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Abstract

An extensive range of recent works have explored the fair allocation of indivisi-
ble goods. Traditionally, research has focused on individual fairness (are individ-
ual agents satisfied with their allotted share?) and group fairness (are groups of
agents treated fairly?). In this paper, we explore the co-existence of individual envy-
freeness (i-EF) and its group counterpart, group weighted envy-freeness (g-WEF), in
the allocation of indivisible goods. We propose several polynomial-time algorithms
that can provably achieve i-EF and g-WEF simultaneously in various degrees of ap-
proximation under three different conditions on the agents’ valuation functions: (i)
when agents have identical additive valuation functions, i-EFX and g-WEF1 can be
achieved simultaneously; (ii) when agents within a group share a common valuation
function, an allocation satisfying both i-EF1 and g-WEF1 exists; and (iii) when
agents’ valuations for goods within a group differ, we show that while maintaining
i-EF1, we can achieve a 1

3
-approximation to g-WEF1 in a suitably-defined average

sense. Our results thus provide a first step into connecting individual and group
fairness in the allocation of indivisible goods.

1 Introduction

Fairly allocating indivisible goods is a fundamental problem at the intersection of computer
science and economics [1, 2, 3, 4]. A classic problem in fair allocation involves the allocation
of courses to students [5]. Courses have limited capacity, and therefore slots are often
allocated via a centralized mechanism. Several recent works have explored a variety of
distributive justice criteria; these broadly fall into two categories – individual (e.g., that
individual students are not envious of their peers), and group (e.g. that students of certain
ethnic, gender or professional groups are treated fairly overall). While both individual
and group fairness have been studied extensively in recent works, to our knowledge, there
have been no works proposing algorithms that ensure both concurrently in the allocation of
indivisible goods. In this work, we seek to establish the following:

efficient algorithms that concurrently ensure approximate individual and group
fairness, for certain classes of agent valuation functions.

The tension between individual and group fairness exists in a variety of allocation scenarios
studied in the literature; for example, when allocating reviewers (who, in this metaphor,
are the goods) to papers [6, 7], it is important to balance the individual papers’ satisfaction
with their allotted, and the overall quality of reviewers assigned to tracks (e.g. ensuring that
the overall reviewer quality for the Theory track is commensurate with that of reviewers for
the Robotics track). Another example is the allocation of public resources (such as housing,
or slots in public schools) [8, 9] – it is important to maintain fairness towards individual
recipients, as well as groups (such as ethnic or socioeconomic groups).

In this paper, we address the question of whether individually and group weighted envy-
free allocations can co-exist when allocating indivisible goods. We present algorithms that



compute approximately individually envy-free (EF) and group weighted envy-free (WEF)
allocations, where the approximation quality depends on the class of agents’ valuation func-
tions.

One could view the WEF property as comparing the average (i.e. weighted) utility of an
agent within a group to the average utilities of agents in other groups. However, a common
flaw of this property is that it is susceptible to outliers: an agent who gets a good with an
extremely high bundle value can potentially deprive other group members of valuable items.
Hence, by imposing both group and individual fairness, we obtain more equitable outcomes.

1.1 Our Contributions

We design algorithms that (approximately) reconcile individual and group envy-freeness in
the allocation of indivisible goods. The strength of our results naturally depends on the
generality of the valuation classes we consider, with more general valuations yielding worse
approximation guarantees.

Our main technical analysis is in Section 3. In Section 3.1, we show that when agents
have identical valuation functions, envy-freeness up to any good (EFX) can be achieved in
conjunction with group weighted envy-freeness up to one good (WEF1). In Section 3.2,
when agents within each group have common valuation functions, then envy-freeness up
to one good (EF1) can be satisfied together with WEF1. In Section 3.3, when valuation
functions are distinct, we show that we can obtain a constant factor 1

3 approximation to
WEF1 in a suitably-defined average sense (see Definition 9).

1.2 Related Work

Envy-freeness (EF) is a particularly important individual fairness notion when deciding how
to fairly allocate indivisible goods [10, 11]. The existence of approximate EF allocations in
conjunction with other individual fairness notions and welfare measures (such as propor-
tionality [12], pareto-optimality [13], maximin share [14]) have been studied extensively.

Conitzer et al. [15] and Aziz et al. [16] introduce the notion of group fairness (applied to
every partition of agents within the population), with both offering the “up to one good”
relaxation of removing one good per player. Benabbou et al. [17] explore the relationship
between metrics such as utilitarian social welfare in connection with group-wise fairness via
an optimization approach.

Several works also suggest notions of group envy-freeness [18, 19]; we focus on a recently
proposed notion called weighted envy-freeness (WEF) [20], which focuses on group fairness
with pre-defined groups, allowing us to study guarantees with the removal of a single good
per group. Conitzer et al. [15] raised this setting of pre-defined groups as an open question.

2 Preliminaries

In the problem of allocating indivisible goods, we are given a set of agents N = {p1, . . . , pn}
and goods G = {g1, . . . , gm}. Subsets of goods in G are referred to as bundles. Agents belong

to predefined groups (or types) T = {T1, . . . , T`}. We assume that
⋃`
k=1 Tk = N , and that

no two groups intersect. Furthermore, each group Tk has a weight wk, corresponding to
its size, i.e. wk = |Tk|. Each agent pi ∈ N has a non-negative valuation function over
bundles of goods: vi : 2G → R+. We assume that vi is additive [13, 21, 15], i.e, that
vi(S) =

∑
g∈S vi({g}). When all agents have the same valuation, we denote their common

valuation by v.
In our framework, we consider the direct allocation of goods to agents, whilst taking

into consideration agents’ group affiliation, and in the process achieving both individual and



group envy-freeness. For example, in the case of assigning reviewers to papers, reviewers
first specify which groups they would like to belong to (by specifying their primary topic
of interest), which implicitly allocates them to a group. Next, these reviewers are directly
allocated papers, where their declared field is taken into consideration. Thus, the group
allocation is not explicitly determined in the allocation process, but is induced from the
individual allocations A = (A1, ..., An) instead. We denote Grpk(A) =

⋃
i:pi∈Tk

Ai as the
induced group bundle for Tk. To keep our notations simple, for any group Tk ∈ T , we will
let Bk = Grpk(A) denote this induced group bundle. We also let the group utility for Tk
be vTk

(Bk) =
∑
i:pi∈Tk

vi(Ai).
Envy-freeness was introduced by Foley [22] (see also Brandt et al. [4], and Lipton et

al. [23]). However, complete, envy-free allocations with indivisible goods cannot always be
guaranteed (e.g. with two agents and one good, the agent who did not get the good will
always envy the other). Thus, we make use of two popular relaxations of EF.

An allocation A = (A1, . . . , An) is individually envy-free up to any good (EFX) if, for
every pair of agents pi, pi′ ∈ N , and for all goods g ∈ Ai′ , vi(Ai) ≥ vi(Ai′ \ {g}). Similarly,
an allocation A is individually envy-free up to one good (EF1) if, for every pair of agents
pi, pi′ ∈ N , there is some good g ∈ Ai′ such that vi(Ai) ≥ vi(Ai′ \ {g}).

Chakraborty et al. [20] recently introduced an extension of the EF notion to the weighted
setting, known as weighted envy-freeness (WEF). In this setting, agents represent groups
where each group has a fixed weight. We use this notion to capture inter-group envy. Simi-
larly, we consider two relaxed notions of WEF. The definitions below rely on the assumption
that the groups’ valuations of a bundle are the same regardless of how goods are internally
allocated according to A; this is a valid assumption if we assume that valuation functions of
agents within a group cannot differ. In Section 3.3, we introduce an extension of the WEF
notion to deal with the more general case.

An allocation A = (A1, . . . , An) is said to be weighted envy-free up to one good (WEF1)

if for every two groups Tk, Tk′ ∈ T , there exists some good g ∈ Bk′ such that
vTk

(Bk)

wk
≥

vTk
(Bk′\{g})
wk′

. It is weighted envy-free up to any good (WEFX) if this inequality holds for

any g ∈ Bk′ .
Note that envy-freeness and weighted envy-freeness are referred to as EF and WEF

respectively in the literature, but we refer to them as i-EF and g-WEF henceforth, to
highlight that the former is an individual fairness concept, and the latter is a group fairness
concept. An example illustrating these fairness concepts is included in the appendix.

3 Approximate i-EF and g-WEF Allocations

In this section, we analyze the existence of approximate individual EF (i-EF) and group
WEF (g-WEF) allocations.

3.1 All-Common Valuations

i-EFX allocations are known to exist within the restricted setting of all-common valuations
[24] (i.e. when all agents have identical valuation functions). An interesting starting point
is to study the existence of allocations that satisfy i-EFX and approximate g-WEF simulta-
neously. A natural question is whether the concept of “up to the least valued good” can be
extended to the weighted setting and be achieved in conjunction with its individual coun-
terpart. Unfortunately, we show that this is not possible, with the following proposition.

Proposition 1. g-WEFX is incompatible with approximate i-EF notions (i-EFX or i-EF1),
even when all agents’ valuation functions are identical.



Proof. Consider an all-common valuation setting in which we have two groups T1 and T2,
each with two agents p1, p2 ∈ T1 and p3, p4 ∈ T2. There are four goods, which all agents
value equally: v(g1) = c, v(g2) = v(g3) = v(g4) = 1. Here, c � 1 is some very large
constant value. Then, in order for an allocation to be i-EF1 or i-EFX, each agent must
receive exactly one good. Without loss of generality, suppose p1 ∈ T1 gets g1, and the rest
of the agents receive a good of value 1. In this case, T2 has weighted envy towards T1, even
if the lowest valued good (of value 1) is removed from T1’s bundle.

Since g-WEFX is incompatible with both notions of approximate i-EF, we focus on the
next best group fairness property: g-WEF1. Again, focusing on the case of all-common
valuations, since i-EFX is arguably the strongest relaxation of i-EF [25], it is of interest to
ask whether an i-EFX allocation can guarantee g-WEF1. However, the following proposition
shows that this is not the case.

Proposition 2. An i-EFX allocation is not necessarily g-WEF1, nor is a g-WEF1 alloca-
tion necessarily i-EFX.

Proof. For the first part, consider the all-common valuation setting in the case of two groups
T1 and T2, with p1, p2 ∈ T1 and p3, p4 ∈ T2, and there are four goods, v(g1) = v(g2) =
c, v(g3) = v(g4) = 1. Here, c � 1 is some very large constant value. Then, any allocation
where each agent gets exactly one good is i-EFX. Consider the allocation where agent pi is
allocated good gi for every i ∈ {1, . . . , 4} (i.e. T1 receives the two valuable goods, and T2
receives the two least valued goods). This allocation is not g-WEF1, as T2 envies T1 even
when one of the goods is removed.

For the second part, consider a setting where we have two groups T1, T2 (w1 = 2 and
w2 = 1), and three goods g1, g2, g3 with all-common valuations v(g1) = c, v(g2) = v(g3) = 1.
Again, c� 1 is some very large constant value. Note that the allocation A with (B1, B2) =
({g1}, {g2, g3}) is g-WEF1. However, since T1 has two agents but only one good, one of the
agents in T1 will receive nothing. In particular, since the agent in T2 receives two goods,
the empty-handed agent will envy them even after removing any good.

Proposition 2 indicates that we can neither rely on existing i-EFX algorithms (that
do not take into consideration groups) such as in Plaut and Roughgarden [24] and Aziz
and Rey [16], nor can we directly make use of existing g-WEF1 algorithms such as in
Chakraborty et al. [20] to achieve both properties. We therefore propose the Sequential
Maximin-Iterative Weighted Round Robin (SM-IWRR) algorithm (Algorithm 1) that can,
in the all-common valuation setting, provably produce an allocation that is both i-EFX and
g-WEF1 in polynomial time.

Intuitively, the SM-IWRR algorithm works by first assigning goods to agents via the SM
algorithm1, such that the resulting allocation is i-EFX (as shown in Theorem 4). Then, since
valuations are all-common, the algorithm takes each bundle and treats it as a single good,
referred to as the representative good. The value of each representative good is then reduced
by the value of the least-valued representative good. These representative goods are then
allocated to agents via the IWRR algorithm2 using these values. Each agent then receives
the bundle corresponding to the representative good it was allocated. We first mention an
important property about the algorithm, whose proof is detailed in the appendix.

Proposition 3. The SM-IWRR algorithm is guaranteed to terminate in O(m logm+mn)
steps.

1In fact, any i-EFX allocation algorithm could be used in place of the SM algorithm.
2Note that in this setting, since each agent gets exactly one good, in line 3, the algorithm is simply

picking any agent without a good instead of one with the lowest bundle size. The algorithm is designed to
be more general for use in later sections.



Algorithm 1 Sequential Maximin-Iterative Weighted Round Robin (SM-IWRR)

Input: set of agents N , set of goods G, set of groups T , valuation function v
Output: allocation A
1: Run the SM algorithm (see Algorithm 2) with inputs N , G and v, and obtain output
A′ = (A′1, . . . , A

′
n)

2: Let A′min = arg mini:pi∈N v(A′i) be the lowest-valued bundle in A′
3: Initialize set of representative goods, R = {}
4: for each A′i ∈ A′ do
5: Create a new good ri, with v̂(ri) = v(A′i)− v(A′min)
6: R← R ∪ {ri}
7: end for
8: Run the IWRR algorithm (see Algorithm 3) with inputs N , R, T and v̂, and obtain

output A = (A1, . . . , An).
9: for each Aj ∈ A do

10: for each ri ∈ R do
11: if ri ∈ Aj then
12: Aj ← A′i
13: end if
14: end for
15: end for
16: return A = (A1, . . . , An)

Proof. For the SM algorithm, since valuations are all-common, finding the next favourite
good of any agent can be made trivial via pre-processed sorting, which can be done in
O(m logm) time. There areO(m) iterations of the while loop; in each iteration, determining
the next agent to be given a good takes O(log n) time. Thus, the SM algorithm runs in
O(m(logm+ log n)) time.

For the IWRR algorithm, since our setting is such that each agent gets exactly one good,
finding the next favourite good of any agent can be made trivial via pre-processed sorting,
which can be done in O(m logm) time. There are O(n) iterations of the while loop; in each
iteration, finding the next group takes O(log `) time, and determining the next agent to be
given a good is straightforward. Thus, the IWRR algorithm (one agent-one good variant)
runs in O(m logm+ n log `) time.

In the SM-IWRR algorithm, since each of the for loops takes O(n) steps, assuming
m > n and combining these with the bounds above, the time complexity of the SM-IWRR
algorithm is O(m logm), and is guaranteed to terminate since the input sets are finite.

The following theorem provides our first main result.

Theorem 4. Under all-common, additive valuation functions, the SM-IWRR algorithm
returns an i-EFX and g-WEF1 allocation.

Proof. We first prove that the SM-IWRR algorithm outputs an i-EFX allocation. Consider
the execution of the SM algorithm. Since at every round the algorithm selects an agent with
the least valued bundle to be allocated a good g ∈ G, that agent cannot be envied prior to
this allocation (because it has the least valued bundle from every other agent’s perspective).

Hence, any envy that arises must be due to g, which is also the least valued good in
that agent’s bundle. This establishes the i-EFX property. When we allocate representative
goods via the IWRR (which preserves i-EFX, since bundles are not modified), and map
back into bundles, this amounts to a reallocation of bundles, so the resulting bundles that
the agents receive are still i-EFX.



Algorithm 2 Sequential Maximin (SM)

Input: set of agents N , set of goods G, valuation function v
Output: allocation A
1: Initialize Ai = {} for i = 1, . . . , n
2: while there are unassigned goods Gunassigned ⊆ G do
3: Let g = arg maxj:gj∈Gunassigned

v(gj) be the highest-valued unassigned good
4: Let pi ∈ N be the agent with the least-valued bundle Ai, where Ai =

arg minj:pj∈N v(Aj)
5: Ai ← Ai ∪ {g}
6: Gunassigned ← Gunassigned \ {g}
7: end while
8: return A = (A1, . . . , An)

Algorithm 3 Iterative Weighted Round Robin (IWRR)

Input: set of agents N , set of goods G, set of groups T , and set of valuation functions
{v1, . . . , vn}
Output: allocation A
1: Initialize Ai = {} for i = 1, . . . , n
2: while there are unassigned goods Gunassigned ⊆ G do

3: Let Tk ∈ T be the group with the lowest weighted bundle size |Bk|
wk

4: Let pi ∈ Tk be the agent with the lowest bundle size |Ai|, with ties broken in favour
of the one that has highest marginal utility from a good in Gunassigned (i.e. tie-break
in favour of the agent whose favourite unassigned good is of highest (subjective)
valuation)

5: Let g ∈ Gunassigned be the good pi values the most
6: Ai ← Ai ∪ {g}
7: Gunassigned ← Gunassigned \ {g}
8: end while
9: return A = (A1, . . . , An)

The g-WEF1 property is established using the following result adapted from Theorem
3.3 of Chakraborty et al. [20].

Lemma 5. Under all-common, additive valuation functions, the “Pick the Least Weight-
Adjusted Frequent Picker” (PLWAFP) algorithm [20] returns a g-WEF1 allocation.

The key point to note is that in IWRR, if we observe the group-level allocation, groups
are allocated goods according to the least weight-adjusted frequency; thus, at the group
level, IWRR is equivalent to PLWAFP, and in particular it ensures, by Lemma 5, that the
g-WEF1 holds with respect to the v̂ (i.e. the value function with respect to the representative
goods). However, more effort is needed to transfer this guarantee to the original valuation
function v.

After the i-EFX allocation of goods to agents, consider the set of bundles
{A1, A2, . . . , An}, where individual bundles are labelled such that v(A1) ≥ v(A2) ≥ · · · ≥
v(An). For all pi ∈ N , define the representative good value to be v̂(ri) = v(Ai) − v(An),
where ri is the representative good of Ai. Then, we make the following two claims:

Claim 1 For all pi ∈ N , v̂(ri) is upper bounded by the value of any one good in Ai.

Claim 2 For any two groups Tk, Tk′ ∈ T , let Bk and Bk′ be the bundles of representative
goods allocated to group Tk and Tk′ respectively. If we have a g-WEF1 allocation of



representative goods to agents, then by replacing each representative good with its
corresponding bundle, the allocation remains g-WEF1.

Claim 1 holds because the allocation A is i-EFX, so for all pi ∈ N and any g ∈ Ai,
v(Ai \ {g}) ≤ v(An). Then, as valuations are additive, v(Ai) − v({g}) ≤ v(An), and
hence v̂(ri) = v(Ai)− v(An) ≤ v({g}). Claim 2 implies that the replacement step (of each
representative good by its bundle) in the SM-IWRR algorithm preserves the “up to one
good” guarantee. We proceed to prove claim 2.

Since we have a g-WEF1 allocation on representative goods, for any two groups Tk, Tk′ ∈
T , there exists a representative good rmax ∈ Bk′ , such that v̂(rmax) = maxi′:pi′∈Tk′ v̂(ri′)
and the following holds:∑

i:pi∈Tk
v̂(ri)

wk
≥
∑
i′:pi′∈Tk′ v̂(ri′)− v̂(rmax)

wk′
(1)

By the definition of a representative good, for all i with pi ∈ Tk, v̂(ri) = v(Ai) − v(An),
and recalling that An is the least-valued bundle in A, the left-hand side of (1) becomes∑

i:pi∈Tk
v(Ai)

wk
− v(An) , and the right-hand side of (1) becomes

∑
i′:p

i′∈T
k′ v(Ai′ )−v̂(rmax)

wk′
−

v(An). Combining these with (1), and v(Bk) =
∑
i:pi∈Tk

v(Ai), we get

v(Bk)

wk
=

∑
i:pi∈Tk

v(Ai)

wk
≥
∑
i′:pi′∈Tk′ v(Ai′)− v̂(rmax)

wk′
.

Then, since v(Bk′) =
∑
i′:pi′∈Tk′ v(Ai′), it follows that

v(Bk)

wk
≥ v(Bk′)− v̂(rmax)

wk′
≥ v(Bk′)− v({gmax})

wk′
,

where the second inequality is a result of v̂(rmax) being upper bounded by the value of one
good in bundle Bk′ by claim 1 (specifically, the good of maximum value gmax ∈ Bk′).

Claim 2 ensures that the g-WEF1 property with respect to the i-EFX bundles (or rep-
resentative goods) transfers to the original goods, which completes the proof of Theorem
4.

3.2 Group-Common Valuations

Next, we consider the setting where agents in different groups may have different valuations,
but agents within any given group have the same valuations. We refer to this setting as one
where agents have group-common valuations. More formally, for each good g ∈ G, and any
two agents pi, pi′ ∈ Tk, vi(g) = vi′(g).

As the existence of i-EFX allocations in this setting is still an open question [24, 25, 26],
we explore i-EF1 and its compatibility with g-WEF1. We first give a proposition showing
that i-EF1 allocations are not guaranteed to be g-WEF1. The proof of Proposition 6 is
similar to that of Proposition 23, and is thus omitted.

Proposition 6. An i-EF1 allocation is not necessarily g-WEF1, nor is a g-WEF1 allocation
necessarily i-EF1, even when all agents’ valuation functions are identical.

Much like the all-common valuation setting, we cannot rely on existing i-EF1 algorithms
(that do not take into consideration groups) such as in [23, 12] to achieve both properties.

We therefore propose that the Iterative Weighted Round Robin (IWRR) algorithm (Al-
gorithm 3), as introduced in the previous section, under group-common valuations, provably
produces an allocation that is both i-EF1 and g-WEF1 in polynomial time.

3In fact, Proposition 6 is a generalization of Proposition 2.



Proposition 7. The IWRR algorithm is guaranteed to terminate after O(`mn) steps.

Proof. There areO(m) iterations of the while loop. In each iteration, finding the next group
takes O(`) time, determining the next agent to allocate takes O(n) time, while letting the
agent pick its favourite good takes O(m) time. Since the input sets are finite, the algorithm
terminates in O(`mn) steps.

Next, we provide our main result for group-common valuations.

Theorem 8. Under group-common, additive valuation, the IWRR algorithm returns an
i-EF1 and g-WEF1 allocation.

Proof. We first prove the i-EF1 property. Suppose we have a sequence of allocations of
(agent, good) pairs for a single execution of the IWRR algorithm. We break this sequence
into sub-sequences, which we will call rounds, indexed by r ∈ [1,K], with K = dmn e. At
the end of round r, each agent has r goods in its bundle. While not all agents may receive
a good in the final round, we can simply add dummy goods of value zero to complete the
round. Let us denote by gi,r the good that agent pi picked in round r. We will show that
each agent pi ∈ N , can only possibly envy any other agent pi′ up to the good pi′ picked in
round 1 (i.e. up to good gi′,1).

Case 1: pi′ selects after pi in the ordering. For each round r ∈ [1,K], since

pi selects its most valued good, vi(gi,r) ≥ vi(gi′,r). Therefore, vi(Ai) =
∑K
r=1 vi(gi,r) ≥∑K

r=1 vi(gi′,r) = vi(Aj).
Case 2: pi′ selects before pi in the ordering. For each round r ∈ [1,K − 1], since

pi selects its most valued good, vi(gi,r) ≥ vi(gi′,r+1). Therefore, vi(Ai) =
∑K
r=1 vi(gi,r) ≥∑K−1

r=1 vi(gi,r) ≥
∑K
r=2 vi(gi′,r) = vi(Aj \ {gi′,1}). Since this holds for all such agents

pi, pi′ ∈ N , the allocation is i-EF1.
The proof of g-WEF1 is the same as that of Theorem 4.

3.3 General Valuations

We now proceed to study the existence of individual and group fair allocations under general
additive valuations. Under this class of valuation functions, the distinction between the g-
WEF notion defined in Chakraborty et al. [20] and our setting is more apparent. Agents
within a group can have different valuations for each good, and so a key consideration in
characterising g-WEF is, for any two groups Tk, Tk′ ∈ T , the valuation of a group Tk for
another group’s Tk′ bundle. This was not a concern in the previous two (All-Common and
Group-Common) settings, as the valuation of the bundle to a group was the same regardless
of which agent within the group actually received the good.

With this in mind, one could consider two methods of defining g-WEF – an allocation-
based approach (where valuations of a group for another group’s bundle depends on some
internal allocation procedure, as in Bennabou et al. [17], or a non-allocation based approach
(where valuations of a group for another group’s bundle are quantified without reference to
a specific internal allocation algorithm).

We will only consider the non-allocation based definition for defining g-WEF. To do so,
we introduce a more general, albeit weaker, notion of g-WEF, which we term g-WEF1 in
expectation. Intuitively, instead of assuming that items are allocated to all agents by some
allocation procedure, we consider what the average utility would be if we were to allocate
each item to a uniformly random agent.

Definition 9 (g-WEF1 in expectation). An allocation A = (A1, . . . , An) is weighted
envy-free up to one good (g-WEF1) in expectation if, for every two groups Tk, Tk′ ∈ T ,



there exists some good g ∈ Bk′ such that
vTk

(Bk)

wk
≥ vTk

(Bk′\{g})
wk′

, where vTk
(Bk′) =

1
wk

∑
i:pi∈Tk

(∑
g′∈Bk′ vi(g

′)
)

.

Further relaxing this notion in a standard manner, we say that an allocation is g-WEF1
in expectation up to a factor of 1

γ for some constant γ when the condition in Definition 9 is

replaced by
vTk

(Bk)

wk
≥ 1

γ ·
vTk

(Bk′\{g})
wk′

. We proceed to show that the IWRR algorithm can

help us achieve an approximate notion of g-WEF1 in expectation under this setting.

Theorem 10. Under general, additive valuation, the IWRR algorithm returns an i-EF1
allocation that is g-WEF1 in expectation up to a factor of 1

3 .

Proof. We have shown in Theorem 8 that the allocation returned by the IWRR algorithm
is i-EF1. We will thus focus on proving the approximate g-WEF property.

Consider the sequence of allocations to any two groups Tk, Tk′ ∈ T in a single execution
of the IWRR algorithm. Break this sequence into sub-sequences called rounds, indexed by

r ∈ [1,K], with K = d |Bk|+|Bk′ |
wk+wk′

e. At the end of round r, each agent has r goods in its

bundle. While not all agents may receive a good in the final round, we can simply add
dummy goods of value zero to complete the round.

Each round is made up of (wk + wk′) iterations, whereby one good is selected by some
agent at each iteration. Assume that ties are broken in favour of Tk′ (the other case is
similar). Then, the first iteration of every round is an allocation of a good to an agent in
Tk′ . In particular, this agent from Tk′ that gets to make a selection on the very first iteration
of the first round could have picked a good that is of arbitrarily high value to every agent
in Tk – this is the good that we will drop, as part of the “up to one good” relaxation.

Case 1: wk < wk′ . Here, we define a shifted round r, that consists of all iterations
(except the first) of the original round r, and the first iteration of the next round r + 1.
Note that if a round r + 1 doesn’t exist, we can simply add dummy goods of value zero
such that the setting is well-defined. In the first round, we mentioned above that the first
good is dropped (let this be g1); every other good is accounted for in some shifted round.
Figure 1 illustrates a single shifted round r. We will argue the satisfiability of g-WEF1 in
expectation up to a factor of 1

3 in this one shifted round; the analysis then extends to all
shifted rounds similarly.

Figure 1: Tk’s agent valuations for goods in Bk ∪Bk′ for a shifted round r

Let each entry (i, j) in the matrix illustrated in Figure 1 be the valuation that an agent
pi ∈ Tk (row) has for good gj ∈ Bk′ (column). Let the unshaded columns correspond to
iterations whereby agents from Tk make a selection, whereas shaded columns represent the



iterations whereby an agent from Tk′ makes a selection. Without loss of generality, we
can label goods and agents in a such way whereby the circled cells in unshaded columns
represent the value of the good that was selected by the corresponding agent from Tk.

Then, we have that in every shifted round, we are considering a sequence of selections
of the following form: Tk selects (unshaded column), Tk′ selects multiple consecutive times
(shaded columns), Tk selects (unshaded column), Tk′ selects multiple consecutive times
(shaded columns), etc. The structure applies due to the following lemma, whose proof is
given in the appendix.

Lemma 11. For any two groups Tk, Tk′ ∈ T , suppose wk′ ≥ wk. Then, when running
the IWRR algorithm, Tk cannot make more than one consecutive selection, whereas Tk′

can only make either bwk′/wkc or dwk′/wke consecutive selections, at any point in time
(ignoring selections by groups other than Tk and Tk′).

The values in uncircled cells indicate the maximum valuation that the agent in that
row can have for the good in that column (as a result of how the algorithm works – at
every iteration, the agent from Tk selects a good that gives the group maximum marginal
valuation). The general observation we can make is that for every circled cell with value Vi,
all the cells below it on the same column, and to its right – on the same row, or below it –
cannot exceed Vi in value. This is because we labelled and arranged agents such that those
who make a selection earlier is on a higher row, and goods are picked in order from left to
right.

For each shifted round r ∈ [1,K], let the set of circled cells be SrC and the set of shaded
cells be SrB . In addition, define their respective sum of cell values as u(SrC) and u(SrB).
Then, by applying this concept to all shifted rounds, we have from Definition 9 that

vTk
(Bk) =

K∑
r=1

u(SrC), and vTk
(Bk′ \ {g1}) =

1

wk

K∑
r=1

u(SrB).

Then, in order to show the g-WEF1 in expectation up to a factor of 1
3 property, it is

equivalent to show that

3wk′
K∑
r=1

u(SrC) ≥
K∑
r=1

u(SrB). (2)

In other words, if we can show that at every shifted round, the sum of shaded cells is upper
bounded by (3wk′× sum of circled cells), the desired property follows. In the following, in
every shifted round r, for every circled cell V ri (i ∈ [1, wk]), define V ri,ROW and V ri,BLK as
follows:

1. V ri,ROW = sum of shaded cells in the same row and to the right of circled cell V ri ;

2. V ri,BLK = sum of shaded cells in the shaded columns sandwiched between the un-
shaded columns containing the circled cells V ri and V ri+1, and starting from the row
immediately below circled cell V ri .

An example is illustrated in Figure 2. Also, by the definition of u, we have that u(SrC) =∑wk

i=1 V
r
i and u(SrB) =

∑wk

i=1

(
V ri,ROW + V ri,BLK

)
. Moreover, since V ri,BLK has a maximum of

dwk′/wke columns (by Lemma 11) and a maximum of wk rows (because there are wk agents
in group Tk), we have V ri,BLK ≤ V ri × dwk′/wke × wk ≤ 2wk′ × V ri . The last inequality
follows because of the assumption that wk ≤ wk′ in this case.

Then, coupled with the fact that for every i ∈ [1, wk], V ri,ROW ≤ wk′×V ri (because there
is a maximum of wk′ shaded columns in any single shifted round), we obtain

V ri,ROW + V ri,BLK ≤ 3wk′ × V ri (3)



Figure 2: Tk’s agent valuations for goods in Bk ∪Bk′ for a shifted round r, with additional
quantities indicated using shaded regions

By summing (3) on both sides over all i ∈ [1, wk] and shifted rounds r ∈ [1,K],

K∑
r=1

wk∑
i=1

(
V ri,ROW + V ri,BLK

)
≤

K∑
r=1

(3wk′ × V ri )

and since u(SrC) =
∑wk

i=1 V
r
i and u(SrB) =

∑wk

i=1

(
V ri,ROW + V ri,BLK

)
, we get (2) as desired.

Case 2: wk ≥ wk′ : This case is proven in a similar vein as the previous case. The
difference is that instead of comparing the values of shaded cells with a single circled cell,
we compare with the sum of cell values of a set of circled cells, and the bound follows. The
details are given in the appendix.

The existence of a better approximation bound that can be obtained with comparable
efficiency remains an open question, and largely depends on the allocation algorithm.

4 Conclusions and Future Work

In this work, we show that individual fairness may come at the cost of group fairness. Group
fairness is a great way to ensure diversity in outcomes [17]. Our work attempts to recon-
cile diversity with individual demands. We study the existence of allocations that satisfy
individual and group (weighted) envy-freeness simultaneously, and show that when agents’
additive valuations are identical or at least common within groups, existing approximations
of envy-freeness at both individual and group levels are compatible and achievable concur-
rently. In the case of general, additive valuations, in mandating i-EF1, the IWRR algorithm
achieves g-WEF1 in expectation up to a factor of 1

3 . Our results thus shed light on the dif-
ficulty in achieving existing notions of individual and group fairness concurrently in more
complex settings. In the appendix, we include a discussion on two new notions of fairness –
PEF and Group Stability – that exploit the group structure inherent in numerous problem
domains. We show that both the SM-IWRR and IWRR algorithms achieve relaxed variants
of these properties in addition to their individual and group fairness guarantees.

Possible future research includes delving into allocation-based definitions of g-WEF1 to
explore the existence of approximately fair allocations under that setting. It would also
be interesting to consider non-sequential allocation mechanisms [27], and to understand
whether better bounds exist for the case of general additive valuations. In addition to
the possibility of extending the analysis to the setting with chores [12, 16], incorporating
efficiency notions such as Pareto-optimality or exploring alternative valuation classes [28]
are potential avenues for future work.
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[10] Hervé Moulin. Fair division: The no envy test. In Cooperative Microeconomics: A
Game-Theoretic Introduction, chapter 10, pages 163–238. Princeton University Press,
1995.

[11] Shinji Ohseto. Characterizations of strategy-proof and fair mechanisms for allocating
indivisible goods. Economic Theory, 29(1):111–121, 2006.

[12] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. Fair allocation of
indivisible goods and chores. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI), pages 53–59, 2019.

[13] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel Procaccia, Nisarg Shah, and
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A Example to Illustrate Approximate i-EF and g-WEF

Consider a setting in which we have two groups T1 and T2, consisting of one and two agents
respectively, with p1 ∈ T1 and p2, p3 ∈ T2. Suppose that there are five goods g1, g2, g3, g4, g5,
for which all agents have equal valuation: v(g1) = v(g2) = v(g3) = v(g4) = v(g5) = c > 0.

Individual Envy-Freeness Suppose an allocation A is such that p1 has one good, and
p2, p3 have two goods each. Then, p2, p3 clearly have no envy towards p1, since v(A2) =
v(A3) = 2c > c = v(A1). This inequality also indicates that p1 has envy for each of p2 and
p3. However, observe that if we were to remove one good from each of p2 and p3’s bundle,
then any envy p1 has for each of the other agents would disappear. Hence, we say that A is
i-EF1.

In the more general case of goods with different valuations, i-EF allows choosing any
single good to remove in the above manner, e.g., the most valued one. In contrast, the
stronger variant i-EFX requires the envy-free condition to hold no matter which good was
removed, e.g., the least-valued one.

Group Weighted Envy-Freeness Considering the same allocation A as above, T1’s

weighted bundle value is v(B1) = v(A1)
w1

= c
1 = c and T2’s weighted bundle value is v(B2) =

v(A2)+v(A3)
w2

= 4c
2 = 2c. Then, clearly, T2 has no weighted envy towards T1. However, the

converse is not true. Observe that even if we remove any good (call it g) from T2’s bundle,
v(B2\{g})

w2
= 3c

2 > c = v(B1)
w1

, and there is still weighted envy by T1 towards T2. Hence, this
allocation A is neither g-WEFX nor g-WEF1.

More generally, if the removal of some good from the bundle of B2 gives v(B2\{g})
w2

≤
v(B1)
w1

, then we can say the allocation is g-WEF1. Similarly, if the same holds no matter
which good is removed, then the allocation satisfies the more stringent g-WEFX property.

B Proof of Lemma 11: Consecutive Selections in the
IWRR algorithm

Recall that wk′ ≥ wk by assumption. We begin by proving the first part of the lemma, that
is, Tk cannot make more than one consecutive selection at any point in time.

Proof of first part

We want to show that a case of

..., Tk′ picks, Tk picks, Tk picks, ...

cannot happen. Let |Bk|, |Bk′ | be the corresponding bundle sizes of Tk and Tk′ respectively
before Tk′ makes such a selection as above.

Case 1: Ties broken in favour of Tk′ . It must be that |Bk′ |
wk′

≤ |Bk|
wk

. Then after

Tk′ makes a selection, since we assume Tk chooses next, |Bk′ |+1
wk′

> |Bk|
wk

. Suppose, for a

contradiction, that Tk makes more than one consecutive selection. Then it must be that
|Bk′ |+1
wk′

> |Bk|+1
wk

, so that Tk can continue to make the second selection. However, this

implies |Bk′ |
wk′

+ 1
wk
≥ |Bk′ |+1

wk′
> |Bk|+1

wk
, and cancelling 1

wk
on both ends gives us |Bk′ |

wk′
> |Bk|

wk
,

which is a contradiction.



Case 2: Ties broken in favour of Tk. It must be that |Bk′ |
wk′

< |Bk|
wk

. Then after

Tk′ makes a selection, since we assume Tk chooses next, |Bk′ |
wk′

≥ |Bk|+1
wk

. Suppose, for a

contradiction, that Tk makes more than one consecutive selection. Then it must be that
|Bk′ |+1
wk′

≥ |Bk|+1
wk

, so that Tk′ can continue to make the second selection. However, this

implies |Bk′ |
wk′

+ 1
wk
≥ |Bk′ |+1

wk′
≥ |Bk|+1

wk
, and cancelling 1

wk
on both ends gives us |Bk′ |

wk′
≥ |Bk|

wk
,

which is a contradiction.

Proof of second part

We now prove the second part of the lemma, that is, Tk′ can only make either
⌊
wk′
wk

⌋
or⌈

wk′
wk

⌉
consecutive selections at any point in time.

The above has shown that Tk can only make one selection at a time. Hence, we want to
show that a case of

..., Tk′ picks, Tk picks, Tk′ picks H consecutive times, Tk picks, ...,

where H <
⌊
wk′
wk

⌋
or H >

⌈
wk′
wk

⌉
, cannot happen. Let |Bk|, |Bk′ | be the bundle size of Tk

and Tk′ before Tk′ makes the first such selection in the sequence above.
Case 1: Ties broken in favour of Tk′ . It must be that

|Bk′ |
wk′

≤ |Bk|
wk

. (4)

Then, after Tk′ makes a selection, since we assume Tk chooses next,

|Bk′ |+ 1

wk′
>
|Bk|
wk

. (5)

Thereafter, Tk gets to make a selection and it would be Tk′ ’s turn again, thus |Bk′ |+1
wk′

≤
|Bk|+1
wk

. Suppose that H <
⌊
wk

wk′

⌋
. That means that after Tk′ makes

⌊
wk′
wk

⌋
− 1 consecutive

selections,
|Bk′ |+1+

⌊
w

k′
wk

⌋
−1

wk′
> |Bk|+1

wk
, so that Tk′ cannot make the

(⌊
wk′
wk

⌋)th
selection,

because it’s Tk’s turn. However, this implies

|Bk′ |
wk′

>
|Bk|+ 1

wk
−

⌊
wk′
wk

⌋
wk′

≥ |Bk|+ 1

wk
−

(
wk′
wk

)
wk′

=
|Bk|+ 1

wk
− 1

wk
=
|Bk|
wk

,

which contradicts (4). Now suppose that H >
⌈
wk

wk′

⌉
. That means that Tk′ makes

⌈
wk′
wk

⌉
consecutive selections and yet

|Bk′ |+1+
⌈

w
k′

wk

⌉
wk′

≤ |Bk|+1
wk

, so that Tk′ can continue to make the(⌈
wk′
wk

⌉
+ 1
)th

selection. However, this implies

|Bk′ |+ 1

wk′
≤ |Bk|+ 1

wk
−

⌈
wk′
wk

⌉
wk′

≤ |Bk|+ 1

wk
−

(
wk′
wk

)
wk′

=
|Bk|+ 1

wk
− 1

wk
=
|Bk|
wk

,



which contradicts (5).
Case 2: Ties broken in favour of Tk. It must be that

|Bk′ |
wk′

<
|Bk|
wk

. (6)

Then, after Tk′ makes a selection, since we assume Tk chooses next,

|Bk′ |+ 1

wk′
≥ |Bk|

wk
. (7)

Thereafter, Tk gets to make a selection and it would be Tk′ ’s turn again, thus |Bk′ |+1
wk′

<

|Bk|+1
wk

. Suppose that H <
⌊
wk

wk′

⌋
. That means that after Tk′ makes

⌊
wk′
wk

⌋
− 1 consecutive

selections,
|Bk′ |+1+

⌊
w

k′
wk

⌋
−1

wk′
≥ |Bk|+1

wk
, so that Tk′ cannot make the

(⌊
wk′
wk

⌋)th
selection,

because it’s Tk’s turn. However, this implies

|Bk′ |
wk′

≥ |Bk|+ 1

wk
−

⌊
wk′
wk

⌋
wk′

≥ |Bk|+ 1

wk
−

(
wk′
wk

)
wk′

=
|Bk|+ 1

wk
− 1

wk
=
|Bk|
wk

,

which contradicts (6). Now suppose that H >
⌈
wk

wk′

⌉
. That means that Tk′ makes

⌈
wk′
wk

⌉
consecutive selections and yet

|Bk′ |+1+
⌈

w
k′

wk

⌉
wk′

< |Bk|+1
wk

, so that Tk′ can continue to make the(⌈
wk′
wk

⌉
+ 1
)th

selection. However, this implies

|Bk′ |+ 1

wk′
<
|Bk|+ 1

wk
−

⌈
wk′
wk

⌉
wk′

≤ |Bk|+ 1

wk
−

(
wk′
wk

)
wk′

=
|Bk|
wk

,

which contradicts (7).

C Proof of Theorem 10 (Case 2): i-EF1 and g-WEF1
property of the IWRR algorithm

Recall that we focused our analysis on any two groups Tk, Tk′ ∈ T to show the g-WEF1
property of the IWRR algorithm. Case 1 handled the scenario where wk < wk′ , we will
handle the scenario where wk ≥ wk′ in this case.

Similar to case 1, we define a shifted round r, that consists of all iterations (except the
first) of the original round r, and the first iteration of the next round r + 1. Note that if
a round r + 1 doesn’t exist, we can simply add dummy goods of value zero such that the
setting is well-defined. In the first round, we mentioned that the first good is dropped (let
this be g1); every other good is accounted for in some shifted round.

We make use of Figure 3 to aid in our argument – it illustrates a single shifted round
r. We will argue the satisfiability of g-WEF1 in expectation up to a factor of 1

3 in this one
shifted round; the analysis then extends to all shifted rounds similarly.

Let each entry (i, j) in the matrix illustrated in Figure 3 above be the valuation that an
agent pi ∈ Tk (row) has for good gj ∈ Bk′ (column). Let the unshaded columns correspond
to iterations whereby agents from Tk make a selection, whereas shaded columns represent



Figure 3: Tk’s agent valuations for goods in Bk ∪Bk′ for a shifted round r

the iterations whereby an agent from Tk′ makes a selection. Without loss of generality, we
can label goods and agents in a such way whereby the circled cells belonging to unshaded
columns represent the value of the good that was selected by the corresponding agent from
Tk.

Then, we have that in every shifted round, we are considering a sequence of selections
of the following form: Tk selects multiple consecutive times (unshaded columns), Tk′ selects
(shaded column), Tk selects multiple consecutive times (unshaded columns), Tk′ selects
(shaded column), etc. This structure applies due to Lemma 11.

The values in uncircled cells indicate the maximum valuation that the agent in that
row can have for the good in that column (as a result of how the algorithm works – at
every iteration, the agent from Tk selects a good that gives the group maximum marginal
valuation). The general observation we can make is that for every circled cell with value V ,
all the cells below it on the same column, and to its right – on the same row, or below it –
cannot exceed V in value. This is because we labelled and arranged agents such that those
who make a selection earlier is on a higher row, and goods are picked in order from left to
right.

For each shifted round r ∈ [1,K], let the set of circled cells be SrC and the set of shaded
cells be SrB . In addition, define their respective sum of cell values as u(SrC) and u(SrB).
Then, by applying this concept to all shifted rounds, we have from Definition 9 that

vTk
(Bk) =

K∑
r=1

u(SrC), and vTk
(Bk′ \ {g1}) =

1

wk

K∑
r=1

u(SrB).

Then, in order to show
vTk

(Bk)

wk
≥ vTk

(Bk′ \ {g1})
3wk′

, (8)

it is equivalent to show that

3wk′
K∑
r=1

u(SrC) ≥
K∑
r=1

u(SrB). (9)



In other words, if we can show that at every shifted round, the sum of shaded cells is upper
bounded by (3wk′× sum of circled cells), the property in (8) follows.

The difference between this case and the previous is that now, there can be multiple
consecutive unshaded columns, and hence circled cells are no longer isolated – so our analysis
will not simply be considering for every single circled cell, but for every set of circled cells
in consecutive unshaded columns. For instance, as illustrated in Figure 3, in shifted round
r, the first set is Sr1 = {V11, ..., V1α1}, second set is Sr2 = {V21, ..., V2α2}, etc. Let there be
d sets, and let u(Sri ) be the sum of values in a set (i.e. sum of circled cells’ values in a set
Sri ). For all i ∈ [1, d], αi denotes the number of circled cells in set Sri .

In the following, in every shifted round r, for every set of circled cells Sri (i ∈ [1, d]),
define Sri,BLK and Sri,COL as follows:

1. Sri,BLK = set of shaded cells in the same row and to the right of every circled cell in
Sri (in shifted round r);

2. Sri,COL = set of shaded cells in the first shaded column to the right of Sri , and starting
from the row immediately below circled cell Viαi

.

An example is illustrated in Figure 4.

Figure 4: Tk’s agent valuations for goods in Bk ∪Bk′ for a shifted round r, with additional
quantities indicated using shaded regions

By the definition of u, we have the following:

1. u(SrC) =
∑d
i=1 u(Sri );

2. u(SrB) =
∑d
i=1

(
u(Sri,BLK) + u(Sri,COL)

)
.

Moreover, for any shifted round r, since Sri = {Vi1, ..., Viαi
}, there are αi circled cells forming

Si. Then,
u(Sri,BLK) ≤ wk′ × (Vi1 + ...+ Viα1

) = wk′ × u(Sri ), (10)



because there are a maximum of wk′ shaded columns in a single shifted round. Next, for

each i ∈ [1, d], αi ≥
⌊
wk

wk′

⌋
(by Lemma 11). Thus,

u(Sri,COL) ≤ Viαi
(wk − αi)

≤ Viαi

(
wk −

⌊
wk
wk′

⌋)
≤ Viαi

(
wk(wk′ − 1)

wk′
+ 1

)
≤ Viαi

((⌊
wk
wk′

⌋
+ 1

)
(wk′ − 1) + 1

)
≤ Viαi

((αi + 1)(wk′ − 1) + 1)

= Viαi
(αiwk′ + wk′ − αi)

≤ Viαi
(2αiwk′)

≤ 2wk′ × u(Sri ),

(11)

where the last inequality is derived from the fact that Vi1 ≥ Vi2 ≥ ... ≥ Viαi
and u(Sri ) =∑αi

j=1 Vij , implying αiViαi ≤ u(Sri ).
Then, combining (10) and (11), we obtain

u(Sri,BLK) + u(Sri,COL) ≤ 3wk′ × u(Sri ) (12)

By summing (12) on both sides over all i ∈ [1, wk] and shifted rounds r ∈ [1,K],

K∑
r=1

wk∑
i=1

(
u(Sri,BLK) + u(Sri,COL)

)
≤

K∑
r=1

(3wk′ × u(Sri )) (13)

and since u(SrC) =
∑d
i=1 u(Sri ) and u(SrB) =

∑d
i=1

(
u(Sri,BLK) + u(Sri,COL)

)
, it follows that

K∑
r=1

u(SrB) ≤ 3wk′
K∑
r=1

u(SrC),

which gives (9) as desired.

D Discussion on Additional Notions of Fairness

Traditional notions of individual fairness have recently seen their group counterparts intro-
duced [29, 20]. However, when we look at allocating to individuals in groups, new oppor-
tunities emerge for us to characterise fairness notions specific to this setting. In addition
to our studies on attaining individual and group fairness simultaneously, we introduce fair-
ness properties that rely on the relationship between individuals and their group structure.
By doing so, we seek to provide further insight into the intricacies of fairness in allocation
problems involving groups of agents.

D.1 Proportionally Envy-Free (PEF) Allocations

The first property we introduce, PEF, is a hybrid (and extension) of two existing notions of
fairness – individual proportionality (i-PROP) [30] in the fair division literature, and g-WEF
introduced in Section 2. First, we restate the definition of a relaxed version of i-PROP.



Definition 12 (Proportional up to one good). An allocation A = (A1, . . . , An) is individ-
ually proportional up to one good (i-PROP1) if, for any agent pi ∈ N , there exists a good

g ∈ G \Ai such that vi(Ai ∪ {g}) ≥ vi(G)
n .

Next, we proceed to define PEF. A PEF allocation can be interpreted as a middle-ground
between i-PROP and g-WEF. It mandates that every agent value their bundle as much as
they value any other group’s bundle, normalized by the group size. As usual, we introduce
the “up to one good” relaxation of this notion.4

Definition 13 (Proportionally envy-free up to one good). An allocation A = (A1, . . . , An)
is proportionally envy-free up to one good (PEF1) if, for any agent pi ∈ N and group Tk ∈ T ,

there exists g ∈ Bk \Ai such that vi(Ai ∪ {g}) ≥ vi(Bk)
wk

.

It is known that i-EF1 implies i-PROP1 [31]. Thus, a natural follow-up question would
be whether i-EF1 implies PEF1, and it turns out that it is true. In fact, there is also a
connection between PEF1 and i-PROP1, as the following proposition postulates.

Proposition 14. i-EF1 implies PEF1. Additionally, when all of the group sizes (and hence
weights) are equal, PEF1 implies i-PROP1.

Proof. For the first part, we start by noting that from the definition of i-EF1, for all pi′ ∈ Tk,
there exists some gi′ ∈ Ai′ such that vi(Ai) ≥ vi(Ai′) − vi(gi′). Summing both sides over
agents pi′ ∈ Tk, we obtain

wkvi(Ai) ≥
∑

i′:pi′∈Tk

[vi(Ai′)− vi({gi′})]. (14)

The right-hand side can be simplified as follows, with gmax being the maximally valued good
by pi in the bundle Bk \Ai: ∑

i′:pi′∈Tk

vi(Ai′)−
∑

i′:pi′∈Tk

vi({gi′})

= vi(Bk)−
∑

i′:pi′∈Tk

vi({gi′})

≥ vi(Bk)− wkvi(gmax)

Combining this with (14), we get

vi(Ai) ≥
vi(Bk)

wk
− vi({gmax})

⇒ vi(Ai ∪ {gmax}) ≥
vi(Bk)

wk
. (15)

Thus, PEF1 is satisfied.
We now prove the second part of the proposition. Since the weights are equal, in this

part, we write it as w. From the definition of PEF1, and summing both sides of (15) over
all groups Tk ∈ T (recall that there are ` groups in total), we obtain

`× vi(Ai ∪ {g}) ≥
∑

k:Tk∈T

vi(Bk)

w
. (16)

4We adopt a similar relaxation to the traditional i-PROP property in the literature, having the good g
added to the left-hand side of the equation rather than removing from the right-hand side.



Hence, since w` = n, we have that

vi(Ai ∪ {g}) ≥
∑

k:Tk∈T

vi(Bk)

w`

=

∑
k:Tk∈T vi(Bk)

w`
=
vi(G)

n
. (17)

for some g ∈ G \Ai. Thus, i-PROP1 is satisfied.

As such, the SM-IWRR and IWRR algorithms proposed in section 3 naturally satisfies
PEF1 (and i-PROP1 in the case of equal-size groups) in addition to the guarantees already
shown.

D.2 Approximately Group Stable Allocations

The second property that we introduce is group stability. There are scenarios whereby agents
are able to declare a one-time membership to a group, and other instances where they can
opt not to join any group at all, before the allocation process begins. This is in contrast
to settings whereby agents inherently belong to certain groups, such as ethnic groups in
housing allocation problems [9]. We introduce the notion of group stability, and consider
a relaxation of the concept, which we will term group ε-stability for use in our allocation
problem. The significance of introducing such a notion is also exemplified in settings where
the strategic reporting of membership to groups may result in undesirable effects. For
instance, in the conference peer review setting, authors have the option to declare a track
for the paper. This may invite strategic misreporting about the most appropriate track for
the paper, in a bid to improve the chances of acceptance. We would like to introduce a
notion that discourages this behaviour.

One key thing to note here is that the notion of stability here is implicit, in the sense
that the agent will not be able to change their group membership after being in a group.
However, an allocation satisfying such a property would have more merit as agents can be
assured that they could not have been much better off by misreporting their preferences.

An allocation mechanismM : N×G×T ×V → |N |G is a function that takes in the set of
agents, goods, group memberships, and valuations (where V is the set of all agents’ valuation
functions), and outputs an allocation of goods to agents. We only consider deterministic
allocation mechanisms, but the definitions can easily be extended to consider randomized
ones as well.

We now formally introduce the relaxed notion of the group stability property.
In fact, this relaxed notion is essentially an “up to one good” variation, and in many

real-world settings, one could argue that a single good has little utility, thereby giving rise
to an almost stable property as defined below.

Definition 15 (Group ε-stability). An allocation A = (A1, . . . , An) returned by some mech-
anism M(N,G, T , V ) is group ε-stable if the following conditions hold:

(i) For every agent pi ∈ N , there exists some good g ∈ A′i such that

vi(Ai) ≥ vi(A′i \ {g}),

where M(N,G, T ′, V ) = A′ = (A′1, ..., A
′
n), and T ′ is equivalent to T with the differ-

ence being that pi is now in a group on its own.

(ii) For every agent pi ∈ N , and every group Tk ∈ T , there exists some good g ∈ A′i such
that

vi(Ai) ≥ vi(A(k)
i \ {g}),



where M(N,G, T (k), V ) = A(k) = (A
(k)
1 , ..., A

(k)
n ), and T (k) is defined by taking T and

moving agent pi to group Tk.

Intuitively, (i) caters for the case whereby agents are able to choose not to join a group
prior to the allocation process. Then, the property guarantees that they will not have
“regretted” their decision. (ii) is similar in this regard, but the “no-regret” is with respect
to reporting membership to other groups instead.

The next question that arises is whether such a property is achievable. We give two
theorems that provide a positive answer.

Theorem 16. The IWRR algorithm returns an allocation that is group ε-stable.

Proof. We first prove that IWRR returns an allocation that satisfies (ii) of the group ε-
stability property. Suppose that some agent pi ∈ N switches group from Tk to Tk′ . By the
individual round-robin nature of the IWRR, every agent gets one good per round, regardless

of their group. Let g
(d)
i and g

′(d)
i be the dth good (i.e, in round rd) that pi received as part of

being in Tk and Tk′ respectively. Let there be a total of K rounds. Then, since each agent

selects their favourite good at every round, we must have that vi({g(d)i }) ≥ vi({g′(d+1)
i })

for all d = 1, . . . ,K − 1. Thus, for all agents pi ∈ N belonging to group Tk, where Ai is
the bundle received by being in the group Tk, and A′i is the bundle received by declaring
membership to any other group Tk′ , we have that

K−1∑
d=1

vi({g(d)i }) + vi({g(K)
i }) ≥

K∑
d=2

vi({g′(d)i })

where the left-hand side is equal to vi(Ai) and the right-hand side is equal to vi(A
′
i\{g′

(1)
i }),

obtained by a relabelling of the index d. The proof that IWRR returns an allocation that
satisfies (i) is similar to that of (ii), where we consider Tk′ to be an empty group initially,
and if pi joins, then it becomes a singleton. The result follows.

Given that the IWRR algorithm is group stable up to one good, we can say the same
about the SM-IWRR algorithm, with the proof being a simple combination of Theorem 16
and the representative good idea.

Theorem 17. The SM-IWRR algorithm returns an allocation that is group ε-stable.

In summary, we have shown that the SM-IWRR and IWRR algorithms also have group
stability guarantees, further strengthening the fairness guarantees provided by these algo-
rithms.


