
Towards a Characterization of
Random Serial Dictatorship

Felix Brandt Matthias Greger René Romen

Abstract

Random serial dictatorship (RSD) is a randomized assignment rule that—given a set
of n agents with strict preferences over n houses—satisfies equal treatment of equals,
ex post efficiency, and strategyproofness. For n ≤ 3, Bogomolnaia and Moulin [3]
have shown that RSD is characterized by these axioms. Extending this characteriza-
tion to arbitrary n is a long-standing open problem. By weakening ex post efficiency
and strategyproofness, we reduce the question of whether RSD is characterized by
these axioms for fixed n to determining whether a matrix has rank n2n!n. We lever-
age this insight to prove the characterization for n ≤ 5 with the help of a computer.

1 Introduction
Assigning objects to individual agents is a fundamental problem that has received consider-
able attention by computer scientists as well as economists [e.g., 7, 20, 11, 4]. The problem is
known as the assignment problem, the house allocation problem, or two-sided matching with
one-sided preferences. In its simplest form, there are n agents, n houses, and each house
needs to be allocated to exactly one agent based on the strict preferences of each agent over
the houses. Applications are diverse and include assigning dormitories to students, jobs to
applicants, processor time slots to jobs, parking spaces to employees, offices to workers, etc.

A class of simple, well understood, and often applied deterministic assignment rules
are serial dictatorships, which are based on a fixed priority order over the agents that is
independent of the reported preferences. The agent with the highest priority gets to pick her
most preferred house, then the second agent chooses her most preferred among the remaining
houses, and so on. Serial dictatorships are guaranteed to return a Pareto efficient allocation.
On top of that, they are neutral (when houses are permuted, the assignment is permuted
accordingly), nonbossy (an agent cannot affect the assignment to other agents without
changing the house allocated to herself), and strategyproof (no agent can misreport her
preferences in order to obtain a more preferred house). Unsurprisingly, like any deterministic
rule, serial dictatorships are highly unfair. For example, consider two agents who both prefer
house h1 to h2. Any deterministic rule strongly discriminates the agent who receives h2.

Fairness is typically established by allowing for probabilistic assignment rules where each
agent receives each house with some probability and the probabilities sum up to 1 for each
agent and each house. The resulting probability matrix is called a bistochastic matrix. The
Birkhoff-von Neumann theorem shows that every bistochastic matrix can be decomposed
into a convex combination of permutations matrices. As a consequence, every probabilis-
tic assignment rule can be implemented in practice by picking a deterministic assignment
rule at random. The two most prominent probabilistic assignment rules are random serial
dictatorship (RSD)—also known as random priority—and the probabilistic serial rule [3].

A natural way to obtain a randomized assignment rule is to apply a deterministic rule
to every permutation of the agents’ roles and then uniformly randomize over all of these n!
deterministic assignments. Such a symmetrization ensures that “equals are treated equally”.
In fact, RSD is defined as the symmetrization of all serial dictatorships and has been shown
to be equivalent to the symmetrization of Gale’s top trading cycles mechanism [1, 9]. Svens-
son [21] showed that any deterministic, strategyproof, nonbossy, and neutral assignment

rule is serially dictatorial, implying that the symmetrization of any such rule has to coin-
cide with RSD . Pápai [13] and Pycia and Ünver [17] have characterized broader classes of
deterministic assignment rules by replacing neutrality with efficiency.

The main axiomatic advantage of RSD is that it satisfies strategyproofness while also
guaranteeing efficiency and fairness to some extent. While RSD does satisfy ex post effi-
ciency, it violates a stronger efficiency notion called ordinal efficiency or SD-efficiency [3].
In fact, Bogomolnaia and Moulin showed that strategyproofness and equal treatment of
equals are incompatible with ordinal efficiency. Furthermore, they observed that RSD only
satisfies a weak notion of envy-freeness. The probabilistic serial rule, on the other hand,
satisfies ordinal efficiency and envy-freeness but violates strategyproofness.

A characterization of RSD via equal treatment of equals, ex post efficiency, and strate-
gyproofness is a long-standing open problem [see, e.g., 14, 15] and would cement its pivotal
role in settings where strategyproofness is indispensable.

Unfortunately, to the best of our knowledge, there does not even exist a characterization
of all deterministic, strategyproof, and efficient assignment rules [cf. 21]. Furthermore, Aziz
et al. [2] and Saban and Sethuraman [18] showed that it is NP-complete to decide whether an
agent receives a given house with positive probability under RSD , stressing its combinatorial
intricacy.

Pycia and Troyan [16] recently showed that RSD is characterized by symmetry, effi-
ciency, and obvious strategyproofness among all assignment rules that, roughly speaking,
can be represented as a symmetrization of an extensive-form game where in each stage, one
agent is allowed to pick one house from a subset of the remaining houses or “pass” on this
opportunity. Furthermore, Pycia and Troyan [15] point out that equal treatment of equals,
ex post efficiency, and strategyproofness do not suffice to characterize RSD when using a
stronger equivalence notion that interprets two rules as different if they produce different
distributions over deterministic assignments, even when the probabilistic assignment is still
the same. By contrast, we consider two rules as equivalent if, for each profile, they return
the same probabilistic assignment.

In this paper, we use a linear algebraic approach to show that the desired characterization
holds for n ≤ 5. After introducing the necessary notation and central axioms in Section 2,
we reduce the question of checking whether the characterization holds to determining the
rank of a matrix by weakening ex post efficiency and strategyproofness in Section 3. Based
on this idea, we devise an algorithm that determines the rank of the given matrix and use
it to prove the characterization for n ≤ 5 with the help of computer in Section 4. Finally,
our results and further insights are summarized in Section 5.

2 Preliminaries
Let N be a set of agents and H a set of houses with |N | = |H| = n. A preference profile R
associates with each agent i ∈ N a preference ordering �i over the houses. The set of all
preference profiles is denoted by R. Random assignments are represented by bistochastic
matrices (Mi,h)i∈N,h∈H where Mi,h ≥ 0 and

∑
h′∈HMi,h′ =

∑
i′∈N Mi′,h = 1 for all i ∈ N

and h ∈ H. The support of a random assignment M is the set of agent-house pairs (i, h) for
whichMi,h > 0. WheneverMi,h ∈ {0, 1} for all agent-house pairs (i, h), M is a permutation
matrix and represents a deterministic assignment.

A probabilistic assignment rule f maps each profile R to a bistochastic matrix f(R)
where, with slight abuse of notation, the entry f(R, i, h) in the ith row and hth column of
the matrix corresponds to the probability of agent i receiving house h in profile R.

In the following, we formally define RSD and the axioms required for the characteriza-
tion.

Definition 1. Given a profile R ∈ R, a deterministic assignment M is (Pareto) efficient
if there exists no deterministic assignment M ′ 6= M such that for all i ∈ N and h, h′ ∈ H
with h 6= h′, M ′i,h′ = Mi,h = 1 implies h′ �i h. An assignment rule is ex post efficient if
for all R ∈ R, f(R) can be represented as a convex combination of efficient deterministic
assignments.

Let Π be the set of all (priority) orders over the agents. Denote serial dictatorship for
a specific priority order π ∈ Π by SDπ. For a given profile R, each deterministic efficient
assignment coincides with the outcome of a serial dictatorship on R [see, e.g., 10]. Therefore,
an assignment rule satisfies ex post efficiency if for all R ∈ R, there exist weights λRπ ≥ 0
with

∑
π∈Π λ

R
π = 1 such that f(R) =

∑
π∈Π λ

R
π SDπ(R).

RSD can now be defined by choosing λRπ = 1/n! for every π and R, i.e.,

RSD(R) =
∑
π∈Π

1

n!
SDπ(R).

Furthermore, we say that a rule coincides with RSD if it returns the same random assignment
as RSD for each profile.

It turns out that a weak variant of ex post efficiency suffices to obtain a characterization
for n ≤ 5. This variant merely requires that for each profile the support of the resulting
random assignment coincides with that of some ex post efficient random assignment. In
other words, the support has to be a subset of that of RSD .

Definition 2. An assignment rule f is support efficient if for all R ∈ R, i ∈ N , and h ∈ H,
f(R, i, h) = 0 whenever SDπ(R, i, h) = 0 for all π ∈ Π. Equivalently, f is support efficient
if for all R ∈ R, i ∈ N , and h ∈ H, RSD(R, i, h) = 0 implies f(R, i, h) = 0.

Support efficiency and ex post efficiency are equivalent for n = 3. A proof can be found
in Appendix A. We now give an example for 4 agents in which support efficiency is strictly
weaker than ex post efficiency.

Example 1. Let the preference relations of agents 1 and 2 be h1 � h2 � h3 � h4 and
h2 � h1 � h3 � h4 be the preferences of agents 3 and 4. Consider the random assignment
where agents 1 and 2 receive the lottery p(h1) = 0, p(h2) = 1

2 , p(h3) = p(h4) = 1
4 and

agents 3 and 4 receive the lottery p(h1) = 1
2 , p(h2) = 0, p(h3) = p(h4) = 1

4 . This assignment
violates ex post efficiency because each efficient deterministic assignment assigns either h1

to agent 1 or 2 or it assigns h2 to agent 3 or 4. Since agents 1 and 2 never receive h1

and agents 3 and 4 never receive h2 from the random assignment, it cannot be represented
as a distribution over efficient deterministic assignments. The assignment satisfies support
efficiency since each house can go to each agent in some efficient deterministic assignment.

To judge whether an agent i is able to beneficially misreport her preferences, we, analo-
gously to Bogomolnaia and Moulin [3], assume that agent i has a von Neumann-Morgenstern
utility function ui which is consistent with �i. This means that there exist ui : H → R such
that ui(f(R)) =

∑
h∈H ui(h)f(R, i, h), and ui(hk) > ui(hl) if and only if hk �i hl. Since

the concrete utility function is unknown, a manipulation counts as beneficial if there ex-
ists a utility function ui consistent with �i for which it is beneficial. A rule without such
manipulation incentives is called strategyproof.1

Definition 3. An assignment rule f is strategyproof if for all R,R′ ∈ R with �j = �′j for
all j ∈ N \ {i},

∑
h′�ih

f(R, i, h′) ≥
∑
h′�ih

f(R′, i, h′) for every h ∈ H.

1This version of strategyproofness for probabilistic assignment rules is sometimes also called (strong)
SD-strategyproofness [see, e.g., 5].

To implement strategyproofness, we leverage a result from Gibbard [8], which shows that
a mechanism is strategyproof if and only if it is localized and nonperverse. In particular, it
suffices to consider swaps of two houses that are adjacent in the manipulator’s ranking.2

Definition 4. Let R,R′ ∈ R, i ∈ N , and hk, hl ∈ H such that �j = �′j for all j ∈ N \ {i}
and �′i = �i \ {(hk, hl)} ∪ {(hl, hk)}. An assignment rule f is

• localized if f(R, i, h) = f(R′, i, h) for all h ∈ H \ {hk, hl}, and

• nonperverse if f(R, i, hk) ≥ f(R′, i, hk) and f(R, i, hl) ≤ f(R′, i, hl)

It turns out that weakening strategyproofness to localizedness is sufficient for the char-
acterization to hold for n ≤ 5 and eliminates the inequality constraints imposed by nonper-
verseness.

Definition 5. An assignment rule f satisfies equal treatment of equals if for all R ∈ R and
i, j ∈ N with �i = �j , f(R, i, h) = f(R, j, h) for all h ∈ H.

Thus, equal treatment of equals ensures that agents with the same preferences receive
the same assignment.

Finally, we introduce a natural property that is helpful for reducing the number of profiles
a rule needs to be defined on.

Definition 6. An assignment rule f is symmetric if for all R ∈ R, any permutation of the
agents π : N → N we have π ◦ f(R) = f(π ◦ R) and for any permutation of the houses
τ : H → H we have τ ◦ f(R) = f(τ ◦ R). Here, π permutates the rows and τ permutates
the columns of R and f(R).

Loosely speaking, a symmetric rule does not take into account the identities of agents
and houses.

Remark 1. The two conditions of symmetry are known as anonymity and neutrality in
the more general domain of social choice [see, e.g., 22]. Within the assignment domain,
anonymity cannot be considered in isolation because agents are indifferent between assign-
ments in which they receive the same house. Viewing agents as voters and deterministic
assignments as alternatives, permutations via neutrality allow for permuting assignments,
not houses. Permuting two voters i and j via anonymity results in an “illegal” assignment
profile because agent i is indifferent between assignments in which agent j receives the same
house and vice versa. This can be rectified by permuting assignments accordingly. As a
consequence, anonymity should only be considered in conjunction with neutrality in the
assignment domain.

Note that symmetry is a stronger axiom than equal treatment of equals.

Proposition 1. Every symmetric assignment rule satisfies equal treatment of equals.

The proof is deferred to the appendix.
To see that equal treatment of equals does not imply symmetry, consider n = 2 and the

assignment rule f with f(R) = RSD(R) for the two profiles where both agents have the
same preferences. For the other two profiles R′ and R′′ where both agents have different
preferences let f(R′, 1) = (1, 0) and f(R′′, 1) = (1, 0). Clearly, f satisfies equal treatment
of equals. However, moving from R′ to R′′ by permuting the two houses does not permute
the assignments. In both profiles, agent 1 receives h1, contradicting τ ◦ f(R′) = f(τ ◦R′) =
f(R′′).

2Gibbard considers the general social choice domain. Mennle and Seuken [12] have rediscovered this
equivalence in the context of random assignment.

Symmetry imposes an equivalence class structure on R that allows f to be well-defined
by only defining it on the set of canonical profiles R∗ ⊂ R which contains one representative
profile for each equivalence class that is chosen according to some predefined order over R.
We will show that positive results for R∗ carry over to R without imposing symmetry, a
necessary simplification step given that |R| = n!n.

3 A linear algebraic view on the problem
Our overall goal in this section is to describe the set of all rules that satisfy equal treatment
of equals, ex post efficiency, and strategyproofness by a system of linear equations.

To this end, note that, for fixed n, all axioms except ex post efficiency are defined and
can be represented by constraints in terms of a vector x =

(
x(R,i,h)

)
∈ Rn2n!n where x(R,i,h)

corresponds to f(R, i, h). By contrast, efficiency constraints require us to represent an
assignment rule f by a vector x =

(
x(R,π)

)
∈ Rn!n!n where x(R,π) corresponds to the weight

λRπ of SDπ in profile R.
Generally, it is possible to also represent the other axioms in terms of x(R,π), e.g., for

equal treatment of equals, one has to find the set of all combinations of serial dictatorships
that yield the same probabilistic assignment for both agents for each profile where two
agents i and j have the same preferences. This can be achieved by requiring that the sum
of the weights of all serial dictatorships where i receives house h has to equal the sum of the
weights of all serial dictatorships where j gets h. However, the representation of f in terms
of
(
x(R,π)

)
is not unique [see, e.g., 15] and requires n!n!n instead of n2n!n variables.

Weakening ex post efficiency to support efficiency enables the representation of efficiency
via f(R, i, h). On top of that, we also weaken strategyproofness to localizedness due to the
fact that nonperverseness is the only axiom (apart from the non-negativity part of the
bistochastic matrix constraints) that cannot be written in terms of linear equations.

Conjecture 1. RSD is the only assignment rule that satisfies equal treatment of equals,
support efficiency, and localizedness.

Proving this statement immediately implies that RSD is characterized by equal treat-
ment of equals, ex post efficiency, and strategyproofness. In case the statement does not
hold, a counterexample might give us new insights and ideas to construct a counterexam-
ple for the original characterization. In particular, each counterexample of the original
conjecture must also be a counterexample for Conjecture 1.

We now reformulate the problem as a system of linear equations such that every rule
satisfying all axioms from Conjecture 1 is a solution to the system. As already mentioned,
we can represent assignment rules f as vectors x, where x(R,i,h) = f(R, i, h) for all profiles
R, agents i, and houses h. The constraints induced by the axioms are represented by the
rows of a matrix A and a vector b, such that Ax = b if f represented by x satisfies all
axioms. The columns of A correspond to the triples (R, i, h). Define e(R,i,h) ∈ R1×n2n!n as
the unit vector with 1 at entry (R, i, h) and 0 otherwise. The rows of A have the following
form depending on the type of axiom.

1. Bistochasticity constraints (excluding non-negativity constraints): A contains a row
ak for each profile R

(a) and agent i, with ak =
∑
h∈H e(R,i,h), and

(b) and house h, with ak =
∑
i∈N e(R,i,h).

For such rows, bk = 1.

2. Support efficiency: A contains a row ak for each triple (R, i, h) satisfying
RSD(R, i, h) = 0, with ak = e(R,i,h). For such rows, bk = 0.

3. Localizedness: A contains a row ak for each profile R, agent i, house h, and each
possible adjacent swap to profile R′ that agent i can perform that does not move
house h, with ak = e(R,i,h) − e(R′,i,h). For such rows, bk = 0.

4. Equal treatment of equals: A contains a row ak for each profile R, house h, and agent
pair (i, j) such that i 6= j and �i = �j , with ak = e(R,i,h) − e(R,j,h). For such rows,
bk = 0.

As RSD satisfies all axioms, AxRSD = b, where xRSD is the vector representing RSD .
In general, it does not hold that every solution to Ax = b corresponds to a valid assign-

ment rule since the non-negativity of variables x(R,i,h) with xRSD
(R,i,h) ≥ 0 is not guaranteed.

Nevertheless, the structure of RSD allows us to mix any other solution with xRSD in a way
that returns a new assignment rule satisfying all axioms.

Proposition 2. Let y 6= xRSD be a solution to Ax = b. Then, there exists λ > 0 such that
λy + (1− λ)xRSD is an assignment rule that satisfies all axioms and differs from RSD .

Proof. Apart from non-negativity, λy + (1− λ)xRSD satisfies all axioms for all λ ∈ [0, 1] as

A(λy + (1− λ)xRSD) = λAy + (1− λ)AxRSD = b.

In order to ensure non-negativity, choose λ∗ such that λ∗y(R,i,h) +(1−λ∗)xRSD
(R,i,h) ≥ 0 for all

(R, i, h). This is possible due to the fact that xRSD
(R,i,h) = 0 implies y(R,i,h) = 0 as y satisfies

support efficiency.
Thus, λ∗y + (1 − λ∗)xRSD corresponds to an assignment rule that satisfies all axioms

and differs from RSD since the representation of a rule in terms of (x(R,i,h)) is unique by
definition.

Proposition 2 shows that whenever there exists a solution y 6= xRSD to Ax = b, Con-
jecture 1 cannot hold. Furthermore, y − xRSD 6= 0 lies in the kernel ker(A) of A.

Corollary 1. The following statements are equivalent:

• Conjecture 1 holds, i.e., the only solution to Ax = b is xRSD .

• A has full rank, i.e., rank(A) = n2n!n.

• ker(A) = {0}.

In the next section, we use Proposition 2 and these equivalences to devise an algorithm
that is able to solve Conjecture 1 for n ≤ 5. We believe that Corollary 1 could also be
helpful for finding a general analytic proof of Conjecture 1.

4 Checking whether the matrix has full rank
The following algorithm shows that Conjecture 1 holds for n ≤ 5 by proving that A has
full rank. Proposition 2 shows that this is equivalent to proving Conjecture 1 which in turn
implies the original RSD characterization for n ≤ 5. In principle, the rank of A can be
computed using standard methods such as Gaussian elimination. However, there are two
main issues with that approach. First, the size of the matrix is larger than n2n!n × n2n!n.
This can be partially mitigated because the matrix is sparse. Even though most entries

are zero and do not need to be stored in memory, the remaining matrix is still very large.
Second, standard methods often run into numerical problems.

To circumvent these issues, the algorithm we propose in this section uses search to
construct all n2n!n rows e(R,i,h) using elementary row operations implying that the matrix
has full rank. In particular, we add or substract multiples of one row from another or
multiply a row by −1. Division is only used when we found a row that has only one
non-zero entry to normalize. In this way the algorithm is guaranteed to not run into any
numerical problems. Furthermore, we never explicitly construct the matrix, and use the
symmetry of the domain to simplify the computation. This allows us to show that the
matrix has full rank for n ≤ 5.

The main idea of the algorithm builds on the fact that localizedness is the only axiom
which connects profiles, i.e., the rows of matrixA have nonzero entries in different preference
profiles. On the contrary, for all other axioms, the rows have nonzero entries only for a single
profile. Starting with some preference profile Rs where all agents share the same preferences,
it is possible to build the rows e(Rs,i,h) for all agent-house pairs (i, h) using elementary row
operations. This can be done by adding “equal treatment of equals rows” to “bistochasticity
rows” until the only nonzero entry is at index (R, i, h). With this method we can construct
e(Rs,i,h) for all agent-house pairs (i, h). From an axiomatic point of view, it is clear that all
agents need to receive the same assignment in Rs.

Next, the new rows e(Rs,i,h) can be added to the localizedness rows to build new rows
e(R′,i,h) for profiles R′ that can be reached by swap manipulations from Rs. The algorithm
can then try to solve these profiles, find new rows, and then propagate them further.

Thus, the algorithm consists of two parts, namely

• a subroutine that evaluates a single profile R and builds as many rows e(R,i,h) using
elementary row operations as possible, and

• the main loop which builds rows for profiles that can be reached using localizedness
and chooses the next profile to evaluate.

In contrast to Rs, note that in general, it is not possible to completely “solve” a profile at
the first visit. Therefore, the main loop uses a priority queue to track which profile received
the most rows since it was last considered. Guiding the search using this heuristic improves
the runtime of the algorithm over naive breath first search or depth first search.

The algorithm continues the search until the identity matrix is contained inA or it proves
that this is not possible. For that, it keeps track of the triples (R, i, h) for which the row
e(R,i,h) was constructed with an indicator function IRSD : R×N×H → {1, 0} that returns 1
if the row e(R,i,h) s already contained in the matrix and 0 otherwise. This indicator function
is updated during program execution. When we refer to IRSD , we refer to the current state
of algorithm execution, unless stated otherwise. At the start of the algorithm IRSD ≡ 0 is
initialized to be 0 for every triple. In a first step, it sets IRSD(R, i, h) = 1 for all triples
(R, i, h) with RSD(R, i, h) = 0 since for those, ak = e(R,i,h) by definition. Once IRSD ≡ 1,
the algorithm terminates as it has shown that the matrix A has full rank. We first present
the subroutine, then the complete algorithm.

4.1 Solving single profiles
Given a preference profile R and indicator function IRSD , the following subroutine computes
all agent-house pairs (i, h) for which the vector e(R,i,h) can be constructed. We start by writ-
ing the rows corresponding to the bistochasticity and equal treatment of equals constraints
of R into a separate matrix B. The main idea then is to simplify these rows by setting all
indices (R, i, h) to zero if IRSD(R, i, h) = 1. This is allowed since IRSD(R, i, h) = 1 implies

Algorithm 1 Subroutine that constructs new rows e(R,i,h) for input profile R.
Input

R Preference profile
IRSD Function IRSD : R×N ×H → {0, 1}

1: B← Matrix with bistochasticity and equal treatment of equals rows for profile R
2: while IRSD was updated do
3: while IRSD was updated do
4: for all (i, h) ∈ N ×H do
5: if RSD(R, i, h) = 1 then
6: b(i,h) ← 0 for all rows b in B
7: end if
8: end for
9: for all Rows b in B do

10: if ∃(i, h) ∈ N ×H such that b = e(R,i,h) and IRSD(R, i, h) = 0 then
11: IRSD(R, i, h)← 1.
12: end if
13: end for
14: end while
15: for all Rows b in B and h ∈ H do
16: if ∀i ∈ N : b(i,h) = 1⇒ ∀j ∈ N (b(j,h) = 1⇔ �i = �j) then
17: for all i ∈ N if b(i,h) = 1 do
18: IRSD(R, i, h)← 1.
19: end for
20: end if
21: end for
22: end while

e(R,i,h) was constructed which in turn allows us to add or substract it from each row in B
such that the entry becomes 0.

If the resulting matrix B contains rows with only one nonzero entry at position (R, i, h),
then we set IRSD(R, i, h) to 1 and go back to the previous step. Otherwise, no simplifications
are possible. We check if combining the resulting equal treatment of equals and bistochas-
ticity rows results in new rows with only one nonzero entry. To do so, it is sufficient to check
for each bistochasticity row b and house h if for all agents i with b(i,h) = 1 we have for all
agents j that b(i,h) = b(j,h) = 1 if and ony if �i=�j . If this is the case, we can construct the
rows e(R,i,h) for all i for which b(i,h) = 1 by adding the equal treatment of equals rows to the
bistochasticity row. For these rows, the algorithm can once again set IRSD(R, i, h) = 1 and
go back to the first step. Otherwise, if no new rows are found, the subroutine terminates
and returns the updated indicator function.

The subroutine only uses elementary row operations to construct new rows. Furthermore,
it can restrict the matrix to a single profile R since it only considers matrix rows that have
only zero entries for all indices of other profiles. Thus, these operations do not alter the
rank of the matrix A.

Another important property of the subroutine is that it is symmetric with respect to
inputs. In other words, if we permute all inputs with some permutation of the agents
π ∈ Π and houses τ ∈ T , the updates to the indicator function are permuted by the same
permutation. This property follows from the fact that the algorithm is deterministic and
permutations of the profile permute the indices of the matrix B in the same way. Thus, the
results are the same up to permutation.

4.2 Guided search and localizedness
Algorithm 1 is able to evaluate single profiles. All that is now left to do is to decide which
profile to evaluate and to combine the new rows with localizedness. The full algorithm is
described in Algorithm 2.

The first step is to initialize the indicator function IRSD that keeps track of the rows
e(R,i,h) that where already build. We initialize all entries with 0, except for the triples
(R, i, h) with RSD(R, i, h) = 0.

Then, we use a standard best-first search algorithm to choose which profile to evaluate
next. The heuristic used to determine the priority of profile R is the number of rows e(R,i,h)

that where constructed since the last time the profile was considered. The priority queue is
initialized with the profile Rs where all agents have the same preferences. This profile is a
good choice since the submatrix of this profile has full rank and the bistochasticity and equal
treatment of equals constraints are already sufficient to construct all e(Rs,i,h). Although we
use a search algorithm, it has no “goal profile” in the usual sense but rather searches until
it completed the indicator function or fails to do so. The advantage of best-first over depth-
first or breath-first search is that it is much faster as it first evaluates profiles that are likely
to be solved completely by the subroutine Algorithm 1. We observed other methods to visit
the same profiles more frequently on average.

The algorithm then combines the rows found by the subroutine with localizedness by
multiplying the localizedness row with −1 if necessary and adding the row from the sub-
routine. More precisely, if IRSD(R, i, h) = 1 and agent i manipulates by rearranging houses
above and below h, then IRSD(R′, i, h) ← 1, where R′ is the profile agent i manipulates
to. Therefore, we can set IRSD(R′, i, h) = 1 if IRSD(R, i, h) = 1. We further reduce the
number of manipulations that need to be considered by only allowing swap manipulations
of adjacent houses. However, this does not really constitute a restriction since the same ma-
nipulations can be carried out by performing multiple swaps, i.e., all other manipulations
are linearly dependent on pairwise swap rows.

This algorithm is still not efficient enough to solve the case of n = 5. In order to reduce
the size ofR, we take advantage of the symmetry of the axioms and prove that the algorithm
can assume symmetry without loss of generality. In particular, we show that the result of the
algorithm on all canonical profiles R∗ generalizes to R when ensuring that a manipulation
that leaves the domain falls back to a canonical profile. For example, if agent i manipulates
from profile R ∈ R∗ to R′ ∈ R \ R∗ then the algorithm assumes i manipulated from R to
canonical(R′, i), where canonical is a function that maps a profile to the canonical profile.

A very important detail here is that while this function always maps to a single profile,
the manipulating agent i might map to multiple agents in the canonical profile. To account
for this we let the function canonical also return a list of agents in the new profile that
the manipulator can map to. If Algorithm 2 is used on R, canonical simply returns the
corresponding profile and agent.

Lemma 1. The result of Algorithm 2 holds for R when the search space is restricted to R∗.

Proof. We show that Algorithm 2 on R∗ is equivalent to Algorithm 2 on R by induction.
Let IRSD : R×N ×H → {0, 1} and I∗RSD : R∗×N ×H → {0, 1} be the indicator functions
for the first and second program, respectively. Denote Π as the set of all permutations
of agents and T as the set of all permutations of the houses, i.e., π ∈ Π, τ ∈ T maps
π(τ(R)) = R′ a preference profile R to another preference profile R′ by rearranging the
agents according to a permutation π and renaming the houses according to a permutation
τ . Obviously, |Π| = |T | = n! as both sets consists of n! permutations of the agents and
houses, respectively. Our induction proof is based on the idea that Algorithm 2 on R will,
after some extra steps, return to a state that is equivalent to Algorithm 2 on R∗. We show

this by induction over the outermost loop of Algorithm 2. In particular, we show that there
exists an execution of Algorithm 2 on R such that the following invariance holds at some
point.

I∗RSD(R, i, h) = IRSD(π(τ(R)), π(i), τ(h)) ∀R ∈ R∗, π ∈ Π, τ ∈ T , i ∈ N,h ∈ H (1)

Induction base: At the start of the algorithm, IRSD = I∗RSD ≡ 0 meaning that the
induction hypothesis trivially holds. It still holds after the support efficiency constraints are
added to IRSD since RSD satisfies symmetry.

Induction hypothesis: Equation (1) holds at the start of the k-th iteration of the outer-
most loop.

Induction step: We show Equation (1) holds at the end of the k-th iteration of the
outermost loop. Algorithm 2 will look at profile R ∈ R∗ in the k-th iteration. Let the
variant on R look at all profiles in [R] which denotes the equivalence class of all profiles
equivalent to R by symmetry. Clearly, both algorithms do not change the indicator value
of any profile that is not in [R] or a neighbor of it. In line 12, the algorithm calls the
subroutine.

The subroutine Algorithm 1 is deterministic and permutations of the inputs result in
the same permutations of the outputs implies that since the second program permutes the
inputs, the outputs are also permuted. If the second program sets I∗RSD(R, i, h) = 1, the first
program is able to set IRSD(π(τ(R)), π(i), τ(h)) = 1 for every π ∈ Π, τ ∈ T by induction
hypothesis. Therefore, the invariance condition is preserved for profiles in [R].

Next, in line 13, the algorithm starts to iterate over neighbors of R that can be reached
by adjacent swap manipulations of the agents. Let R′ be an arbitrary neighboring pro-
file, i the manipulating agent, and k ∈ [n − 1] the position in agent i’s preferences such
that for all j 6= i, the preferences stay the same (�i = �′j) and �′i = swap(�i, k, k + 1).
Furthermore, let R′′ = canonical(R′) be the canonical representation of R′ and π′ ∈ Π,
τ ′ ∈ T be any pair of permutations that maps R′′ to R′. For each l ∈ [n] \ {k, k + 1}
the algorithm performs the following operations. Let h be agent i’s lth most preferred
house. Then, if IRSD(R, i, h) = 1 and IRSD(R′′, i, h) = 0, set IRSD(R′′, i, h) ← 1. This
is allowed since the localizedness row together with e(R,i,h) and multiplication by −1 if
necessary can reach e(R′′,i,h). The first program performs the same operation but for
each profile in [R]. By induction hypothesis, I∗RSD(R, i, h) = IRSD(π(τ(R)), π(i), τ(h)) and
I∗RSD(R′′, i, h) = IRSD(π(τ(R′′)), π(i), τ(h)) for all permutations π ∈ Π and τ ∈ T . Thus,
the condition of the if statement IRSD(R, i, h) = 1 and IRSD(R′′, i, h) = 0 is true in the
second program if and only if it is true in the first program for each permutation π, τ . Con-
sequently, I∗RSD(R′′, i, h) = IRSD(π(τ(R′′)), π(i), τ(h)) ← 1 for all permutations π and τ .
Again the induction hypothesis is preserved. Since no other operations change the indicator
function, we conclude that the invariance holds after each step of Algorithm 2.

To summarize, it is sufficient to restrict the algorithm to R∗ and all actions of the
algorithm can be represented as elementary row operations. As they do not change the rank
of a matrix and the algorithm shows that the full identity matrix can be constructed from
the matrix A, we conclude that A has full rank. Corollary 1 then implies that Conjecture 1
holds. We ran the algorithm successfully for all n ≤ 5.

5 Conclusion
The current state of RSD characterizations via equal treatment of equals, ex post efficiency,
and strategyproofness for small n are summarized in Figure 1. The first characterization
for n = 3 was shown by Bogomolnaia and Moulin [3]. In their proof, they use a lemma that

Algorithm 2 Verify RSD Characterization
Input

n Number of Agents and Objects

1: IRSD ← 0 . Initialize IRSD : R∗ ×N × U → {1, 0} as the constant 0 function.
2: for all (R, i, h) ∈ R×N ×H do
3: if RSD(R, i, h) = 0 then . f(R, i, h) = 0 due to support efficiency.
4: IRSD(R, i, h)← 1
5: end if
6: end for
7: queue ← new Priority Queue
8: queue.insert(Rs, 0)
9: while queue is not empty do

10: R← queue.findmax ()
11: queue.deletemax ()
12: Algorithm 1 (R, IRSD) . Algorithm 1 updates IRSD .
13: for all R′ s.t. ∃i ∈ N ∀j 6= i �j=�′j ∧∃k ∈ [n] �′i= swap(�i, k, k + 1) do
14: R∗,manipulators = canonical(R′, i)
15: ∆← 0
16: for all l ∈ [n] \ {k, k + 1} do
17: for all i∗ ∈ manipulators do
18: h← lth best(�i, l)
19: h∗ ← lth best(�∗i∗ , l)
20: if IRSD(R, i, h) = 1 and IRSD(R∗, i∗, h∗) 6= 0 then
21: IRSD(R∗, i∗, h∗)← 1
22: ∆← ∆ + 1
23: end if
24: end for
25: end for
26: if ∆ > 0 then
27: if R′ ∈ queue then
28: queue.increasepriority(R∗,∆)
29: else
30: queue.insert(R∗,∆)
31: end if
32: end if
33: end for
34: end while
35: return IRSD ≡ 1 . The characterization holds if IRSD equals 1 for every (R, i, h).

Extra Condition Strategyproofness Source

n ≤ 3 — strategyproofness Bogomolnaia and Moulin [3]
n ≤ 4 symmetry only localizedness Sandomirskiy [19]
n ≤ 5 — only localizedness this paper

Figure 1: Overview of characterizations of RSD via equal treatment of equals, support
efficiency, and strategyproofness for small n. It is open whether ex post efficiency and
nonperverseness are required for larger n.

is based on a weakening of support efficiency. Since ex post efficiency and support efficiency
are equivalent for n = 3, full ex post efficiency is not required for n = 3.

Recently, Sandomirskiy [19] has shown via a computer-aided proof that the characteri-
zation holds for n ≤ 4 using symmetry, support efficiency, and localizedness. We extend this
result by showing that the RSD characterization holds for n ≤ 5 even when replacing sym-
metry with equal treatment of equals. This raises the question whether support efficiency
and localizedness also suffice for arbitrary n.

When analyzing the arguments produced by our algorithm, it turns out that certain
profiles require very long chains of reasoning that argue over many other profiles across the
full domain. In particular, it does not seem possible to partition R∗ by, e.g., first looking at
all profiles where every agent top-ranks the same house and then reuse results for smaller n.

As a consequence, we suspect that the characterization cannot hold in many subdomains
of R. As an example, consider the subdomain R> where all agents have the same ranking
over all houses but one, introduced by Chang and Chun [6]. This domain is rich enough
for the impossibility of equal treatment of equals, strategyproofness, and ordinal efficiency
by Bogomolnaia and Moulin [3]. In this domain, RSD is not the only rule satisfying equal
treatment of equals, strategyproofness, and ex post efficiency for n = 4. An alternative
rule was found using quadratic programming and has the property that it has the maximal
L2-distance to RSD when considering the summed distance over all profiles. Furthermore,
it satisfies symmetry on the subdomain, profiles that are in the same equivalence class as
given profiles have the same assignment permuted accordingly.

Theorem 1. RSD is not characterized by equal treatment of equals, ex post efficiency, and
strategyproofness in the domain R>.

It remains an open problem whether a characterization of RSD via ex post efficiency,
strategyproofness and equal treatment of equals holds for arbitrary n. On the one hand,
our results suggest that such a characterization might indeed hold, even when weakening
efficiency and strategyproofness and without additionally demanding symmetry. In fact,
the weaker axioms, in particular support efficiency instead of ex post efficiency, seem to
be a lot easier to handle for computers as well as humans. On the other hand, in case
the characterization does not hold, our results show that another ex post efficient and
strategyproof rule that treats equals equally can only differ from RSD when n ≥ 6, casting
doubt on the existence of a closed-form representation of any such rule.

We hope that the linear algebraic interpretation of the problem presented in this paper
will prove beneficial for a complete characterization of RSD .

Acknowledgments
This work was supported by the Deutsche Forschungsgemeinschaft under grants
BR 2312/11-2 and BR 2312/12-1. We thank Florian Brandl, Marek Pycia, Fedor San-
domirskiy, and Omer Tamuz for helpful discussions.

References
[1] A. Abdulkadiroğlu and T. Sönmez. Random serial dictatorship and the core from

random endowments in house allocation problems. Econometrica, 66(3):689–701, 1998.

[2] H. Aziz, F. Brandt, and M. Brill. The computational complexity of random serial
dictatorship. Economics Letters, 121(3):341–345, 2013.

[3] A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem.
Journal of Economic Theory, 100(2):295–328, 2001.

[4] S. Bouveret, Y. Chevaleyre, and N. Maudet. Fair allocation of indivisible goods. In
F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook
of Computational Social Choice, chapter 12. Cambridge University Press, 2016.

[5] F. Brandt. Rolling the dice: Recent results in probabilistic social choice. In U. Endriss,
editor, Trends in Computational Social Choice, chapter 1, pages 3–26. AI Access, 2017.

[6] H.-I. Chang and Y. Chun. Probabilistic assignment of indivisible objects when agents
have the same preferences except the ordinal ranking of one object. Mathematical Social
Sciences, 90:80–82, 2017.

[7] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaître, N. Maudet, J. Pad-
get, S. Phelps, J. A. Rodríguez-Aguilar, and P. Sousa. Issues in multiagent resource
allocation. Informatica, 30:3–31, 2006.

[8] A. Gibbard. Manipulation of schemes that mix voting with chance. Econometrica, 45
(3):665–681, 1977.

[9] D. E. Knuth. An exact analysis of stable allocation. Journal of Algorithms, 20:431–442,
1996.

[10] M. Manea. Serial dictatorship and Pareto optimality. Games and Economic Behavior,
61:316–330, 2007.

[11] D. F. Manlove. Algorithmics of Matching Under Preferences. World Scientific Publish-
ing Company, 2013.

[12] T. Mennle and S. Seuken. Partial strategyproofness: Relaxing strategyproofness for
the random assignment problem. Journal of Economic Theory, 191:105–144, 2021.

[13] S. Pápai. Strategyproof assignment by hierarchical exchange. Econometrica, 68(6):
1403–1434, 2000.

[14] D. C. Parkes and S. Seuken. Economics and Computation. Cambridge University Press,
Forthcoming.

[15] M. Pycia and P. Troyan. Strategy-proof, efficient, and fair allocation: Beyond random
priority. 2023. Working paper.

[16] M. Pycia and P. Troyan. A theory of simplicity in games and mechanism design.
Econometrica, 2023. Forthcoming.

[17] M. Pycia and M. U. Ünver. Incentive compatible allocation and exchange of discrete
resources. Theoretical Economics, 12(1):287–329, 2017.

[18] D. Saban and J. Sethuraman. The complexity of computing the random priority allo-
cation matrix. Mathematics of Operations Research, 40(4):1005 –1014, 2015.

[19] F. Sandomirskiy. Private Communication, July 2022.

[20] T. Sönmez and M. U. Ünver. Matching, allocation, and exchange of discrete resources.
In J. Benhabib, M. O. Jackson, and A. Bisin, editors, Handbook of Social Economics,
volume 1, chapter 17, pages 781–852. Elsevier, 2011.

[21] L.-G. Svensson. Strategy-proof allocation of indivisible goods. Social Choice and Wel-
fare, 16(4):557–567, 1999.

[22] W. S. Zwicker. Introduction to the theory of voting. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational Social
Choice, chapter 2. Cambridge University Press, 2016.

A Omitted Proofs
In the appendix, we provide the missing proofs of the main body. We start with the claims
from the preliminaries.

Proposition 1. Every symmetric assignment rule satisfies equal treatment of equals.

Proof. Let f be a symmetric assignment rule and R be an arbitrary profile with �i = �j
for two agents i, j ∈ N . Consider the permutation π = (ij) that only swaps the identities of
agents i and j. As �i = �j , R = π ◦R implies f(R) = π ◦f(R) by symmetry. In particular,
f(R, i) = π ◦ f(R, i) = f(R, j) showing that agents i and j receive the same assignment
under f in R.

Continuing on, we prove the claim that support efficiency and ex post efficiency are
equivalent for n ≤ 3. Example 1 shows that this is no longer the case when n ≥ 4.

Proposition 3. Support efficiency and ex post efficiency coincide for n ≤ 3.

Proof. The case n = 2 is easily solved by exhausting all cases. If the two agents disagree
on their top choice, only one deterministic assignment is efficient. Therefore all assignments
that violate ex post efficiency also violate support efficiency. Otherwise, the two agents share
the same preferences, in this case all random assignments are ex post efficient and thus also
support efficient.

For the case n = 3, assume that a preference profile R and random assignment f(R) exist
such that f(R) is support efficient but not ex post efficient. Then, there exists a deterministic
assignmentM that is not efficient that is needed to represent f(R). Furthermore, by support
efficiency, the support of M is efficient.

We consider two cases. M can be made efficient either by letting three agents trade their
houses in a circular fashion, or by swapping the houses of two agents. In the first case, M is
obviously not support efficient as all three agents improve, meaning that no agent received
her top choice in M . For the second case, two agents, w.l.o.g. 1 and 2, both improve when
they swap houses h1 and h2, i.e., h1 �1 h2 and h2 �2 h1 but 1 receives h2 and 2 receives
h1 in M . Assume now, again w.l.o.g., that h1 �3 h2. It is obvious that in this case agent
2 cannot receive h1 in any efficient deterministic assignment. Again, M violates support
efficiency.

We have shown that for n = 3, a violation of ex post efficiency implies a violation of
support efficiency. Since ex post efficiency implies support efficiency, they are equivalent for
n = 3.

Finally, we state the proof of Theorem 1.

1 : h1 h2 h3 h4

2 : h2 h1 h3 h4

3 : h2 h3 h1 h4

4 : h2 h3 h4 h1

h1 h2 h3 h4

3
4 0 1

24
5
24

1
4

1
3

1
6

1
4

0 1
3

5
12

1
4

0 1
3

3
8

7
24

1 : h1 h2 h3 h4

2 : h2 h1 h3 h4

3 : h2 h3 h4 h1

4 : h2 h3 h4 h1

h1 h2 h3 h4

3
4 0 0 1

4
1
4

1
3

1
6

1
4

0 1
3

5
12

1
4

0 1
3

5
12

1
4

1 : h2 h1 h3 h4

2 : h2 h1 h3 h4

3 : h2 h3 h1 h4

4 : h2 h3 h4 h1

h1 h2 h3 h4

1
2

1
4

1
24

5
24

1
2

1
4

1
24

5
24

0 1
4

1
2

1
4

0 1
4

5
12

1
3

1 : h2 h1 h3 h4

2 : h2 h1 h3 h4

3 : h2 h3 h4 h1

4 : h2 h3 h4 h1

h1 h2 h3 h4

1
2

1
4 0 1

4
1
2

1
4 0 1

4

0 1
4

1
2

1
4

0 1
4

1
2

1
4

1 : h2 h1 h3 h4

2 : h2 h3 h1 h4

3 : h2 h3 h4 h1

4 : h2 h3 h4 h1

h1 h2 h3 h4

2
3

1
4 0 1

12
1
6

1
4

1
3

1
4

1
12

1
4

1
3

1
3

1
12

1
4

1
3

1
3

Figure 2: The five canonical profiles are the only canonical profiles for which the proposed
rule returns a different output than RSD . Furthermore, only entries marked in gray differ
from RSD . The rule also satisfies symmetry within domain R>.

Theorem 1. RSD is not characterized by equal treatment of equals, ex post efficiency, and
strategyproofness in the domain R>.

Proof. The rule defined in Figure 2 satisfies all three axioms and was found using quadratic
programming. It is equal to RSD on all canonical profiles except the five shown in Fig-
ure 2. Profiles in the same equivalence class receive the same random assignment permuted
accordingly.

Contact Details
Felix Brandt
Technische Universität München
München, Germany
Email: brandt@tum.de

Matthias Greger
Technische Universität München
München, Germany
Email: matthias.greger@tum.de

René Romen
Technische Universität München
München, Germany
Email: rene.romen@tum.de

brandt@tum.de
matthias.greger@tum.de
rene.romen@tum.de

	Introduction
	Preliminaries
	A linear algebraic view on the problem
	Checking whether the matrix has full rank
	Solving single profiles
	Guided search and localizedness

	Conclusion
	Omitted Proofs

