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Abstract

We consider a variant of the n-way number partitioning problem, in which some
fixed number s of items can be split between two or more bins. We show a two-way
polynomial-time reduction between this variant and a second variant, in which the
maximum bin sum must be within a pre-specified interval. We prove that, for any
fixed integer n ≥ 3, the second variant can be solved in polynomial time if the length
of the allowed interval is at least (n− 2)/n times the maximum item size, and it is
NP-complete otherwise. Using the equivalence between the variants, we prove that,
for any fixed integer n ≥ 3, n-way number-partitioning with s split items can be
solved in polynomial time if s ≥ n − 2, and it is NP-complete otherwise. Using the
same reduction, we provide empirical evidence that the number of split items for a
perfect partition in practice is much lower than the worst-case scenario.

1 Introduction

In the classic n-way number partitioning problem (where n ≥ 2 is a fixed integer), the input
is a list X = (x1, . . . , xm) of m non-negative integers, and the objective is to find an n-way
partition (a partition into n bins) of X such that the maximum bin sum is minimized. Given
an n-way partition, we denote by bi the sum of item sizes in bin i.

n−Way−MinMax(X ): Minimize max(b1, . . . , bn), where b1, . . . , bn are sums of
bins in an n-way partition of X .

This abstract problem has many concrete applications. One of them is the famous Makespan
Minimization problem: given a fixed number, n, of identical machines, and a list of m
jobs with given processing times, assign each job to a machine, such that the maximum
completion time is minimized. Another application is fair allocation of indivisible chores
(items with negative values).

The problem is known to be NP-hard for every fixed n ≥ 2 [8]. One could consider a
continuous (fractional) variant of n−Way−MinMax, in which each item can be split between
two or more bins. This variant is very easy to solve: by splitting each item equally into n
parts and putting a part in each bin, it is possible to attain a perfect partition, that is, a
partition with b1 = · · · = bn = 1

n

∑
i xi.

While theoretical problems are usually classified as either “discrete” or “continuous”,
practical partitioning problems may lie in between these two extremes: every item can be
split if needed, but the splitting may be expensive or inconvenient, and therefore the number
of split items should be bounded. As an example, consider n = 2 heirs who inherited m = 3
houses and have to divide them fairly. The house values are X = (100, 200, 400). If all
houses are considered discrete, then an equal division is not possible. If all houses can be
split, then an equal division is easy to attain by giving each heir 50% of every house, but it
is inconvenient since it requires all houses to be jointly managed. A natural solution that
can be used in practice is to decide in advance that a single house can be split.1 In this
case, after receiving the input, we can determine that splitting the house with value 400 lets
us attain a division in which each heir receives the same value of 350.2

1We have heard from real-estate assessors (Achikam Bitan, Amnon Nizri) that the solution of splitting a
small number of houses is often used in practical estate-division cases.

2 Split the house worth 400 such that one heir gets 7/8 of it, and the other gets 1/8 of it plus both the



Motivated by these practical examples in fair division and machine scheduling (see Ap-
pendix D for more examples), we define a variant of the n−Way−MinMax problem, which
accepts, in addition to the list X of integers to partition, a parameter s ∈ N, 0 ≤ s ≤ m,
which specifies that at most s items from X are allowed to be split between bins.

n−s−Split−MinMax(X ): Minimize max(b1, . . . , bn), where b1, . . . , bn are sums
of bins in an n-way partition of X in which at most s items are split.

We denote by n−s−Split−Perfect the decision version of n−s−Split−MinMax, which only
asks if there exists a perfect partition (a partition with equal bin sums). Note that the
problem definition does not determine in advance which s items will be split, but only
bounds their number. The solver may decide which items to split after receiving the input.

When s = 0, n−s−Split−MinMax is equivalent to the NP-hard n−Way−MinMax. In
contrast, when s ≥ n− 1 the problem is easily solvable by the following algorithm: put the
items on a line, cut the line into n pieces with an equal total value, and put each piece in a
bin. Since n−1 cuts are made, at most n−1 items need to be split. So for n = 2, the runtime
complexity of the n−s−Split−MinMax problem is well-understood (assuming P ̸= NP): it
is polynomial-time solvable if and only if s ≥ 1. The main goal of this paper is to analyze
the runtime complexity of the problem for any fixed integers n ≥ 3 and 1 ≤ s ≤ n − 2, as
a function of m — the number of input integers, and log2 S — where S is defined as the
average bin size, S := (

∑m
i=1 xi)/n. Note that log2 S is upper bounded by the number of

bits in the input. Our main results are:

Theorem 1.1. For any fixed integers n ≥ 3 and s ≥ n − 2, n−s−Split−MinMax can be
solved in time O(poly(m, logS)).

Theorem 1.2. For any fixed integers n ≥ 3 and s < n−2, n−s−Split−MinMax is NP-hard.
Moreover, even its decision version n−s−Split−Perfect, which asks if there exists a perfect
partition (a partition with equal bin sums), is NP-complete.

In order to solve n−s−Split−MinMax, we consider another variant of n-way number
partitioning, a decision problem which asks whether the maximum bin sum is within a
pre-specified interval around the average bin sum, S := (

∑
i xi)/n. Note that S is the

optimal fractional solution, that is, the solution that can be attained if all items can be
split. The runtime complexity of this problem depends on the size of the allowed interval.
In general, the problem is NP-complete when the interval is “small” and in P when the
interval is “large”. Specifically, when n = 2, the runtime complexity depends on the ratio
of the allowed interval to the average bin sum, while when n ≥ 3 it depends on the ratio
of the allowed interval to the largest item size. Therefore, we present two variants of the
problem. The first is parametrized by a rational number t ≥ 0:

n−t−Interval(X ): Decide if there exists a partition of X into n bins with sums
b1, . . . , bn such that S ≤ max(b1, . . . , bn) ≤ (1+ t) ·S, where S := (

∑
i xi)/n.

The second is parametrized by a rational number d ≥ 0:

n−d−Interval(X ): Decide if there exists a partition of X into n bins with sums
b1, . . . , bn such that S ≤ max(b1, . . . , bn) ≤ S+ d ·M , where S := (

∑
i xi)/n and

M := (maxi xi)/n.

Note that the lower bound S ≤ max(b1, . . . , bn) always holds by the pigeonhole principle,
so we could have named our problems “Upper Bound” instead of “Interval”. We prefer to
use “interval” because our proofs are based on both lower bounds and upper bounds. Our
secondary results are:

100 and 200 houses.



Theorem 1.3. For n = 2 and any rational number t > 0, the n−t−Interval(X ) problem
can be solved in time O(poly(m, logS, 1/t)).

Theorem 1.4. For any fixed integer n ≥ 3 and rational number d ≥ n−2, the n−d−Interval
(X ) problem can be solved in time O(poly(m, logS)).

Our algorithms use as building-blocks several FPTAS algorithms, which we define next.

Theorem 1.5. For any fixed n ≥ 3 and rational number d < n − 2, the n−d−Interval(X )
problem is NP-complete.

Definition 1.1. An FPTAS for n−Way−MinMax is an algorithm that finds, for each real
ϵ > 0, an n-way partition of X with OPT ≤ max(b1, . . . , bn) ≤ (1 + ϵ) · OPT , where
OPT is the smallest possible value of max(b1, . . . , bn) in the given instance, in time O(poly
(m, 1/ϵ, logS)).

Notice that the n−t−Interval problem can be seen as a slightly strengthened version of
an FPTAS, where the relative deviation from optimality depends on the optimal fractional
solution, instead of the optimal integral solution. Despite the similarity, the problems are
not identical. While n−Way−MinMax has an FPTAS [23], it does not automatically solve
n−t−Interval. In Section 3.1 we show how an FPTAS for a slightly different problem can be
used to solve 2−t−Interval and prove Theorem 1.3. In the rest of Section 3 we analyze the
n−d−Interval problem and prove Theorem 1.4 and Theorem 1.5.

In Section 4, we prove a two-way polynomial-time reduction between the partitioning
with interval target and partitioning with split items problems. Using this reduction and
Theorems 1.4 and 1.5, we conclude the proof of Theorems 1.1 and 1.2.

In Appendix F, using the same reduction, we develop a practical (not polynomial-time)
algorithm for solving n−s−Split−MinMax for any s ≥ 0. The algorithm can use any practical
algorithm for solving the n−Way−MinMax problem; we use a variant of the Complete Greedy
Algorithm [11]. We apply this algorithm to various randomly generated instances, and
analyze the effect of s on the quality of the attained solution. We find out that, in most
cases, much fewer than n − 1 splits are sufficient for attaining a perfect partition. For
example, in over 74% of the settings we checked, n/2 splits are sufficient for a perfect
partition.

In the supplement, we present two complementary results.
In Appendix B, we show that assuming n is fixed is necessary for our positive results:

when n is part of the input (not fixed in advance), both d−Interval(X , n) and s−Split−Perfect
(X , n) are strongly NP-hard for every fixed rational number d and integer s.

In Appendix C, we analyze a different way to control the amount of splitting. Instead
of considering the number of split items, one can measure the number of times each item
is split. The number of splittings is at least the number of split items, but it might be
larger. For example, a single item split into 10 different bins counts as 9 splittings. We
name this variant n−s−Times−Split−Perfect(X ). It is similar to the n−s−Split−Perfect(X )
problem with the exception that s denotes the number of splittings. When s ≥ n − 1 a
perfect partition can be easily found by the same ”line-cutting” algorithm. We prove that
this variant is NP-hard for all s < n − 1, thus completing the classification of its run-time
complexity.

2 Related work

The idea of finding fair allocations with a bounded number of split items originated from
Brams and Taylor [3, 4]. They presented the Adjusted Winner (AW) procedure for allocating



items among two agents with possibly different valuations. AW finds an allocation that is
envy-free (no agent prefers the bundle of another agent), equitable (both agents receive the
same subjective value), and Pareto-optimal (there is no other allocation where some agent
gains and no agent loses), and in addition, at most a single item is split between the agents.
Hence, AW solves a problem that is similar to 2−1−Split−Perfect(X ) but more general, since
AW allows the agents to have different valuations to the same items. AW was applied (at
least theoretically) to division problems in divorce cases and international disputes [5, 14]
and was studied empirically in [18, 7]. The AW procedure is designed for two agents. For
n ≥ 3 agents, the number of split items allowed was studied in an unpublished manuscript of
Wilson [22] using linear programming techniques. He proved the existence of an egalitarian
allocation of goods (i.e., an allocation in which all agents have a largest possible equal utility
[16]), with at most n− 1 split items; this can be seen as a generalization of n−(n− 1)−Split
−Perfect(X ).

Goldberg et al. [9] studied the problem of consensus partitioning. In this problem, there
are n agents with different valuations, and the goal is to partition a list of items into some
k subsets (where k and n may be different), such that the value of each subset is 1/k for
each agent. They prove that a consensus partitioning with at most n(k− 1) split items can
be found in polynomial time.

Most similar to our paper is the recent work of Sandormirskiy and Segal-Halevi [17].
Their goal is to find an allocation among n agents with different valuations, which is both fair
and fractionally Pareto-optimal (fPO), a property stronger than Pareto-optimality (there is
no other discrete or fractional allocation where some agent gains and no agent loses). This is
a very strong requirement: when n is fixed, and the valuations are generic (i.e., for every two
agents, no two items have the same value-ratio), the number of fPO allocations is polynomial
in m, and it is possible to enumerate all such allocations in polynomial time. Based on this
observation, they present an algorithm that finds an allocation with the smallest number
of split items, among all allocations that are fair and fPO. In contrast, in our paper, we do
not require fPO, which may allow allocations with fewer split items. However, the number
of potential allocations becomes exponential, so enumerating them all is no longer feasible.

Recently, Bei et al. [1] studied an allocation problem where some items are divisible
and some are indivisible. In contrast to our setting, in their setting the distinction between
divisible and indivisible items is given in advance, that is, the algorithm can only divide
items that are pre-determined as divisible. In our setting, only the number of divisible items
is given in advance, but the algorithm is free to choose which items to split after receiving
the input.

There are various works on combinatorial problems such as some variants of bin packing
or knapsack problems involving for example some penalties for each split-items or including
additional cost for fragmented items [2] [15] [13] [10].

Fractional relaxations of integer linear programs are very common in approximation
algorithm design. However, most works do not explicitly bound the number of fractional
variables. One similar notion is related to preemption in job-scheduling. In the world of ma-
chine scheduling, where the problem n−Way−MinMax is known as “makespan-minimization
on identical machines”.

Fractional scheduling is often done using preemption. Preemption means that a job can
be split into parts, each of which can be scheduled independently, either on the same or on a
different machine, with the additional constraint that no two parts of a job are scheduled on
different machines at the same time. We found two works in which the amount of preemption
is bounded: Soper and Strusevich [21] allow at most one preemption, while Liu and Cheng
[12] consider a variant in which there is a penalty for each preemption.



3 Partition with Interval Target

In this section we analyze the two related problems n−t−Interval and n−d−Interval. Recall
that, by the definition of these problems, they accept as input a list X of positive integers
with sum n · S and maximum element n ·M , where S and M are rational numbers.

3.1 The n−t−Interval problem
Given an instance of n−t−Interval(X ), we say that a partition of X is t-feasible if S ≤
max(b1, . . . , bn) ≤ (1 + t) · S, where b1, . . . , bn are the bin sums. The n−t−Interval(X )
problem is to decide whether a t-feasible allocation exists.

Note that, when t ≥ 1, the problem can be decided easily by a linear-time greedy
algorithm (see Appendix H). Therefore, we focus below on the case t < 1.

As a first (incomplete) attempt to solve n−t−Interval, let us apply a known FPTAS for
the n−Way−MinMax problem [23]. Denote the largest bin sum in the solution obtained by
the FPTAS for a given list X and a given ϵ > 0 by FPTAS(n−Way−MinMax(X ), ϵ).

If FPTAS(n−Way−MinMax(X ), ϵ)≤ (1+ t) ·S, then the partition returned by the FPTAS
is t-feasible, so the answer to n−t−Interval(X ) is “yes”.

If FPTAS(n−Way−MinMax(X ), ϵ)> (1+ t) ·S, then the partition returned by the FPTAS
is not t-feasible, but we cannot conclude that the answer to n−t−Interval(X ) is “no”, since
there may be some other t-feasible partition. However, this outcome does give us valuable
information about the instance: by the definition of FPTAS, it implies that the optimal
value to n−Way−MinMax(X ) is larger than (1 + t) · S/(1 + ϵ). This implies that, in any
n-way partition of X , there is at least one bin with sum larger than (1 + t) · S/(1 + ϵ).

Definition 3.1. Given an instance of n−t−Interval(X ), a real number ϵ > 0, and a partition
of X into n bins, an almost-full bin is a bin with sum larger than (1 + t) · S/(1 + ϵ).

In the previous paragraph we have proved the following lemma:

Lemma 3.1. For any integer n ≥ 2, rational t > 0 and real ϵ > 0, if FPTAS(n−Way
−MinMax(X ), ϵ) > (1 + t) · S, then in any n-way partition of X , at least one bin is almost-
full.

To gain more information on the instance, we apply an FPTAS for a constrained variant
of n−Way−MinMax, with a Critical Coordinate (CC). For an integer n ≥ 2, a list X , and a
rational number t > 0, we define the following problem:

n−t−Way-MinMax−CC(X ): Minimize max(b2, . . . , bn) subject to b1 ≤ (1+ t) ·
S, where b1, . . . , bn are sums of bins in an n-way partition of X .

The general technique developed by Woeginger [23] for converting a dynamic program to an
FPTAS can be used to design an FPTAS for n−t−Way-MinMax−CC; we give the details in
Appendix E.1. We denote by FPTAS(n−t−Way-MinMax−CC(X , t), ϵ) the largest bin sum
in the obtained solution. The following lemma is the key for our algorithms.

Lemma 3.2. For any n ≥ 2, t > 0, ϵ > 0, if FPTAS(n−t−Way-MinMax−CC(X ), ϵ) >
(1 + t) · S, then in any t-feasible n-way partition of X , at least two bins are almost-full.

Proof. Suppose by contradiction that there exists a t-feasible partition of X with at most
one almost-full bin. It is possible to reorder the bins in the partition such that bin 1 has the
largest sum; the resulting partition is still t-feasible, and still has at most one almost-full
bin. Since bin 1 has the largest sum, if there is one almost-full bin, it must be bin 1. So in
any case, bins 2, . . . , n are not almost-full, so max(b2, . . . , bn) ≤ (1+ t) ·S/(1+ ϵ). Moreover,
b1 ≤ (1 + t) · S since the partition is t-feasible. Therefore, FPTAS(n−t−Way-MinMax−CC
(X ), ϵ) ≤ (1+ t) ·S by the definition of FPTAS. This contradicts the lemma assumption.



Using Lemma 3.2, we can now derive a complete algorithm for 2−t−Interval.

Algorithm 1 2−t−Interval(X )
1: b2 ←− FPTAS(2−t−Way-MinMax−CC(X ), ϵ = t/2).
2: If b2 ≤ (1 + t) · S, return “yes”.
3: Else, return “no”.

Theorem 3.1 (Theorem 1.3). For any rational t > 0, Algorithm 1 solves the 2−t−Interval
(X ) Problem in time O(poly(m, logS, 1/t)), where m is the number of items in X and S is
the average bin size.

Proof. The run-time of Algorithm 1 is dominated by the run-time of the FPTAS for the
problem 2−t−Way-MinMax−CC, which is O(poly(m, logS, 1/ϵ)) = O(poly(m, logS, 1/t))
(we show in Appendix E.3.1 that the exact run-time is O(mt logS)). It remains to prove that
Algorithm 1 indeed solves 2−t−Interval correctly. If b2, the returned bin sum of FPTAS(2−t−
Way-MinMax−CC(X ), ϵ = t/2), is at most (1+ t) ·S, then the partition found by the FPTAS
is t-feasible, so Algorithm 1 answers “yes” correctly.

Otherwise, by Lemma 3.2, in any t-feasible partition of X into two bins, both bins are
almost-full. This means that, in any t-feasible partition, both b1 and b2 are larger than
(1 + t) · S/(1 + ϵ), which is larger than S since ϵ = t/2. This means that b1 + b2 > 2S. But
this is impossible, since the sum of all items is n · S = 2S by assumption. Therefore, no
t-feasible partition exists, and Algorithm 1 answers “no” correctly.

For the following sections, we will need a variant of n−t−Interval with an additional
constraint, that all bins must have an equal number of items.

n−t−Interval−Eq(X ): Decide if there exists a t-feasible partition of X =
(x1, . . . , xm) into n bins such that each bin contains exactly m/n items.

Clearly, if m is not a multiple of n then the answer is “no”; the interesting case is that m
is a multiple of n.

We can solve n−t−Interval−Eq for n = 2 in a similar way to Algorithm 1. This requires
an FPTAS to the corresponding equal-cardinality variant of 2−t−Way-MinMax−CC, which
we call 2−t−Way-MinMax−Eq−CC. An FPTAS for this problem can be designed by the
technique of Woeginger [23]; the details are in Appendix E.2. By plugging this FPTAS into
Algorithm 1, we get an algorithm for solving 2−t−Interval−Eq:

Theorem 3.2. There is an algorithm for solving 2−t−Interval−Eq(X ) for any rational
t > 0 in time O(poly(m, 1/t, logS)), where m is the number of input items in X and S is
the average bin size.

Remark 3.1. The reader may wonder why we cannot use a similar algorithm for n ≥ 3.
For example, we could have considered a variant of n−t−Way-MinMax−CC with two critical
coordinates:

Minimize max(b3, . . . , bn) subject to b1 ≤ (1 + t) · S and b2 ≤ (1 + t) · S, where
b1, b2, b3, . . . , bn are sums of bins in an n-way partition of X .

If the FPTAS for this problem does not find a t-feasible partition, then any t-feasible partition
must have at least three almost-full bins. Since not all bins can be almost-full, one could
have concluded that there is no t-feasible partition into n = 3 bins.

Unfortunately, the problem with two critical coordinates probably does not have an FPTAS
even for n = 3, since it is equivalent to the Multiple Subset Sum problem, which does not
have an FPTAS unless P=NP [6]. In the next subsection we handle the case n ≥ 3 in a
different way.



3.2 The n−d−Interval problem: an algorithm for n ≥ 3 and d ≥ n− 2

Given an instance of n−d−Interval(X ), where the sum of items is n·S and the maximum item
is n ·M , where S,M ∈ Q, we say that a partition of X is d-possible if S ≤ max(b1, . . . , bn) ≤
S + d ·M , where b1, . . . , bn are the bin sums. The n−d−Interval(X ) problem is to decide
whether a d-possible allocation exists.3 Given an instance of n−d−Interval(X ) , we let
t := dM/S, so that a partition is d-possible if-and-only-if it is t-feasible.

The algorithm starts by running FPTAS(n−t−Way-MinMax−CC(X ), ϵ = t/4m2). If the
FPTAS finds a t-feasible partition, we return “yes”. Otherwise, by Lemma 3.2, any t-feasible
partition must have at least two almost-full bins.

Now, we take a detour from the algorithm and prove some existential results about
partitions with two or more almost-full bins.

We assume that there are more items than bins, that is, m > n. This assumption is
without loss of generality, since if m ≤ n the problem is trivial.

3.2.1 Structure of partitions with two or more almost-full bins

We distinguish between big, medium and small items defined as follows. A big-item is an
item with size greater than nS( t

n−2 − 2ϵ), while a small-item is an item with size smaller
than 2nSϵ. All other items are medium-items. Our main structural Lemma is the following.

Lemma 3.3. Suppose that d ≥ n−2, t = dM/S < 1, ϵ = t/4m2 and the following properties
hold.

(1) There is no t-feasible partition with at most 1 almost-full bin;

(2) There is a t-feasible partition with at least 2 almost-full bins.
Then, there is a t-feasible partition with the following properties.

(a) Exactly two bins (w.l.o.g. bins 1 and 2) are almost-full.

(b) The sum of every not-almost-full bin i ∈ {3, . . . , n} satisfies(
1− 2

n− 2
t− 2ϵ

)
· S ≤ bi ≤

(
1− 2

n− 2
t+ (n− 1)2ϵ

)
· S.

(c) Every item in an almost-full bin is a big-item.

(d) Every item in a not-almost-full bin is either a small-item, or a big-item larger or equal
to every item in bins 1,2.

(e) There are no medium-items at all.

(f) Every not-almost-full bin contains the same number of big-items, say ℓ, where ℓ is an
integer (it may contain, in addition, any number of small-items).

(g) Every almost-full bin contains ℓ+ 1 big-items (and no small-items).

As an example to this situation, consider an instance with 7 items, all of which have
size 1, with n = 5 and d = 3. Then, there is a d-possible partition with two almost-full
bins: (1, 1), (1, 1), (1), (1), (1), and no d-possible partition with 1 or 0 almost-full bins. See
Appendix I for details.

A full proof of the lemma appears in Appendix J; here we provide a sketch.

3Note that when d = n − 1, the answer to the problem is always yes. We can prove this by iterating
over the items, assigning each item to the bin with the smallest sum. Recall that the biggest item is equal
to nM , so by the pigeonhole principle, if the current item size is nx, then the smallest bin sum before the
addition is at most S − x, so the new bin sum is at most S + (n − 1)x. By assumption, x ≤ M , so all bin
sums are at most S + (n− 1)M . Therefore, the interesting case is d < n− 1.



Proof Sketch. We start with an arbitrary t-feasible partition with some r ≥ 2 almost-full bins
1, . . . , r, and convert it using a sequence of transformations to another t-feasible partition
satisfying properties (a)–(g), as explained below. Note that the transformations are not part
of our algorithm and are only used to prove the lemma. First, we note that there must be
at least one bin which is not almost-full, since the sum of an almost-full bin is larger than
S whereas the sum of all n bins is n · S.

For (a), if there are r ≥ 3 almost-full bins, we move any item from one of the almost-full
bins 3, . . . , r to some not-almost-full bin. We prove that, as long as r ≥ 3, the target bin
remains not-almost-full. This transformation is repeated until r = 2 and only bins 1 and 2
remain almost-full.

For (b), for the lower bound, if there is i ∈ {3, . . . , n} for which bi is smaller than
the lower bound, we move an item from bins 1, 2 to bin i. We prove that bin i remains
not-almost-full, so by assumption (1), bins 1, 2 must remain almost-full. We repeat until bi
satisfies the lower bound. Once all bins satisfy the lower bound, we prove that the upper
bound is satisfied too.

For (c), if bin 1 or 2 contains an item that is not big, we move it to some bin i ∈
{3, . . . , n}. We prove that bin i remains not-almost-full, so by assumption (1), bins 1, 2
must remain almost-full. We repeat until bins 1 and 2 contain only big-items.

For (d), if some bin i ∈ {3, . . . , n} contains an item bigger than 2nSϵ and smaller than
any item in bin 1 or bin 2, we exchange it with an item from bin 1 or 2. We prove that, after
the exchange, bi remains not-almost-full, so bins 1, 2 must remain almost-full. We repeat
until bins 1,2 contain only the smallest big-items. Note that transformations (b), (c), (d)
increase the sum in the not-almost-full bins 3, . . . , n, so the process must end.

For (e), it follows logically from properties (d) and (c): if bins 1,2 contain only big items
and the other bins contain only big and small items, then the instance cannot contain any
medium items (that are neither big nor small). For clarity and verification, we provide a
stand-alone proof.

For (f), we use the fact that the difference between two not-almost-full bins is at most
2nSϵ by property (b), and show that it is too small to allow a difference of a whole big-item.

For (g), because by (d) bins 1 and 2 contain the smallest big-items, whereas their sum
is larger than bins 3, . . . , n, they must contain at least ℓ + 1 big-items. We prove that,
if they contain ℓ + 2 big-items, then their sum is larger than (1 + t)S, which contradicts
t-feasibility.

Let B ⊆ X be the set of big items in X . Properties (f) and (g) imply:

Corollary 3.1. Suppose that d ≥ n − 2, t = dM/S and ϵ = t/4m2. If there is a t-feasible
partition with at least two almost-full bins, and no t-feasible partition with at most one
almost-full bin, then |B| = nℓ+ 2 for some positive integer ℓ.

3.2.2 Back to the algorithm

We have left the algorithm at the point when FPTAS(n−t−Way-MinMax−CC(X ), ϵ =
t/4m2) did not find a t-feasible partition. Lemma 3.2 implies that if a t-feasible parti-
tion exists, then there exists a t-feasible partition satisfying all properties of Lemma 3.3 and
Corollary 3.1. We can find such a partition (if it exists) in two steps:

– For bins 1,2: Find a t-feasible partition of the 2ℓ + 2 smallest items in B into two
bins with ℓ+ 1 items in each bin.

– For bins 3, . . . , n: Find a t-feasible partition of the remaining items in X into n− 2
bins.



For bins 3, . . . , n, we use the FPTAS for the problem (n − 2)−Way−MinMax. If it returns
a t-feasible partition, we are done. Otherwise, by Lemma 3.1, every partition into (n − 2)
bins must have at least one almost-full bin. But by Lemma 3.3(a), all bins 3, . . . , n are not
almost-full — a contradiction. Therefore, if the FPTAS does not find a t-feasible partition,
we answer “no”.

Bins 1 and 2 require a more complicated algorithm. 4 We use the following notation
(where n denotes the same parameter n ≥ 3 of the original n−d−Interval problem):

– B1:2 is the set of 2ℓ+ 2 smallest items in B (where B is the set of big items in X ).

– 2S1:2 is the sum of items in B1:2 (for some S1:2 ∈ Q).

– nM1:2 is the largest item in B1:2 (for some M1:2 ∈ Q).

Construct a new set, B1:2, by replacing each item x ∈ B1:2 by its “inverse”, defined by
x := nM1:2 − x. Since all items in B1:2 are big-items, all inverses are between 0 and 2nSϵ
(see the proof of Lemma 3.3(f) in Appendix J). Denote the sum of inverses by 2S1:2.

Given a t-feasible partition of B1:2 with sums b1 and b2 and ℓ+1 items in each bin, denote
the sums of the corresponding partition of B1:2 by b1 and b2, respectively. Since both bins
contain ℓ+1 items, bi = (ℓ+1) ·nM1:2− bi, for i ∈ {1, 2}, and S1:2 = (ℓ+1) ·nM1:2−S1:2.
Now,

b1 ≤ (1 + t)S ⇐⇒ b1 ≥ (ℓ+ 1)nM1:2 − (1 + t)S

⇐⇒ b2 ≤ 2S1:2 − (ℓ+ 1)nM1:2 + (1 + t)S

= S1:2 +
(
S1:2 − (ℓ+ 1)nM1:2

)
+ (S + tS)

= S1:2 + (S + tS − S1:2),

and similarly, b1 ≤ S1:2 + (S + tS − S1:2).
So the problem of finding a t-feasible partition of B1:2 with ℓ + 1 items in each bin

is equivalent to the problem of finding a t-feasible partition of B1:2 with ℓ + 1 items in
each bin, where t := (S + tS − S1:2)/S1:2. By Theorem 3.2, this problem can be solved in
O(poly(m, 1/t, logS)) time.

It remains to prove that 1/t is polynomial in m. By Lemma 3.3(d), in each of the not-
almost-full bins, there are ℓ items that are at least as large as nM1:2 (in addition to some
small-items). Therefore, nS ≥ 2S1:2 + (n− 2) · ℓ · nM1:2, which implies that

S − S1:2 ≥ −
n− 2

n
S1:2 +

n− 2

n
ℓ · nM1:2.

Since d ≥ n− 2, tS = dM ≥ (n− 2)M ≥ (n− 2)M1:2.
Summing up these two inequalities gives:

S − S1:2 + tS ≥ n− 2

n

(
ℓ · nM1:2 − S1:2 + nM1:2

)
=

n− 2

n

(
(ℓ+ 1) · nM1:2 − S1:2

)
=

n− 2

n
· S1:2.

Therefore, t ≥ n−2
n , so 1/t ∈ O(1) and the sub-problem can be decided in time O(poly(m,

logS)).

4Using a simple FPTAS for Subset Sum to solve our problem is not possible since the total size of the
items may equal 2(S + dM) and our goal is to divide the items among two bins of capacity S + dM , which
means that no approximation is allowed. Therefore, we need to pre-process the items in some way. The
technique we use is to inverse the items. Even after inverting the items, we need an additional cardinality
constraint enforcing that there are exactly ℓ+ 1 items in each bin.



3.2.3 Complete algorithm

We are now ready to present the complete algorithm for n−d−Interval, presented in Algo-
rithm 2.

Algorithm 2 n−d−Interval (complete algorithm)

1: t←− dM/S and ϵ←− t/(4m2).
2: If FPTAS(n−t−Way-MinMax−CC(X ), ϵ) ≤ (1 + t) · S, return “yes”.
3: B ←−

{
xi ∈ X | xi > nS( t

n−2 − 2ϵ)
}

▷ big items

4: If |B| is not of the form nℓ+ 2 for some integer ℓ, return “no”.
5: B1:2 ←− the 2ℓ+ 2 smallest items in B. ▷ break ties arbitrarily

6: B3..n ←− X \B1:2. ▷ big and small items

7: (b3, . . . , bn)←− FPTAS((n− 2)−Way−MinMax(B3..n), ϵ) ▷ an (n− 2)−way partition of B3..n

8: If max(b3, . . . , bn) > (1 + t)S, return “no”.
9: B1:2 ←− {nM1:2 − x | x ∈ B1:2} and t←− (S + tS − S1:2)/S1:2.

10: Look for a t-feasible partition of B1:2 into two subsets of ℓ + 1 items as explained in
Theorem 3.2.

11: If a t-feasible partition is found, return “yes”. Else, return “no”.

Theorem 3.3 (Theorem 1.4). For any fixed integer n ≥ 3 and rational number d ≥ n− 2,
Algorithm 2 solves n−d−Interval(X ) in O(poly(m, logS)) time, where m is the number of
items in X , and S is the average bin size.

Proof. If Algorithm 2 answers “yes”, then clearly a t-feasible partition exists. To complete
the correctness proof, we have to show that the opposite is true as well.

Suppose there exists a t-feasible partition. If the partition has at most one almost-full
bin, then by Lemma 3.2, it is found by the FPTAS in step 2. Otherwise, the partition
must have at least two almost-full bins, and there exists a t-feasible partition satisfying the
properties of Lemma 3.3.

By Corollary 3.1, the algorithm does not return “no” in step 4. By properties (a) and (b),
there exists a partition of B3..n into n − 2 bins 3, . . . , n which are not almost-full. By
Lemma 3.1, the FPTAS in step 7 finds a partition with max(b3, . . . , bn) ≤ (1+ t)S. The final
steps, regarding the partition of B1:2, are justified by the discussion at Section 3.2.2. The
complete running time O(poly(m, logS)) of Algorithm 2 is justified by the running time of
the FPTAS for n−t−Way-MinMax−CC and for 2−t−Way-MinMax−Eq−CC. Note that 1/t is
polynomial in m since 1/t = S/dM ≤ mM/dM = m/d = O(m) since d is fixed. The exact
running time, O(m4 logS), is detailed in Appendix E.3.2.

4 Partition with Split Items

To solve the optimization problem n−s−Split−MinMax, we present the following decision
problem. For a fixed number 2 ≤ n ∈ N of bins, given a list X , the number of split items
0 ≤ s ≤ m, s ∈ N, and a rational number t ≥ 0, define:

n−s−t−Split−Bound(X ): Decide if there exists a partition of X into n bins,
with at most s split items, such that max(b1, . . . , bn) ≤ (1 + t)S.

The special case t = 0 corresponds to the n−s−Split−Perfect(X ) problem. The following
Lemma shows that, w.l.o.g., we can consider only the largest items for splitting.

Lemma 4.1. For every partition with s ∈ N split items and bin sums b1, . . . , bn, there exists
a partition with the same bin sums b1, . . . , bn in which only the s largest items are split.



Proof. Consider a partition in which some item x is split between two or more bins, whereas
some item y > x is allocated entirely to some bin i. Construct a new partition as follows:

– Move item x entirely to bin i;

– Split item y into two parts with sizes x and y − x;

– Remove the part with size x from bin i, and split it among the bins in the same
proportions that the item x was split originally.

All bin sums remain the same. Repeat the argument until only the largest items are split.

Theorem 4.1. For any fixed integers n ≥ 2 and d ≥ 0, there is a polynomial-time reduction
from n−d−Interval(X ) to n−d−0−Split−Bound(X ) (that is, n−s−t−Split−Bound(X ) with
s = d and t = 0).

Proof. Given an instance X of n−d−Interval(X ), construct an instance X ′ of n−d−0−Split
−Bound(X ′) by adding d items of size nM , where nM is the size of the biggest item in X .

First, assume that X has a d-possible partition. Then there are n bins with a sum at
most S + dM . Take the d added items of size nM and add them to the bins, possibly
splitting some items between bins, such that the sum of each bin becomes exactly S + dM .
This is possible because the sum of the items in X ′ is nS + dnM = n(S + dM). The result
is a 0-feasible partition of X ′ with at most d split items.

Second, assume that X ′ has a 0-feasible partition with at most d split items. Then there
are n bins with sum exactly S+ dM . By Lemma 4.1, we can assume the split items are the
largest ones, which are the d added items of size nM . Remove these items to get a partition
of X . The sum in each bin is now at most S + dM , so the partition is d-possible.

This construction is done in polynomial time, which completes the proof.

Corollary 4.1 (Theorem 1.2). For a fixed integers n ≥ 3 and s ∈ {0, 1, . . . , n−3}, the prob-
lem n−s−Split−MinMax is NP-hard, and n−s−0−Split−Bound(X ) ≡ n−s−Split−Perfect
(X ) is NP-complete.

Proof. Theorem A.1 and Theorem 4.1 together imply that both problems are NP-hard.
The problem n−s−Split−Perfect(X ) is in NP since given a partition, summing the sizes of
the elements (or element fractions) in each bin lets us to check in linear time whether the
partition has equal bin sums.

Theorem 4.2. For any fixed integers n ≥ 2, s ≥ 0 and rational t ≥ 0, there is a polynomial-
time reduction from n−s−t−Split−Bound(X ), to n−d−Interval(X ) for some rational d ≥ s.

Proof. Given an instance X of n−s−t−Split−Bound(X ), denote the sum of all items in X
by nS and the largest item size by nM where S,M ∈ Q. Construct an instance X ′ of
n−d−Interval(X ′) by removing the s largest items from X . Denote the sum of remaining
items by nS′ for some S′ ≤ S, and the largest remaining item size by nM ′ for some M ′ ≤M .
Note that the size of every removed item is between nM ′ and nM , so sM ′ ≤ S − S′ ≤ sM .
Set d := (S + tS − S′)/M ′, so S′ + dM ′ = S + tS. Note that d ≥ (S − S′)/M ′ ≥ s.

First, assume that X has a t-feasible partition with s split items. By Lemma 4.1, we
can assume that only the s largest items are split. Therefore, removing the s largest items
results in a partition of X ′ with no split items, where the sum in each bin is at most
S + tS = S′ + dM ′. This is a d-possible partition of X ′.

Second, assume that X ′ has a d-possible partition. In this partition, each bin sum is at
most S′ + dM ′ = S + tS, so it is a t-feasible partition of X ′. To get a t-feasible partition of
X , take the s previously-removed items and add them to the bins, possibly splitting some



items between bins, such that the sum in each bin remains at most S + tS. This is possible
because the sum of all items is nS ≤ n(S + tS).

This construction is done in polynomial time, which completes the proof.

Combining Theorem 4.2 with Theorem 3.3 provides:

Corollary 4.2. For any fixed n ≥ 3, s ≥ n−2 and rational t ≥ 0, n−s−t−Split−Bound(X )
can be solved in polynomial time.

Finally, for any fixed integer n ≥ 2 and s ≥ n− 2, we can solve the n−s−Split−MinMax
(X ) optimization problem by using binary search on the parameter t of the n−s−t−Split
−Bound(X ) problem. The details are given in Appendix K. As explained there, the binary
search procedure needs to solve at most log2(nS) instances of n−s−t−Split−Bound(X ).

Corollary 4.3 (Theorem 1.1). For any fixed integers n ≥ 3 and s ≥ n − 2, the problem
n−s−Split−MinMax(X ) can be solved in polynomial time in the size of the binary represen-
tation of its input.

5 Conclusion and Future Directions

We presented two variants of the multiway number partitioning problem. In the language of
machine scheduling, n−s−Split−MinMax corresponds to finding a schedule that minimizes
the makespan on n identical machines when s jobs can be split between the machines;
n−d−Interval corresponds to finding a schedule in which the makespan is in a given interval.
It may be interesting to study these two variants for more general scheduling problems, such
as uniform machines and unrelated machines.

In the language of fair item allocation, we have solved the problem of finding a fair
allocation among n agents with identical valuations, when the ownership on some s items
may be shared among agents. With identical valuations, “fair” simply means that each
agent receives the same sum of values. When agents may have different valuations, there
are various generalizations to this fairness notion, such as proportionality, envy-freeness or
equitability. A future research direction is to develop algorithms for finding such allocations
with a bounded number of shared items.

Our analysis shows the similarities and differences between these two variants and the
more common notion of FPTAS. One may view our results as introducing two alternative
kinds of approximation.

The first keeps the objective value optimal and allows a bounded number of items to
become fractional, instead of keeping the items discrete and allowing a bounded deviation in
the objective value. More generally, consider any optimization problem that can be solved
by a mixed-integer program, where some of the problem variables are rationals and some are
integers. Instead of deciding in advance (in the problem definition) which of the variables
must be integers, one can consider a variant in which only the number of the integer variables
is fixed in advance, whereas the solver can decide which variables are integers after receiving
the input.

The second approximates a decision problem by returning “yes” iff there exists a solution
between PER and PER(1 + ϵ), where PER represents the value of a perfect solution. For
the n−Way Number Partitioning problem, a perfect solution is easy to define: it is a perfect
partition. A more general definition of PER could be the solution to the fractional relaxation
of an integer linear program representing the problem. As we have shown, NP-hard decision
problems may become tractable when ϵ is sufficiently large.
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APPENDIX

A Hardness for n ≥ 3 bins and d < n− 2

The following theorem complements the Section 3.2

Theorem A.1 (Theorem 1.5). Given a fixed integer n ≥ 3 and a positive rational number
d < n− 2, the problem n−d−Interval(X ) is NP-complete.

Proof. Given an n-way partition of m items, summing the sizes of all elements in each bin
allows us to check whether the partition is d-possible in linear time. So, the problem is in
NP.

To prove that n−d−Interval is NP-Hard, we reduce from the Equal-Cardinality Partition
problem, proved to be NP-hard in [8]: given a list with an even number of integers, decide
if they can be partitioned into two subsets with the same sum and the same cardinality.

Given an instance X1 of Equal-Cardinality Partition, denote the number of items in X1 by
2m′. Define M to be the sum of numbers in X1 divided by 2n(1− d

n−2 ), so that the sum of

items in X1 is 2n(1− d
n−2 )M (where n and d are the parameters in the theorem statement).

We can assume w.l.o.g. that all items in X1 are at most n(1− d
n−2 )M , since if some item is

larger than half of the sum, the answer is necessarily “no”.
Construct an instance X2 of the Equal-Cardinality Partition problem by replacing each

item x in X1 by nM −x. So X2 contains 2m′ items between n( d
n−2 )M and nM . Their sum,

which we denote by 2S′, satisfies

2S′ = 2m′ · nM − 2n

(
1− d

n− 2

)
M = 2n

(
m′ − 1 +

d

n− 2

)
M.

Clearly, X1 has an equal-sum equal-cardinality partition (with bin sums n
(
1− d

n−2

)
M)

if and only if X2 has an equal-sum equal-cardinality partition (with bin sums S′ =

n
(
m′ − 1 + d

n−2

)
M).

Construct an instance (X3, d) of n−d−Interval by adding (n − 2)(m′ − 1) items of size
nM . Note that nM is indeed the largest item size in X3. Denote the sum of item sizes in
X3 by nS. Then

nS = 2S′ + (n− 2)(m′ − 1) · nM

= n

(
2(m′ − 1) +

2d

n− 2
+ (n− 2)(m′ − 1)

)
·M

= n

(
n(m′ − 1) +

2d

n− 2

)
M ;

S + dM =

(
n(m′ − 1) +

2d

n− 2
+ d

)
M =

(
n(m′ − 1) +

nd

n− 2

)
M = S′,

so a partition of X3 is d-possible if and only if the sum of each of the n bins in the partition
is at most S + dM = S′.

We now prove that if X2 has an equal-sum equal-cardinality partition, then the corre-
sponding instance (X3, d) has a d-possible partition, and vice versa.

If X2 has an equal-sum partition, then the items of X2 can be partitioned into two bins
of sum S′, and the additional (n− 2)(m′− 1) items can be divided into n− 2 bins of m′− 1
items each. Note that the sum of these items is

(m′ − 1) · nM = n(m′ − 1)M = S − 2

n− 2
dM < S + dM = S′, (1)



so the resulting partition is a d-possible partition of X3. Conversely, suppose X3 has a
d-possible partition. Let us analyze its structure.

– Since the partition is d-possible, the sum of every two bins is at most 2(S + dM).

– So the sum of every n− 2 bins is at least nS − 2(S + dM) = (n− 2)S − 2dM .

– Since the largest (n − 2)(m′ − 1) items in X3 sum up to exactly (n − 2)S − 2dM by
(2), every n− 2 bins must contain at least (n− 2)(m′ − 1) items.

– Since X3 has (n − 2)(m′ − 1) + 2m′ items overall, n − 2 bins must contain exactly
(n− 2)(m′ − 1) items, such that each item size must be nM , and their sum must be
(n− 2)S − 2dM .

– The other two bins contain together 2m′ items with sum 2(S + dM), so each of these
bins must have a sum of exactly S + dM . Since (m′ − 1) · nM < S + dM by (2), each
of these two bins must contain exactly m′ items.

These latter two bins are an equal-sum equal-cardinality partition for X2. This construction
is done in polynomial time, completing the reduction.

B Strong hardness for non-fixed n

In this section we prove that when n is part of the input (and not a fixed parameter), the
problems d−Interval(X , n) and s−Split−Perfect(X , n) are strongly NP-hard.

First, we prove that the problem d−Interval(X , n) is strongly NP-hard. Then, we show
that s−Split−Perfect(X , n) is strongly NP-hard by reduction from d−Interval(X , n).

Theorem B.1. For every fixed rational number d ≥ 0, The problem d−Interval(X , n) is
strongly NP-hard.

Proof. We apply a reduction from the 3−Partition problem: given a list X1 of 3m′ positive
integers with sum equal to m′S′, decide if they can be partitioned into m′ triplets such that
the sum of each triplet is S′. 3−Partition is proved to be strongly NP-hard in [8].

Given an instance X1 of 3−Partition with 3m′ integers, define n := ⌈2(m′ + d)⌉, where
d is the parameter of the problem d−Interval. Define M to be the sum of numbers in X1

divided by m′n(1 − d
n−m′ ), so that the sum of items in X1 is m′n(1 − d

n−m′ )M . Since

n = ⌈2(m′ + d)⌉, it follows that 1 − d
n−m′ > 0, so M is positive. The 3−Partition problem

decides if the items can be partitioned into m′ triplets such that the sum of each triplet is
n(1 − d

n−m′ )M . We can assume w.l.o.g. that all items in X1 are at most n(1 − d
n−m′ )M ,

since if some item is larger than n(1− d
n−m′ )M , the answer is necessarily “no”.

Construct an instance X2 of the 3−Partition problem by replacing each item x in X1 by
nM − x. So X2 contains 3m′ items between n( d

n−m′ )M and nM . Their sum, which we
denote by m′S′, satisfies

m′S′ = 3m′ · nM −m′n

(
1− d

n−m′

)
M = m′n

(
2 +

d

n−m′

)
M.

Clearly, X1 has a three-partition (with sum n
(
1− d

n−m′

)
M) if and only if X2 has a three-

partition (with sum S′ = n
(
2 + d

n−m′

)
M). The construction is done in time polynomial

in the size of X1.



Construct an instance (X3, n) of d−Interval by adding 2(n−m′) items of size nM . Note
that nM is indeed the largest item size in X3. Denote the sum of item sizes in X3 by nS.
So

nS = m′S′ + 2(n−m′) · nM = n

(
2m′ +

m′d

n−m′ + 2(n−m′)

)
·M

= n

(
2n+

m′d

n−m′

)
M ;

S + dM =

(
2n+

m′d

n−m′ + d

)
M =

(
2n+

nd

n−m′

)
M = S′,

so a partition of X3 is d-possible if and only if the sum of each of the n bins in the partition
is at most S + dM = S′.

We now prove that if X2 has a three-partition then the corresponding instance (X3, n)
has a d-possible partition, and vice versa.

If X2 has a three-partition, then the items of X2 can be partitioned into m′ bins of sum
S′, and the additional 2(n−m′) items can be divided into n−m′ bins of 2 items each. Note
that the sum of 2 additional items is

2 · nM =

(
2n+

nd

n−m′

)
M − nd

n−m′M = S + dM − nd

n−m′M (2)

= S + (d− nd

n−m′ )M = S − m′

n−m′ dM < S + dM = S′,

where the last inequality follows from the fact that 0 < m′

n−m′ , so the resulting partition is
a d-possible partition of X3.

Conversely, suppose X3 has a d-possible partition. Let us analyze its structure.

– Since the partition is d-possible, the sum of every m′ bins is at most m′(S + dM).

– So the sum of every n−m′ bins is at least nS −m′(S + dM) = (n−m′)S −m′dM .

– The largest 2(n−m′) items in X3 sum up to exactly 2(n−m′)·nM = (n−m′)S−m′dM
by (2).

– Hence, every n−m′ bins must contain at least 2(n−m′) items.

– Let A be the set of n−m′ bins with the fewest items. We claim that A must contain
exactly 2(n − m′) items. Suppose by contradiction that A contained at least 2(n −
m′)+1 items. By the pigeonhole principle, there was a bin in A with at least 3 items.
By minimality of A, the m′ bins not in A also contained at least 3 items each. The
total number of items were 2(n − m′) + 1 + 3m′. This is a contradiction, since the
total number of items in X3 is only 2(n−m′) + 3m′.

– The sum of items in A must still be at least (n−m′)S −m′dM = 2(n−m′) · nM , so
each item in A must have the maximum size of nM .

– The other m′ bins contain together 3m′ items with sum m′(S+ dM), so each of these
bins must have a sum of exactly S+dM . Since 2 ·nM < S+dM by (2), each of these
m′ bins must contain exactly 3 items.

These latterm′ bins are a three-partition of X2. This construction is done in time polynomial
in the size of X2, since we added 2(n−m′) items to the initial 3m′ items, so the new number
of items is m′ +2n < m′ +4(m′ + d) + 1 = 5m′ +4d+1. For every constant d, this number
is linear in the size of X2.



Theorem B.2. For any fixed integer s = d ≥ 0, there is a polynomial-time reduction from
d−Interval(X , n) to s−Split−Perfect(X , n).

Proof. Given an instance (X , n) of d−Interval(X , n), construct an instance (X ′, n′) of s−Split
−Perfect(X ′, n′) by setting n′ = n and adding d = s items of size nM , where nM is the size
of the biggest item in X .

First, assume that (X , n) has a d-possible partition. Then there are n bins with a sum
at most S + dM , where S is the sum of items in X divided by n. Take the d added items
of size nM and add them to the bins, possibly splitting some items between bins, such that
the sum of each bin becomes exactly S+ dM . This is possible because the sum of the items
in (X ′, n′) is nS + dnM = n(S + dM). The result is a perfect partition of (X ′, n′) with at
most d = s split items.

Second, assume that (X ′, n′) has a perfect partition with at most s split items. Then
there are n′ bins with sum exactly S + dM . By Lemma 4.1, we can assume that the split
items are the largest ones, which are the d added items of size nM . Remove these items to
get a partition of (X , n). The sum in each bin is now at most S + dM , so the partition is
d-possible.

This construction is done in polynomial time, which completes the proof.

Combining Theorem B.1 and Theorem B.2 gives:

Corollary B.1. For every fixed integer s ≥ 0, the problem s−Split−Perfect(X , n) is strongly
NP-hard.

C Hardness with Splitting count

In this section we analyze the complexity of partitioning when the parameter s denotes the
number of splittings, rather than the number of split items.

Theorem C.1. For any fixed integer n ≥ 2 and fixed s ∈ N such that s ≤ n−2, the problem
n−s−Times−Split−Perfect(X ) is NP-complete.

Proof. Given a partition with n bins, m items and s splittings, summing the size of each
element (or fraction of element) in each bin allows us to check whether or not the partition
is perfect in linear time. So, the problem is in NP.

To prove that n−s−Times−Split−Perfect is NP-Hard, we apply a reduction from the
Subset Sum problem. We are given an instance X1 of Subset Sum with m items summing
up to S and target sum T < S. We build an instance X2 of n−s−Times−Split−Perfect(X2),
by adding two items, x1, x2, such that x1 = S + T and x2 = 2S(s + 1) − T and n − 2 − s
auxiliary items of size 2S. Notice that the sum of the items in X2 equals

S + (S + T ) + 2S(s+ 1)− T + 2S(n− 2− s)

= 2S + 2S(s+ 1) + 2S(n− 2− s)

= 2S · (1 + s+ 1 + n− 2− s)

= 2Sn.

The goal is to partition the items into n bins with a sum of 2S per bin, and at most s
splittings.

First, assume that there is a subset of items W1 in X1 with sum equal to T . Define a
set, W2, of items that contains all items in X1 that are not in W1, plus x1. The sum of W2

is (S − T ) + x1 = S + T + S − T = 2S. Assign the items of W2 to the first bin. Assign
each auxiliary item to a different bin. There are n− (n− 2− s+ 1) = s+ 1 bins left. The



sum of the remaining items is 2S(s+1). Using the “line-cutting” algorithm described in the
introduction, these items can be partitioned into s+ 1 bins of equal sum 2S, with at most
s splittings. All in all, there are n bins with a sum of 2S per bin, and the total number of
splittings is at most s.

Second, assume that there exists an equal partition for n bins with s splittings. Since
x2 = 2S(s+ 1)− T = 2S · s+ (2S − T ) > 2S · s, this item must be split between s+ 1 bins,
which makes the total number of splittings at least s. Also, the auxiliary items must be
assigned without splittings into n− 2− s different bins. There is n− s− 1− n+ 2 + s = 1
bin remaining, say bin i, containing only whole items, not containing any part of x2, and
not containing any auxiliary item. Bin i must contain x1, otherwise its sum is at most S
(sum of items in X1). Let W1 be the items of X1 that are not in bin i. The sum of W1 is
S − (2S − x1) = x1 − S = T , so it is a solution to X1.

Note that a weaker result was presented in [20], that n−s−Times−Split−Perfect(X ) is
NP-complete for s < n− 2.

D Practical examples

As a first example, consider a food factory with n = 3 identical chopping machines, who
has to cut m = 4 vegetables with processing times X = (10, 7, 5, 5) minutes.

Each job is divisible — as one vegetable may be cut in different machines, but split-
ting a job is inconvenient — since it requires washing more dishes. Without splitting, the
minimum total processing time is 10 minutes: (10), (7), (5, 5). By splitting the vegetable
with processing time 10 into three different machines, the processing time is 9 minutes:
(7, 2), (5, 4), (5, 4).

As a second example (using the same m,n and X ), a video streaming platform earns
money by showing advertisements to users. The platform has an agreement with m different
companies to display X seconds of advertisements to n users. One or several of them can
be split by enabling the user to skip it after a given number of seconds. Nevertheless, if
an advertisement is split, the platform earns less. Similarly to the case with the chopping
machine, the option to split a single advertisement can make the division more balanced
among the users.

E FPTAS-s for various partitioning problems

Our algorithms use FPTAS-s for several variants of the number partitioning problem. These
FPTAS-s are developed using a general technique described by Woeginger [23]. In this
section we briefly describe this technique.

The first step is to develop a dynamic programming (DP) algorithm that solves the
problem exactly. The algorithm should have a specific format called simple DP, defined by
the following parameters:

– The size of the input vectors, α ∈ N (in our settings, usually α = 1 since each input is
a single integer);

– The size of the state vectors, β ∈ N (in our settings, each state represents a partition
of a subset of the inputs);

– A set of initial states V0 (in our settings, V0 usually contains a single state — the zero
vector — representing the empty partition);



– A set of transition functions F ; each function in F accepts a state and an input, and
returns a new state (in our settings, each function in F corresponds to putting the
new input in one of the bins);

– A set of filter functions H; each function hj ∈ H corresponds to a function fj ∈ F .
It accepts a state and an input, and returns a positive value if the new state returned
by fj is infeasible (infeasible states are kept out of the state space).

– An objective function G, that maps a state to a numeric value.

The DP algorithm processes the inputs one by one. For each input k, it applies every
transition function in F to every state in Vk−1, to produce the new state-set Vk. Finally, it
picks the state in Vm that minimizes the objective function. Formally:

1. Let V0 be the set of initial states.

2. For k := 1, . . . ,m:

Vk := {fj(s, x)|fj ∈ F, s ∈ Vk−1, hj(s, x) ≤ 0}

3. Return

min{G(s)|s ∈ Vm}

Every DP in this format can be converted to an FPTAS if it satisfies a condition called
critical-coordinate-benevolence (CC-benevolence). To prove that a dynamic program is CC-
benevolent, we need to define a degree vector D of size β, which determines how much each
state is allowed to deviate from the optimal state. The functions in F , G, H and the vector
D should satisfy several conditions listed in Lemma 6.1 of [23]. These conditions use the
term [D,∆]-close, defined as follows.

For a real number δ > 1 and two vectors V = [v1, . . . , vβ ] and V ′ = [v′1, . . . , v
′
β ], we say

that V is [D,∆]−close to V ′ if

∆−dℓ · vℓ ≤ v′ℓ ≤ ∆dℓ · vℓ, for all ℓ = 1, . . . , β,

that is, each coordinate in V ′ deviates from the corresponding coordinate in V by a multi-
plicative factor determined by ∆ and by the degree vector D. The ∆ is a factor determined
by the required approximation accuracy ϵ. Note that if some coordinate ℓ in D is 0, then
the definition of [D,∆]-close requires that the coordinate ℓ in V ′ is equal to coordinate ℓ in
V (no deviation is allowed).

We now use Lemma 6.1 of [23] to prove that the problems n−t−Way-MinMax−CC and
n−t−Interval−Eq are CC-benevolent, and therefore there is an FPTAS for solving these
problems.

E.1 n−t−Way-MinMax−CC
Recall that the objective of n−t−Way-MinMax−CC(X ) is to find an n-way partition of X
minimizing the largest bin sum, subject the the constraint that the sum of bin #1 is at most
(1 + t) · S, where t ∈ Q is given in the input and S = (

∑
x∈X x)/n is the average bin sum.

Proof. The dynamic program. We define a simple DP with α = 1 (the size of the input
vectors) and β = n (the size of the state vectors). For k = 1, . . . ,m define the input vector
Uk = [xk] where xk is the size of item k. A state V = [b1, b2, . . . , bn] in Vk encodes a partial



allocation for the first k items, where bi is the sum of items in bin i ∈ {1, 2 . . . , n} in the
partial allocation. The set F contains n transition functions f1, . . . , fn:

f1(xk, b1, b2, . . . , bn) = [b1 + xk, b2, . . . , bn]

f2(xk, b1, b2, . . . , bn) = [b1, b2 + xk, . . . , bn]

. . .

fn(xk, b1, b2, . . . , bn) = [b1, b2, . . . , bn + xk]

Intuitively, the function fi corresponds to putting item k in bin i. The set H contains a
function h1(xk, b1, b2, . . . , bn) = b1 + xk − (1 + t) · S, and functions hi(xk, b1, b2, . . . , bn) ≡ 0
for i ∈ {2, . . . , n}. These functions represent the fact that the sum of the first bin must
always be at most (1 + t) · S (if it becomes larger than (1 + t) · S, then h1 will return a
positive value and the new state will be filtered out). There are no constraints on the sums
of bins 2 . . . , n.

The initial state space V0 contains a single vector {[0, 0, . . . , 0]}. The minimization
objective is

G(b1, b2, . . . , bn) = max{b1, b2, . . . , bn}.

Benevolence. We show that our problem is CC-benevolent, as defined at [23][Section 6].
We use the degree vector D = [1, 1, . . . , 1], and define b1 as the critical coordinate.

All the transition functions are polynomials of degree 1. The value of the function
f1(U, V ) only depends on xk which is on U , and b1 which is our critical-coordinate. So,
C.1(i) on the function set F is fulfilled.

The functions h1, h2, . . . , hn are polynomials; the monomials do not depend on b2, . . . , bn,
and the monomial that depends on b1 has a positive coefficient. So, C.2(i) on the function
set H is fulfilled.

If a state [b1, b2, . . . , bn] is [D,∆]-close to another state [b′1, b
′
2, . . . , b

′
n], then by [D,∆]-

close definition, we have v′1 ≤ ∆ · v1, v′2 ≤ ∆ · v2, . . . , v′n ≤ ∆ · vn, so

max{b′1, b′2, . . . , b′n} ≤ ∆ ·max{b1, b2, . . . , bn},

and G(V ′) ≤ ∆ ·G(V ) Therefore, C.3(i) on the function G is fulfilled (with degree g = 1).
The definition in [23] also allows a domination relation, but we do not need it in our case

(formally, our domination relation ⪯dom is the trivial relation). So, the statement conditions
C.1(ii), C.2(ii), C.3(ii) are fulfilled.

Condition C.4 (i) holds since all functions in F can be evaluated in polynomial time.
C.4 (ii) holds since the cardinality of F is a constant. C.4 (iii) holds since the cardinality
of V0 is a constant. C.4(iv) is satisfied since the value of the coordinates is upper bounded
by the sum of the items nS, so their logarithm is bounded by the size of the input. Hence,
our problem is CC-benevolent. By the main theorem of [23], it has an FPTAS.

E.2 2−t−Way-MinMax−Eq−CC
Recall that the objective is to find a 2-way partition of X minimizing the largest bin sum,
subject the the constraint that the sum of bin #1 is at most (1 + t) · S, and additionally,
the number of items in each bin is the same.

Proof. The dynamic program. We define a simple DP with α = 1 (the size of the input
vectors) and β = 4 (the size of the state vectors). For k = 1, . . . ,m define the input vector
Uk = [xk] , where xk is the size of item k. A state V = [b1, b2, l1, l2] in Vk encodes a partial
allocation for the first k items, where bi is the sum of items in bin i ∈ {1, 2} in the partial



allocation and li is the number of items in bin i. The set F contains two transition functions
F1 and F2:

f1(xk, b1, b2, l1, l2) = [b1 + xk, b2, l1 + 1, l2]

f2(xk, b1, b2, l1, l2) = [b1, b2 + xk, l1, l2 + 1]

Intuitively, the function fi corresponds to putting item k in bin i. Let H be a set of two
functions h1 and h2. The function h1(xk, b1, b2, l1, l2) = b1+xk− (1+ t)S corresponds to an
upper bound of (1 + t)S on the sum of the first bin, and a function h2(xk, b1, b2, l1, l2) ≡ 0
that corresponds to having no upper bound on the sum of the second bin. Finally, set the
minimization objective to

G(b1, b2, l1, l2) =

{
max{b1, b2}, if l1 = l2

∞, otherwise

The initial state space V0 is set to {[0, 0, 0, 0]}.
Benevolence. We show that our problem is CC-benevolent, as defined at [23][Section

6].
We define the degree vector as D = [1, 1, 0, 0]. Note that the third and fourth coordinates

correspond to the number of items in each bin, for which we need an exact number and not
an approximation.

Lemma 4.1(i) is satisfied since if a state [b1, b2, l1, l2] is [D,∆]-close to another state
[b′1, b

′
2, l

′
1, l

′
2], by definition of [D,∆]-close [Section 2](2.1), we must have l1 = l′1 and l2 = l′2

because the degree of coordinates 3 and 4 is 0. At coordinates 1 and 2, both transition
functions are polynomials of degree 1. Furthermore, the value of the function f1(U, V ) only
depends on xk which is on U and b1 which is our critical-coordinate. So, C.1(i) on the
function set F is fulfilled.

The functions h1 and h2 are polynomials; the monomials do not depend on b2, and the
monomial that depends on b1 has a positive coordinate. So, C.2(i) on the function set H is
fulfilled.

If a state [b1, b2, l1, l2] is [D,∆]-close to another state [b′1, b
′
2, l

′
1, l

′
2] (where ∆ is a factor

determined by the required approximation accuracy ϵ), by [D,∆]-close definition, we have
l1 = l′1 and l2 = l′2 because the degree of coordinates 3 and 4 is 0, also b′1 ≤ ∆b1 and
b′2 ≤ ∆b2, so max{b′1, b′2} ≤ ∆max{b1, b2}, so G(V ′) ≤ ∆gG(V ). Therefore, C.3(i) on the
function G is fulfilled (with degree g = 1).

Again we do not need a domination relation, so we use the trivial relation ⪯dom. Then
the statement conditions C.1(ii), C.2(ii), C.3(ii) are fulfilled.

Condition C.4 (i) holds since all functions in F can be evaluated in polynomial time. C.4
(ii) holds since the cardinality of F is a constant. C.4 (iii) holds since the cardinality of V0 is
a constant. C.4(iv) is satisfied for coordinates 1, 2 since their value is upper bounded by the
sum of the items nS, so their logarithm is bounded by the size of the input. For coordinates
3, 4 (whose degree is 0), the condition is satisfied since their value is upper bounded by the
number of items m. Hence, our problem is CC-benevolent. By the main theorem of [23], it
has an FPTAS.

E.3 Running time

We compute in this section the running time of Algorithm 1 and Algorithm 2. The running
time of each FPTAS is linear in the number of states in the dynamic program. The number
of states in the dynamic program is bounded by Ln, where L is the number of possible
values in every element of the vector. In [23][Section 3], Woeginger proves that L ≤ ⌈(1 +



2gm
ϵ )π1(m, log2 x̄)⌉, where m ∈ N is the number of items, x̄ is the sum of all item sizes

(which in our case is just nS), and π1 is a function describing the binary length of the
values in the state vectors (in our case it is a linear function).

In each FPTAS settings, g = 1, x̄ =
∑m

k=1

∑α
i=1 xi,k, where α = 1, then, x̄ is the sum of

all the items. Because every value in the state-vectors is at most the sum of all values, we
have the linear function π1(m, log2 x̄) = log2 x̄.

E.3.1 Algorithm 1 running time

Algorithm 1 runs an FPTAS for 2−t−Way-MinMax−CC. In 2−t−Way-MinMax−CC, ϵ = t/2
and the sum of the items x̄, is equal to 2S. Therefore, we have the following: L ≤ ⌈(1 +
2m
t/2 ) log2(2S)⌉ = ⌈(1 +

4m
t ) log2(2S)⌉ ∈ O(mt logS).

Therefore, Algorithm 1 running time is O(mt logS).

E.3.2 Algorithm 2 running time

Algorithm 2 runs two FPTAS, one for n−t−Way-MinMax−CC and one for 2−t−Way-MinMax
−Eq−CC. In n−t−Way-MinMax−CC and for 2−t−Way-MinMax−Eq−CC, ϵ = t/4m2. In
n−t−Way-MinMax−CC the sum of the items x̄, is equal to nS while in 2−t−Way-MinMax
−Eq−CC the sum of the items x̄, is equal to 2S.

Therefore, we have the following:

• for n−t−Way-MinMax−CC: L ≤ ⌈(1 + 2m
t/4m2 ) log2(nS)⌉ = ⌈(1 + 8m3

t ) log2(nS)⌉ ∈
O(m

3

t logS), resulting in the running time

O(
m3

t
logS)

= O(
m3 · S
dM

logS) since t = dM/S

= O(
m3 · S
M

logS) since d ≥ n− 2

= O(
m3 ·mM

M
logS) since mM ≥ S

= O(m4 logS).

• for 2−t−Way-MinMax−Eq−CC: L ≤ ⌈(1 + 2m
t/4m2 ) log2(2S)⌉ = ⌈(1 + 8m3

t ) log2(2S)⌉,
resulting in the running time O(m4 logS).

Therefore, Algorithm 2 running time is O(m4 logS).



F Experiments

What is the effect of the number of split items s on the quality of the optimal partition in
n−s−Split−MinMax(X )? We explored this question using experiments on random instances.
Since the problem is NP-hard for s < n− 2, we used a heuristic algorithm that we describe
next.

F.1 An algorithm for every n and s

Theorem 4.2 implies that we can solve any instance of n−s−Split−MinMax(X ) in the fol-
lowing way (see Algorithm 3 in Appendix G for further details):

1. Let X1 := the s largest items in X . Let X2 := the remaining items.

2. Solve n−Way−MinMax(X2).

3. Split the items in X1 among the bins such that the resulting partition is as equal as
possible.

While n−Way−MinMax is NP-hard, there are several heuristic algorithms that can solve
medium-sized instances in reasonable time [19]. We are interested in algorithms based on
state-space search, such as the Complete Greedy Algorithm (CGA) [11]. CGA searches
through all partitions by adding to each bin the largest number not yet added to any bin,
so that bins with smaller sums are prioritized. This is done depth-first, meaning that
the smallest of the input numbers are shuffled between different parts before larger input
numbers are. In addition to the heuristics that make CGA run fast in practice, we add
a new heuristic, specific to our setting: we stop the search whenever it finds a solution in
which the maximum sum is at most S := (

∑
x∈X x)/n. This is because, by Lemma 4.1, we

can then divide the s split items among the bins and get a perfect partition, in which every
bin sum equals S.

F.2 Experiments

In Figure 1 we show that the possibility of splitting brings the optimal partition closer to the
perfect partition, even when s is much smaller than n− 1. We ran several instances of the
n−s−Split−MinMax(X ) optimization problem on random inputs drawn from an exponential
distribution, and from a uniform distribution with values between rM and M , for r ∈
{0, 0.5, 0.9, 0.99}. The number of items was m ∈ {10, 13, 15}, and number of bits in the
item sizes was 16 or 32. Finally, the number of bins was between 2 and 10, each one
represented by one curve in Figure 1. We ran seven different instances of each combination
and plotted the mean of all instances. The x-axis of the plot represents the number of split
items, the y-axis denotes the difference between the optimal and the perfect partition in
percent: 100 · (OPT − S)/S.

G A fast algorithm for n−s−Split−MinMax(X )
In this section, we present a fast practical algorithm —Algorithm 3 — which we used to
solve n−s−Split−MinMax in appendix F for our experiments. It uses the following variant
of Complete Greedy Algorithm (CGA): for any input list Y and upper bound S, it finds an
n-way partition of Y where the maximum bin sum is at most S; if such a partition does not
exist, it finds a partition that minimizes the maximum bin-sum. While its worst-case run-
time is O(2m), it runs fast on practical instances [11]. Note that other practical algorithms



Figure 1: Difference between the optimal and the perfect partition, in percent. The plots
shows results for uniform distribution with r = 0 (left plot) and exponential distribution
(right plot). In both plots m = 13 and the item sizes have 16 bits. The results for other
values of the parameters are qualitatively similar; we present them in Appendix L.

for optimal number partitioning could also be used. Denote the n-way partition obtained
by the CGA for a given Y and a given upper bound S by CGA(Y, S).

Algorithm 3 n−s−Split−MinMax

1: Order the items such that x1 ≥ x2 ≥ · · · ≥ xm

2: X1 ←− {x1, . . . , xs} ▷ s largest items in X
3: A←−

∑
x∈X1

x
4: X2 ←− X \ X1.
5: P2 ←− CGA(X2, S) ▷ optimal (min-max) n-way partition of X2

6: The bin sums in P2 are b1, . . . , bn, and we order the bins such that b1 ≤ · · · ≤ bn
7: for i←− 1 to n− 1 do
8: B ←− i · (bi+1 − bi) ▷ B ≥ 0 since bi+1 ≥ bi
9: if A < B then ▷ Not enough split items to attain bi+1

10: Break
11: else ▷ Use split items to increase i lowest bins to bi+1

12: A←− A−B
13: b1, · · · , bi ←− bi+1

14: end if
15: end for
16: b1, · · · , bi ←− bi +A/i

Based on Lemma 4.1, we may assume that only the s largest items are split. We remove
these items from the instance, and keep their sum in the variable A. Then we compute a
min-max partition of the remaining items. Then, we try to split the amount A among the
bins, such that the maximum bin sum remains as small as possible. In each iteration i, we
use some of the split items for increasing the sums in the i lowest-sum such that their sum
becomes equal to the (i+ 1)-th bin. Finally, we divide the remaining amount of split items
equally among the lowest-sum bins.



H A greedy algorithm for n−t−Interval(X ) when t ≥ 1

Given an instance of n−t−Interval(X ), we first check if there is an item of size larger than
(1 + t)S. If there is such an item, then obviously no partition is t-feasible, so we answer
“no”.

Suppose now that all item sizes are at most (1 + t)S. We show a greedy algorithm that
always finds a t-feasible partition (so the answer is always “yes”).

Because the total size of all items is nS, there are at most n items with size S or greater.
We put each of them into its own bin. Now, only the items with size less than S remain.

The total extra space in the bins (when compared to the total size of all items) is
tS · n ≥ nS, since t ≥ 1. Therefore, at each moment, at least one bin always has S or
more free space available. We take one of the remaining items, and put it into one such bin
arbitrarily. We repeat this argument until all remaining items are allocated.

To summarize, when t ≥ 1, the answer to n−t−Interval(X ) is “yes” if all item sizes are
at most (1 + t)S, and “no” otherwise. This can be decided in time O(m).

I Simple example for Lemma 3.3

In this section we show an instance with a solution with two almost-full bins, and no
solution with at most one almost-full bin. Set n = 5, d = n − 2 = 3, X = (n + 2) · [1] =
(1, 1, 1, 1, 1, 1, 1). Then, with this setting, m = 7, 5M = 1, 5S = 7, S+dM = 7/5+3/5 = 2.
Now, we can compute t and ϵ: t = dM/S = (3/5)/(7/5) = 3/7 and ϵ = t/(4 ·m2) = 3/1372.
That is, an almost-full bin is a bin with sum larger that (1 + t) · S/(1 + ϵ) = ((10/7) ·
(7/5))/(1375/1372) = 2/(1375/1372) = 2744/1375 < 2. Also, a d-feasible solution of the
instance is a solution where the largest bin sum is at most (1 + t)S = 2. Therefore, one
possible partition is P1 = ((1, 1), (1, 1), (1), (1), (1)). This partition is d-possible since the
largest bin sum equals 2 as required. It has two almost-full bins: #1 and #2. Note that
there is also a partition with three almost-full bins: ((1, 1), (1, 1), (1, 1), (1), ()). However,
there is no solution with at most one almost-full bin. Let us see that P1 satisfies all the
properties in the structure Lemma.

(a) Exactly two bins are almost-full: bin #1 and bin #2.

(b) The sum of bins 3,4,5 (not-almost-full) satisfies(
1− 2

n− 2
t− 2ϵ

)
· S ≤ b3, b4, b5 ≤

(
1− 2

n− 2
t+ (n− 1)2ϵ

)
· S

(1− 2/7− 3/686) · 7/5 ≤ b3, b4, b5 ≤ (1− 2/7 + 6/342) · 7/5
0.99387755102 ≤ b3, b4, b5 ≤ 1.02456140351,

which is true since b3 = b4 = b5 = 1

(c) Every almost-full bin contains only big-items, items largest than nS( t
n−2−2ϵ) = 7(1/7−

3/686) = 0.9693877551. Since every item equals 1, the claim holds.

(d) Every not-almost-full bin contains big-items that are larger or equal than every item in
bin 1,2, or small-items. Since all items are big and have the same size, the claim holds
trivially.

(e) There are no medium-items at all since every item is a big-item.

(f) Every not-almost-full bin contains the same number of big-items, ℓ = 1.



(g) Every almost-full bin contains ℓ+ 1 = 2 big-items.

Keeping this settings, we can increase or decrease the number of bins, recompute every
parameter according to the new n, and reach the same conclusion. We built a generic
example, such that if we modify n, all the other parameters can be recomputed because
they are only dependent on n. For example, for n = 4, we will have d = n − 2 = 4,X =
(n + 2) · [1] = [1, 1, 1, 1, 1, 1]. Therefore, we reach the same conclusions with the solution
[1, 1], [1, 1], [1], [1].

J Properties of instances with at least two almost-full
bins

In this section we provide a detailed proof of Lemma 3.3.
Recall that, by the lemma assumption, there exists a t-feasible partition with some

r ≥ 2 almost-full bins 1, . . . , r. We take an arbitrary such partition and convert it using a
sequence of transformations to another t-feasible partition satisfying the properties stated
in the lemma, as explained below.

Proof of Lemma 3.3, property (a). Pick a t-feasible partition with some r ≥ 3 almost-
full bins. Necessarily r ≤ n − 1, otherwise the sum of n almost-full bins would be larger
than nS. It is sufficient to show that there exists a t-feasible partition with r−1 almost-full
bins; then we can proceed by induction down to 2. Assume w.l.o.g. that the almost-full
bins are 1, . . . , r and the not-almost-full bins are r + 1, . . . , n. By definition,

b1, . . . , br ≥ (1 + t) · S/(1 + ϵ) > ((1 + t) · S)(1− ϵ) > (1 + t− 2ϵ) · S,

so,
n∑

i=r+1

bi = nS −
r∑

i=1

bi < nS − rS · (1 + t− 2ϵ) = (n− r − rt+ 2rϵ) · S.

Denote by bmin the bin with the smallest bin sum (breaking ties arbitrarily). By the pigeon-
hole principle,

bmin <
(n− r − rt+ 2rϵ) · S

n− r
=

(
1− r

n− r
t+

r

n− r
2ϵ

)
· S.

By assumption, all item sizes are at most nM . Suppose we take one item from bin r, and
move it to bmin. Then after the transformation,

bmin <

(
1− r

n− r
t+

r

n− r
2ϵ

)
· S + nM

≤
(
1− 3

n− 3
t+

n− 1

n− (n− 1)
2ϵ

)
· S + ntS/d (3 ≤ r ≤ n− 1

and dM = tS)

≤
(
1− 3

n− 3
t+ 2nϵ− 2ϵ

)
· S +

n

n− 2
tS (d ≥ n− 2)

<

(
1− 2

n− 2
t− 2ϵ

)
· S +

n

n− 2
tS (ϵ = t/4m2)

= (1 + t− 2ϵ) · S < (1 + t) · S/(1 + ϵ),

so bmin remains not-almost-full.



If bin r is still almost-full, then we are in the same situation: we have exactly r almost-
full bins. So we can repeat the argument, and move another item from bin r to the (possibly
different) minimum-sum bin. Since the number of items in bin r decreases with each step,
eventually, it becomes not-almost-full.

This process continues until we have a partition with exactly two almost-full bins, which
we assume to be bins 1 and 2. The not-almost-full bins are bins 3, . . . , n. We now transform
the partition so that the sum in each bin 3, . . . , n is bounded within a small interval.

Proof of Lemma 3.3, property (b). For proving the lower bound, suppose there is some

i ∈ {3, . . . , n} with bi <
(
1− 2

n−2 t− 2ϵ
)
· S. Move an item from bin 1 to bin i. Its new

sum satisfies

bi <

(
1− 2

n− 2
t− 2ϵ

)
· S + nM =

(
1− 2

n− 2
t− 2ϵ

)
· S + ntS/d

=

(
1 +

(
− 2

n− 2
+

n

d

)
t− 2ϵ

)
· S

≤
(
1 +

(
−2

n− 2
+

n

n− 2

)
t− 2ϵ

)
· S

=(1 + t− 2ϵ) · S,

(3)

so bin i is still not almost-full. Assumption (1) implies that b1, b2 must still be almost-
full. So we are in the same situation and can repeat the argument until the lower bound is
satisfied.

The upper bound on bi is proved by simply subtracting the lower bounds of the other
n− 1 bins from the sum of all items, nS:

bi ≤ nS − (b1 + b2)− (n− 3)

(
1− 2

n− 2
t− 2ϵ

)
· S

< nS − 2((1 + t− 2ϵ) · S)− (n− 3)

(
1− 2

n− 2
t− 2ϵ

)
· S

=

(
n− 2(1 + t− 2ϵ)− (n− 3)

(
1− 2

n− 2
t− 2ϵ

))
· S

=

(
1− 2

n− 2
t+ (n− 1)2ϵ

)
· S,

(4)

so property (b) is satisfied.

A corollary of property (b) is that the difference between the sums of two not-almost-full
bins is at most 2nϵS = nSt/2m2.

Next, we transform the partition such that the almost-full bins 1 and 2 contain only

“big” items, which we defined as items larger than nS
(

t
n−2 − 2ϵ

)
.

Proof of Lemma 3.3, property (c). Suppose bin 1 or 2 contains an item of size at most

nS
(

t
n−2 − 2ϵ

)
. We move it to some not-almost-full bin bi, i ≥ 3. By property (b), the new

sum of bin i satisfies

bi ≤
(
1− 2

n− 2
t+ (n− 1)2ϵ

)
· S + nS

(
t

n− 2
− 2ϵ

)
=

(
1 +

(
− 2

n− 2
+

n

n− 2

)
t+ (n− 1− n)2ϵ

)
· S

= (1 + t− 2ϵ)S,



so bin i remains not-almost-full. Assumption (1) implies that b1, b2 remain almost-full. So
properties (a), (b) still hold, and we can repeat the argument. Each move increases the sum
in the not-almost-full bins, so eventually all items of size at most nS( t

n−2 − 2ϵ) are in bins
3, . . . , n.

Next, we transform the partition so that the not-almost-full bins contain only the largest
big-items and all the small-items.

Proof of Lemma 3.3, property (d). Suppose there exists some i ∈ {3, . . . , n} for which
bi contains an item x such that x ≥ 2nSϵ, but x < y for some item y in bin 1 or 2. We
exchange x and y. The sum in bin i increases, but not too much:

bi ≤
(
1− 2

n− 2
t+ (n− 1)2ϵ

)
· S + nM − 2nSϵ

≤
(
1− 2

n− 2
t+ (n− 1)2ϵ

)
· S +

ntS

d
− 2nSϵ (since dM = tS)

≤
(
1− 2

n− 2
t+ (n− 1)2ϵ

)
· S +

ntS

n− 2
− 2nSϵ (since d ≥ n− 2)

≤ (1 + t− 2ϵ) · S,

so bi is sill not almost-full. So by (1), bins 1 and 2 must remain almost-full, and we can
repeat the argument. Each move increases the sum in bins 3, . . . , n, so the process must
end.

Properties (c) and (d) imply that the input list X contains no medium items; for com-
pleteness and verification, we provide a stand-alone proof below.

Proof of Lemma 3.3, property (e). Assume that there is an allocation in which bins 1
and 2 are almost-full, and bins 3, . . . , n are not-almost-full. Suppose for contradiction that
X contains a medium item x. Consider two cases.

Case 1 : x is in an almost-full bin, say bin 1. Then, we can move x to some not-almost-full
bin i ≥ 3. By the inequalities in the proof of (c), after the move we have bi < (1+ t− 2ϵ)S,
so bin i remains not-almost-full. Moreover, since the previous sum of bin 1 was at most
(1 + t)S, its new sum is: b1 < (1 + t)S − (2nSϵ) = (1 + t − 2nϵ)S < (1 + t − 2ϵ)S, since
n > 1. So bin 1 is not almost-full anymore. We now have a new allocation with only one
almost-full bin (bin 2). Similarly, if x is in bin 2, we can move it to another bin, and get an
allocation with only bin 1 almost-full. This contradicts the lemma assumption (1).

Case 2 : x is in some not-almost-full bin i ≥ 3. We exchange x with some big item y in
bin 1. By the inequalities in the proof of (d),

bi < (1 + t− 2ϵ) · S,

so bin i remains not-almost-full. The sum in bin 1 decreases due to the exchange. If bin 1
becomes not almost-full, then we have a new allocation with only bin 2 almost-full. If bin 1
remains almost-full, then we have a situation as in Case 1; by moving x to some bin i ≥ 3,
we get a new allocation with only bin 2 almost-full. In both cases, this contradicts (1).

Proof of Lemma 3.3, property (f). We first claim that, for every two big-items, x, y,
the difference |y − x| < 2nSϵ. Assume w.l.o.g that y > x. By definition, nM is the largest



item size, so y ≤ nM . Since x is a big-item, x > nS
(

t
n−2 − 2ϵ

)
. So

y − x < nM − nS

(
t

n− 2
− 2ϵ

)
=

ntS

d
− ntS

n− 2
+ 2nSϵ (since dM = tS)

≤ 2Sϵn. (since d ≥ n− 2)

Now, assume for contradiction that two not-almost-full bins contain a different number
of big-items; say bin j has at least one big-item more than bin i. We show that even if
all the big-items in bin j are smaller than all big-items in bin i, and all the (at most m)
small-items are in bin i, the difference between them satisfies

bj − bi > nS

(
t

n− 2
− 2ϵ

)
−m · 2nϵS −m · 2nϵS

= nS

(
t

n− 2
− 2ϵ

)
− 2m · 2nϵS

= nS

(
t

n− 2
− 2ϵ(1 + 2m)

)
≥ nS

(
t

m− 2
− t

m

)
(since ϵ = t/4m2)

= nS

(
2t

(m− 2)m

)
> 2nSt/m2.

But by property (b), the difference is at most 2nSϵ = nSt/2m2 — a contradiction.

Proof of Lemma 3.3, property (g). The size of every item is at most nM ≤ ntS/(n−2).
By (f), each not-almost-full bin i contains ℓ big-items. So by the previous conditions, the
size of not-almost-full bin is

bi ≤ ℓ · ntS/(n− 2) +m · 2nϵS (5)

We now focus on almost-full bin 1; the proof for bin 2 is the same. If bin 1 contains
fewer than ℓ+ 1 items, then b1 ≤ bi, which contradicts (1).

Assume for contradiction that bin 1 contains more than ℓ+ 1 items. Then:

b1 ≥ (ℓ+ 2) ·
(
nS

(
t

n− 2
− 2ϵ

))
(by big-item size)

= ℓnSt/(n− 2) +m · 2nϵS −m · 2nϵS
− ℓnS2ϵ+ 2nSt/(n− 2)− 4nSϵ

≥ bi −m · 2nϵS − ℓnS2ϵ+ 2nSt/(n− 2)− 4nSϵ (by 5)

≥
(
1− 2

n− 2
t− 2ϵ

)
· S −m · 2nϵS − ℓnS2ϵ

+ 2nSt/(n− 2)− 4nSϵ (by 3)

= S +

(
2n− 2

n− 2

)
tS −m · 2nϵS − ℓnS2ϵ− 4nSϵ− 2ϵS

= S + tS + tS((n/n− 2)−m · 2nϵ/t− ℓn2ϵ/t− 4nϵ/t− 2ϵ/t)

> S + tS + tS(1− 1/2− ℓ/2m− 1/m− 1/2nm) (n < m so ϵ < t/4nm)

> S + tS, (since 0 < ℓ < m/3)



which contradicts the assumption that (b1, b2, . . . , bn) represent a t-feasible partition.

K n−s−Split−MinMax

In the section, we explain the binary search procedure used to solve the n−s−Split−MinMax
(X ) optimization problem. We first prove a property of the optimal bin sum of the n−s−Split
−MinMax(X ) problem.

Lemma K.1. If the optimal value of an n−s−Split−MinMax(X ) instance is not an integer,
then the optimal partition of X is a perfect partition (that is, all bin sums are equal to the
average bin size S).

Proof. Let OPT be the maximum bin sum in an optimal partition of X with s split items.
If OPT is not an integer, then the fractional part of the bin sum must come from a split
item (since the non-split items have integer sizes). Since the partition is not perfect, there
is a bin with sum smaller than OPT. Move a small fraction of the split item from all bins
with sum OPT to a bin with sum smaller than OPT. This yields a partition with a smaller
maximum bin sum — a contradiction to optimality.

Now, we show how to use binary search in order to solve the n−s−Split−MinMax(X )
problem. The idea is to execute the n−s−t−Split−Bound(X ) algorithm several times, trim-
ming the parameter t at each execution in a binary search style. When t = n−1, the answer
to n−s−t−Split−Bound(X ) is always “yes”, since even if we put all items in a single bin, its
sum is nS = (1 + t)S. Moreover, by Lemma K.1, the optimal bin sum value of n−s−Split
−MinMax(X ) is either an integer or equal to S. Therefore, in addition to considering the
case where t = 0, we only need to consider values of t that differ by at least 1/S, since
if the bin sums are not equal to S they are always integers, so they differ by at least 1.
Therefore, at most nS different values of t have to be checked, so the binary search requires
at most log2(nS) executions of n−s−t−Split−Bound(X ). This is polynomial in the size of
the binary representation of the input.

L Additional Plots

We present the plots obtained for different values of the parameters presented in the Ap-
pendix F. All the plots behave similarly, showing that the difference between the optimal
and the perfect partition decreases when the number of split items increases.



Figure 2: Uniform distribution with m = 10 and 16 bits.

Figure 3: Uniform distribution with m = 10 and 16 bits.



Figure 4: Uniform distribution with m = 13 and 16 bits.

Figure 5: Uniform distribution with m = 15 and 16 bits.



Figure 6: Uniform distribution with m = 15 and 32 bits.

Figure 7: Uniform distribution with m = 15 and 32 bits.



Figure 8: Exponential distribution with m = 10.

Figure 9: Exponential distribution with m = 13.



Figure 10: Exponential distribution with m = 15.
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