∈ [3] between agents
in B` and rooms in

⋃
i∈B`

top(i). This process results in the unique assignment σ such that
(σ, p) is IR and B-EF, where σ(1) = r3, σ(2) = r2, σ(3) = r1, and σ(4) = r4. Note that
if, we change v1,r2 from 450 to 460, such an assignment σ would not exist because agent 1
would necessarily B-envy agent 2.

5 Fractional Solutions

In this section, we propose a second solution to find envy-free allocations under individual
budgets. The idea is to allow agents to spend a fraction of their time in different rooms,
and we study possible implementations of the resulting fractional allocation that minimise
the number of room swaps.

Definition 2. A fractional solution to a rent division problem is an n × n bi-stochastic
matrix X, with xij be the fraction of time agent i spends in room j, and a price vector
p : A→ R.

8

The definitions of IR and EF easily extend to fractional solutions. We say that (X, p) is
individually rational under quasi-linear utilities if for all agents i we have that

∑
j∈R xijvij−

pi ≥ 0. Further, we say that a fractional solution (X, p) is envy-free under quasi-linear
utilities if the following holds for all agents i and i′ in A:∑

j∈R
xijvij − pi ≥

∑
j∈R

xi′jvij − pi′ .

Observe that the initial Example 2 admits a fractional EF-solution: let agent 1 spend 6
months a year in room r1 and the remaining part in room r2 (and symmetrically for agent
2). If both agents pay 500 their utility is 0 and by symmetry no agent envies the other.
However, fractional EF-allocations do not always exist, as shown by the following example.

Example 8. Consider the following rent division problem under budget with L = 1000:

room r1 room r2 budget
agent 1 700 400 700
agent 2 800 300 300

The only affordable allocation is non-fractional: it assigns room r2 to agent 2 at a price of
300, with 1 envying 2.

Allowing fractional allocations is a significant weakening that allows to obtain a solution
for quite many instances for which there would be otherwise no solution. To illustrate this,
we define below a family of instances for which this is indeed the case.

Proposition 4. For each budget vector b = (b1, . . . , bn) such that L
n ≤ bi < L, there exists

a rent division problem which does not admit an affordable EF deterministic solution but
that admits a fractional one.

Proof. We first show that if bi ≥ L
n for all i ∈ A, then 〈n, V, L, b〉 admits an affordable

fractional EF allocation. To see this, fix payments pi = L
n to be equal for all agents. The

fractional solution where all agents spend the same fraction of time in each room, i.e.,
xij = 1/n for all i and j, is an affordable EF solution.

Now, for all i ∈ A we fix agent i’s evaluation of room r1 at bi, zero otherwise – that is, for
all i, vi1 = bi and vij = 0 for j ≥ 2. Assume without loss of generality that a deterministic
allocation gives room r1 to agent 1. Given that b1 < L then pi > 0 for at least one other
agent, who has negative utility and envies agent 1.

5.1 Computing fractional solutions

Fractional solutions that are IR and EF, when they exist, can be found in polynomial time
by using the following Linear Program (LP). The LP considers as variables xij ∈ [0, 1] for
i ∈ A and j ∈ R for the fraction of time i spends in room j, and pi for i ∈ A as the price
of agent i. The set of linear constraints is the following, formalising that each agent has a
room allocated all of the time, that the payments sum to the rent, with the last two lines
enforcing IR and EF:∑

i xij = 1 ∀j ∈ R∑
j xij = 1 ∀i ∈ A∑
i pi = L

pi ≤ bi ∀i ∈ A
(
∑
j xijvij)−pi ≥ 0 ∀i ∈ A

(
∑
j xijvij)− pi ≥ (

∑
j xi′jvij)− pi′ ∀i, i′ ∈ A

9

When this set of linear constraints has a solution, it may in fact have many solutions.
As in Procaccia et al. [18] (cf. their Theorem 1), the objective function can be defined
so as to maximise a fairness criterion, such as: maxmin (with one additional variable y,
add constraints y ≤

∑
j(xijvij) − pi for all agents i and, as objective function, maximise

y); or equitability (with one additional variable y, add constraints y ≥ (
∑
j(xijvij) − pi) −

(
∑
j(xi′jvij)− pi′) for any i and i′ and, as objective function, minimise y).

5.2 Implementing fractional allocations

A fractional solution to a rent division problem can give rise to multiple practical imple-
mentations, depending on the sequence of room swaps that agents perform. By Birkhoff’s
theorem we know that any bi-stochastic matrix X can be decomposed as the convex com-
bination of permutation matrices. In our terminology, this implies that for any fractional
solution X there exist λ1, . . . , λk ∈ (0, 1], with

∑
t λt = 1, and σ1, . . . , σk deterministic so-

lutions, such that for all i ∈ A and j ∈ R we have that
∑
{t|σt(i)=j} λt = xij . In line with

previous work, we call such a representation a Birkhoff-von Neumann (BvN) decomposition
of X of size k. The order in which the permutations of a BvN decomposition are considered
gives rise to different implementations of a fractional solution X in terms of room swaps:

Definition 3. An implementation I of length k of a fractional solution X is given by (Λ, <)
where Λ is a k-BvN decomposition of X and < is an ordering on [k] = 1, . . . , k.

When I is fixed, for simplicity we will assume that σ1, . . . , σk are given following ordering
<. To discriminate between possible implementations of a fractional solution X, we define
a natural notion that counts the overall number of swaps that an agent has to perform:

Definition 4. Given an implementation I of X, the switch price of agent i is

Si(I) = |{t ∈ {1, . . . , k − 1} : σt(i) 6= σt+1(i)}| .

The following example shows that an implementation in which agents never move back
to the same room is not guaranteed to exist:

Example 9. Consider the following fractional allocation X:

room r1 room r2 room r3

agent 1 0.6 0.3 0.1
agent 2 0.2 0.5 0.3
agent 3 0.2 0.2 0.6

Agent 1 and 3 have to spend 60% of the time in a room, and agent 2 only 50%. Thus, one
of 1 and 3 has to go back to the same room in any implementation of X.

5.3 Computing minimal-switching implementations

We now show that finding an implementation of a fractional solution minimising the number
of switches is computationally hard. We begin by the following decision problem.

Minsum-Switch-Implementation

INPUT: Fractional solution X, k ∈ N
QUESTION: is there an implementation I of X such that

∑
i Si(I) ≤ k?

Theorem 3. Minsum-Switch-Implementation is NP-complete.

10

The proof (in the appendix) uses a reduction from Partition. Now, we show that
even if the deterministic allocations composing a BvN decomposition are fixed, finding an
ordering that minimises the switch cost is an intractable problem.

Minsum-Switch-Ordering

INPUT: BvN decomposition Λ of length k, K ∈ N
QUESTION: is there an ordering < over [k] such that

∑
i Si(I) ≤ K where I = (Λ, <)?

Theorem 4. Minsum-Switch-Ordering is NP-complete.

Proof sketch. Membership to NP is straightforward. To prove hardness we present a reduc-
tion from the NP-hard Hamming Salesman Problem (HSP) [10]. An instance of HSP
is a string P = v1 . . . vn, L, where vi ∈ {0, 1}m, for some n and m, and L is an integer in
binary representation. The question is to determine if there exists a Hamiltonian cycle over
vertices vi of total cost less than L, where the distance between two nodes is given by the
Hamming distance. We first show (in the supplementary material) that finding a Hamilto-
nian path instead of a Hamiltonian cycle is also NP-Hard. Consider now an instance of HSP
P = v1 . . . vn, L. We create an instance of Minsum-Switch-Ordering where there are 2m
agents and 2m rooms. For each vertex v we create a deterministic allocation σv of the rooms
as follows: agent i will be assigned to room i (resp. m+ i) and agent m+ i will be assigned
to room m+ i (resp. i) if the i-th bit of v is 0 (resp. 1), for all i in [m]. It is clear that the
switch cost between σv and σv

′
is equal to two times the Hamming distance between v and

v′. Thus, there is a one-to-one correspondence between Hamiltonian paths on vertices of P
and orderings of solutions σv. It is therefore sufficient to run Minsum-Switch-Ordering
on an implementation composed of σv for v ∈ P and K = 2L to obtain a solution to the
initial HSP instance.

We conjecture that minimising the maximum switch cost is NP-hard as well. Dufossé
and Uçar [8] showed that the problem of finding a BvN decomposition with the smallest
support (i.e., with the smallest k) is NP-hard, but this does not necessarily correspond to
an implementation which minimises the switch cost.

Even if we showed that finding minimal-switching implementations is computationally
hard, the number of agents in typical rent division problems is low, thus the size k of a BvN
decomposition is also likely to be small, since k ≤ n2. Hence, finding minimal-switching
implementations can still be performed, e.g., by working on the polytope of deterministic
assignments. For instance, Minsum-Switch-Ordering can easily be solved by dynamic
programming in O∗(2k) by using the formula:

∆(σ, S) = min
σ′∈S\{σ}

(sc(σ, σ′) + ∆(σ′, S \ {σ}))

where sc(σ, σ′) = |{i ∈ A|σ(i) 6= σ′(i)}| is the switch-cost incurred by moving from σ to σ′

and ∆(σ, S) is the minimal switch cost incurred by ordering permutations in S ⊆ Λ under
the constraint that σ is placed in the first position. The base cases are ∆(σ, {σ}) = 0, and
the optimal Minsum-Switch-Ordering value is obtained by considering minσ∈Λ ∆(σ,Λ).

6 Discussion

We proposed two approaches to increase the number of instances where a fair rent division
is returned. The first one relaxes the notion of envy-freeness to take budget discrepancies
into consideration. The second one allows for fractional allocations that are implemented by
having agents swap their rooms (and minimising the number of swaps). We can of course

11

1.0 1.1 1.2 1.3 1.4 1.5 1.6
tightness of budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 w

ith
 a

 so
lu

tio
n

3 agents; alpha=0.1; 10000 instances

EF
BEF
F-EF
F-BEF

Figure 1: Proportion of rent division instances that admit a solution that is IR and EF,
B-EF, fractional (F-EF), or an extension of fractional solutions with B-EF replacing EF
(F-BEF), depending on the tightness of the agents’ budgets.

combine the two approaches and define budget envy free fractional solutions. We leave this
mostly for further study (but see below for how we considered it in our experiments).

We evaluated in simulations the number of additional solutions that our proposals can
provide in synthetically generated rent division problems. We generated the agents’ val-
uations of rooms starting from a base value Mj for each room, sampled from a uniform
distribution in [25, 50]. All other parameters are sampled from the following normal distri-
butions:

vij ∼ N (Mj , αMj), L ∼ N (
∑
j

Mj , α
∑
j

Mj), bi ∼ N (
∑
j

Mj

n
, α
∑
j

Mj

n
),

where 0 < α < 1. In this way, we generate rent division problems where agents have a
correlated valuations for the rooms, and have a budget that is roughly one n-th of the rent
to be paid (i.e., the agents can pay the rent but their budget is tight). We discarded all
instances that did not admit an IR solution, and we then increased the individual budgets
by multiplying them by a budget tightness factor which varies between 1 and 2.

Figure 1 presents our findings for 3 agents setting α = 0.1. We observe that B-EF
and fractional solutions increase significantly the proportion of instances in which a fair
allocation exists. In the extreme case of budget tightness equal to 1, there are twice more
instances that can be solved by a B-EF solution than those that allow a classical EF solution.
As expected, when the budget is less tight it becomes more and more likely to find a solution
(irrespective of the fairness criteria).3 We find similar results for n ∈ {2, 4, 5} and different
values of α. More details on the experimental design and further results can be found in
the supplementary material.

For future work, identifying the computational complexity of determining the existence
of B-EF solutions seems to be a challenging open problem. A further interesting direction
is to estimate the robustness of our solutions under perturbations of the individual budgets,
in line with the work of Peters et al. [17] who however focus on the agents’ valuations.

3There exists however (few) rent division problems that do not admit an IR and EF solution, even with
unlimited budgets (recall that we do not assume that individual valuations sum to the rent).

12

References

[1] Atila Abdulkadiroğlu and Tayfun Sönmez. School choice: A mechanism design ap-
proach. American economic review, 93(3):729–747, 2003.

[2] Atila Abdulkadiroğlu, Tayfun Sönmez, and M Utku Ünver. Room assignment-rent
division: A market approach. Social Choice and Welfare, 22(3):515–538, 2004.

[3] Gagan Aggarwal, Shan Muthukrishnan, Dávid Pál, and Martin Pál. General auction
mechanism for search advertising. In Proceedings of the 18th International Conference
on World Wide Web (WWW), 2009.

[4] Itai Ashlagi, Mark Braverman, Avinatan Hassidim, Ron Lavi, and Moshe Tennenholtz.
Position auctions with budgets: Existence and uniqueness. The B.E. Journal of Theo-
retical Economics, 10(1):0000102202193517041648, 2010. doi: 10.2202/1935-1704.1648.
URL https://doi.org/10.2202/1935-1704.1648.

[5] Haris Aziz. A probabilistic approach to voting, allocation, matching, and coalition
formation. In The Future of Economic Design, pages 45–50. Springer, 2019.

[6] Anna Bogomolnaia and Hervé Moulin. A new solution to the random assignment
problem. Journal of Economics Theory, 100(2):295–328, 2001. doi: 10.1006/jeth.2000.
2710. URL https://doi.org/10.1006/jeth.2000.2710.

[7] Florian Brandl, Felix Brandt, and Hans Georg Seedig. Consistent probabilistic social
choice. Econometrica, 84(5):1839–1880, 2016.

[8] Fanny Dufossé and Bora Uçar. Notes on Birkhoff–von Neumann decomposition of
doubly stochastic matrices. Linear Algebra and its Applications, 497:108–115, 2016.

[9] Lachlan Dufton and Kate Larson. Randomised room assignment-rent division. In
Proceedings of the IJCAI Workshop on Social Choice and Artificial Intelligence, 2011.

[10] Jarmo Ernvall, Jyrki Katajainen, and Martti Penttonen. NP-completeness of the ham-
ming salesman problem. BIT Numerical Mathematics, 25(1):289–292, 1985.

[11] Ya’akov Gal, Moshe Mash, Ariel D Procaccia, and Yair Zick. Which is the fairest (rent
division) of them all? Journal of the ACM (JACM), 64(6):1–22, 2017.

[12] Jonathan R. Goldman and Ariel D. Procaccia. Spliddit: unleashing fair division al-
gorithms. SIGecom Exch., 13(2):41–46, 2014. doi: 10.1145/2728732.2728738. URL
https://doi.org/10.1145/2728732.2728738.

[13] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https:

//www.gurobi.com.

[14] Monika Henzinger and Veronika Loitzenbauer. Truthful unit-demand auctions with
budgets revisited. Theoretical Computer Science, 573:1–15, 2015.

[15] David Kempe, Ahuva Mu’alem, and Mahyar Salek. Envy-free allocations for budgeted
bidders. In Proceedings of the 15th International Workshop on Internet and Network
Economics (WINE), pages 537–544, 2009.

[16] Jinpeng Ma. On Randomized Matching Mechanisms. Economic Theory, 8(2):377–381,
August 1996. URL https://ideas.repec.org/a/spr/joecth/v8y1996i2p377-81.

html.

13

[17] Dominik Peters, Ariel D Procaccia, and David Zhu. Robust rent division. In Advances
in Neural Information Processing Systems 35 (NeurIPS), 2022.

[18] Ariel Procaccia, Rodrigo Velez, and Dingli Yu. Fair rent division on a budget. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 1177–
1184, 2018.

[19] Lars-Gunnar Svensson. Large indivisibles: an analysis with respect to price equilibrium
and fairness. Econometrica: Journal of the Econometric Society, pages 939–954, 1983.

[20] Rodrigo A Velez. Equitable rent division. ACM Transactions on Economics and Com-
putation (TEAC), 6(2):1–25, 2018.

[21] Rodrigo A Velez. Expressive mechanisms for equitable rent division on a budget. arXiv
preprint arXiv:1902.02935, 2019.

[22] Rodrigo A Velez. A polynomial algorithm for maxmin and minmax envy-free rent
division on a soft budget. Social Choice and Welfare, 59:1–26, 2022.

Stéphane Airiau, Hugo Gilbert
LAMSADE, PSL
Paris, France
Email: stephane.airiau@dauphine.fr,hugo.gilbert@lamsade.dauphine.fr

Jérôme Lang
LAMSADE, PSL, CNRS
Paris, France
Email: Jerome.Lang@lamsade.dauphine.fr

Umberto Grandi
IRIT, Université Toulouse Capitole
Toulouse, France
Email: umberto.grandi@irit.fr

Anaëlle Wilczynski
MICS, CentraleSupélec, Université Paris-Saclay
Paris, France
Email: anaelle.wilczynski@centralesupelec.fr

14

Appendix

MIP for computing B-EF solutions

The following mixed linear integer program can be used to find B-EF solutions to a rent
division problem with budgets. We use binary variables xij for i ∈ A and j ∈ R to model
the assignment, and continuous variables pi for i ∈ A to model the payments. We include
constraints to build an IR solution:∑

i xij = 1 ∀j ∈ R∑
j xij = 1 ∀i ∈ A∑
i pi = L

pi ≤ bi ∀i ∈ A
(
∑
j xijvij)−pi ≥ 0 ∀i ∈ A

For B-EF we add the following constraints:∑
j

vijxij − pi +Mcii′ ≥
∑
j

vijxi′j − pi′ ∀i, i′ ∈ A

cii′ + dii′ = 1 ∀i, i′ ∈ A
pi′ − cii′M ≤ bi ∀i, i′ ∈ A
bi − dii′M + λ ≤ pi′ ∀i, i′ ∈ A

An agent i can envy another agent i′ only when she can afford the payment, i.e. when
pi′ ≤ bi. Our idea is to add in the envy-free statement a value cii′M (where M is a
sufficiently large positive constant) and enforce that cii′ = 0 if and only if pi′ ≤ bi. To do
so, we introduce binary variables dii′ , a continuous variable λ > 0, three constraints and
we set the objective function as maximising λ. The first constraint ensures that one of cii′

or dii′ has value 1 and the other 0. The remaining two constraints are about affording the
payment. If i can afford the payment of i′, i.e., bi ≤ pi′ , then it is not possible to have
cii′ = 1, for otherwise dii′ would be 0 and no value of λ > 0 would satisfy the constraint
bi + λ ≤ pi′ . Thus, in this case cii′ = 0, dii′ = 1, λ is bounded by pi′ − bi +M > 0, and the
envy statement applies from agents i to i′ as intended. When i cannot afford the payment
of i′, i.e., bi < pi′ , then cii′ must be 1 to satisfy the constraint pi′−cii′M ≤ bi. Then dii′ = 0
and λ is bounded by pi′ − bi > 0.

Full proof of Theorem 1

Termination and pseudo-polynomiality of Algorithm 2. Note that at each iteration
of the while loop, we increase the payment of agent j in line 2 by setting pj to min(bi, pi−λij)
(payments are never decreased). Additionally, note that the payment values are always
integer valued by induction. Indeed, as all input parameters are integer valued, bi and
pi − λij must be integer valued if pi is. Hence, the algorithm stops after at most n

∑
i∈A bi

iterations, as additional iterations would lead one agent to violate its budget constraint.
Last, note that all operations performed in one iteration of the while loop can be performed
in polynomial time.

Correctness of Algorithm 2. Let p0 be the vector of initial payments. We wish to
compute a minimal payment vector p satisfying the following conditions:

(i) pi ≥ p0
i , for every i ∈ A,

(ii) (σ, p) is WB-EF, IR, and affordable,

(iii)
∑
i∈A pi ≤ L.

15

We prove the correctness of Algorithm 2 by proving the following lemma.

Lemma 1. When Algorithm 2 returns a payment vector p∗, then it satisfies (i), (ii), (iii)
and is such that p∗i ≤ p′i for all i ∈ A and for all payment vectors p′ satisfying (i), and
(ii). When Algorithm 2 returns no solution, then no payment vector p′ satisfies (i), (ii),
and (iii).

Proof. When the algorithm returns a payment vector p∗, then it satisfies (i), (ii) and (iii) by
construction (see lines 4 and 5). The rest of the proposition is proven as follows, let pt be
the payment vector at iteration t of the while loop of Algorithm 2. We prove by induction
on t that any payment vector p′ satisfying (i) and (ii), if any, is such that pti ≤ p′i for all
i ∈ A. This is proven in Claim 1. This shows that when Algorithm 2 returns no solution,
then no payment vector p′ satisfies (i), (ii), and (iii), because this means that we obtain pt

that violates IR, the budget constraints or exceeds the rent.

Claim 1. At each iteration t of the while loop of Algorithm 2, if there exists an edge
(i, j) ∈ Gpt with ptj < pti − λij, then any payment vector p′ satisfying (i) and (ii), is such

that pt+1
j = min{bi, pti − λij} ≤ p′j.

Proof. We will prove the claim by induction. For the basis case p0, if there exists an edge
(i, j) ∈ Gp0 with p0

j < p0
i −λij , then the only solutions to remove SB-envy from i to j are to

increase p0
j or to decrease p0

i . As any payment vector satisfying (i) has p′i ≥ p0
i , it must have

p′j ≥ min{bi, p0
i −λij} in order to satisfy (ii). Now assume that Claim 1 holds up to iteration

t. Then, it implies that any payment vector p′ satisfying (i) and (ii), is such that pti ≤ p′i
for all i ∈ A. Similarly as previously, if there exists an edge (i, j) ∈ Gpt with ptj < pti − λij ,
then the only solutions to remove SB-envy from i to j are to increase ptj or to decrease pti.
As p′i must be greater than or equal to pti, it must be that p′j ≥ min{bi, pti −λij} in order to
satisfy (ii).

Termination and polynomiality of Algorithm 3. Concerning Algorithm 3, the
while loop 2-7 can only run for n iterations and each iteration runs in O(n2). Indeed, we
increase the payment of each agent in A′ (for whom it is still possible to do it without
violating IR or affordability) by the same amount q which corresponds to either the rest of
the rent or the maximum that an agent in A′ can still pay. At each non-final iteration of
this while loop, the payment of at least one agent will be set to the maximum she can pay,
and this agent will not be part of A′ anymore at the next iteration. Hence, this while loop
is executed at most n times.

Correctness of Algorithm 3. Note that by construction, if Algorithm 3 returns a
payment vector p, then (σ, p) is B-EF, IR, and affordable and the values in p sum up to the
rent. We shall now show that if the algorithm does not return a solution, then none exists.

Let p∗ denote the payment vector obtained from Algorithm 2. From the correctness of
Algorithm 2, we observe that the desired payment vector p should satisfy:

(i′) pi ≥ p∗i for every i ∈ A,

(ii′) (σ, p) is WB-EF, IR, and affordable.

We now show the following lemma.

Lemma 2. Assume Algorithm 3 returns no solution and let p̂ be the payment vector and
Â′ the set A′ when the algorithm terminates. Then p̂ satisfies (i′) and (ii′) and is such that
p′i ≤ p̂i for all payment vectors p′ satisfying (i′) and (ii′) and i ∈ A \ Â′.

16

Proof. The payment vector p̂ satisfies (i′) and (ii′) by construction. Indeed, we only increase
payments (Line 6) and we do so by making sure that we do not violate any budget or
individual rationality constraint nor do we create any new envy relation.

Let p′ be a payment vector satisfying (i′) and (ii′). Let A′t denote the set A′ at step
t. Recall that by construction, A′t+1 ⊆ A′t. For i ∈ A \ Â′, let ti be the first step of the

algorithm for which agent i belongs to A \ A′ti . Let us consider agents in A \ Â′ by sorting
them by increasing ti values. By induction, we prove that for each agent i, p′i ≤ p̂i. It is
true for 1, as she necessarily has p̂1 = v1σ(1), or p̂1 = b1. Let us assume this property true
for agents 1, . . . , i−1, then the property is true for i as when i is removed from A′ we either
have p̂i = viσ(i), or p̂i = bi, or viσ(i) − p̂i = viσ(j) − p̂j , for a value j ∈ {1, . . . , i − 1} such
that pj ≤ bi. In this last case, we use the induction assumption to conclude.

We now conclude by investigating the two conditions for which the algorithm may not
return a solution. If the algorithm terminates in Line 3, then by Lemma 2, it follows that
if p̂ cannot reach the rent, then no payment vector satisfying (i′) and (ii′) can. If the
algorithm terminates in Line 8, then it means that there exist two agents i and j such that
viσ(i)− p̂i < viσ(j)− p̂j with p̂j = bi. This may only happen if 1)

∑
i p
∗
i = L or if 2) j ∈ A\Â′

and j has never increased her payment in Line 6. In the first case, the argument follows
from the fact that increasing the payment of j, which is the only way to remove envy while
respecting (i′), would exceed the rent. In the second case, necessarily viσ(i)−p∗i < viσ(j)−p∗j
and p∗j = p̂j = bi. Then increasing the payment of j, which is the only way to remove envy
while respecting (i′), is not possible due to Lemma 2.

Discussion about the polynomial algorithm in [15] We explain here our doubts
about Algorithm 2 in [15], which is claimed to be a polynomial-time algorithm for finding
minimal payments that make the solution affordable, IR, and WB-EF, given an initial
allocation. We start with the following example with two agents and two rooms, and the
following valuations:

room r1 room r2 budget
agent 1 400 500 450
agent 2 0 500 500

Let σ allocate r1 to agent 1 and r2 to agent 2. Starting with payments p = (0, 0), we obtain
the following envy graph Gp.

1 2

-100

500

Algorithm 2 in [15] runs a while loop which is executed while there exists a negative
cycle in Gp. At the end of the while loop the algorithm returns an affordable, IR, and B-EF
price vector or claims that none exist. Note that in our example there is no negative cycle in
Gp. Hence the algorithm would just return p = (0, 0) which is not B-EF as agent 1 B-envies
agent 2.

Note that in a positive cycle containing one negative arc, such as in the previous example,
we can treat the negative arc by raising payments along the cycle (in a similar way as does
Algorithm 1 in Kempe et al. [15]) without having to pass twice by the same arc. This may
not be true with more than one negative arc in such a positive cycle.

We believe that it may be possible to give some conditions, like those established in
Algorithm 2 of Kempe et al. [15], to identify the agent from which to start the treatment
of negative arcs in a positive cycle, in order to avoid treating several times the same arc in
the cycle. This is left for future work.

17

Algorithm 4:

Data: Rent division with budgets instance 〈n, V, L, b〉, and a payment vector p,
definition of B` and π` as described in the proof.

1 M ← R; σ ← ∅;
2 for ` = 1 to ` = k do
3 for each agent i ∈ B` do
4 v(i)← maxj∈M vij ;
5 top(i)← {j ∈M : vij = v(i)} ;
6 if v(i) < π` then return false;

7 top(B`)←
⋃
i∈B`

top(i);

8 if |B`| 6= |top(B`)| then return false;

9 for every agent i ∈
⋃`−1
`′=1B`′ do

10 if there exists a room j ∈ top(B`) such that v(i)− pi < vij − π` then
return false;

11 for every agent i ∈ B` do
12 if there exists a room j ∈ top(B`′) such that `′ < `, π`′ ≤ bi and

v(i)− pi < vij − π`′ then return false;

13 Let G = (B` ∪ top(B`), E) be a bipartite graph where (i, j) ∈ E iff j ∈ top(i);
14 if there is no perfect matching in G then
15 return false
16 else θ ← a perfect matching in G;
17 σ ← σ ∪ θ; M ←M \ top(B`);
18 return (σ, p)

Full proof of Theorem 2

First, note that one can easily check if pi ≤ bi for all i ∈ A and that
∑
i∈A pi = L to ensure

that the payments are compatible with an affordable solution which meets the total rent. If
this condition is not met, we can return that finding an affordable solution given payments
p is not feasible.

To prove Theorem 2, we consider Algorithm 4, which tries to build an IR and B-EF
assignment in a greedy fashion considering agents in decreasing order w.r.t. payments.

Description. In a preliminary step, we partition the set of agents into k groups
(B1, . . . , Bk), i.e.,

⋃k
`=1B` = A and B` ∩ B`′ = ∅ for every ` 6= `′ ∈ [k], such that for

all agents i, j ∈ B`, pi = pj holds, and for all agents i ∈ B` and j ∈ B`′ with ` < `′, we have
that pi > pj . We denote by π` the payment that is common to all agents in group B`, i.e.,
π` = pi for all agents i ∈ B`, and by B(i) the group of agent i, i.e., i ∈ B(i).

Then, we consider sets B` with increasing values of ` (hence, with decreasing values of
payments), and try to assign each agent i in B` to a room in top(i), the set compounded of
her most preferred rooms within the remaining ones. This is done by considering a bipartite
graph and determining if there exists a perfect matching as detailed in lines 13-17. If such
an assignment is not possible (line 14), or if it violates an IR (line 6) or B-EF constraint
(lines 10 or 12), then the algorithm returns that no affordable, IR, and B-EF solution exists.

Termination and polynomiality. Termination and polynomiality of Algorithm 4 are
straightforward as the algorithm consists in an outer loop of k (≤ n) iterations, with inner
loops of at most n2 iterations (e.g., lines 9 and 10) and all operations realized in these

18

loops can be performed in polynomial time. Notably, note that determining if there exists
a perfect matching in a bipartite graph can be performed in polynomial time.

Correctness. Note that any solution (σ, p) returned by the algorithm is necessary afford-
able and meets the total rent L due to our preprocessing step. We now show the correctness
of Algorithm 4 through two lemmas.

Lemma 3. If Algorithm 4 returns a solution (σ, p), it is necessarily IR, and B-EF.

Proof. Note that any solution (σ, p) returned by the algorithm is necessary IR due to the
condition in line 6 and the fact that each agent i is matched to a room in top(i).

Suppose that the allocation σ returned by the algorithm is not B-EF. Then, there exist
two agents i and j such that pj ≤ bi and viσ(i) − pi < viσ(j) − pj .

• If pi = pj (hence B(i) = B(j)), then agents i and j were assigned their rooms at the
same step of the algorithm. Moreover, since pi = pj , we must have viσ(i) < viσ(j),
which means that room σ(j) that i prefers to σ(i) was still available at this step but
i was assigned room σ(i), which contradicts the fact that i was assigned a room in
top(i).

• If pi > pj , we have B` := B(i) and B`′ := B(j) with ` < `′. Therefore, σ(i) is assigned
to agent i before the assignment of σ(j) to agent j. However, this would imply that
at iteration `′ of the outer loop, the condition given in line 10 is fulfilled and thus the
algorithm must have returned “false”, a contradiction (note that in line 10, we must
have bi ≥ pi > π`).

• If pi < pj , we have B` := B(i) and B`′ := B(j) with ` > `′. Therefore, σ(i) is assigned
to agent i after the assignment of σ(j) to agent j. However, this would imply that
at iteration ` of the outer loop, the condition given in line 12 is fulfilled and thus the
algorithm must have returned “false”, a contradiction.

Hence, if the algorithm returns a solution (σ, p), it is necessarily IR, and B-EF.

Lemma 4. If there exists an affordable IR and B-EF solution, then Algorithm 4 returns a
solution (σ, p).

Proof. Suppose that there exists a B-EF allocation σ. We will first prove by induction that,
in allocation σ, each agent i ∈ B` must be assigned a room in top(i), as defined in line 5 of

the algorithm, where M = R \
⋃`−1
`′=1 top(B`′).

Each agent i in B1 must receive a room σ(i) that she values the most. Otherwise there
exists another agent j with pj ≤ pi ≤ bi assigned to a room r such that vir > viσ(i), and
therefore agent i would be B-envious towards j as viσ(i) − pi < vir − pj , a contradiction.

Assume now that the claim holds for every B` where ` ∈ [m] for some m ∈ [k], and
analyze the case of Bm+1. First of all, a room r in

⋃m
`=1 top(B`) cannot be assigned to an

agent i in Bm+1. Otherwise, there exists an agent j ∈ B` with ` ≤ m such that r ∈ top(j),
and by induction assumption σ(j) ∈ top(j). Therefore, we would have vjr = vjσ(j) and
thus vjσ(j) − pj < vjr − pi with pi < pj ≤ bj , meaning that j is B-envious towards i, a
contradiction. It follows that agent i must be assigned a room in M := R \

⋃m
`=1 top(B`).

If agent i is not assigned to one of her most preferred room in M , then it means that
there exists a room r ∈ M such that vir > viσ(i), that has been assigned to an agent

j ∈
⋃k
`=m+1B` (by induction assumption, agents in

⋃m
`=1B` cannot receive it). It follows

from bj ≤ bi that vir−bj > viσ(i)−bi, meaning that i is B-envious towards j, a contradiction.
This concludes the proof of the claim stating that σ(i) ∈ top(i) for every i ∈ A.

19

R1
1 R1

2 . . . R1
n R2

1 R2
2 . . . R2

n R3
1 R3

2 . . . R3
n

A1
1 v1 vn . . . v2 S 0 . . . 0 S 0 . . . 0

A1
2 v2 v1 . . . vn 0 S . . . 0 0 S . . . 0

. .
A1
n vn vn−1 . . . v1 0 0 . . . S 0 0 . . . S

A2
1 2S 0 . . . 0 1

2S 0 . . . 0 1
2S 0 . . . 0

A2
2 0 2S . . . 0 0 1

2S . . . 0 0 1
2S . . . 0

. .
A2
n 0 0 . . . 2S 0 0 . . . 1

2S 0 0 . . . 1
2S

A3
1 0 0 . . . 0 3

2S 0 . . . 0 3
2S 0 . . . 0

A3
2 0 0 . . . 0 0 3

2S . . . 0 0 3
2S . . . 0

. .
A3
n 0 0 . . . 0 0 0 . . . 3

2S 0 0 . . . 3
2S

Table 1: The matrix used in the reduction of Theorem 3. It can be made bistochastic by
dividing every cell by 3S.

By definition, we have that
⋃k
`=1 top(B`) = R and top(B`) ∩ top(B`′) = ∅ for every

` 6= `′ ∈ [k]. Therefore, since σ(i) ∈ top(i) for every i ∈ A and σ is a valid B-EF allocation,
|B`| = |top(B`)| must be true. Hence, the algorithm cannot stop at line 8.

It follows from the fact that σ(i) ∈ top(i) for every i ∈ A, that the utility of each agent
i ∈ A is fixed, no matter the choice of the room in top(i). As payments and utilities obtained
by each agent are fixed, one can check if these values induce any B-envy relation either from
an agent in B` towards an agent in B`′ with ` < `′ (line 10) or vice-versa (line 12), or if they
violate the IR constraints (line 6). Hence, since there exists a valid IR and B-EF solution
(σ, p), the algorithm cannot stop at any of lines 6, 10, and 12.

Finally, since there exists a valid B-EF allocation σ, it means that it was possible to
assign to each member i of a group B` a room in top(i). It follows that the algorithm
cannot stop at line 14.

Note that Algorithm 4 can easily be adapted to find an affordable, IR, and EF (instead of
B-EF) solution when p is fixed. Indeed, it is only sufficient to remove the condition p`′ ≤ bi
in line 12.

Full proof of Theorem 3

We show the full proof of Theorem 3: Minsum-Switch-Implementation is NP-complete.

Proof. Membership to NP is straightforward. For hardness we reduce from the NP-complete
problem of Partition. Given an instance U = {v1, . . . , vn} of Partition with S =

∑n
i=1 vi,

create a 3n × 3n bi-stochastic matrix X as depicted in Table 1. We first observe that
X admits an implementation in which no agent returns to the same room iff there is an
implementation with

∑
i Si(I) = (n+2)n+3n+2n = n2 +7n (this can be seen by counting

the number of non-zero cells in each row of X). Further, observe that for each value v ∈ U
and agent in Ai1, there is a room R∗(i, v) ∈ {R1

1, R
1
2, . . . , R

1
n} with value v in the matrix. We

call R∗(i, v) the v-corresponding room for agent Ai1. We now show that there is a solution
to Partition iff X admits an implementation with

∑
i Si(I) ≤ n2 + 7n, which is equivalent

to the existence of an implementation where no agent returns in any room.
If there is a subset V ⊂ U such that

∑
v∈V v = 0.5S, we provide the following implemen-

tation. For each element v ∈ V we give to agents in {A1
1, . . . , A

1
n} their room corresponding

20

to v, giving rise to |V | switches for a total time of 0.5S. Meanwhile agents {A2
1, . . . , A

2
n}

receive rooms {R2
1, . . . , R

2
n} and agents {A3

1, . . . , A
3
n} receive rooms {R3

1, . . . , R
3
n}. When

agents {A2
1, . . . , A

2
n} are done with {R2

1, . . . , R
2
n}, they exchange with agents in {A1

1, . . . , A
1
n}.

Similarly, when agents {A3
1, . . . , A

3
n} are done with {R3

1, . . . , R
3
n}, they exchange with agents

in {A1
1, . . . , A

1
n}. Lastly, when agents {A2

1, . . . , A
2
n} are done with {R1

1, . . . , R
1
n}, they ex-

change with agents in {A1
1, . . . , A

1
n} such that they receive rooms corresponding to values

not in V . Such implementation allows the agents never to return to a room they visited and
is thus a solution to Minsum-Switch-Implementation with K = n2 + 7n.

Conversely, assume there is an implementation of X where agents never come back into
a room they occupied. In this case, we show that agents in {A2

1, . . . , A
2
n} necessarily start

with a room corresponding to value 0.5S. Otherwise, after a period of 2S no agent would
be free to exchange with her. To see this, consider that agents in {A3

1, . . . , A
3
n} should still

should occupy their current room for some time (they have swapped at time 0.5S + S).
The same is true for agents in {A1

1, . . . , A
1
n}. Indeed, suppose that agent A1

j can leave her

room at time 2S. This is only possible if she first occupied room R2
j and then directly

switched to R3
j (or vice-versa). This is not possible as if A1

j is in R2
j then the occupant of

R3
j is necessarily A3

j , which will not be free to exchange with her at time S. Hence, agents

in {A2
1, . . . , A

2
n} necessarily start with a room corresponding to value 0.5S, which in turn

implies that after 0.5S all agents need to swap their rooms. In particular, any agent in
{A2

1, . . . , A
2
n} necessarily exchange with an agent in {A1

1, . . . , A
1
n}. This implies that the

rooms occupied by A1
j provide a set V ⊂ U such that

∑
v∈V v = 0.5S, i.e., a solution to the

initial Partition problem.

Full proof of Theorem 4

We provide here the full proof of Theorem 4: Minsum-Switch-Ordering is NP-complete.

Proof. Membership to NP is straightforward. To prove hardness we present a reduction
from the NP-hard Hamming Salesman Problem (HSP) [10]. An instance of HSP is a
string P = v1 . . . vn, L, where vi ∈ {0, 1}m, for some n and m, and L is an integer in binary
representation. The question is to determine if there exists a Hamiltonian cycle over vertices
vi of total cost less than L, where the distance between two nodes is given by the Hamming
distance. Note that L can be assumed less than nm.

We first show that finding a Hamiltonian path instead of a Hamiltonian cycle is also
NP-Hard. Indeed, one can guess two consecutive nodes v and v′ in a Hamiltonian cycle
providing a solution to the former problem (one out of the n− 1 guesses (vi, vn), i in [n− 1]
must be correct). Then, there is a Hamiltonian cycle of total cost less than L iff for one
guess there exists a Hamiltonian path starting in v and ending in v′ of total cost less than
L− d(v, v′). The last argument is that one can modify the instance to enforce that any two
nodes v and v′ are the endpoints by increasing the distances of v and v′ to all other nodes
by increasing the sizes of the bit strings. Formally, given v and v′ and a bound T , we create
two nodes ṽ and ṽ′ by adding to v, T zeros and then T ones and to v′, T ones and then T
zeros. To all other nodes, we add 2T zeros. Clearly, there exists a Hamiltonian path with v
and v′ as endpoints and total cost lower than T iff in the modified instance, there exists a
Hamiltonian path with total cost lower than 3T .

Consider now an instance of HSP P = v1 . . . vn, L. We create an instance of Minsum-
Switch-Ordering where there are 2m agents and 2m rooms. For each vertex v we create
a deterministic allocation σv of the rooms as follows: agent i will be assigned to room i
(resp. m+ i) and agent m+ i will be assigned to room m+ i (resp. i) if the i-th bit of v is 0
(resp. 1), for all i in [m]. It is clear that the switch cost between σv and σv

′
is equal to two

times the Hamming distance between v and v′. Thus, there is a one-to-one correspondence

21

between Hamiltonian paths on vertices of P and orderings of solutions σv. It is therefore
sufficient to run Minsum-Switch-Ordering on an implementation composed of σv for
v ∈ P and K = 2L to obtain a solution to the initial HSP instance.

Experimental design and further results

We detail in this section our experimental design to evaluate the number of additional
solutions that our proposal bring with respect to classical rent division under budget. For
a fixed number of agents, we generated instances of rent division under budget 〈n, V, L, b〉
using the following methodology:

Room base values: we draw base values for rooms uniformly at random between 25 and
50, then multiplied by 10. Call Mj the base value of room j ∈ R.

The rent, valuations, and budget are sampled from normal distributions where the means
are based on the base values of rooms and the standard deviations are percentages 0 < α < 1
of the mean (we used α = 0.1 for most of our experiments, see Figure 3 for a comparison
with α = 0.2).

Rent: we draw the rent as a normal distribution centered at
∑
jMj with standard devia-

tion α
∑
jMj .

Individual valuations of rooms: for each i ∈ A and j ∈ R we draw vij from a normal
distribution centered at Mj with standard deviation αMj .

Individual budgets: for each i ∈ A we draw the budget bi from a normal distribution

centered at
∑

j Mj

n with standard deviation α
∑

j Mj

n .

This way of generating profiles allows us to start with situations where agents have a
correlated evaluation of rooms, and have a budget that is roughly one n-th of the rent to be
paid. If a generated instance does not allow for an IR solution we disregard it (we assume
that roommates would not consider to rent a flat together if they notice no IR solution
exist). Then, we check the existence of solutions that are EF, B-EF, or their fractional
counterparts. Then, we investigate whether more solutions exist when the budget increases.
For fixed valuations and rent, we increased the tightness of the budget by multiplying all
individual budgets by x ∈ [1, 2]. When x = 1 there are still a number of instances where
the agents cannot afford the apartment, while at x = 2 we are close to rent division with
unlimited budgets, that always admits an EF solution (note that however it does not always
admit an EF and IR solution, as we do not assume that individual valuations sum to the
rent, cf. Section 3.3).

Checking the existence of solutions was performed using an MIP under Gurobi [13]. We
investigated the case of n ∈ {2, 3, 4, 5} and we generated 1000 instances for each value of n.
We provide the results for α = 0.1 for different values of n in Figure 2, showing that the
number of agents does not seem to have an impact on our results. For x = 1, the sum of the
budget of each agent equals the rent in expectation, so the budgets are tight. We observe
that using B-EF or fractional allocations increase significantly the likelihood of having a
solution compared to EF. In particular, a significant number of instances that do not admit
an EF solution do have a B-EF solution (for instance, when x = 1 in most plots there are
twice more B-EF instances than EF ones). This is a particularly positive message, since
B-EF solutions are deterministic, and thus easier to accept by the agents than fractional
ones. When x increases, i.e. when the budgets are less tight, the difference becomes less
significant.

22

1.0 1.2 1.4 1.6 1.8 2.0
tightness of budget

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

%
 o

f i
ns

ta
nc

es
 w

ith
 a

 so
lu

tio
n

2 agents; alpha=0.1; 10000 instances

EF
BEF
F-EF
F-BEF

1.0 1.1 1.2 1.3 1.4 1.5 1.6
tightness of budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 w

ith
 a

 so
lu

tio
n

3 agents; alpha=0.1; 10000 instances

EF
BEF
F-EF
F-BEF

1.0 1.2 1.4 1.6 1.8 2.0
tightness of budget

0.2

0.4

0.6

0.8

1.0

%
 o

f i
ns

ta
nc

es
 w

ith
 a

 so
lu

tio
n

4 agents; alpha=0.1; 10000 instances

EF
BEF
F-EF
F-BEF

1.0 1.2 1.4 1.6 1.8 2.0
tightness of budget

0.2

0.4

0.6

0.8

1.0

%
 o

f i
ns

ta
nc

es
 w

ith
 a

 so
lu

tio
n

5 agents; alpha=0.1; 10000 instances

EF
BEF
F-EF
F-BEF

Figure 2: Frequency of existence of solutions for different values of n = 2, 3, 4, 5. All
experiments are run with α = 0.1 for 1000 instances.

23

α = 0.1

1.0 1.2 1.4 1.6 1.8 2.0
tightness of budget

0.2

0.4

0.6

0.8

1.0

%
 o

f i
ns

ta
nc

es
 w

ith
 a

 so
lu

tio
n

4 agents; alpha=0.1; 10000 instances

EF
BEF
F-EF
F-BEF

α = 0.2

1.0 1.1 1.2 1.3 1.4 1.5 1.6
tightness of budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 w

ith
 a

 so
lu

tio
n

4 agents; alpha=0.2; 10000 instances

EF
BEF
F-EF
F-BEF

Figure 3: Frequency of existence of solutions for n = 4 and different values of α. All
experiments are run for 1000 instances.

In Figure 3, we fixed n = 4 and we present results for two values of α: the values of agents
for the same room are closer when α is small. Having more variations in the valuations
decreases the likelihood of existence of EF solutions. Surprisingly, it also decreases the
likelihood of existence of fractional solutions. Increasing α further than 0.2 flattens the four
curves.

24

