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Abstract

Understanding human decision processes has been a topic of intense study in differ-
ent disciplines including psychology, economics, and artificial intelligence. Indeed,
modeling human decision making plays a fundamental role in the design of intelli-
gent systems capable of rich interactions. Decision Field Theory (DFT) [3] provides
a cognitive model of the deliberation process that precedes the selection of an op-
tion. DFT is grounded in psychological principles and has been shown to be effective
in modeling several behavioral effects involving uncertainty and interactions among
alternatives. In this paper, we address the problem of learning the internal DFT
model of a decision maker by observing only his final choices. In our setting choices
are among several options which are evaluated according to different attributes. Our
approach, based on Recurrent Neural Networks, extracts underlying preferences com-
patible with the observed choice behavior and, thus, provides a method for learning
a rich preference model of an individual which encompasses psychological aspects
and which can be used as a more realistic predictor of future behavior.

1 Introduction

Preferences play a fundamental role in the understanding of human behavior and in the
design of intelligent systems. On the one side, they lie at the core of decision making, a
task which is central in describing how humans function in everyday life. On the other
hand, qualitative and quantitative measures of satisfaction or utility, are at the basis of
optimization in complex problems, a challenge which artificial agents have been successful
in tackling.

In this paper we address the challenge of automatically extracting information about an
individuals preferences by observing his choice behavior. Preference learning [6, 18, 15, 11]
has been a topic of intense investigation by the AI community. This body of work has been
crucial in enabling the use of preference models developed in the context of artificial agents
as their direct definition is often impractical [6, 19]. However, these approaches are less
suitable to model human behavior when it comes to decision making. Several properties
which are necessary for optimization, such as, transitivity for example, infringe their ability
to accommodate behavioral violations of rational principles.

On the other hand, in the area of psychology, cognitive computational models have been
designed for the purpose of faithfully capturing human behavior in decision making. In
these models, the parameters are often defined by hand in order to accurately replicate
average behavior of individuals and, to the best of our knowledge, no method capable of
automatically inferring them has been proposed.

In this paper we focus on Multialternative Decision Field Theory (MDFT) a dynamic-



cognitive approach to decision making based on the idea that the process of deliberation
consists of a sequential sampling and accumulation of information over time. MDFT for-
mally generalizes other models of decision making such as the classical multi-attribute deci-
sion model [9] and preferential choice model [5, 21]. MDFT is able to replicate fundamental
aspects of human decision making such as, for example, violation to transitivity, prefer-
ence reversal under time pressure and the well known effects of similarity, attraction and
compromise [3].

In this paper we present a method based on machine learning and, in particular Recurrent
Neural Networks, capable of inferring an underlying MDFT model compatible with the
observed choice behavior on an individual. A key aspect of our method is that it learns
in the presence of uncertainty and partial information. In fact, the training data contains
only examples of choices and deliberation times and does not include how attention was
allocated to the attributes during the deliberation process. In our experimental results we
compare the original and learned models in terms of similarity of both the produced choice
distributions and the initial evaluations for the options. As shown in Section 7, our learning
approach is able to recover a model which is extremely close to the original one in terms of
both measures.

Our work is novel as it tackles the problem of learning automatically a cognitive archi-
tecture of human decision making. From the preference learning perspective, it provides
a way to extract multi-attribute preferences in the context of a complex systems involving
stochasticity and bounded rationality. From a cognitive standpoint, our method allows to
use these architectures at the level of the individual. Learned MDFT models can be used as
behaviorally more accurate predictors of future choices in the context of recommender sys-
tems. Our work is also useful in settings where sets of options are presented simultaneously
to a user (e.g., option slates). In fact, since the learned model inherits the characteristics
of MDFT it is able to predict how choices change if different options are presented as com-
petitors. Moreover, our results are relevant in the context of artificial personal assistants
which often need to recover a model of the supported individuals by observing their behav-
ior. The capability of automatically inferring an MDFT model of the user can allow the
agent to have more realistic representation of his decision making behavior. The paper is
organized as follows. The first two sections provide background on MDFT and Recurrent
Neural Networks. In Section 4 we discuss related work. In Section 5 we formally define the
learning problem which we tackle in Section 6. In Section 7 we describe the results of our
experimental study and we then conclude, in the last section, with future work directions.

2 Multialternative Decision Field Theory

Decision field theory (DFT) is a dynamic-cognitive approach that models human decision
making based on psychological principles [3]. DFT models the preferential choice as an
accumulative process in which the decision maker attends to a specific attribute at each time
to derive comparisons among options and update his preferences accordingly. Ultimately the
accumulation of those preferences forms the decision maker’s choice. DFT has been extended
by [17] to multialternative preferential choice (denoted MDFT, for Multialternative DFT),
where an agent is confronted with multiple options and equipped with an initial personal
evaluation for them according to different criteria called attributes. For example, a student
who needs to chose a main course among those offered by the cafeteria will have in mind an
initial evaluation of the options in terms of how tasty and healthy they look. More formally,
MDFT, in its basic formulation [17], is composed of:

Personal Evaluation: We assume a set of options {o1, . . . , on} and a set of attributes
{A1, . . . , AJ}. The subjective value of option oi on attribute Aj is denoted by mij and



stored in matrix M for all options and attributes. In our example, let us assume that the
cafeteria options for main course are Salad (S), Burrito (B) and Vegetable pasta (V) and
that the attributes considered are Taste and Health. Matrix M containing the student’s
initial preferences for the three options according to the two attributes could be defined as
follows:

M =

1 5
5 1
2 3


In this matrix the rows correspond to the options in order (S,B, V ) and the columns to the
attributes Taste and Health. For example, we can see that Burrito has a high preference
in terms of taste but low in terms of nutritional value.

Attention Weights: Attention weights are used to express how much attention is
allocated to each attribute at each particular time t during the deliberation process. We
denote them by a one-hot column vector W(t) where Wj(t) is a value denoting the attention
to attribute j at time t. We adopt the common simplifying assumption that, at each point
partial, the decision maker attends to only one attribute. Thus, Wj(t) ∈ {0, 1},∀t, j. In our
example, where we have two attributes, at any point in time t, we will have W(t) = [1, 0], or
W(t) = [1, 0], representing that the student is attending to, respectively, Taste or Health.
In general, the attention weights change across time according to a stationary stochastic
process with probability distribution w, where wj is the probability of attending to attribute
Aj . In our example, defining w1 = 0.55 and w2 = 0.45 would mean that at each point in
time, the student will be attending Taste with probability 0.55 and Health with probability
0.45. In other words, Taste matters slightly more to this particular student than Health.

Contrast Matrix: Contrast matrix C is used to compute the advantage (or disadvan-
tage) of an option with respect to the other options. For example, C can be defined by
contrasting the initial evaluation of one alternative against the average of the evaluations of
the others. In this case, for three options, we have:

C =

 1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1


At any moment in time, each alternative in the choice set is associated with a valence

value. The valence for option oi at time t, denoted vi(t), represents its momentary advantage
(or disadvantage) when compared with other options on some attribute under consideration.
The valence vector for n options o1, . . . , on at time t, denoted by column vector V(t) =
[v1(t), . . . , vn(t)]T , is formed by:

V(t) = C×M×W(t) + ε(t) (1)

Where ε(t) ∼ N(0, σ2) is random noise with zero mean. In our example, assuming zero
noise, the valence vector at any time point in which W(t) = [1, 0], is V(t) = [(1− 7)/2, (5−
3)/2, (2− 6)/2]T .

In MDFT preferences for each option are accumulated across the iterations of the de-
liberation process until a decision is made. This is done by using the Feedback matrix,
which defines how the accumulated preferences affect the preferences computed at the next
iteration. This interaction depends on how similar the options are in terms of their initial
evaluation contained in matrix M. Intuitively, the new preference of an option is affected
positively and strongly by the preference it had accumulated so far, it is strongly inhibited
by the preference of other options which are similar and this lateral inhibition decreases as
the dissimilarity between options increases.



Clearly, the concept of similarity plays a crucial role. A common way to define it is to
project the initial evaluations contained in M on the directions of indifference and dominance
respectively [8]. Formally, this is done by defining distance matrix D = [Dij ] where Dij =
(Mi −Mj)×Hb × (Mi −Mj)

T and Hb is defined as

Hb =
1

2
×
[
b+ 1 b− 1
b− 1 b+ 1

]
(2)

where constant b determines the ratio of emphasis on the dominance direction with respect
to the indifference direction.

Intuitively, the difference between competitive options will have a larger component along
the line of indifference while the difference between two options where one is dominating
will have a stronger component along the line of dominance. In order to simulate the
common human behavior where dominated options are rapidly discarded during a decision
process, more emphasis should be given to differences in the dominance direction than in
the indifference direction. This is achieved whenever b > 1. At this point matrix S can be
defined by mapping the distance via Gaussian function:

S = δ − φ2 × exp (−φ1 ×D2) (3)

where δ, φ1, φ2 are the identity matrix, the decay parameter, and the sensitivity parameter
respectively. The identity matrix δ is used to model positive self feedback. We can also see
that when i 6= j, and, thus, δij = 0, we have a lateral inhibition −φ2×exp (−φ1 ×D2) which
depends on the distance D between options. In our example, if we set b = 10, φ1 = 0.01
and φ2 = 0.1 we get the following S matrix:

S =

+0.9000 −0.0000 −0.0405
−0.0000 +0.9000 −0.0047
−0.0405 −0.0047 +0.9000


At any moment in time, the preference of each alternative is calculated by

P(t+ 1) = S×P(t) + V(t+ 1) (4)

where S × P(t) is the contribution of the past preferences and V(t + 1) it the valence
computed at that iteration. Usually the initial state P(0) is defined as 0, unless defined
otherwise due, for example, to prior knowledge on past experiences.

As, feedback matrix S is a function of personal evaluations M and parameters θ =
〈φ1, φ2, b〉 and for us C is always defined as described above, we will refer to an MDFT
model by 〈M, θ,w, σ2〉. Given an MDFT model one can simulate the process of deliberating
among the options by accumulating the preferences for a number of iterations. The process
can be stopped either by setting a threshold on the preference value and selecting whichever
option reaches it first or, by fixing the number of iterations and then selecting the option
with highest preference at that point. In general, different runs of the same MDFT model
may return different choices because of the uncertainty on the attention weights distribution.
This allows MDFT to effectively replicate behaviors observed in humans [4].

3 Recurrent neural networks

Artificial neural networks [20] are one of the most powerful and expressive learning models
that are successfully used in many real world problems. However, conventional neural
networks are not suitable for sequential problems with variable length where the current



prediction depends on the previous predictions. Recurrent neural networks (RNNs)[20] are
an extension of conventional neural networks designed to deal with such problems. In their
simplest form, at any given point in time t, RNNs maintain a state variable ht as a function
of current input xt and the value of the previous state ht−1, that is, ht = fη(xt, ht−1) where
η is the set of parameters to be learned. In addition, a loss function L(yt, ht), where yt is the
observed target value at time t, is appropriately defined to quantify the error of prediction
at each time. The learning objective is to minimize an aggregate function of losses (e.g. the
average, the sum or, simply, the last loss value) subject to parameters η. This objective
is achieved by iteratively running back-propagation algorithm [20], or one of its improved
versions [1], on the training data.

4 Related work

Preference learning [6] is about inducing predictive preference models from empirical data.
Although learning preferences can be reduced to conventional machine learning approaches
in some cases, in general, it is a more challenging task because of the complexity of the output
(which usually takes the form of rankings or partial orders) and the incompleteness of the
input (such as indirect feedback or implicit preference information) [6]. Most preference
learning tasks are defined by an option input space and a label output space. The output
space is used to define the orderings. For example in label ranking the goal is to learn a
ranking function mapping the input space into permutations of the labels. The training data
for these tasks is usually a set of pairwise comparisons. Our setting is significantly different
from those considered in these tasks. First of all our training data is made of choices, and
not pairwise comparison. Furthermore, these choices are only the final outcome of a dynamic
process, which we aim at replicating as a whole.

In another related research, [2] presents a model which combines utility-based models
of preference in economics with Bayesian inference to learn complex structured preferences.
Their model predicts the users choice based on previous choices and also on the relationships
between new and old options. Our work is different in that we focus on cognitive models of
preferences, rather than economic models, and, while they assume prior knowledge about
relations between options, we do not rely on any local information on options’ preferences.

The most closely related work is presented in [16] where the authors study the problem of
learning personal evaluations in a MDFT model using RNNs. What is presented here differs
from [16] in several fundamental ways. We consider a threshold on preference as a stopping
criterion instead of the number of iterations. This drastically complicates the problem of
inducing personal evaluations as noted in [3] in the case of a maximum likelihood estimation
approach. Moreover, our RNN architecture allows to both learn personal evaluations as well
as the attention weights. In other words, we are able to learn how much an individual cares
about a given attribute, in addition to how much the individual likes an option with respect
to that attribute. Finally, we present a more extensive experimental study and we provide
a comparison in terms of time efficiency and solution quality with respect to a maximum
likelihood method based on [17].

5 Problem formulation

In this section we formalize the problem of learning parameters compatible with a decision
maker’s observed choice behavior assuming an underlying MDFT model.

Problem formulation Given a set of options O = {o1, . . . , on} we consider a setting
in which a user is confronted with k choice problems. In each problem, choosing among
a subset of O, namely option-set, taking into account a set of attributes {A1, . . . , AJ}.



Given a dataset of observed choice distributions D = {〈d1, τ1〉, . . . , 〈dN , τN 〉}, where di is
the observed distribution of choices for ith option-set and τi is the deliberation preference
threshold and assuming fixed values for θ and σ2 parameters, we want to find a M̂ and/or

ŵ in such a way that the MDFT M̂ = 〈M̂, θ, ŵ, σ2〉 generates a similar choice distribution
as the one observed in D.

Evaluation One option to compare two choice probability distributions is the Kullback-
Leibler (KL) divergence [12]. It is a measure that quantifies in bits how far a probability dis-
tribution p = {pi} is from another distribution q = {qi}, formally Dkl(p||q) =

∑
i pi log(piqi ).

However, a problem with using KL-Divergence as a distance measure is that it is not
symmetric. We, thus, use the Jensen-Shannon Divergence [13] which is an extension of
KL-Divergence that overcomes this problem:

Djs(p||q) =
DKL(p||p+q2 ) +DKL(q||p+q2 )

2
(5)

Let, hD, hM̂ denote the histogram of choices in D and generated by M̂, respectively.
In the next sections we will describe a learning approach and show how it minimizes
Djs(hD||hM̂) .

6 Learning preference in an MDFT model

We recall that each time an MDFT model is run on a set of options {o1, . . . , ok}, an option is
selected after a sequence of deliberation steps, where, at each step, attention to attributes is
allocated according to a specific attention vector (see Section 2). We can thus associate the
deliberation sequence with a sequence of attention vectors: 〈W(1), . . . ,W(T )〉, which we
will call attention sequence for short. In our running example, if the student first considered
health, then taste and then health again, the attention sequence would be 〈[1, 0], [0, 1], [1, 0]〉.
It is easy to see, that if, in addition to dataset D we also had the associated attention
sequences, then we could easily map the problem of learning an MDFT model of the user’s
behavior into a multi-class classification problem. Options 1, . . . n would correspond to k
classes, each sequence of attention vectors 〈W(1), . . . ,W(T )〉 would be an input, and the
selected option would be the output. In what follows we propose a learning approach based
on this intuition designed to bypass the absence of information on the attention sequences.

6.1 Learning architecture

As a first step we show how we can map an MDFT model into a recurrent neural network
architecture as the one depicted in Figure 1. A pass over the network, from input to output,
at time t corresponds to one iteration of the MDFT model. The network is structured into
two sub-networks, respectively at the top and bottom of Figure 1. The top sub-network
is responsible for computing the valences (as defined in Equation 1), while the bottom one
corresponds to the preference update (as defined in Equation 4). As it can be seen, there is
a one-to-one correspondence between networks’ weights and the parameters of the MDFT.
More in detail, starting from the top sub-network, the first layer of nodes, denoted with
{1, . . . , J}, corresponds to the attributes and the weights of their inputs, {wt1, . . . wtJ} are
the elements of the attention weight vector (at time t). The weights of the connections
between this first layer of nodes and the second one correspond to the initial evaluations
contained in matrix M and the weights between the second and third layer correspond to
the values of contrast matrix C. Notice that the third layer of nodes corresponds to the
valence values, vt1, v

t
2, . . . , v

t
k, one for each option. The inputs of the bottom sub-network are

the preferences from the previous iteration pt−11 , pt−12 , . . . , pt−1n , and the weights between the



two layers are the values of the S matrix. The output of the two sub-networks are combined
to synthesize the new preferences at time t.

One deliberation process of length T is simulated by cycling over the network for T times
and obtaining final preferences {PT1 , PT2 , . . . , PTk }. We treat the final preferences as scores
of a multi-class classifier and use hinge loss to optimize the parameters:

loss(P, c) =

∑|P|
i 6=c max(0,m− Pc + Pi))

|P| − 1
(6)

where P is the predicted preference vector, c is the ground-truth choice with predicted
preference Pc, and m is the margin parameter of hinge loss. During training the C param-
eters are fixed as defined in the description of the contrast matrix C in Section 2. M or w
parameters are updated by error propagation and S parameters are recomputed given the
new M or w parameters and constants φ1 and φ2 (see Equation 3).
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Figure 1: Recurrent neural network representing an MDFT model. a - The architecture of
a single unit of the network. b - A roll-out representation of the deliberation process using
the RNN. At each time step a sample of w is used as input.

6.2 Training

It is easy to see that it is not possible to train the RNN described above using choice dataset
D because we don’t have any information about the attention sequences that generated the
choices. However, attention sequences are the only way in which uncertainty is manifested
in the MDFT model, that is, it is a difference in attention sequences which makes it possible
to obtain different choices from the same set of initial evaluations. Given this, we conjecture
that sequences that generate the same options will have a common trend in terms of overall
attention allocated to each attribute during deliberation. We corroborate our hypothesis
with an extensive experimental study. In Figure 2 we show results for 4 samples, generated
from a single MDFT model with three options and two attributes, and consisting each of
100 deliberation simulations involving 100 iterations each. The plots show, for each option
and for each iteration, the percentage of previous iterations at which attention was allocated
to the first attribute (i.e., when the attention vector was W2, as defined in Section 2). The
different colors correspond to different choices (o1, o2 and o3, respectively) and the legends
in each of the 4 sub-figures show the number of times that a particular option was returned
over the 100 trials. From the figure we can see that each option has an attention allocation
trend that, on average, is completely different from the other options. We can also see



that different samples generate very similar trends for the same options, confirming our
hypothesis.
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Figure 2: Average percentage of iterations at which attribute A1 is attended for a given
number of deliberation steps. Each sub-figure is the average over 100 samples. All samples
are generated by the same MDFT.

In conclusion we see that the final choice will be the same for all attention sequences
that follow a particular option trend. Therefore, we can use any subset of those sequences
interchangeably for training our model as long as the average trend approximately remains
the same. Based on this, we design an algorithm that adjusts the output of the RNN so
that it aligns with the frequencies of returned options in the dataset.

We explain this algorithm with a simplified example. Consider an MDFT with three
options {o1, o2, o3} and two attributes A1 and A2, similar to the one described in Section 2.
Let us assume that we run this model for 10 times and that three options are returned with
frequencies 〈3, 2, 5〉. In other words, o1 was selected 3 times out of 10, o2 2 times and o3
the remaining 5. Now let us assume that we run the estimated model represented by RNN
10 times and that the three options are returned with the following frequencies: 〈6, 1, 3〉.
In Table 1 (first three columns) we show an example of returned sample set with final
preferences and choices. In the first phase of the algorithm, we sort the samples generated
for each otpion by the RNN in decreasing order of the preference they assign to the selected
option (as shown in Table 1). The intuition is that samples with higher preference are better
representatives for the selected option.

Sample # Predicted
Preferences

Predicted
Choice

Aligned
with

1 〈5, 3, 1.5〉 1 1
2 〈5,−3,−1.5〉 1 1
3 〈2.5, 1, 1.5〉 1 1

4 〈2, .3,−1.5〉 1 3*

5 〈1, 0.3,−1.5〉 1 2*

6 〈1, 1.4, .5〉 1 3*

7 〈1, 3, 1.5〉 2 2

8 〈−1, 3, 10〉 3 3
9 〈2, 4, 7〉 3 3
10 〈−1, 1, 2.5〉 3 3

Table 1: Samples generated from the learned model. * indicates re-assigned choice.



Next, we reassign some of the samples to a different option so to align with the frequencies
observed in the data set. In our estimated sample set we have 6 samples where o1 is selected,
1 where o2 is selected and 3 where o3 is selected, whereas we want to have 3 for o1, 2 for o2
and 5 for o3. In order to obtain this we keep the first three samples for o1 and we reassign the
last three, which are in excess and weaker representatives for o1, assigning one of them to o2
and the other two to o3. Reassignments can be done randomly (as in our implementation),
or based on the preference assigned by the sample to the choice they have been reassigned
to.

The result of the reassignment is shown in the last column of Table1.
At this point the hinge loss error defined in Equation 6 can be computed and propagated

(e.g., for sample 4 of Table 1 we have Pc = −1.5 and P1 = 1). In this way, the training
procedure penalizes the miss-aligned samples and the error propagation causes the personal
evaluation of more frequent options to shift towards most frequent attention sequences and
vice-versa. The training algorithm, thus, iteratively improves the alignments and finds the
appropriate attention sequence for each option.

Summarizing, given dataset D = {〈d1, τ1〉, . . . , 〈dN , τk〉} of size N , training proceeds as
follows:

1. Initialization: All parameters of the RNN network are initialized randomly, except
for the contrast parameters C and θ and σ2 which are fixed as previously described
in Section 5.

2. Sample generation and preference prediction: The RNN is used to generate new
samples for each option-set corresponding to d1, . . . , dN . Each sample in option-set i is
generated by cycling through the network until the maximum preference exceeds the
deliberation preference threshold τi. For each sample, the selected choice is computed
by applying argmax to the final preferences.

3. Alignment: An alignment between each sample in the data set and one in the new
sample set is obtained as described above.

4. Parameter update: Hinge error for all samples is computed using Equation 6 and
finally personal evaluation values M and/or attention weights w are updated accord-
ingly using back-propagation algorithm. Once the M are computed, the S values are
updated accordingly.

7 Experimental Results

In this section we report experimental results obtained from synthetic datasets generated
from MDFT models.

Data Generation We generated 4 datasets each containing 10 problems. In each
problem a set of options of size no is randomly generated using a uniform distribution in
[1, 10] and then ns distinct sub-sets of size 3 are chosen as option-sets. Using these option-
sets we create MDFT models with parameters generated randomly according to uniform
distributions in [0.002, 0.05], [1, 20], [0, 1], [0.3, 0.7] for φ1, φ2, b, σ2, and w, respectively.
Given an MDFT model, we use it alongside a random threshold sampled uniformly from
interval [5, 15] to obtain the final choice distributions and create the (choice, deliberation
preference threshold) pairs as defined in Section 2. Table 2 summarizes the characteristics
of the datasets.

Baseline Method [17] provide the likelihood function formula for choosing an option
from a set based on the MDFT model when the deliberation time is known. Based on this,
we develop a method to use as a comparison to the RNN-based approach.



Dataset # options (no) # sub-sets (ns)

#1 5 10
#2 7 10
#3 10 10
#4 10 20

Table 2: Four different datasets are generated with different option sizes. From each set of
options, ns sub-sets with size 3 are selected.

Given the likelihood function, it is possible to analytically obtain the parameter estimates
from data using, for example, a maximum likelihood approach. This is not applicable when
the deliberation time is unknown. As an alternative, we use a simulation method to estimate
the likelihood function and a general purpose optimizer to find the maximum likelihood
estimate for w and M parameters. We denote this approach by MLE.

Implementation We use the Pytorch library [14] to implement the Recurrent Neural
Network described in Section 6, RMSprop optimizer [7] with learning rate 0.005, and multi-
margin hinge loss with margin 0.01. We train each model for 150 iterations using 100
samples per MDFT in each iteration. We also stop training early whenever the loss error
drops under 10−5.

MLE is implemented in MATLAB and pre-compiled to speed-up the calculations. MAT-
LAB function fminsearch is used to find the parameter estimates that maximize the like-
lihood function. We set the maximum number of iterations to 1000, and of simulations to
104. Initial values are randomly generated.

After training is completed, the learned models are used to produce the choice distribu-
tions over the options (denoted with hM̂ in Section 5).

7.1 Learning Personal Evaluations M

In Table 3 we show results comparing the choice distributions of the learned models with
the ones produced by the original MDFTs using distance Djs (defined in Section 5). As it
can be seen, the RNN method consistently outperforms MLE by a wide margin.

Dataset
RNN MLE

mean std mean std

#1 0.012 0.015 0.103 0.129
#2 0.011 0.007 0.149 0.140
#3 0.012 0.012 0.173 0.091
#4 0.011 0.009 0.104 0.072

Table 3: Mean and standard deviations of Jensen-Shannon distance Djs between choice
distributions for estimating M.

We recall that our primary goal is to learn an MDFT model capable of generating a
decision making behavior similar to the one observed. However, since our data is generated
starting from MDFTs, we also consider the similarity of the orderings of the options, with
respect to each attribute, between the ground truth M matrix and in the learned matrix
M̂. To do this we consider Kendall’s τ ranking correlation coefficient [10]. This measure
quantifies the distance between two rankings as the ratio of the number of pairwise miss-
orderings to the number of all possible pairs. Table 4 shows the results of this coefficient
on the datasets. As it can be seen, our RNN comes very close to recovering the initial
rankings for options. It is interesting to observe that, even when the information about the
relations between the options is sparse as in dataset #3 and #4, RNN is able to recover a



significant percentage of the ordering between options, while MLE under-performs in this
respect.

Dataset
RNN MLE

mean std mean std

#1 0.220 0.121 0.305 0.137
#2 0.305 0.086 0.348 0.122
#3 0.298 0.073 0.420 0.051
#4 0.309 0.037 0.369 0.109

Table 4: Mean and standard deviations of Kendall’s τ distance between the estimated M̂
and the actual M.

7.2 Learning Attention Weights w

We recall that attention weights represent the importance given to each attribute. We use
the Jensen-Shannon distance between the estimated attention weights and the original ones
to measure the quality of the learned parameters. The results, depicted in Table 5, show
how both methods are able to fully recover the attention weights. Similar results (which we
omit for the sake of space) hold for the divergence between the predicted choices and actual
choices. As expected, our results show that learning attribute importance is an easier task
than recovering personal evaluations.

Dataset
RNN MLE

mean std mean std

#1 5.4e-5 3.0e-5 2.9e-5 1.5e-5
#2 6.8e-5 3.7e-5 3.0e-5 1.5e-5
#3 4.2e-5 2.7e-5 3.0e-5 1.6e-5
#4 3.0e-5 1.5e-5 2.7e-5 1.0e-5

Table 5: Mean and standard deviations of Jensen-Shannon distance Djs between the esti-
mated ŵ and the actual w.

7.3 Learning Personal Evaluations M and Attention Weights w si-
multaneously

The results shown in Table 6 demonstrate that RNN is able to find a combination of
personal evaluations M and attention weights w in such a way that the resulting MDFT
produces a choice distribution very close to the original MDFT. In this respect it outperforms
MLE. However, we observe that, for both methods, these results don’t necessarily guarantee
convergence of the individual parameters, as can be seen for w in Table 7. In fact, the
increased number of free parameters results in more combinations generating similar choice
distributions.

We conclude this section with results comparing the two methods in terms of time
efficiency. As it can be seen in Table 8, RNN is faster than MLE when learning personal
evaluations M alone or jointly with w, whereas the opposite holds when only attention
weights w are learned. An explanation of this is that the task of learning w is simpler and
that the overhead involved in the RNN method infringes its competitiveness in this case.



Dataset
RNN MLE

mean std mean std

#1 0.011 0.018 0.023 0.029
#2 0.012 0.011 0.169 0.149
#3 0.014 0.016 0.169 0.190
#4 0.010 0.008 0.097 0.084

Table 6: Jensen-Shannon distances Djs between choice distributions for estimating M and
w.

Dataset
RNN MLE

mean std mean std

#1 0.070 0.050 0.029 0.042
#2 0.040 0.041 0.022 0.026
#3 0.051 0.045 0.019 0.030
#4 0.040 0.036 0.019 0.021

Table 7: Mean and standard deviations of Jensen-Shannon distance Djs between the esti-
mated ŵ and the actual w.

Dataset
RNN MLE

M w Mw M w Mw

#1 69.1 29.7 89.0 109.6 7.8 115.4
#2 143.4 19.7 132.2 330.6 5.2 251.7
#3 64.3 14.1 114.0 242.6 3.8 195.8
#4 190.3 73.1 167.6 368.5 7.9 472.7

Table 8: Average training time in seconds. Where M, w, and Mw denote, respectively,
learning M, w, and both M and w.

8 Conclusion and Future Work

Current preference learning approaches build on assumptions that are sometimes in contrast
with cognitive models of decision making. In this paper we present a method that combines
a cognitive model of choice with recurrent neural networks to learn the decision maker’s
preferences from his final choices. We evaluate its performance and compare it with another
method drawn from the state of the art on MDFT. Results show that the RNN-based
method is effectively and efficiently learning preferences and attributes’ importance which
are compatible with ground-truth behavior.

In the future, we plan to address the issue of parameter convergence when both personal
evaluation and attention weights are learned jointly by constraining personal evaluations to
specific classes of functions (such as sigmoids or exponentials). We also plan to extend our
experimental study to include behavioral data. Finally we will investigate online learning
scenarios where parameters are updated as single choices are observed.
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