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Abstract
The Borda rule, originally defined on profiles of individual preferences modelled as linear
orders over the set of alternatives, is one of the most important voting rules. But voting rules
often need to be used on preferences of a different format as well, such as top-truncated orders,
where agents rank just their most preferred alternatives. What is the right generalisation of the
Borda rule to such richer models of preference? Several suggestions have been made in the
literature, typically considering specific contexts where the rule is to be applied. In this work,
taking an axiomatic perspective, we conduct a principled analysis of the different options for
defining the Borda rule on top-truncated preferences.

1 Introduction
The Borda rule, introduced by Jean-Charles de Borda in 1784 for profiles of ballots that are linear
orders over a set of alternatives, is a very well-established voting rule. Borda’s rule is very intuitive
when the agents submit a linear order over < alternatives: it prescribes that, for each voter, < − 1
points are to be given to her top alternative, < − 2 points to her second-to-top alternative, and so
forth, with 0 points given to the alternative ranked last. The alternatives with the largest sum of
points across all voters are then announced the winners of the election. But not every voter can be
expected to always rank all alternatives she may be presented with. For example, in an election with
hundreds of candidates belonging to many different parties, voters may be able to fully rank only a
subset of those candidates, possibly those that come from parties to which the voters are sympathetic
and have paid more attention. So, what is the right generalisation of the Borda rule to richer models
of preference, beyond linear orders?

In this paper we address this question for domains of preferences that are top-truncated. A
preference is called top-truncated if it consists of a linear order over a subset of all given alternatives,
with the implicit assumption that all non-ranked alternatives are inferior to all ranked alternatives.
Top-truncated preferences provide a sensible model for many real-world applications. From choosing
the members of a parliament to selecting favourite movies to add to a watch-list, an agent is likely to
recognise her most preferred alternatives more easily, and be willing to put effort into ranking them.
On the other hand, it is safe to assume that a voter, when overloaded with an abundance of options,
will leave her least preferred alternatives unranked in order to escape some mental burden—this
can be interpreted either as the voter being indifferent between these alternatives or as not having
compared them at all.

Some suggestions regarding appropriate generalisations of the Borda rule for top-truncated
preferences have already been made in the literature. All of them are reasonable at first sight,
but heavily depend on the interpretation of the preference domain, and of the rule, we have in
mind. For instance, given a preference with : ranked alternatives out of a total of < alternatives
overall, should the points assigned to the unranked alternatives at the bottom be < − : − 1 (as if
they all were ranked at level : + 1 from the top), or should the points be 0 (as if all unranked

★The extended version of this paper, in which all proofs are included, has been re-
cently published in the Journal of Mathematical Economics (see Terzopoulou and Endriss, 2021):
https://www.sciencedirect.com/science/article/pii/S0304406820301208?via%3Dihub.
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alternatives were ranked at the very lowest level <)? Dummett (1997), Saari (2008), Baumeister
et al. (2012), Cullinan et al. (2014), Caragiannis et al. (2015), and Terzopoulou and Endriss (2019)
have presented their own versions of the Borda rule (some of which coincide), for several variants of
domains of preorders.1 Emerson (2013) has informally discussed the advantages and disadvantages
of different such generalisations of the Borda rule, concentrating on issues related to strategic
behaviour. Nonetheless, no systematic analysis has been conducted so far regarding the various
versions of the Borda rule for top-truncated preferences that appear in the literature to date. In this
paper we attempt to close this gap, by identifying axioms (both established and original ones) that
characterise each specific rule of interest. Clearly, within the model of top-truncated preferences,
agents still have the freedom to rank all alternatives and submit a profile of linear orders—in such a
case, we simply apply the traditional Borda rule.

Our axioms provide a principled way of understanding not only the differences, but also the
similarities of the suggested generalisations of the Borda rule. On the one hand, we see that
all these rules exhibit an analogous structure, which locates them within a class of positional
scoring rules that conform to a “Borda style”. We call this class the Borda class. The axiomatic
characterisation of the Borda class is based on the original characterisation of the Borda rule for
domains of linear orders by Young (1974). In his characterisation, Young used the following four
axioms: neutrality, reinforcement, faithfulness, and cancellation, with the last being the most critical
one for the identification of the Borda rule. Analogously, essential for the characterisation of the
Borda class is our axiom of top-cancellation. Top-cancellation extends Young’s cancellation axiom
to top-truncated orders, by requiring that the voting rule should not distinguish between alternatives
that are strictly ranked by all agents and tie in pairwise comparisons. On the other hand, each specific
rule within the Borda class satisfies distinctive properties, which are brought to the surface when
expressed formally as axioms. For instance, we show that by enforcing Young’s original cancellation
axiom within the Borda class, we can specify the rule that assigns to each non-ranked alternative in
a top-truncated order the average of the Borda scores that this alternative could be assigned with if
the given top-truncated order were to be extended to a linear order—this is a method that Ackerman
et al. (2013) call bucket averaging.2 Two additional concrete rules in the Borda class are obtained
when we impose two axioms that are reminiscent of monotonicity conditions.

Although our work is tightly connected to the characterisation of the Borda rule by Young (1974),
other characterisations of the Borda rule in the same formal setting have also been produced by Farkas
and Nitzan (1979) and by Saari (1990). The former have used the axiom of Pareto stability based on
a notion of relative unanimity, while the latter has employed weaker versions of Young’s axioms and
has incorporated the axiom of anonymity as well. We also note that aggregation processes based
on the Borda scores, together with their corresponding axiomatic properties, have received much
attention in several settings beyond voting as well. Nitzan and Rubinstein (1981) have characterised
the Borda rule as a social welfare function (i.e., a function that outputs social rankings instead of
winning alternatives). Duddy et al. (2016) and Brandl and Peters (2019) have focused on aggregation
mechanisms that produce collective dichotomous preferences and are inspired by Borda’s form of
scoring. Lastly, Dietrich (2014) has introduced a judgment aggregation rule that reduces to Borda’s
voting rule when applied to the appropriate domain.

The remainder of this paper is organised as follows. Section 2 introduces our basic voting model,
together with our notation and terminology. Section 3 reviews the relevant definitions of previous
literature for rules that generalise the Borda rule to top-truncated preferences. It also builds important
technical connections between these rules. Section 4 contains our main results, namely the axiomatic
characterisations of three specific rules that extend Borda’s rule to top-truncated domains, together
with the characterisation of the larger class to which all these rules belong. Section 5 concludes. All
proofs can be found in the published version of the paper (Terzopoulou and Endriss, 2021).

1A preorder is a reflexive and transitive binary relation.
2This result is also in line with the work of Cullinan et al. (2014), who have characterised this specific version of the Borda

rule for domains of partial orders, relying on the four classical axioms of Young.
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Figure 1: Types of top-truncated preferences in two domains: D1 and D2.

2 The Model
We have a finite set of alternatives � with #� = < ≥ 3 and a set of potential (infinite, but countably
many) agents N, denoting all agents that may ever participate in an election. Then, in every concrete
election, a finite group of agents # ⊂ N express their preferences over the set of alternatives �.
Such a preference % can in general take the form of any preorder on �. We write D for a domain of
preferences over � (for example, D may be the set of all preorders, or a subset of those).

Given two alternatives 0, 1 ∈ �, we write 0∼1 when 0 % 1 and 1 % 0, and 0�1 when 0 % 1 and
it is not the case that 1 % 0. When 0∼1, then 0 and 1 are said to be indistinguishable. When 0�1 (or
0 % 1), then 0 is said to be strongly (or weakly) preferred to 1. When none of the above holds, then 0
and 1 are said to be incomparable. For a preference % and two alternatives 0, 1 ∈ �, we write %(01)
for the new preference that is identical to % except for having the positions of 0 and 1 switched.

Let us denote by %8 the individual preference of agent 8. We are particularly interested in top-
truncated preferences. A preference % is top-truncated if it strictly ranks a subset �′ ⊆ � of the
alternatives and requires that all other alternatives are less desirable than those in �′. Note that every
agent 8 is allowed to rank a subset of the alternatives that is possibly different in size from the relevant
sets ranked by her peers, and agents may also rank subsets of alternatives with an empty intersection.

In this paper we specifically consider two domains of top-truncated preferences, D1 and D2.
In each of our two domains, all preferences take the same form, which is one of those depicted in
Figure 1 (where transitive arrows are omitted for simplicity). In Figure 1 an arrow captures the fact
that the alternative appearing in the position that the arrow starts from is strictly preferred to the
alternative in the position that the arrow ends in. Specifically,D1 contains top-truncated preferences
where : alternatives are ranked, for any 0 ≤ : ≤ <, and the alternatives that are not ranked are
indistinguishable from each other; D2 also contains top-truncated preferences where : alternatives
are ranked, for any 0 ≤ : ≤ <, but the alternatives that are not ranked are incomparable to each
other. Note that both D1 and D2 are restricted domains of preorders.

A top-truncated preference % consists of two parts: the top part and the bottom part. Let us
define TOPsets(%) as the collection of all subsets �′ ⊆ � that contain strictly ordered alternatives
in % that are superior, according to %, to all alternatives not in �′. Formally, we have the following:

TOPsets(%) = {�′ ⊆ � | (8) G�I for all G ∈ �′, I ∈ � \ �′ and
(88) G�H or H�G for all G, H ∈ �′}

Then, TOP(%) is the unique largest set in TOPsets(%), and BOT (%) = � \ TOP(%).
Given a group of agents # of size ## = =, we suppose without loss of generality that # =

{1, . . . , =}. A profile of preferences for the group # can be captured by a vector %= (%1, . . . ,%=) ∈
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Figure 2: The top alternatives of each single preference are in red. From left to right, these are the sets
{01, 02, 03}, {01, . . . , 05}, and {01, 02}, respectively. The TOPsets(%) of the leftmost preference %
are {{01}, {01, 02}, {01, 02, 03}}, and similarly for the other preferences. The intersection of all the
TOPsets is then the set {01, 02}, which includes the top alternatives of the whole profile.

D=. We denote by %−8 the new profile where all agents besides 8 submit the same preferences as
in %. Also, given a different profile %′= (%=+1, . . . ,%=+ℓ) ∈ Dℓ with ℓ ≥ 1, that concerns a disjoint
set of agents than those of %, we write (%,%′) = (%1, . . . ,%=,%=+1, . . . ,%=+ℓ) ∈ D=+ℓ .

The set of top alternatives in a profile % includes those alternatives that are on top for all agents.
That is, TOP(%) is defined as the unique largest set in

⋂
8∈# TOPsets(%8) if that intersection is

non-empty; otherwise, TOP(%) is the empty set. We also define BOT (%) as the set � \ TOP(%),
but note that this defnition is intuitively meaningful (in the sense of characterising a set of “bottom
alternatives”) only when TOP(%) ≠ ∅. See Figure 2 for an example with < = 5 and = = 3.

Given a domain of preferences D over the set of alternatives �, a voting rule is a function that
maps every possible preference profile (for any group of agents # ⊂ N) to a nonempty subset of
the alternatives, which is the set of (tied) winners. A positional scoring rule �B is a voting rule
associated with some positional scoring function B. Here a scoring function B : � × D → R
maps every alternative 0 ∈ � in a preference %∈ D to a score, which is a real number that we
denote by B% (0). Moreover, a scoring function B is positional if, for all permutations f : � → �,
all preferences % ∈ D, and all alternatives G ∈ �, it holds that B% (G) = Bf (%) (f(G)), where
f(%) = {(f(G), f(H)) | G % H}. Intuitively, a positional scoring function assigns scores to positions
in a graph (representing a preference), rather than to specific alternatives in specific preferences.
Finally, we define the rule �B: For every profile %= (%1, . . . ,%=), the following is the case:

�B (%) = argmax
G∈�

∑
8∈#

B%8 (G)

In words, a positional scoring rule selects as winning alternatives those with the largest score over
all individual preferences. We will often also use the abbreviation B% (0) =

∑
8∈# B%8 (0).

3 Generalising the Borda Rule
The Borda rule is commonly defined on domains of linear orders in one of two ways: First, as a
positional scoring rule with score-vector (< − 1, < − 2, . . . , 0), where the first position in the vector
corresponds to the score assigned to the top alternative in a linear order, the second position to the
second-to-top alternative, and so forth, until the last position in the vector that is associated with the
score of the bottom alternative. A second way of defining the Borda rule is in terms of the weighted



�8 (0) =
∑
H∈� 10�8 H − 1H�80.

(a) the symmetric Borda score as for linear orders

�8 (0) =
∑
H∈� 10�8 H .

(b) based on the alternatives strictly dominated by 0

�8 (0) =
∑
H∈� 10%8 H .

(c) based on the alternatives weakly dominated by 0

�8 (0) = −
∑
H∈� 1H�80.

(d) based on the alternatives not strictly dominating 0

Figure 3: Possible domination-based scores for defining the Borda rule on preorders.

majority graph, where the winning alternatives are those that maximise the following function:3

�(0) =
∑
H∈�

#{8 ∈ # | 0�8H} − #{8 ∈ # | H�80} =
∑
8∈#

∑
H∈�

10�8 H − 1H�80

We can think of �(0), the symmetric Borda score of 0, as �(0) =
∑
8∈# �8 (0) with �8 (0) =∑

H∈� 10�8 H − 1H�80.
It seems sensible to presuppose that any interesting generalisation of the Borda rule will also be

defined in terms of a scoring function � with �(G) = ∑
8∈# �8 (G) for some scoring functions �8 that

each only makes reference to the preference of one agent 8. In Figure 3 we present some options
for how one could define such a function on general domains of preorders—all of them reduce to
the standard Borda rule when we restrict ourselves to profiles of linear orders. Note also that any
positive affine transformation of a function �8 (G) induces the same rule as �8 (G) itself.

When indistinguishability is not materialised in a domain, definition (1) coincides with defini-
tion (2); when incomparability is not materialised, definition (2) coincides with definition (3).

Specifically regarding top-truncated preferences, some generalisations of the Borda rule have
already been discussed in previous work. These all follow the definition of a positional scoring
rule in terms of score-vectors. Note that for domains of top-truncated preferences we actually need
< − 1 such vectors, one for each possible number of the top alternatives in a preference (when this
number is 0, all alternatives will always be assigned the same score, by the definition of positional
scoring functions). Now, the last <− : positions in a vector correspond to the scores associated with
the bottom alternatives in a top-truncated preference with : top alternatives. Note that all bottom
alternatives must have the same score, by the definition of positional scoring functions. Generally,
given a top-truncated preference % with #TOP(%) = : ≤ < − 1, we will write B 9 for the score of the
alternative ranked in the 9 th position within the top part of % and B:+1 for the score of all alternatives
in the bottom part of %. These are the versions of the Borda rule for top-truncated preferences that
can be found in the literature:

• Pessimistic Borda4 (Baumeister et al., 2012):

(< − 1, < − 2, . . . , < − :, 0, . . . , 0), for all 1 ≤ : ≤ <

• Optimistic Borda5 (Saari, 2008; Baumeister et al., 2012):

(< − 1, < − 2, . . . , < − :, < − : − 1, . . . , < − : − 1), for all 1 ≤ : ≤ <

• Averaged Borda (Dummett, 1997):

(< − 1, < − 2, . . . , < − :, < − : − 1
2

, . . . ,
< − : − 1

2
), for all 1 ≤ : ≤ <

3The definition of the Borda rule based on the weighted majority graph can also be considered a definition of a positional
scoring rule on linear orders, with score-vector (<, < − 2, . . . , 2, 0, −2, . . . , −< + 2, −<) .

4This rule can also be found under the name truncated Borda (Ackerman et al., 2013).
5This rule has also been referred to as modified Borda by Caragiannis et al. (2015).
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Domains D1 D2

(0) symmetric averaged averaged
(1) domination pessimistic pessimistic
(2) weak domination optimistic pessimistic
(3) non-domination optimistic optimistic

Table 1: Borda rules for domains of top-truncated preferences.
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Figure 4: A rule in the Borda class on the domain D1, for B:+1 < < − : .

We have reviewed two different—yet equally natural—directions one could follow to generalise the
Borda rule on preorders (and specifically on truncated preferences). Wewill next see that defining the
Borda rule using a domination-based score or a scoring vector can lead to exactly the same outcome.
What plays a crucial role here is the particular domain we consider. Specifically, by combining
domination-based scores with different domains, we obtain already existing rules (consult Table 1).6
The observations included in Table 1 are quite straightforward, except perhaps for the one concerning
the averaged Borda rule and the symmetric Borda scores, made explicit in Proposition 1.7

Proposition 1. The averagedBorda rule for top-truncated preferences (onD1 orD2) is the positional
scoring rule with a corresponding scoring function based on the symmetric Borda scores.

The pessimistic, the optimistic, and the averaged Borda rules, all belong to a wider class of natural
generalisations of the classical Borda rule for top-truncated preferences, to which we will refer as the
Borda class. Formally, a voting rule on domains of top-truncated preferences is in the Borda class if
it is induced by some positional scoring function that gives rise to the following scoring vectors, for
some fixed number B:+1 < < − : (see Figure 4 for an illustration):

(< − 1, < − 2, . . . , < − :, B:+1, . . . , B:+1), for all 1 ≤ : ≤ <

Note also that the three aforementioned rules produce different outcomes even for very simple
profiles. Figure 5 provides an example with three agents and four alternatives.

6In our earlier work (Terzopoulou and Endriss, 2019) we defined yet another generalisation of the Borda rule, called
shortsighted Borda, which is based on the scoring vector (< − 1, < − 2, . . . , < − :, < − :, . . . , < − :) . Note that this rule
cannot be obtained through domination-based scores, for these particular domains. Indeed, shortsighted Borda is better suited
to domains where the unranked alternatives are taken to be incomparable (rather than inferior) to the ranked alternatives.

7Proposition 1 also holds for larger preference domains, like weak orders, as discussed for instance by Duddy et al. (2016).
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Figure 5: A profile where the pessimistic, the optimistic, and the average Borda rule output different
sets of winners: {1}, {0, 2}, and {0, 1}, respectively.

4 Axiomatic Characterisations
In this section we introduce the axiomatic properties that characterise the rules in the Borda class
and we discuss how these relate to the properties in the classical axiomatisation of the Borda rule for
domains of linear orders by Young (1974). We then provide axiomatic characterisations of the three
specific generalisations of the Borda rule for top-truncated preferences we reviewed in Section 3: the
optimistic, the pessimistic, and the averaged Borda rule.

Our analysis will proceed in steps, each of which will concern a smaller class of rules than the
previous one: First, we are going to see an axiomatic characterisation of all positional scoring rules
for top-truncated preferences. Then, we are going to add some new axioms to that characterisation
and obtain all positional scoring rules in the Borda class. Finally, by considering a few further
axioms, we will be able to restrict attention to our specific rules of interest within the Borda class.

Smith (1973) and Young (1975) initiated the axiomatic analysis of positional scoring rules for
the special case of profiles of linear orders. Two decades later, Myerson (1995) generalised the
previous results to profiles of ballots that could take any form over the set of alternatives. Recently,
Kruger and Terzopoulou (2020) provided an analogous characterisation of positional scoring rules
for acyclic preferences without indistinguishability (but it is not hard to see that their relevant proofs
go through for our domains of top-truncated preferences as well). The axioms shared by all these
characterisations for positional scoring rules (here stated for domains of top-truncated preferences)
are anonymity, neutrality, reinforcement, and continuity.

Anonymity requires that the outcome of the aggregation should not depend on the names of the
agents but only on the preferences they contribute to a given profile; neutrality says that all alternatives
should be treated symmetrically; reinforcement prescribes that if two groups unite and vote together,
then the alternatives that win should be the alternatives that would win for both elections if each
group were to vote separately (unless there are no such alternatives); finally, continuity states that a
sufficiently large number of agents should be able to change the outcome in accordance with their
preference. Let us now define formally what it means for a rule � to satisfy each of these four axioms.

• Anonymity: For any permutation f : N → N , it is the case that � (%1, . . . ,%=) = � (%f (1)
, . . . ,%f (=) ).

• Neutrality: For any permutation f : � → �, we have that � (%1, . . . ,%=) = � (f(%1)
, . . . , f(%=)), where f(%) = {(f(G), f(H)) | G % H}.

• Reinforcement: For any two profiles %,%′ with � (%) ∩ � (%′) ≠ ∅, it holds that � (%,%′) =
� (%) ∩ � (%′).

• Continuity: For any two profiles % and %′, there exists a natural number  such that, for every
natural number : that is greater than  , it is the case that � (%, . . . ,%︸    ︷︷    ︸

:

,%′) ⊆ � (%).



Theorem 1 is an easy adaptation of the result of Kruger and Terzopoulou (2020), mentioned above.

Theorem 1. A voting rule for top-truncated preferences (on D1 or D2) is a positional scoring rule
if and only if it satisfies anonymity, neutrality, reinforcement, and continuity.

Although positional scoring rules are nicely defined for top-truncated preferences, they are not the
only natural rules for these domains. For instance, consider a majority-based rule that selects as
winners those alternatives that are considered superior to the largest number of other alternatives by
a strict majority of agents, which may be regarded as a generalisation of the well-known Copeland
rule (Zwicker, 2016). Then, suppose we have the following profile with three agents:

0

1

3

2 4

2

0

1

3 4

1

2

0

3 4

In the above profile the winning set is {0, 1, 2}, since for each of these alternatives there exist two
agents that rank it higher than exactly three other alternatives.

It is not hard to see that the reinforcement axiom is violated by this rule: add to the given profile
the single-agent profile consisting of the complete preference 0�1�2�3�4, where our rule would
output alternative 0 as the unique winner. In the combined profile, reinforcement demands that 0 is
again the only winner. However, 0 and 1 are both considered superior to three other alternatives by
a strict majority of agents and thus must both win.

4.1 Characterising the Borda Class
We are now going to provide two distinct characterisations of the Borda class of rules in our top-
truncated preference domains. Recall that the Borda class only includes positional scoring rules for
which it is the case that, if 0 is strongly preferred to 1 (i.e., 0�1), then the score of 0 is larger than
the score of 1 in % (i.e., B% (0) > B% (1)). This is formally imposed by a monotonicity property,
intuitively prescribing that moving an alternative to a “higher” position in a preference is beneficial
to that alternative. Formally, we can define monotonicity of a rule � as follows.

• Monotonicity: Consider any preference %8 within any profile % and two alternatives 0, 1 such
that 0�81. If 1 ∈ � (%), then � (%−8 ,%(01)8

) = {1}.

Lemma 1 makes the link between monotonicity of a positional scoring rule �B and the scoring
function B defining that rule precise. Note also that this statement (here only described for the two
top-truncated domains) holds for wider preference domains as well, like any kind of preorders.

Lemma 1. A positional scoring rule �B for top-truncated preferences (on eitherD1 orD2) satisfies
monotonicity if and only if B% (0) > B% (1) whenever 0�1.

Our first characterisation theorem is in line with the characterisation of the Borda rule by Young
(1974), who—informally speaking—identified the Borda rule as the unique scoring rule that satisfies
a cancellation property. In this paper, we examine an axiom that is similar in flavour to Young’s
cancellation, but applies specifically to domains of top-truncated preferences. Top-cancellation
concerns preference profiles % with TOP(%) ≠ ∅. In such profiles, if the preferences of the agents
between the top alternatives “cancel” each other, then no alternative can be considered better than
the others in the top set, and hence all alternatives in that set should be treated the same by the voting
rule. Note that for domains of linear orders (that are special domains of top-truncated preferences),
the top-cancellation axiom reduces to the standard cancellation axiom of Young.



• Top-cancellation: Consider any profile % with TOP(%) ≠ ∅, such that for all alternatives
G, H ∈ TOP(%) with G ≠ H, the following is the case: #{8 ∈ # | G�8H} = #{8 ∈ # | H�8G}.
Then, it holds that TOP(%) ⊆ � (%) or TOP(%) ∩ � (%) = ∅.

Note that top-cancellation allows for the case where no top alternative of a profile belongs to the
winning set (i.e., where TOP(%) ∩ � (%) = ∅). Indeed, top-cancellation is a weak axiom, only
ensuring that all top alternatives will be treated symmetrically when appropriate conditions hold—
that these alternatives should also be among the winners is a separate intuitive requirement, which
we will later take care of with the axiom of monotonicity.

Theorem 2. A voting rule for top-truncated preferences (on either D1 or D2) is in the Borda
class if and only if it satisfies anonymity, neutrality, reinforcement, continuity, monotonicity, and
top-cancellation.

Theorem 2—together with the characterisation of positional scoring rules presented in Theorem 1—
implies the following corollary.

Corollary 1. A positional scoring rule for top-truncated preferences (on either D1 or D2) is in the
Borda class if and only if it satisfies monotonicity and top-cancellation.

An immediate question that arises is whether the axioms appearing in Theorem 2 are all necessary
for the characterisation result, i.e., whether they are independent. We know from the characterisation
of positional scoring rules that anonymity, neutrality, reinforcement, and continuity are independent,
and it is easy to see that monotonicity does not break this fact. Adding top-cancellation also
preserves independence between these axioms. Proposition 2 states exactly this, and a proof for
the most interesting case (i.e., that top-cancellation, together with the rest of our relevant axioms,
does not imply anonymity) is provided in the Appendix. Note that this is a rather unexpected result,
since—as we will see later too—in the original proof of Young (1974) the analogous cancellation
axiom (in combination with the other axioms) ends up implying anonymity.

Proposition 2. The axioms of anonymity, neutrality, reinforcement, continuity, monotonicity, and
top-cancellation are logically independent on domains of top-truncated preferences (D1 and D2).

Our second characterisation of the Borda class relies on a result of Fishburn and Gehrlein (1976) for
domains of linear orders (based on a proof sketch by Smith, 1973), namely that the Borda rule is the
only positional scoring rule for which the Condorcet loser (CL) of a profile is never the winner (let
us call this property CL-consistency). We remind the reader that the Condorcet loser of a preference
profile is an alternative that loses in pairwise comparisons to all other alternatives, where “losing”
means that a majority of agents considers that alternative inferior to the one it is compared to. Let
us extend this fundamental principle for profiles of linear preferences to profiles of top-truncated
preferences by stipulating no alternative that is a Condorcet loser relative to the top part of a profile
should ever be amongst the winners.8

• Top-CL-consistency: Consider any profile % with TOP(%) ≠ ∅. For any alternative 1 ∈
TOP(%) such that for all G ∈ TOP(%) \ {1} it holds that #{8 ∈ # | G�81} > #{8 ∈ # | 1�8G},
it is the case that 1 ∉ � (%).

Theorem 3. A voting rule for top-truncated preferences (on either D1 or D2) is in the Borda
class if and only if it satisfies anonymity, neutrality, reinforcement, continuity, monotonicity, and
top-CL-consistency.

Theorem 3, together with the characterisation of positional scoring rules for top-truncated preferences
(Theorem 1), implies the following corollary.

8Observe that this axiom does not require that alternatives in the bottom part of a profile must be barred from winning as
well (but this of course would be enforced by imposing monotonicity).



Corollary 2. A positional scoring rule for top-truncated preferences (on either D1 or D2) is in the
Borda class if and only if it satisfies monotonicity and top-CL-consistency.

At this point we also need to examinewhether the axioms of Theorem3 are independent. For example,
can we find a positional scoring rule for top-truncated preferences that satisfies top-CL-consistency
but is not monotonic? Proposition 3 answers this question in the affirmative.

Proposition 3. The axioms of anonymity, neutrality, reinforcement, continuity, monotonicity, and
top-CL-consistency are logically independent on domains of top-truncated preferences (D1 andD2).

Intuitively, top-CL-consistency is the axiom ensuring that the scores of the top alternatives in an
agent’s top-truncated preference will be distributed in a linear manner, as required for rules in the
Borda class. Note that classical CL-consistency—although applicable to domains of top-truncated
preferences as well—is not appropriate for our purposes. In particular, not all rules in the Borda
class satisfy CL-consistency.9 For example, consider the pessimistic Borda rule, and a profile with
nine agents and four alternatives such that: four agents rank alternative 0 on top and every other
alternative directly below, and the remaining five agents have preferences as follows: 1�12�13�10,
1�22�23�20, 2�33�31�30, 3�41�42�40, 3�52�51�50. Alternative 0 is the Condorcet loser of
this profile, but it will be the winner according to the pessimistic Borda rule (it will receive 12 points,
while all other alternatives will only get 10 points).

To sum up, the axioms of top-cancellation and of top-CL-consistency (together with monotonic-
ity) are the ones that distinguish rules in the Borda class from all other positional scoring rules.
Interestingly, these two axioms only bite for profiles of top-truncated preferences with a non-empty
set of top alternatives. On the one hand, such profiles are rare in general. On the other hand, every
preference can appear in some profile of that form. The key idea behind our proofs is that the rules
with which we work are positional scoring rules. So, the score assigned to an alternative 0 in a given
preference % will be fixed, and can be deduced by applying the relevant axioms in profiles with a
non-empty set of top alternatives that % is part of.

4.2 Characterising Specific Rules in the Borda Class
After having characterised the Borda class of rules via a number of normative axiomatic properties,
in the remainder of this section we proceed with identifying those properties that charaterise each
one of our specific rules of interest, within the Borda class.

We observe that the pessimistic Borda rule is the only rule in the Borda class for which the scores
of the bottom alternatives in the top-truncated preferences do not depend on how many of these
alternatives there are. Loosely speaking, this translates into the following slogan:

The number of other alternatives with which some alternative 0 shares the bottom
position does not affect 0’s performance.

The axiom of bot-indifference formally captures this idea:

• Bot-indifference: Consider any two profiles % and %′= (%−8 ,%′8) for some agent 8 such that
the preference %′

8
is obtained from the preference %8 by having one of the bottom alternatives

of %8 , say alternative 0, moved to the last position of the ranked alternatives in the top part. If
0 ∉ � (%′), then for any 1 ∈ BOT (%8) \ {0} the following is the case:

1 ∈ � (%) if and only if 1 ∈ � (%′)

Thus, by moving 0 we create two profiles in which the number of alternatives that 1 shares a bottom
position with changes, and we stipulate that this should not affect whether or not 1 will be amongst

9We are grateful to an anonymous reviewer of the JME for this observation.



the winners (at least not in case 0 is not winning in the second profile, the one where it intuitively is
put in a better position). Now, as suggested by our earlier observation, bot-indifference characterises
the pessimistic Borda rule.

Theorem 4. The only voting rule for top-truncated preferences (on either D1 or D2) that sat-
isfies anonymity, neutrality, reinforcement, continuity, monotonicity, top-cancellation (or top-CL-
consistency), and bot-indifference is the pessimistic Borda rule.

We obtain an immediate corollary:

Corollary 3. The only voting rule for top-truncated preferences (on either D1 or D2) in the Borda
class that satisfies bot-indifference is the pessimistic Borda rule.

Wenext define a new axiomatic property, building on the basic idea that if the dominance relationships
between different winning alternatives remain unaltered, then no tie between these alternatives can
be broken. In words, dom-power suggests that a winning alternative 0 can only break a tie between
itself and a different winning alternative 1 by having its support against 1 strictly increased.

Note that the optimistic Borda rule is the only rule in the Borda class for which, in any top-
truncated preference, the score of the last ranked alternative on top remains the same if that alternative
“moves” to the bottom instead. The axiom ensuring this is precisely dom-power.

• Dom-power: Consider any two profiles % and %′= (%−8 ,%′8) such that the preference %′
8
is

obtained from the preference %8 by having one of the bottom alternatives of %8 moved to
the last position of the ranked alternatives in the top part. Then, for any 0 ∈ TOP(%8), the
following is the case:

0 ∈ � (%) if and only if 0 ∈ � (%′)

Theorem 5. The only voting rule for top-truncated preferences (on either D1 or D2) that sat-
isfies anonymity, neutrality, reinforcement, continuity, monotonicity, top-cancellation (or top-CL-
consistency), and dom-power is the optimistic Borda rule.

Corollary 4. The only voting rule for top-truncated preferences (on either D1 or D2) in the Borda
class that satisfies dom-power is the optimistic Borda rule.

After realising that both the axioms of bot-indifference and of dom-power take the form of
monotonicity-like properties, we easily see that they are independent of all other axioms in the
characterisation of the Borda class.

We continue with the averaged Borda rule, which we are going to link to the property of
full-cancellation. This axiom, in the spirit of top-cancellation, prescribes the equal status of all
alternatives as far as the outcome of the aggregation process is concerned, and applies in cases where
for all pairs of alternatives 0, 1 the same number of agents prefers 0 to 1 and 1 to 0.

• Full-cancellation: Consider any profile % such that for all G, H ∈ � it is the case that #{8 ∈ # |
G�8H} = #{8 ∈ # | H�8G}. Then, it must hold that � (%) = �.

Note that full-cancellation reduces to the standard cancellation axiom for the special case of profiles
of linear orders, and is in general logically independent of top-cancellation. Interestingly, when
combined with other axioms that appear in the characterisation of the Borda class, full-cancellation
becomes very strong:

Lemma 2. Neutrality, reinforcement, monotonicity, and full-cancellation together imply anonymity,
continuity, top-cancellation, and top-CL-consistency.
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Figure 6: Borda rules for top-truncated preferences and the axioms that characterise them. The
axioms next to an arrow indicate those properties that are required in order to obtain a specific class
of rules, or a specific rule, within a larger class.

Using Lemma 2, we obtain a proof for the characterisation of the averagedBorda rule on top-truncated
preferences (in Theorem 6) that explicitly hinges on the effect of full-cancellation within the Borda
class—the reader can find it in the Appendix. Although Theorem 6 could also be proven without
any reference to the Borda class,10 our proof sheds light on the particular way in which the averaged
Borda rule differs from the other two rules in the Borda class (the optimistic and pessimistic Borda
rules), by taking advantage of structurally analogous proof techniques.

Theorem 6. The only voting rule for top-truncated preferences (on either D1 or D2) that satisfies
neutrality, reinforcement, monotonicity, and full-cancellation is the averaged Borda rule.

Theorem 6 and Lemma 2 imply the following corollary:

Corollary 5. The only voting rule for top-truncated preferences (on either D1 or D2) in the Borda
class that satisfies full-cancellation is the averaged Borda rule.

5 Conclusion
Figure 6 provides a graphical summary of our characterisation results. Of course, this paper has
not closed all gaps in our understanding regarding suitable generalisations of the classical Borda
rule to richer domains of preferences. Yet, by focusing on top-truncated preferences, we have not
only derived a better comprehension of a domain of immediate practical significance but we have
also obtained valuable intuitions that could potentially apply to more general domains of preorders
as well. Moreover, our work may open up the way for similar investigations with respect to other
popular voting rules on domains that go beyond the classical one of linear orders. For instance, do
appropriate generalisations of the Kemeny rule come with corresponding desirable axioms that can
naturally differentiate between them?

10The fact that the characterisation of the rule represented by the symmetric Borda scores (i.e., the averaged Borda rule on
top-truncated preferences) works for other domains of preorders, as well as for linear orders, is also mentioned in informal
comments by Young (1974) and by Hansson and Sahlquist (1976).
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