
Refined Characterizations of Approval-Based
Committee Scoring Rules

Chris Dong Patrick Lederer

Abstract

In approval-based committee (ABC) elections, the goal is to elect a fixed size subset
of the candidates, a so-called committee, based on the voters’ approval ballots over
the candidates. One of the most popular classes of ABC voting rules are ABC
scoring rules, which have recently been characterized by Lackner and Skowron [23].
However, this characterization relies on a model where the output is a ranking of
committees instead of a set of winning committees and no full characterization of
ABC scoring rules exists in the latter standard setting. We address this issue by
characterizing two important subclasses of ABC scoring rules in the standard ABC
election model, thereby both extending the result of Lackner and Skowron [23] to
the standard setting and refining it to subclasses. In more detail, we characterize (i)
the prominent class of Thiele rules and (ii) a new class of ABC voting rules called
ballot size weighted approval voting. Both of these results are driven by a consistency
notion analogous to the one of Young [37]. Based on these theorems, we also derive
characterizations of three well-known ABC voting rules, namely multi-winner approval
voting, proportional approval voting, and satisfaction approval voting.

1 Introduction
An important problem for multi-agent systems is collective decision making: given the voters’
preferences over a set of alternatives, a common decision has to be made. This problem
has traditionally been studied by economists for settings where a single candidate is elected
(see, e.g., [1]), but there is also a multitude of applications where a fixed number of the
candidates needs to be elected. The archetypal example for this is the election of a city
council, but there are also technical applications such as recommender systems [32, 20]. In
social choice theory, this type of elections is typically called approval-based committee (ABC)
elections and has recently attracted significant attention [e.g., 3, 17, 16, 25]. In more detail,
the research on these elections focuses on ABC voting rules, which are functions that choose
a set of winning committees (i.e., subsets of the candidates of a fixed size) based on the
voters’ approval ballots (i.e., the subsets of candidates that the voters find acceptable).

Maybe the most prominent class of ABC voting rules are ABC scoring rules. These
rules rely on a scoring function s to compute the winning committees and each voter assigns
s(x, y) points to a committee if she approves x candidates in the committee and y in total.
An ABC scoring rule then chooses the committees with maximal total score. There are many
well-known ABC scoring rules, e.g., multi-winner approval voting (AV), satisfaction approval
voting (SAV), Chamberlin-Courant approval voting (CCAV), and proportional approval voting
(PAV). While these rules have rather different behavior, they are all consistent: if some
common committees are chosen for two disjoint elections, precisely these common committees
are chosen in a joint election. Indeed, all ABC scoring rules satisfy this axiom and they can
thus be seen as an equivalent to single-winner scoring rules, which have prominently been
characterized by Young [37] based on an analogous consistency condition.

In a recent breakthrough result, Lackner and Skowron [23] have managed to formalize
the relation between ABC scoring rules and single-winner scoring rules by characterizing
ABC scoring rules with almost the same axioms as Young [37] uses for his characterization of



single-winner scoring rules. In more detail, Lackner and Skowron [23] show that ABC scoring
rules are the only ABC ranking rules that satisfy anonymity, neutrality, continuity, weak
efficiency, and consistency. However, this result discusses ABC ranking rules, which return
transitive rankings of committees, whereas the literature on ABC elections typically focuses
on sets of committees as output. While Lackner and Skowron [24] also present a result for
the latter setting, we believe the proof of this result to be incomplete.1 Moreover, even when
the proof would be correct, this result is not a full characterization of ABC scoring rules as
it requires a technical axiom called 2-non-imposition. This axiom postulates that every pair
of committees is the outcome for some profile and is, e.g., violated by AV and SAV. Hence,
characterizations of important ABC scoring rules and, more generally, tools that allow us to
easily infer such results are still missing for the standard ABC setting. Lackner and Skowron
also acknowledge this shortcoming by writing that “a full characterization of ABC scoring
rules within the class of ABC choice rules remains as important future work” [24, p. 16].

Our contribution. We address this problem by presenting full axiomatic characterizations
of two subclasses of ABC scoring rules, namely Thiele rules and ballot size weighted approval
voting (BSWAV) rules, in the standard ABC election setting. Hence, our results refine the
result of Lackner and Skowron [23] and extend it to the standard ABC voting setting while
avoiding technical auxiliary conditions. Thiele rules are ABC scoring rules that do not
depend on the ballot size and have attracted significant attention [e.g., 3, 32, 10, 22]. On the
other hand, BSWAV rules are a new generalization of multi-winner approval voting where
the voters are weighted depending on the size of their ballots. For example, PAV and CCAV
are Thiele rules, SAV is a BSWAV rule, and AV is in both classes. Moreover, every ABC
scoring rule that has been studied in the literature is in one of our two classes.

For our characterization of Thiele rules, we rely on the axioms of Lackner and Skowron
[23] and additionally require independence of losers. This axiom demands that a winning
committee W stays winning if some voters change their ballot by disapproving candidates
outside of W as, intuitively, the quality of W should only depend on its members. Similar
conditions are well-known in single-winner elections [e.g., 7] and this axiom has recently been
adapted to ABC elections by Dong and Lederer [12]. Based on this axiom, we show that an
ABC voting rule is a Thiele rule if and only if it satisfies anonymity, neutrality, consistency,
continuity, and independence of losers (Theorem 1).

In order to characterize BSWAV rules, we introduce a new axiom called choice set
convexity. This condition requires that if two committees are chosen, then all committees “in
between” those committees are chosen, too: if W and W ′ are chosen, then all committees
W ′′ with W ∩W ′ ⊆ W ′′ ⊆ W ∪W ′ are also chosen. We believe that this axiom is reasonable
for excellence-based elections (which only focus on the individual quality of the candidates)
because a tie between committees indicates that they are equally good and the candidates in
W \W ′ and W ′ \W are thus exchangeable. We then prove that an ABC voting rule is a
BSWAV rule if and only if it satisfies anonymity, neutrality, consistency, continuity, weak
efficiency, and choice set convexity (Theorem 2).

While our theorems are intuitively related to the results of Lackner and Skowron [23, 24],
they are logically independent as all BSWAV rules (including AV) fail 2-non-imposition. In
particular, Theorem 2 allows, in contrast to the result of Lackner and Skowron, to characterize
AV and SAV. Moreover, it is easy to infer full characterizations of specific Thiele rules based on
Theorem 1 as we can apply this result simply to known (partial) characterizations within the

1Roughly, the proof of the main result of Lackner and Skowron [24] works by constructing an ABC ranking
rule g based on an ABC voting rule f that satisfies the given axioms. Then, Lackner and Skowron [24] show
that the axioms of f inherit to g, so g must be an ABC scoring rule (in the ranking setting). This implies
that f is an ABC scoring rule (in the choice setting). However, the authors never show that the rankings
returned by g are transitive, which is required by definition of ABC ranking rules, and proving this seems
surprisingly difficult.
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Figure 1: Overview of our results. An arrow from X to Y means that Y is a subset or an
element of X. The axioms below Thiele rules and BSWAV rules characterize these classes of
ABC voting rules. The axioms on the arrows to AV, PAV, and SAV characterize these rules
within the set of non-trivial Thiele rules and non-trivial BSWAV rules, respectively.

class of Thiele rules. We demonstrate these points also by characterizing three well-known
ABC voting rules in Section 4. In more detail, we first obtain a characterization of AV as it
is essentially the only rule that is both a BSWAV rule and a Thiele rule. Secondly, we also
characterize PAV and SAV by considering party-list profiles (where candidates are partitioned
into parties and each voter approves all candidates of a single party) and analyzing whether
it is advantageous for candidates to compete by themselves or to form a party. An overview
of our results is shown in Figure 1.

Related work. The lack of characterizations of ABC voting rules is one of the major open
problems in the field [see, e.g., 25, Q1], and there are thus only few closely related papers.
Maybe the most important one is due to Lackner and Skowron [23] who characterize ABC
scoring rules in the context of ABC ranking rules; however, this result does not allow for
characterizations of ABC voting rules in the standard setting. The (erroneous) follow-up
paper by Lackner and Skowron [24] tries to fix this issue by characterizing ABC scoring
rules in the standard setting, but it requires a technical auxiliary condition that rules out
important rules such as AV and SAV. Finally, Dong and Lederer [12] characterize committee
monotone ABC rules, which can be seen as greedy approximations of ABC scoring rules. It
should also be mentioned that committee scoring rules have been analyzed for strict rankings
as input, but these results are also restricted to characterizations in the context of committee
ranking rules [33] or characterizations within the class of committee scoring rules [16, 18].

Furthermore, a large amount of papers studies axiomatic properties of ABC scoring rules
[e.g., 21, 3, 31, 10, 22]. For instance, Aziz et al. [3] investigate Thiele rules with respect to
how fairly they represent groups of voters with similar preferences, and Sánchez-Fernández
and Fisteus [31] study various monotonicity conditions for a number of ABC voting rules,
including Thiele rules. Another important aspect of these rules is their computational
complexity. In particular, it is known that all Thiele rules but AV are NP-hard to compute
on the full domain [2, 32]. There is thus significant work on how to compute these rules
by, e.g., restricting the domain of preference profiles [14, 28, 35], considering approximation
algorithms for Thiele rules [13, 5], or designing FPT algorithms [9]. For a more detailed
overview on ABC scoring rules, we refer to the survey by Lackner and Skowron [25].

Finally, in the broader realm of social choice, there are many results that are conceptually
similar to ours as they rely on consistency axioms: Young [37] has characterized scoring
rules for single-winner elections based on this axiom (see also [34, 26, 30]), numerous
characterizations of single-winner approval voting rely on consistency [19, 7], Young and
Levenglick [38] have characterized Kemeny’s rule with the help of this axiom, and Brandl et al.
[8] characterize a randomized voting rule called maximal lotteries based on this condition.



2 Preliminaries
Let N = {1, 2, . . . } denote an infinite set of voters and let C = {c1, . . . , cm} denote a set
of m ≥ 2 candidates. Intuitively, we interpret N as the set of all possible voters, and
a concrete electorate N is a finite and non-empty subset of N. To this end, we define
F(N) = {N ⊆ N : N is non-empty and finite} as the set of all possible electorates. Given
an electorate N ∈ F(N), we assume that each voter i ∈ N reports her preferences over the
candidates as approval ballot Ai, i.e., as a non-empty subset of C. A is the set of all possible
approval ballots. An approval profile A is a mapping from N to A, i.e., it assigns an approval
ballot to every voter in the given electorate. Moreover, we define A∗ =

⋃
N∈F(N) AN as the

set of all possible approval profiles. For every profile A ∈ A∗, NA denotes the set of voters
that submit a ballot in A. Furthermore, two approval profiles A,A′ are called disjoint if
NA ∩ NA′ = ∅ and for disjoint profiles A,A′ ∈ A∗, we define the profile A′′ = A + A′ by
NA′′ = NA ∪NA′ , A′′

i = Ai for i ∈ NA, and A′′
i = A′

i for i ∈ NA′ .
Given an approval profile, our aim is to elect a committee, i.e., a subset of the candidates

of predefined size. We denote the target committee size by k ∈ {1, . . . ,m − 1} and the
set of all size k committees by Wk = {W ⊆ C : |W | = k}. For determining the winning
committees for a given preference profile, we use approval-based committee (ABC) voting
rules which are mappings from A∗ to 2Wk \ {∅}. Note that ABC voting rules are defined
for a fixed committee size and may return multiple committees. The latter indicates that
chosen committees are tied for the final victory in the election, which is necessary to satisfy
basic fairness conditions; e.g., if all voters approve all candidates, all committees are equally
acceptable and a fair voting rule cannot distinguish between them.

2.1 ABC Voting Rules
We focus in this paper on three classes of ABC voting rules: ABC scoring rules, Thiele rules,
and BSWAV rules.

ABC scoring rules. ABC scoring rules rely on a scoring function according to which
voters assign points to committees and choose the committees with maximal score. Formally,
a scoring function s(x, y) is a mapping from {0, . . . , k}×{1, . . . ,m} to R such that s(x, y) ≥
s(x′, y) for all x, x′ ∈ {max(0, k + y −m), . . . ,min(k, y)} with x ≥ x′. We define the score
of a committee W in a profile A as ŝ(A,W ) =

∑
i∈NA

s(|Ai ∩ W |, |Ai|). Then, an ABC
voting rule f is an ABC scoring rule if there is a scoring function s such that f(A) = {W ∈
Wk : ∀W ′ ∈ Wk : ŝ(A,W ) ≥ ŝ(A,W ′)}. Note that the set {max(0, k+y−m), . . . ,min(k, y)}
contains all “active” intersection sizes: a committee of size k and a ballot of size y intersect
at least in max(0, k + y −m) candidates and at most in min(k, y) candidates.

Thiele rules. Arguably the most prominent subclass of ABC scoring rules are Thiele rules.
Their namesake Thiele [36] proposed them with a simple argument: if the elected committee
contains x of the approved candidates of a voter, the voter should have some benefit s(x) from
the committee. Hence, Thiele rules are defined by a non-decreasing Thiele scoring function
s : {0, . . . , k} → R with s(0) = 0, and choose the committees that maximize the total score.
Formally, an ABC voting rule f is a Thiele rule if there is a Thiele scoring function s such that
f(A) = {W ∈ Wk : ∀W ′ ∈ Wk : ŝ(A,W ) ≥ ŝ(A,W ′)}, where ŝ(A,W ) =

∑
i∈NA

s(|Ai ∩W |).
There are numerous important Thiele rules such as multi-winner approval voting (AV; defined
by sAV (x) = x), proportional approval voting (PAV; defined by sPAV(x) =

∑x
z=1

1
z for x > 0),

and Chamberlin-Courant approval voting (CCAV; defined by sCCAV (x) = 1 for x > 0).

BSWAV rules. Ballot size weighted approval voting rules form a new subclass of ABC
scoring rules which generalize AV by weighting voters based on their ballot size. Formally, a
ballot size weighted approval voting (BSWAV) rule f is defined by a weight vector α ∈ Rm

≥0 and



chooses for a profile A the committees W that maximize ŝ(A,W ) =
∑

i∈NA
α|Ai||Ai∩W |. We

note that the score of a committee W for a BSWAV rule can be represented as the sum of the
scores of individual candidates c ∈ W since

∑
i∈NA

α|Ai||Ai∩W | =
∑

c∈W

∑
i∈NA : c∈Ai

α|Ai|.
AV is clearly part of this class by setting αx = 1 for all x ∈ {1, . . . ,m}. Another well-known
BSWAV rule is satisfaction approval voting (SAV) defined by αx = 1

x for x ∈ {1, . . . ,m}. SAV
has been suggested by Brams and Kilgour [6] and can be motivated by the “one man, one
vote” principle as every voter distributes a budget of 1 to her approved candidates.

We note that Thiele rules and BSWAV rules are diametrically opposing subclasses of
ABC scoring rules: Thiele rules do not depend on the ballot size at all, whereas BSWAV
rules only depend on this aspect. Consequently, if k < m − 1, the sets of BSWAV rules
and Thiele rules only intersect in AV and the trivial rule TRIV (which always chooses all
size k committees). So, AV is the only non-trivial ABC voting rule that is in both classes;
non-triviality means here that there is a profile A such that f(A) ̸= TRIV(A). Moreover,
both classes are proper subsets of the set of ABC scoring rules if 1 < k < m− 1. In contrast,
the set of BSWAV rules is equivalent to the set of ABC scoring rules if k ∈ {1,m− 1}.

2.2 Basic Axioms
Next, we introduce the axioms used for our characterizations.

Anonymity. Anonymity is one of the most basic fairness properties and requires that all
voters should be treated equally. Formally, we say an ABC voting rule f is anonymous if
f(A) = f(π(A)) for all profiles A ∈ A∗ and permutations π : N → N. Here, we denote by
A′ = π(A) the profile with NA′ = {π(i) : i ∈ NA} and A′

π(i) = Ai for all i ∈ NA.

Neutrality. Similar to anonymity, neutrality is a fairness property for the candidates.
This axiom requires of an ABC voting rule f that f(τ(A)) = {τ(W ) : W ∈ f(A)} for all
profiles A ∈ A∗ and permutations τ : C → C. This time, A′ = τ(A) denotes the profile with
NA′ = NA and A′

i = τ(Ai) for all i ∈ NA.

Weak Efficiency. Weak efficiency requires that unanimously unapproved candidates can
never be “better” than approved ones. Formally, we say an ABC voting rule f is weakly
efficient if W ∈ f(A) for a committee W ∈ Wk with c ∈ W \ (

⋃
i∈NA

Ai) implies that
(W ∪ {c′}) \ {c} ∈ f(A) for all candidates c′ ∈ C \W .

Continuity. The intuition behind continuity is that a large group of voters should be able
to enforce that some of its desired outcomes are chosen. Hence, an ABC voting rule f is
continuous if for all profiles A,A′ ∈ A∗, there is λ ∈ N such that f(λA+A′) ⊆ f(A). Here,
λA denotes the profile consisting of λ copies of A; the names of the voters in NλA will not
matter as we will focus on anonymous rules.

Consistency. The central axiom for our results is consistency. This condition states that
if some committees are chosen for two disjoint profiles, then precisely those committees are
chosen in the joint profile. Formally, an ABC voting rule f is consistent if f(A + A′) =
f(A) ∩ f(A′) for all disjoint profiles A,A′ ∈ A∗ with f(A) ∩ f(A′) ̸= ∅. Consistency and the
previous four axioms have been introduced by Lackner and Skowron [24] for ABC elections.
Moreover, except consistency, all of these axioms are very mild and satisfied by almost all
commonly considered ABC voting rules.

Independence of Losers. Independence of losers has been adapted to ABC elections by
Dong and Lederer [12] and requires of an ABC voting rule f that a winning committee W
should still be a winning committee if voters disapprove candidates outside of W . Formally,
we say that f is independent of losers if W ∈ f(A) implies W ∈ f(A′) for all profiles
A,A′ ∈ A∗ and committees W ∈ Wk such that NA = NA′ and W ∩ Ai = W ∩ A′

i and



A′
i ⊆ Ai for all i ∈ NA. The motivation for this axiom is that the quality of W should only

depend on the candidates in W . So, if the voters disapprove candidates x ̸∈ W , this does not
affect the quality of W and a chosen committee W should stay chosen. All commonly studied
ABC voting rules that are independent of the ballot size (e.g., Thiele rules, sequential Thiele
rules, and Phragmen’s rule) satisfy this axiom, whereas all BSWAV rules except AV fail it.

Choice Set Convexity. Finally, we introduce a new condition called choice set convexity:
an ABC voting rule f is choice set convex if W,W ′ ∈ f(A) implies that W ′′ ∈ f(A) for
all committees W,W ′,W ′′ ∈ Wk and profiles A ∈ A∗ such that W ∩W ′ ⊆ W ′′ ⊆ W ∪W ′.
More informally, this axiom states that if a rule chooses two committees W and W ′, then all
committees “between” W and W ′ should also be chosen. We believe that choice set convexity
is reasonable in elections in which only the individual quality of the elected candidates matters.
For instance, if we want to hire 3 applicants for a job based on the interviewer’s preferences,
it seems unreasonable that the sets {c1, c2, c3} and {c1, c4, c5} are good enough to be hired
but {c1, c2, c4} is not. More generally, we can interpret the membership of a candidate in a
chosen committee as certificate for its quality and all candidates c ∈ (W \W ′) ∪ (W ′ \W )
are then equally good. Many commonly considered voting rules fail this axiom, but it is
always possible to compute the “convex hull” of a choice set.

3 Characterizations of Classes of ABC Voting Rules
We now turn to our characterizations of Thiele rules and BSWAV rules, which are discussed
in Section 3.2 and Section 3.3, respectively. The proofs of these results are rather involved, so
we defer them to the appendix. Since we nevertheless want to showcase our proof technique,
we revisit the result of Lackner and Skowron [24] in Section 3.1 for k ∈ {1,m− 1} as this
allows us to explain our ideas while avoiding challenging technical details.

3.1 ABC Scoring Rules
As mentioned in the introduction, Lackner and Skowron [24] partially characterize ABC
scoring rules: they show that a 2-non-imposing ABC voting rule is an ABC scoring rule if and
only if it satisfies anonymity, neutrality, consistency, continuity, and weak efficiency. We will
here revisit this result for k ∈ {1,m− 1} to showcase our proof idea for deriving Theorems 1
and 2. Note that we omit 2-non-imposition as it is not necessary if k ∈ {1,m− 1}.

Our techniques are inspired by those of Young [37] and Skowron et al. [33] as we will use
the separating hyperplane theorem for convex sets to show our results. To further explain our
approach, let f denote an ABC voting rule that satisfies anonymity, neutrality, consistency,
and non-imposition. The last condition means that for every committee W ∈ Wk, there is
a profile A ∈ A∗ such that f(A) = {W}. This axiom is no restriction for our analysis as
all non-trivial ABC voting rules that we consider are non-imposing. As first step, we will
change the domain of f from approval profiles to a numerical space. For this, we use that f
is anonymous and thus only depends on the number of voters who submit a specific ballot.
Thus, let B : {1, . . . , |A|} → A denote an enumeration of all approval ballots and define v(A)
as the vector whose ℓ-th entry counts how often the ballot B(ℓ) appears in the profile A.
By anonymity, there is a function g : N|A| → 2Wk \ {∅} such that f(A) = g(v(A)) for all
profiles A ∈ A∗. Moreover, this function inherits neutrality (g(τ(v)) = {τ(W ) : W ∈ g(v)}
for all vectors v and permutations τ : C → C) and consistency (g(v+ v′) = g(v)∩ g(v′) for all
vectors v, v′ with g(v)∩g(v′) ̸= ∅) from f . Here, τ(v) denotes the vector such that τ(v)i = vj
for all i, j with B(i) = τ(B(j)). Next, we extend the domain of g from N|A| to Q|A| while
preserving all desirable properties. The proof of this claim can be found in the appendix.



Lemma 1. Let f denote a non-imposing ABC voting rule that satisfies anonymity, neutrality,
and consistency. There is a function ĝ : Q|A| → 2Wk \{∅} that satisfies neutrality, consistency,
and ĝ(v(A)) = f(A) for all A ∈ A∗.

Since ĝ fully describes f , we aim to represent ĝ by a scoring function. For this, we define
an arbitrary order W 1, . . . ,W |Wk| over the committees and let Rf

i = {v ∈ Q|A| : W i ∈ ĝ(v)}.
Moreover, R̄f

i is the closure of Rf
i with respect to R|A|. It is easy to see that the sets R̄f

i

are convex and their interiors are disjoint because of the properties of ĝ. We can thus apply
the separating hyperplane theorem for convex set to derive a non-zero vector ui,j such that
ui,jv ≥ 0 if v ∈ R̄f

i and ui,jv ≤ 0 if v ∈ R̄f
j for every pair of sets R̄f

i , R̄
f
j (ui,jv = vui,j

denotes throughout the paper the standard scalar product). Our next lemma shows that
there are symmetric non-zero vectors that fully describe the sets R̄f

i .

Lemma 2. Let f denote a non-imposing ABC voting rule that satisfies anonymity, neutrality,
and consistency. There are non-zero vectors ûi,j that satisfy the following conditions for all
W i,W j ∈ Wk:

1. R̄f
i = {v ∈ R|A| : ∀j′ ∈ {1, . . . , |Wk|} \ {i} : ûi,j′v ≥ 0}.

2. ûi,j = −ûj,i.
3. ûi′,j′ = τ(ûi,j) if τ(W i) = W i′ and τ(W j) = W j′ .

Based on Lemma 2, we now show how to derive the score function of the considered rule.

Proposition 1. Assume k = 1 or k = m− 1. An ABC voting rule is an ABC scoring rule
if and only if it satisfies anonymity, neutrality, consistency, continuity, and weak efficiency.

Proof. It is easy to check that ABC scoring rules satisfy all given axioms. So, we focus
on the converse and let f denote an ABC voting rule that satisfies all given axioms for
k = 1; the case that k = m − 1 follows from similar arguments. First, if f is trivial, it is
the ABC scoring rule induced by the score function s(x, y) = 0. We hence suppose that f
is non-trivial. We will first show that f is non-imposing. For this, we note that there is a
ballot A ∈ A such that f(A) ̸= Wk because of non-triviality and consistency. Let c, d denote
candidates such that {c} ∈ f(A), {d} ̸∈ f(A) and consider a permutation τ : C → C with
τ(c) = c. By neutrality, {c} ∈ f(τ(A)), {τ(d)} ̸∈ f(τ(A)). Next, consider the profile A∗ that
consists of a ballot τ(A) for every permutation τ with τ(c) = c. By consistency, we infer that
f(A∗) =

⋂
τ :C→C : τ(c)=c f(τ(A)) = {{c}}. Neutrality implies now that f is non-imposing

Next, we use Lemma 1 to obtain the function ĝ : Q|A| → 2Wk \ {∅} and define the
sets Rf

i = {v ∈ Q|A| : W i ∈ ĝ(v)}. In turn, Lemma 2 entails the existence of symmetric
non-zero vectors ûi,j such that R̄f

i = {v ∈ R|A| : ∀j ∈ {1, . . . , |Wk|} \ {i} : ûi,jv ≥ 0}.
Now, consider committees W i,W j ,W i′ ,W j′ ∈ Wk with W i ̸= W j and W i′ ̸= W j′ . Since
k = 1, this means that |W i \ W j | = |W i′ \ W j′ | = 1. Moreover, let B(ℓ), B(ℓ′) denote
two ballots such that |B(ℓ)| = |B(ℓ′)|, |B(ℓ) ∩ W i| = |B(ℓ′) ∩ W i′ |, and |B(ℓ) ∩ W j | =
|B(ℓ′) ∩W j′ |. These assumptions imply that there is a permutation τ : C → C such that
τ(B(ℓ)) = B(ℓ′), τ(W i) = W i′ , and τ(W j) = W j′ . Condition (3) of Lemma 2 then shows
that ûi′,j′

ℓ′ = τ(ûi,j)ℓ′ = ûi,j
ℓ . This means that there are functions s1(x, y, z) such that

ûi,j
ℓ = s1(|W i ∩ B(ℓ)|, |W j ∩ B(ℓ)|, |B(ℓ)|) for all committees W i,W j and ballots B(ℓ).

Next, consider two committees W i and W j and a permutation τ such that τ(W i) = W j ,
τ(W j) = W i, and τ(x) = x for all x ∈ C \ (W i ∪ W j). By Conditions (2) and (3) of
Lemma 2, −ûi,j

ℓ′ = ûj,i
ℓ′ = τ(ûi,j)ℓ′ = ûi,j

ℓ for all ballots B(ℓ) and B(ℓ′) = τ(B(ℓ)). Now, if
W i∪W j ⊆ B(ℓ) or B(ℓ)∩ (W i∪W j) = ∅, then τ(B(ℓ)) = B(ℓ) and this inequality simplifies
to −ûi,j

ℓ = ûi,j
ℓ . This implies that ûi,j

ℓ = 0, so s1(x, x, z) = 0 for all x ∈ {0, 1}, z ∈ {1, . . . ,m}.
On the other hand, if |W i ∩ B(ℓ)| = 1 > 0 = |W j ∩ B(ℓ)|, then |W i ∩ B(ℓ′)| = 0 < 1 =
|W j ∩B(ℓ′)| and s1(1, 0, z) = −s1(0, 1, z) for all z ∈ {1, . . . ,m}.



We can now infer the score function s(x, z) from s1(x, y, z): we define s(0, z) = 0
and s(1, z) = s1(1, 0, z) for all z ∈ {1, . . . ,m}. It is easy to check that ûi,jv =∑

ℓ∈{1,...,|A|} vℓs
1(|W i∩B(ℓ)|, |W j ∩B(ℓ)|, |B(ℓ)|) =

∑
ℓ∈{1,...,|A|} vℓ(s(|W i∩B(ℓ)|, |B(ℓ)|)−

s(|W j ∩ B(ℓ)|, |B(ℓ)|)) for all W i, W j ∈ Wk and v ∈ R|A|. Next, we define ŝ(v,W ) =∑
ℓ∈{1,...,|A|} vℓ(s(|W i ∩ B(ℓ)|, |B(ℓ)|) and infer that R̄f

i = {v ∈ R|A| : ∀j ∈ {1, . . . , |Wk|} \
{i} : ûi,j ≥ 0} = {v ∈ R|A| : ∀j ∈ {1, . . . , |Wk|} : ŝ(v,W i) ≥ ŝ(v,W j)}. Hence,
f(A) = ĝ(v(A)) ⊆ {W ∈ Wk : ∀W ′ ∈ Wk : ŝ(A,W ) ≥ ŝ(A,W ′)} := f ′(A) for all A ∈ A∗.

Next, we will show that this subset relation is an equality. Suppose for this that there is a
profile A such that f(A) ⊊ f ′(A) and let {d} ∈ f ′(A)\f(A). We note that f ′ is consistent and
non-trivial, so an analogous argument as for f shows that it is non-imposing. Thus, there is
a profile A′ such that f ′(A′) = {{d}}. By the consistency of f ′ and the above subset relation,
we have that f(λA+A′) = f ′(λA+A′) = {{d}} for all λ ∈ N. However, this contradicts the
continuity of f , which requires that there is λ ∈ N such that f(λA+A′) ⊆ f(A). So, f is the
ABC scoring rule induced by s. Finally, we show that s is non-decreasing. Otherwise, there
is a ballot size y ∈ {1, . . . ,m − 1} such that 0 = s(0, y) > s(1, y). Now, consider a single
ballot A of size y. By definition of s and f , f(A) = {W ∈ Wk : W ̸⊆ A}. However, this
outcome violates weak efficiency, so s needs to be non-decreasing in its first argument.

3.2 Thiele Rules
We now turn to our first full characterization: Thiele rules are the only ABC voting rules
that satisfy anonymity, neutrality, consistency, continuity, and independence of losers. We
note here that, compared to the results of Lackner and Skowron [23], we only need to replace
weak efficiency with independence of losers.

Theorem 1. An ABC voting rule is a Thiele rule if and only if it satisfies anonymity,
neutrality, consistency, continuity, and independence of losers.

Proof Sketch. First, suppose that f is a Thiele rule and let s(x) denote its Thiele scoring
function. Clearly, f is anonymous, neutral, consistent, and continuous as all ABC scoring
rules satisfy these axioms. So, we will only show that f is independent of losers. For this,
consider two profiles A,A′ ∈ A∗ and a committee W ∈ f(A) such that NA = NA′ and
A′

i ⊆ Ai and W ∩ A′
i = W ∩ Ai for all i ∈ NA. It holds that ŝ(A′,W ) = ŝ(A,W ) since

W ∩A′
i = W ∩Ai for all i ∈ NA. On the other hand, ŝ(A,W ′) ≥ ŝ(A′,W ′) for all W ′ ∈ Wk

as s(x) is non-decreasing. Finally, since W ∈ f(A), ŝ(A,W ) ≥ ŝ(A,W ′) for all W ′ ∈ Wk and
we conclude that ŝ(A′,W ) = ŝ(A,W ) ≥ ŝ(A,W ′) ≥ ŝ(A′,W ′) for all committees W ′ ∈ Wk.
So, W ∈ f(A′) and f satisfies independence of losers.

For the other direction, suppose that f is an ABC voting rule that satisfies all axioms
of the theorem. Since this direction is much more involved, we only give a rough proof
sketch. Now, if f is trivial, it is the Thiele rule defined by s(x) = 0 for all x. Hence,
suppose that f is non-trivial. As the first step, we then show that f is non-imposing, so
we can use Lemmas 1 and 2 to derive that f (resp. the function ĝ) can be described by
non-zero vectors ûi,j . Moreover, due to independence of losers, we get that ûi,j

ℓ = ûi,j
ℓ′ for

all committees W i,W j ∈ Wk and ballots B(ℓ), B(ℓ′) ∈ A with |X ∩ B(ℓ)| = |X ∩ B(ℓ′)|
for X ∈ {W i ∩W j ,W i \W j ,W j \W i}, regardless of |B(ℓ)| and |B(ℓ′)|. Now, if k = 1 or
k = m−1, we can infer the claim with an analogous reasoning as in the proof of Proposition 1.
In contrast, if 1 < k < m − 1, we need to relate the vectors ûi,j and ûi′,j′ for committees
W i,W j ,W i′ ,W j′ ∈ Wk with |W i \W j | ≠ |W i′ \W j′ |.

For doing so, consider two arbitrary committees W i and W j and suppose that |W i\W j | =
t > 1. Next, we construct a sequence of committees W j0 , . . . ,W jt by replacing the candidates
in W i \W j one after another with those in W j \W i. Hence, W i = W j0 , W j = W jt , and



|W jx−1 \W jx | = 1 for all x ∈ {1, . . . , t}. Our main goal is to show that ûi,j = δ
∑t

x=1 û
jx−1,jx

for some δ > 0. For proving this, we investigate the linear independence of the vectors
ûi,j and ûjx−1,jx for x ∈ {1, . . . , t}, and prove that the set {ûj0,j1 , . . . , ûjt−1,jt} is linearly
independent but the set {ûj0,j1 , . . . , ûjt−1,jt , ûi,j} is not. So, ûi,j is a linear combination of
the vectors ûix,ix+1 and we only need to derive the coefficients to show our claim.

Based on this insight, we now define our score function. To this end, we let s1(x, y) = ûi,j
ℓ

for two arbitrary committees W i, W j with |W i \ W j | = 1 and a ballot B(ℓ) such that
|B(ℓ) ∩W i| = x and |B(ℓ) ∩W j | = y. Then, we define the score function s(x) by s(0) = 0
and s(x) = s(x− 1) + s1(x, x− 1) for x ≥ 1. By the additivity of the vectors ûi,j , it follows
that ûi,j

ℓ = δ(s(|W i ∩B(ℓ)|)− s(|W j ∩B(ℓ)|)), so R̄f
i = {v ∈ R|A| : ∀W j ∈ Wk : ŝ(v,W

i) ≥
ŝ(v,W j)}. By the definition of these sets, we infer that f(A) = ĝ(v(A)) = {W i ∈ Wk : v(A) ∈
Rf

i } ⊆ {W i ∈ Wk : v(A) ∈ R̄f
i }. Finally, continuity shows that the subset relation is an

equality and independence of losers that s is non-decreasing. Thus, f is a Thiele rule.

Remark 1. Based on Theorem 1, it is simple to prove full characterizations of specific
Thiele rules. For example, it is known that AV is the only non-trivial Thiele rule that satisfies
committee monotonicity (the winning committees of size k are derived from the winning
committees of size k − 1 by only adding candidates) and based on Theorem 1, it is simple to
formalize this observation. Another example is a characterization of CCAV by Delemazure
et al. [11] within the class of Thiele rules based on mild proportionality and strategyproofness
conditions, which can be turned into a full characterization based on Theorem 1. Both of
these results fail within the class of ABC scoring rules and can thus not be obtained from
the results of Lackner and Skowron [24].

Remark 2. All axioms are required for Theorem 1. If we omit independence of losers, SAV
satisfies all remaining axioms. If we omit continuity, we can define composed Thiele rules
analogous to the composed scoring rules of Young [37]: these rules refine Thiele rules by
applying another Thiele rule as tie-breaker in case of multiple chosen committees. If we
only omit consistency, sequential Thiele rules satisfy all given axioms. These rules compute
the winning committees iteratively by always adding the candidate to a winning committee
which increases the score the most. If we omit neutrality or anonymity, biased Thiele rules
that double the points of every committee that contains a specific candidate or the points
assigned by specific voters to the committees satisfy all other axioms.

3.3 BSWAV rules
Next, we discuss the characterization of BSWAV rules: these are the only ABC voting rules
that satisfy anonymity, neutrality, consistency, continuity, choice set convexity, and weak
efficiency. The central axiom for this characterization (aside of consistency) is choice set
convexity as it enforces that candidates become exchangeable.

Theorem 2. An ABC voting rule is a BSWAV rule if and only if it satisfies anonymity,
neutrality, consistency, continuity, choice set convexity, and weak efficiency.

Proof Sketch. First, assume that f is a BSWAV rule and let α = (α1, . . . , αm) denote
its weight vector. It is simple to verify that f is neutral, anonymous, continuous, and
consistent. Moreover, f is weakly efficient as the weights αi are all non-negative. Finally,
we show that f is choice set convex. For this, we consider a profile A and two committees
W,W ′ ∈ f(A) with |W \W ′| = t > 0. Moreover, we choose two candidates a ∈ W \W ′ and
b ∈ W ′ \W and let W ′′ = (W \ {a}) ∪ {b}. The central observation is now that BSWAV
scores are additive, i.e., ŝ(A,W ) =

∑
x∈W ŝ(A, x) for ŝ(A, x) =

∑
i∈NA : x∈Ai

α|Ai|. Hence,
0 ≤ ŝ(A,W )− ŝ(A,W ′′) = ŝ(A, a)− ŝ(A, b) as W ∈ f(A). By applying this argument also
to W ′ and W ′′′ = (W ′ \ {b}) ∪ {a}, we obtain 0 ≤ ŝ(A, b)− ŝ(A, a), so ŝ(A, a) = ŝ(A, b) and



ŝ(A,W ) = ŝ(A,W ′′). This proves that W ′′ ∈ f(A) and by repeating the argument, we infer
that W̄ ∈ f(A) for all W̄ with W ∩W ′ ⊆ W̄ ⊆ W ∪W ′.

For the converse direction, we give again only a rough proof sketch and note that the
outline of this proof is essentially the same as for Theorem 1 as only the technical details
differ. Now, suppose that f is an ABC voting rule which satisfies all given axioms. If f is the
trivial rule, it is the BSWAV rule defined by αi = 0 for i ∈ {1, . . . ,m}. On the other hand,
if f is non-trivial, we show that it is non-imposing and then apply Lemmas 1 and 2. If k = 1
or k = m− 1, the theorem follows from Proposition 1 as choice set convexity becomes trivial
and the set of BSWAV rules coincides with the set of ABC scoring rules. Hence, suppose that
1 < k < m− 1. We again prove that the vectors ûi,j for |W i \W j | > 1 can be represented
as scaled sum of vectors ûjx+1,jx for committees W jx−1 ,W jx with |W jx−1 \W jx | = 1. For
showing this, we infer from choice set convexity that there are αx such that ûi,j

ℓ = αx for all
committees W i,W j and ballots B(ℓ) with |W i \W j | = 1, |W i ∩B(ℓ)| > |W j ∩B(ℓ)|, and
|B(ℓ)| = x. Based on this, we derive the score function s with an analogous approach as for
Thiele rules. As last step, we then show f is the BSWAV rule described by the score function
that s(|W ∩B(ℓ)|, |B(ℓ)|) = α|B(ℓ)||W ∩B(ℓ)| for all committees W and ballots B(ℓ).

Remark 3. All axioms are required for Theorem 2. For anonymity, neutrality, and continuity,
we can define examples similar to the ones given for Thiele rules. When omitting consistency,
the “convex hull” of Phragmen’s rule satisfies all remaining axioms. Theorem 2 of Peters
and Skowron [29] then shows that this rule cannot be represented as ABC scoring rule and
therefore also not as BSWAV rule. When only omitting weak efficiency, “inverse” AV, which
chooses the committees with minimal approval scores, satisfies all given axioms. Finally,
every Thiele rule other than AV only fails choice set convexity.

4 Characterizations of AV, PAV, and SAV

Finally, we use Theorems 1 and 2 to characterize three specific ABC voting rules, namely
AV, SAV, and PAV. While AV and PAV can also be characterized by combining Theorem 1
with results from the literature, we prefer to give own characterizations of these rules. For
AV, we do so as the characterization follows naturally from our results and for PAV since
our characterization highlights a new aspect of this rule. To keep the theorems short, we
characterize these rules only within the class of Thiele rules or BSWAV rules; Theorems 1
and 2 then generalize them to full characterizations. Due to space restrictions we defer all
proofs to the appendix and give proof sketches instead.

For the characterization of AV, we note that this rule and the trivial rule are the only
ABC voting rules that are both Thiele rules and BSWAV rules if k < m− 1. On the other
hand, this claim fails if k = m− 1 because choice set convexity then becomes trivial and all
Thiele rules satisfy the given axioms. These insights entail the following theorem.

Theorem 3. Assume k ≤ m− 2. AV is the only non-trivial Thiele rule that satisfies choice
set convexity and the only non-trivial BSWAV rule that satisfies independence of losers.

Proof Sketch. First, we note that AV is both a Thiele rule and a BSWAV rule and the
direction from left to right thus follows from Theorems 1 and 2. For the converse direction,
we observe that both claims of the theorem are equivalent because of these theorems.
Hence, suppose that f is a non-trivial BSWAV rule satisfying independence of losers and
let α denote its scoring vector. By non-triviality, there is ℓ ∈ {1, . . . ,m − 1} such that
αℓ > 0. Next, we consider two committees W,W ′ with |W \ W ′| = 1 and construct a
profile Ā such that f(Ā) = {W,W ′}. Furthermore, we let Ai denote a ballot such that
|Ai| = ℓ, W \W ′ ⊆ Ai, (W ′ \W ) ∩ Ai = ∅ and there is z ∈ Ai \ (W ∪W ′). Moreover, let
Aj = (Ai \ (W \W ′)) ∪ (W ′ \W ). By continuity, anonymity, neutrality and consistency, we



show that there is a λ ∈ N such that f(λĀ+Ai +Aj) = {W,W ′}. Next, independence of
losers entails that {W,W ′} ⊆ f(λĀ + Ai \ {z} + Aj) as z ̸∈ W ∪W ′. From this, we infer
that αℓ−1 = αℓ for all ℓ ∈ {2, . . . ,m− 1}, which shows that f is AV.

Next, we turn to the characterizations of SAV and PAV, for which we focus on party-list
profiles. In a party-list profile A, the candidates are partitioned into parties C = P1 ∪ · · · ∪Pℓ

and every voter i ∈ NA supports a single party by approving all of its members, i.e., for all
i ∈ NA, there is a party Pj such that Ai = Pj . For such profiles, it is a natural question
whether it make sense for individual candidates to form a party or to compete by themselves,
and the answer to this clearly depends on the voting rule at hand. For instance, consider
the profiles A1, A2, and A3 shown below and assume that k = 3. Moreover, we assume that
the candidates in A = {a1, a2, a3} and B = {b1, b2, b3}, respectively, present rather similar
positions. In A1, where all candidates compete by themselves, most voting rules will elect
the committee {a1, a2, a3}. In contrast, AV chooses the committee {b1, b2, b3} for A2 and it
thus makes sense for the candidates {b1, b2, b3} to form a party. On the other hand, CCAV
will choose every committee W with |W ∩ {a1, a2, a3}| = 1 and |W ∩ {b1, b2, b3}| = 2 for A3

and it thus makes sense for the candidates in A to compete by themselves.

A1: 2: {a1} 2: {a2} 2: {a3} 1: {b1} 1: {b2} 1: {b3}
A2: 2: {a1} 2: {a2} 2: {a3} 3: {b1, b2, b3}
A3: 6: {a1, a2, a3} 1: {b1} 1: {b2} 1: {b3}

We believe that such strategic considerations of candidates about whether to compete as
a group or individually are undesirable. Hence, we introduce next the concept of split/merge-
proofness which aims to prohibit this behavior. Informally, this axiom requires that it should
not matter whether there are j candidates that are each approved by ℓ voters or a party of j
candidates that is approved by jℓ voters. To formalize this idea, we define the profile AX

given a party-list profile A and a set of parties X = {P1, . . . , Pj} as follows: NAX = NA and
AX

i = Ai if Ai ̸∈ X and AX
i =

⋃
X if Ai ∈ X for all i ∈ NA.

Split/Merge-proofness. An ABC voting rule f is split/merge-proof if f(A) = f(AX) for
all party-list profiles A ∈ A∗ with parties P = {P1, . . . , Pℓ} and all sets X ⊆ P such that
|Pj | = |Pj′ | = 1 and |{i ∈ NA : Ai = Pj}| = |{j ∈ NA : Ai = Pj′}| for all Pj , P

′
j ∈ X.

We note that similar conditions have been studied for the closely related model of
apportionment (where voters vote for a single party which is large enough to fill up the full
committee) [4]. Moreover, this condition is also connected to the study of clones in elections
as we can view large parties also as sets of clones [15, 27].

We next show that this axiom characterizes SAV within the class of BSWAV rules.

Theorem 4. SAV is the only non-trivial BSWAV rule that satisfies split/merge-proofness.

Proof Sketch. First, we note that SAV is split/merge-proof because a candidate receives ℓ
points both if it is uniquely approved by ℓ voters and if it is approved by jℓ voters who
approve j candidates. Hence, merging candidates into a party does not change their scores
and thus also not the scores of the committees and the final outcome. For the other direction,
we consider an arbitrary non-trivial and split/merge-proof BSWAV rule f and its weight
vector α = (α1, . . . , αm). Since f is non-trivial, there is ℓ ∈ {1, . . . ,m− 1} such that αℓ > 0.
Based on split/merge-proofness, it is easy to show that also α1 > 0. Since f is invariant
under scaling α, we assume next that α1 = 1. Now, suppose for contradiction that f is not
SAV, i.e., that there is ℓ ∈ {1, . . . ,m− 1} with αℓ ̸= 1

ℓ . We derive a contradiction to this by
constructing a profile in which split/merge-proofness is violated. For instance, if αℓ < 1

ℓ ,
we define ∆ = 1

ℓ − αℓ, B = {c1, . . . , cℓ}, and choose t ≥ 2 such that tℓ∆ > 1. Then, we
consider the profile A in which each candidate ci ∈ B is uniquely approved by t voters and



all candidates cj ∈ C \B are uniquely approved by t− 1 voters. In this profile, f chooses the
committees W that maximize |W ∩B|, but if the voters i ∈ NA with Ai ⊆ B change their
ballot to B, this is no longer true and split/merge-proofness is violated.

Finally, for the characterization of PAV, we observe that no Thiele rule satisfies split/merge-
proofness. We thus consider a weakening of this axiom.

Weak Split/Merge-proofness. An ABC voting rule f is weakly split/merge-proof if
f(A) = f(AX) for all party-list profiles A with parties P = {Pi, . . . , Pℓ} and sets of parties
X ⊆ P such that |Pj | = |Pj′ | = 1 and |{i ∈ NA : Aj = Pj}| = |{i ∈ NA : Aj = Pj′}| for
all Pj , Pj′ ∈ X, and

⋃
X ⊆ W for all W ∈ f(A) or

⋃
X ⊆ W for all W ∈ f(AX). Less

formally, weak split/merge-proofness weakens full split/merge-proofness as it only applies if
all candidates in the split/merged parties are guaranteed to be elected in one of the profiles.

We next characterize PAV within the class of non-trivial Thiele rules based on this axiom.

Theorem 5. PAV is the only non-trivial Thiele rule that satisfies weak split/merge-proofness.

Proof Sketch. First, for showing that PAV satisfies weak split/ merge-proofness, consider a
party-list profile A with parties P = {P1, . . . , Pj} and let X ⊆ P denote a set of singleton
parties with |{i ∈ NA : Ai = Pj1}| = |{i ∈ NA : Ai = Pj2}| = c for all Pj1 , Pj2 ∈ X.
Moreover, let X̂ =

⋃
Pi∈X Pi and consider the profile AX derived from A by merging the

parties in X. The key point of our argument is that a party Pi ∈ X contributes c points
to an committee in A and the last member of the party X̂ contributes c|X̂|/|X̂| = c points
to a committee in AX . From this insight, we then infer that X̂ ⊆ W for all W ∈ f(A) if
and only if X̂ ⊆ W for all W ∈ f(AX). Since the scores of the remaining parties is the
same in A and AX , PAV is therefore weakly split/merge-proof. For the converse direction, we
suppose for contradiction that f is a non-trivial Thiele rule other than PAV that satisfies weak
split/merge-proofness. Similar to the proof of Theorem 4, we can then construct profiles
in which weak split/merge-proofness is violated as there is a minimal index ℓ such that
s(ℓ) ̸=

∑ℓ
x=1

1
x . Hence, if we merge ℓ parties of size j, the contribution of the last member

in the new party changes, which can be used to derive a contradiction.

5 Conclusion
In this paper, we axiomatically characterize two important classes of approval-based com-
mittee (ABC) voting rules, namely Thiele rules and BSWAV rules. Thiele rules choose the
committees that maximize the total score according to a score function that only depends on
the intersection size of the considered committee and the ballots of the voters. On the other
hand, BSWAV rules are a new generalization of multi-winner approval voting which weight
voters depending on the size of their ballot. For both of our characterizations, the central
axiom is consistency which has famously been used by Young [37] for a characterization of
single-winner scoring rules or by Lackner and Skowron [23] for a characterization of ABC
scoring rules in the context of committee ranking rules. In particular, our results allow for
simple characterizations of all important ABC scoring rules as all such rules belong to one of
our classes. We also demonstrate this point by characterizing the well-known ABC voting
rules AV, SAV, and PAV. In particular, the result for SAV is, to the best of our knowledge, the
first full characterization of this rule. Figure 1 shows a more detailed overview of our results.

Finally, our paper offers several directions for future work. Firstly, characterizations
of many ABC voting rules (e.g., Phragmén’s rule and the method of equal shares) are
still missing and some of our ideas might be helpful to derive such results. Secondly, even
though all relevant ABC scoring rules belong to one of our classes, we would find a full
characterization of the set of ABC scoring rules still interesting.
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