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Abstract

We study voting rules for participatory budgeting, where a group of voters collectively
decides which projects should be funded using a common budget. We allow the
projects to have arbitrary costs, and the voters to have arbitrary additive valuations
over the projects. We formulate two axioms that guarantee proportional representa-
tion to groups of voters with common interests. To the best of our knowledge, all
known rules for participatory budgeting do not satisfy either of the two axioms; in
addition we show that the most prominent proportional rule for committee elections,
Proportional Approval Voting, cannot be adapted to arbitrary costs nor to additive
valuations so that it would satisfy our axioms of proportionality. We construct a
simple and attractive voting rule that satisfies one of our axioms (for arbitrary costs
and arbitrary additive valuations), and that can be evaluated in polynomial time. We
prove that our other stronger axiom is also satisfiable, though by a computationally
more expensive and less natural voting rule.

1 Introduction

A growing list of cities now uses Participatory Budgeting (PB) to decide how to spend their
budgets [Cabannes, 2004, Aziz and Shah, 2020]. Through a voting system, PB allows the
residents of a city to decide which projects will be funded by the government. This increases
civic involvement in government, by increasing the number of issues that are decided by
democratic vote, and by allowing residents to submit their own project proposals.

To count the votes, most cities use a variant of a simple protocol: Each voter is allowed to
vote for a certain number of project proposals. Then, the projects with the highest number
of votes are funded, until the budget limit is reached. While simple and intuitive, this is a
bad voting rule. To see this, consider Circleville, a fictional city divided into four districts. A
map of the city is shown in Figure 1. The districts all have similar sizes, but Northside has
the largest population. Suppose $400k have been allocated to PB, and suppose that all the
project proposals are of a local character (such as school renovations), so we can assume that
residents only vote for projects that concern their own district. For example, every Northside
resident will cast votes for projects A, B, C, and D, but no one else votes for these. Because
Northside is the most populous district, the Northside projects will all receive the highest
number of votes, and the voting rule described will spend the entire budget on Northside
projects. The 280k residents of the other districts are left empty-handed.

To circumvent this obvious issue, many cities have opted to hold separate elections for
each district. The budget is divided in advance between the districts (e.g., in proportion to
their number of residents), each project is assigned to a district, and voters only vote in their
local election. While this avoids the issue of spending the entire budget in Northside, this fix
introduces many other problems. For example, projects on the boundary of two districts
(such as A and P ) need to be assigned to one of them. Residents of the other district may
be in favor of the boundary project, but cannot vote for it. Thus boundary projects are less
likely to be funded, even if they would be more valuable overall. Similarly, projects without
a specific location that benefit the entire city cannot be handled. Also, interest groups that
are not geographic in nature will be underserved; for instance, parents across the city might
favor construction of a large playground (project C), but with separate district elections,
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Figure 1: Map of Circleville, showing the locations and costs of the PB project proposals.

parents cannot form a voting block. Similarly, bike riders across the city cannot express
their joint interest in the construction of a bike trail along Example River (projects R, S, H,
and G).

To solve these problems, it seems desirable to hold a single city-wide election, but use a
voting system that ensures that money is spent proportionally. The voting system should
automatically and endogenously identify groups of voters who share common interests, and
make sure that those groups are appropriately represented. This aim has been identified
by several researchers [Aziz et al., 2018b], but no convincing proposal for a proportional
voting rule has emerged so far. Indeed, no good formalization of “proportionality” for the
PB context has been identified in the literature, except for the concept of the core. However,
the core is a very demanding requirement, and there are situations where it fails to exist
[Fain et al., 2018].

In this paper, we formalize proportionality for participatory budgeting as an axiom called
extended justified representation (EJR). The axiom requires that no group of voters with
common interests is underserved. We construct a simple and attractive voting rule that
satisfies EJR for approval preferences, and that satisfies EJR up to one project for general
additive valuations. We then discuss a potential strengthening of EJR, and show that this
strengthening is still satisfiable, albeit by a different voting rule. We hope that our axioms
and rules will provide a strong starting point for the further development of the PB literature
from a social choice perspective.
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Figure 2: Onetown and Twotown are identical, except that the projects have different costs.
Both have a budget of $90k available for PB.

Our approach: Generalize concepts from multi-winner voting

Both our proportionality axiom and our voting rule are generalizations of concepts that have
been introduced in the literature on multi-winner voting [Faliszewski et al., 2017]. That
literature can be seen as handling a special case of PB, where all projects cost the same
amount of money. This is often called the unit cost assumption. Under this assumption, the
problem is equivalent to selecting a committee of a specified size k. It turns out that the
unit cost assumption substantially simplifies the problem.

Much of the relevant literature studies rules that work with approval ballots, where voters
are allowed to approve or disapprove each project. In the main part of the paper, we will allow
any additive valuations (not just 0/1), which is more expressive. Indeed, the proportionality
axioms and voting rules that we introduce all work for general additive valuations. This is
notable, since allowing additive valuations introduces significant conceptual difficulty. Most
prominent multi-winner voting rules seem to not naturally extend to additive valuations (or
at least not gracefully). However, to compare our results to the literature, let us for now
focus just on approval-based rules.

The study of approval-based multi-winner voting rules has been very productive [Aziz et al.,
2017, Brill et al., 2017, Sánchez-Fernández et al., 2017, Lackner and Skowron, 2018, Peters
and Skowron, 2020]. Researchers have identified a considerable number of proportionality
axioms and of attractive voting rules for this case. We will begin our discussion by explaining
why most of these results break down if we do not use the unit cost assumption.

Proportional Approval Voting is not proportional, nor is any variant of it

Probably the most popular multi-winner voting rule is Proportional Approval Voting (PAV),
also known as Thiele’s method after its Danish inventor Thiele [1895]. Thiele’s rule is based
on optimization. Suppose that N is the set of voters, and that each voter i ∈ N has indicated
a set A(i) of projects that i approves. Then for each set W of projects which is feasible (i.e.
its total cost is at most the budget limit), the rule computes the score

PAV-score(W ) =
∑
i∈N

(
1 +

1

2
+

1

3
+ · · ·+ 1

|W ∩A(i)|

)
.

The output of PAV is a feasible set W that maximizes this score. When the unit cost
assumption holds, PAV is a great rule and lives up to its name: it is known to be proportional
both in an axiomatic sense [Aziz et al., 2017] and in a quantitative sense [Skowron, 2018]. In
fact, among all optimization-based rules, only PAV is proportional [Lackner and Skowron,
2018, Aziz et al., 2017].

However, when the unit cost assumption does not hold, PAV ceases to guarantee propor-
tional representation. To see this, consider the city of Onetown shown in Figure 2. Onetown



has 90,000 residents split in two districts, and has $90,000 available for participatory budget-
ing. The 60,000 residents of Leftside all vote for projects {L1, L2, L3} each of which costs
$20,000. The 30,000 residents of Rightside vote for the single project {R} which costs $45,000.
Note that the prices are such that we can either afford to implement all three L-projects
giving PAV score 110,000, or implement two L-projects and the R-project giving PAV score
120,000. Thus, PAV implements project R and only two L-projects. However, note that
Leftside residents form two thirds of the population of Onetown, and so by proportionality
are entitled to two thirds of the budget ($60,000), which is enough to implement all three
L-projects. Hence, Leftside is underrepresented by PAV.

To see what is going on, consider Twotown from Figure 2. Twotown is just like Onetown,
except that now each projects cost $30,000. Note that for Twotown it is still the case that
we can either afford all three L-projects, or two L-projects plus R. By the same calculation
as before, PAV implements the latter possibility. This time, this is the proportional choice:
Leftside now deserves only two projects, since only two projects are affordable with Leftside’s
share of the budget.

Onetown and Twotown are nearly identical: same number of residents, same district
structure, same alternatives, same approval sets, and even the feasibility constraint (three L or
two L plus R) is the same. Since the definition of PAV only depends on these characteristics,
it must select the same outcome for both towns. But the prices differ, and therefore different
outcomes are proportional, and hence PAV fails proportionality. The same is true for all
other rules that depend only on preferences and feasibility constraints but not prices. This
suggests that there is no variant of PAV that retains its proportionality guarantees beyond
the unit cost case.

Theorem 1. Every voting rule that only depends on voters’ utility functions and the collection
of budget-feasible sets must fail proportionality, even on instances with a district structure.

(An instance has district structure if projects and voters can be partitioned into disjoint
districts such that each voter approves exactly the projects belonging to the voter’s district.)

Rule X: A simple method that guarantees proportionality

Peters and Skowron [2020] recently proposed a new committee voting rule called Rule X. It
turns out that this rule can be naturally extended beyond unit costs, and that the resulting
rule does not suffer from the defects in Thiele’s method.

Rule X starts out by dividing the available budget into equal parts, and giving each voter
their share. On a high level, Rule X then repeatedly looks for a project whose approvers
have enough money left to fund it; it does so until no further projects are affordable. Notice
that any rule of this type is proportional on instances with a district structure. For example,
in Onetown, the residents of Leftside receive $60k in total, so can afford L1, L2, and L3.
But to ensure good behavior on other instances it is crucial exactly how the rule chooses
among different affordable projects and how the rule divides the chosen project’s cost among
its supporters. Rule X always spreads the cost of the project as evenly as possible, which
means that all supporters contribute the same amount of money to it; if some supporters do
not have this amount of money left, they spend their entire remaining budget. If several
projects are affordable, Rule X chooses the project that minimzes the highest amount that
any supporter needs to pay. (Thus, all else equal, Rule X favors cheap projects over expensive
ones, and favors projects with many supporters over projects with fewer.)

As we mentioned, it is clear that Rule X is proportional on district-based instances. On
its own, this is a rather weak guarantee. In the real world, like in Circleville (Figure 1),
voters will sometimes vote for projects in other districts, and it is uncommon that voters
will approve all the projects in their own district. A truly proportional voting rule should be



able to represent all kinds of interest groups, even in cases where the same voter is part of
several such groups.

Consider an arbitrary subset of voters, S ⊆ N . For example, S could be the residents of
a district, or the set of parents in Circleville, or the set of bike users. The group S forms
a fraction |S|/|N | of the population, and thus intuitively its members deserve to control
a fraction |S|/|N | of the budget. This idea is the basis of most proportionality axioms
developed in the literature; they differ by how they formalize the notion of “deserving” part
of the budget. We will consider an axiom that guarantees to represent groups whenever they
are sufficiently cohesive, in the sense of having similar preferences. Suppose that S can come
up with a set T of projects such that T can be funded with a |S|/|N | fraction of the budget.
Suppose further that each voter in S approves all the projects in T ; this means the group
is cohesive. Then an axiom called Extended Justified Representation (EJR) demands that
the voting rule select a set W such that at least one voter in S approves at least |T | of the
funded projects in W . In other words, EJR prohibits sets W where all the voters in S are
underrepresented in the sense that they would all prefer the set T to W .1

EJR was first proposed for committee voting by Aziz et al. [2017]. EJR is a demanding
property, with PAV one of the very few known voting rule satisfying it, but we have seen
that without unit costs, PAV fails EJR even in well-structured cases. However, Peters and
Skowron [2020] showed that Rule X also satisfies EJR, and one of our main results shows
that this also holds without the unit cost assumption.

Theorem. Rule X satisfies Extended Justified Representation.

The intuition behind this result is that, under Rule X, a group S is explicitly given their
share of the budget. As the rule progresses, the money of S is spent and by design of Rule X
it is spent on projects that provide good value for money. Thus, the only way that S could
end up underrepresented is if Rule X does not spend all of S’s money; but we can show that
this never happens if S is cohesive.

Among other known committee voting rules, we know of only one that can easily be
extended beyond unit costs: Phragmén’s rule [1894, 1895] which was proposed at the same
time as Thiele’s rule. Phragmén’s rule satisfies some proportionality axioms in the unit cost
case [Janson, 2016, Brill et al., 2017, Peters and Skowron, 2020], and Aziz et al. [2018b] show
that, in contrast to Thiele’s method, it can be naturally extended to cases without unit costs.
The rule is easiest to explain via a continuous process. Each voter is assigned a virtual bank
account, which starts out empty. We continuously top up each voter’s account at a constant
rate, say $1 per hour. We continue doing this until the first moment where there exists a
project whose supporters own enough money to finance that project. We then implement
that project and reset the bank accounts of the supporters to 0. (If several projects become
affordable simultaneously, we break the tie arbitrarily.) We continue this process until we
reach a project which, when implemented, would overshoot the budget limit, and stop. A
high-level difference to Rule X is that Rule X gives voters their share of the budget up front,
while Phragmén’s rule disburses shares over time. Phragmén’s method fails EJR even for
unit costs [Brill et al., 2017] and only satisfies the much weaker condition of PJR, so we
focus on Rule X. In Appendix E we report on experiments in which we compare Rule X with
Phragmén’s rule and PAV when run on real data from several large participatory budgeting
elections. Our experiments suggest that Rule X outperforms the other two rules with respect
to several criteria pertaining to proportionality and efficiency.

1When formulated for unit costs, EJR can be applied recursively and thereby gains additional strength,
since it implies that the number of well-represented voters in S is high [Sánchez-Fernández et al., 2017]:
EJR requires that in S there exists a voter, say i, who is well-represented; if we remove this voter then the
group S \ {i} is still cohesive, and EJR would require that in this group there also exists a voter who is
well-represented, etc.



FJR: A proportionality axiom even stronger than EJR

In approval-based multiwinner elections, it is fair to say that EJR is the strongest pro-
portionality axiom that is known to always be satisfiable.2 Many other rules such as
Phragmén’s rule or Chamberlin–Courant only satisfy substantially weaker axioms (known as
PJR [Sánchez-Fernández et al., 2017] and JR [Aziz et al., 2017]).

A very attractive strengthening of EJR is the core [Aziz et al., 2017, Fain et al., 2018].
We say that a set S ⊆ N of voters blocks an outcome W if there is a set T of projects
affordable with a |S|/|N | fraction of the budget such that each member of S strictly prefers
T to W (in the sense that each member of S approves strictly more projects in T than in
W ). In such a case, the group S appears to be underrepresented. An outcome W is in the
core if it is not blocked by any coalition S. It is unknown whether there always exists an
outcome in the core in the approval-based model (even under the unit cost assumption), and
this is surely the most tantalizing open problem in this area.

Note that the core implies EJR, since EJR requires that W is not blocked by a set T that
is unanimous for S (i.e. all projects in T are approved by all members of S). We propose
a property that is in between these two properties, by partially relaxing the cohesiveness
requirement. We call this axiom Fully Justified Representation (FJR).3 FJR requires that if
a group S ⊆ N of voters can propose a set T of projects that is affordable with S’s share of
the budget, and each voter approves at least ` projects in T , then at least one voter in S
must approve at least ` projects in the chosen outcome W . Thus, rather than insisting that
T is unanimously approved by the group S (like in EJR), we now allow cases where T is
very popular among S, though not necessarily unanimous.

To the best of our knowledge, this natural axiom was not known to be satisfiable even
for unit costs; in particular, both PAV and Rule X fail FJR (Examples 2 and 3). We prove
that there does indeed exist a rule satisfying FJR, which works for arbitrary costs. The
rule is further called Greedy Cohesive Rule (GCR)—it is a simple greedy procedure that
repeatedly looks for groups with maximum cohesiveness and then satisfies them. While this
is not a polynomial-time algorithm and not a particularly natural rule, we can show that this
proposal can be made compatible with some other properties (in particular priceability, a
property introduced by [Peters and Skowron, 2020]). For future work, it will be interesting to
look for new natural rules satisfying FJR; this is even interesting for the committee context.

Beyond approval: Allowing more expressive preferences

In real-world PB elections, different projects differ vastly in their costs. For example, in the
2019 PB election in the 16th arrondissement of Paris, the most expensive project that was
funded cost e 560k (refurbishing a sports facility) and the cheapest cost e 3k (providing
materials for a school project of building a board game). The former project received 775
votes, and the latter 670 votes. The former project was 1.15 times as popular as the latter,
but it cost 186 times as much! If we take the votes at face value, counting all approvals the
same, it would seem that the cheap project provides an amazing value. It is more likely,
though, that the approval-based interface did not allow voters to adequately express their
values.

Facing these large cost differences, a better preference model might be given by general
additive valuations, which allow voters to specify an arbitrary utility value for each project,
with the assumption that a voter’s satisfaction is proportional to the sum of the utilities of

2Though the literature contains other proportionality notions that are both logically and conceptually
incomparable, such as “perfect representation” [Sánchez-Fernández et al., 2017] satisfied by the Monroe
rule, and the concepts of laminar proportionality and priceability [Peters and Skowron, 2020] satisfied by
Phragmén’s rule and Rule X.

3Apologies that this name is not particularly descriptive, but then neither is EJR or PJR.



the funded projects. In the PB context, this model is considered by Benade et al. [2017] who
study preference elicitation issues, and by Fain et al. [2018] and Fluschnik et al. [2019] who
consider an aggregation rule similar to PAV, based on optimizing a Nash product objective.
The latter rule will not satisfy us, given our discussion of Onetown and Twotown above.
Further, even for unit costs, the rule does not satisfy our version of the EJR axiom. For
Phragmén’s rule, there seems to be no natural way at all to define it for general additive
valuations. Also, the proportionality property PJR that Phragmén satisfies does not seem to
have an analogue for general valuations.

For Rule X, however, we are able to propose a way to adapt it to general additive
valuations. In our proposal, when Rule X decides to fund a project, a voter’s payment is
proportional to the voter’s utility for the project. So if voter i assigns utility 1 to project
B while j assigns utility 1/2 to B, then Rule X will ask i to pay twice as much as j if B
is funded. We also propose a natural way to extend the EJR axiom to general additive
valuations. Rule X satisfies EJR up to one project – a mild relaxation. FJR can also be
extended to general utilities, and our greedy rule satisfying this property continues to work
for general additive utilities.

We close by discussing another input format, where voters have ordinal preferences, that
is, where voters rank the projects in order of preference. We show that if we convert rankings
into additive valuations using a lexicographic scheme, then our two voting rules give rise
to voting rules for the ordinal setting. In particular, Rule X satisfies a property known as
Proportionality for Solid Coalitions, a property first defined for the Single Transferable Vote
(STV), a multi-winner voting rule used in many political constituencies in the anglosphere.
GCR fails this property.

2 Preliminaries

For each t ∈ N, write [t] = {1, 2, . . . , t}. An election is a tuple (N,C, cost, {ui}i∈N ), where:

• N = [n] and C = {c1, . . . , cm} (n,m ∈ N) are the sets of voters and candidates (or
projects), respectively.

• cost : C → Q+ is a function that for each candidate c ∈ C assigns the cost that needs
to be paid if c is selected. For each subset T ⊆ C, we write cost(T ) =

∑
c∈T cost(c)

for the total cost of the projects in T .

• For each voter i ∈ N , the function ui : C → [0, 1] defines i’s additive utility function.
If a set T ⊆ C of candidates is implemented, i’s overall utility is ui(T ) =

∑
c∈T ui(c).

For a subset S ⊆ N of voters, we further write uS(T ) =
∑
i∈S
∑
c∈T ui(c) for the total

utility enjoyed by S if T is implemented. We assume that uN (c) > 0 for each c ∈ C,
that is, every candidate is assigned positive utility by at least one voter.

The voters have a fixed common budget which we normalize to 1. A subset of candidates
W ⊆ C is feasible if cost(W ) 6 1. Our goal is to choose a feasible subset of candidates,
which we call an outcome, based on voters’ utilities. An aggregation rule (or, in short, a rule)
is a function that for each election returns a set of feasible outcomes, called the winning
outcomes.4

There are two interesting special cases of our model:

Committee elections. In this case, there exists k ∈ N such that each candidate costs
1/k. Then W is an outcome if and only if |W | 6 k. In this special case we also refer to

4Typically, a rule will be selecting a single winning outcome, but ties are possible. For the results of this
paper it won’t matter how these ties are broken.



outcomes as committees, and we say that the election satisfies the unit cost assumption.
For committee elections we will often refer to k as the maximal committee size.

Approval-based elections. In this case, for each i ∈ N and c ∈ C it holds that ui(c) ∈
{0, 1}. The approval set of voter i is A(i) := {c ∈ C : ui(c) = 1}, and we say that i
approves candidate c if c ∈ A(i). If c ∈ A(i) ∩W , we say that c is a representative of i.

Often we combine these special cases, and study approval-based committee elections.

3 Rule X

Recently, Peters and Skowron [2020] introduced an aggregation rule called Rule X for
approval-based committee elections. In that setting, they showed that Rule X satisfies a
combination of appealing proportionality properties. Here, we extend it to the more general
model of participatory budgeting, that is, to the model with arbitrary costs and utilities.

Definition 1 (Rule X). Each voter is initially given an equal fraction of the budget, i.e.,
each voter is given 1/n dollars. We start with an empty outcome W = ∅ and sequentially add
candidates to W . To add a candidate c to W , we need the voters to pay for c. Write pi(c)
for the amount that voter i pays for c; we will need that

∑
i∈N pi(c) = cost(c). We write

pi(W ) =
∑
c∈W pi(c) 6 1

n for the total amount i has paid so far. For ρ > 0, we say that a
candidate c 6∈W is ρ-affordable if∑

i∈N
min

(
1
n − pi(W ), ui(c) · ρ

)
= cost(c).

If no candidate is ρ-affordable for any ρ, Rule X terminates and returns W . Otherwise it
selects a candidate c 6∈ W that is ρ-affordable for a minimum ρ. Individual payments are
given by

pi(c) = min
(

1
n − pi(W ), ui(c) · ρ

)
Intuitively, when Rule X adds a candidate c, it asks voters to pay an amount proportional

to their utility ui(c) for c; in particular, the cost per unit of utility is ρ. If a voter does not
have enough money, the rule asks the voter to pay all the money the voter has left, which is
1
n − pi(W ). Throughout the execution of Rule X, the value ρ increases. Thus, candidates
are added in decreasing order of utility per dollar that the voters get from the candidates.

Extended Justified Representation (EJR)

The first notion of proportionality that we examine is Extended Justified Representation
(EJR). This axiom was first proposed for approval-based committee elections [Aziz et al.,
2017]. Even for the special case of approval-based committee elections, only few rules are
known to satisfy EJR [Aziz et al., 2017, 2018a, Peters and Skowron, 2020], but Rule X is one
of them. In this section, we introduce a generalization of EJR to the PB model and show
that our generalization of Rule X continues to satisfy EJR.

We first recall the definition of EJR for approval-based committee elections. Intuitively,
this axiom ensures that every large enough group of voters whose approval sets have a large
enough intersection must obtain a fair number of representatives.

Definition 2 (Extended Justified Representation for approval-based committee elections).
We say that a group of voters S is `-cohesive for ` ∈ N if |S| > /̀k · n and |

⋂
i∈S A(i)| > `.

A rule R satisfies extended justified representation if for each election instance E and
each `-cohesive group S of voters there exists a voter i ∈ S such that |A(i) ∩R(E)| > `.



At first sight it is unintuitive that we only require that at least one voter obtain `
representatives. However, the strengthening of EJR that requires each member of S to obtain
` representatives is impossible even on very small instances [Aziz et al., 2017]. Still, even
with only the at-least-one guarantee, EJR has plenty of bite [Aziz et al., 2018a, Skowron,
2018, Peters and Skowron, 2020].

The generalization of this axiom to the PB model is not straightforward and to the best
of our knowledge none has been proposed in the literature.5 To warm up, let’s first relax the
unit cost assumption, but stay in the approval-based setting. Then EJR should state the
following.

Definition 3 (Extended Justified Representation for approval-based elections). We say that
a group of voters S is T -cohesive for T ⊆ C if |S| > cost(T ) · n and T ⊆

⋂
i∈S A(i).

A rule R satisfies extended justified representation if for each election instance E and
each T -cohesive group S of voters there exists a voter i ∈ S such that |A(i) ∩R(E)| > |T |.

Thus, cohesiveness now requires that the group S can identify a collection of projects T
that they all approve and that is affordable with their fraction of the budget (|S| > cost(T )·n).
Note that voters i ∈ S obtain utility ui(T ) = |T | from T ; EJR requires that at least one
member of S must attain this utility in the election outcome.

To further generalize EJR beyond approvals is more difficult, because the notion of a
candidate who is approved by all members of S does not have an analogue. Instead, we
quantify cohesion by calculating the minimum utility that any member of S assigns to each
project in T .

Definition 4 (Extended Justified Representation). A group of voters S is (α, T )-cohesive,
where α : C → [0; 1] and T ⊆ C, if |S| > cost(T ) · n and if ui(c) > α(c) for all i ∈ S and
c ∈ T .

A rule R satisfies extended justified representation if for each election instance E and each
(α, T )-cohesive group of voters S there exists a voter i ∈ S such that ui(R(E)) >

∑
c∈T α(c).

Again, an (α, T )-cohesive group of voters S can propose the projects in T , since they are
affordable with S’s share of the budget. The values (α(c))c∈T denote how much the coalition S
agrees about the desirability of the projects in T . In particular, we have ui(T ) >

∑
c∈T α(c)

for each i ∈ S. Consequently, Definition 4 prohibits any outcome in which every voter
in S gets utility strictly lower than

∑
c∈T α(c); hence there must exists i ∈ S such that

ui(R(E)) >
∑
c∈T α(c).

We do not know if Rule X satisfies EJR in the general PB model. However, we can show
that it satisfies a mild relaxation, which requires EJR to hold “up to one project”.

Definition 5 (Extended Justified Representation Up To 1 Project). A rule R satisfies
extended justified representation up to one project if for each election instance E and each
(α, T )-cohesive group of voters S there exists a voter i ∈ S such that either ui(R(E)) >∑

c∈T α(c) or for some a ∈ C it holds that ui(R(E) ∪ {a}) >
∑
c∈T α(c).

It is worth noting that in the approval-based model, Definitions 4 and 5 are actually
equivalent, because the “up to one project” option never applies: Consider an (α, T )-cohesive
group of voters S. Since voters’ utilities are 0/1, we may assume that for each c ∈ T we
have α(c) = 1: if α(c) > 0 this is clear; otherwise we can remove c from T without losing
cohesiveness. Thus, the cohesiveness condition is equivalent to the condition that every voter
approves every candidate in T . Finally, note that in the approval model, due to the strict

5Aziz et al. [2018b] generalize the weaker axiom of Proportional Justified Representation (PJR) [Sánchez-
Fernández et al., 2017] beyond unit costs, but they operate in a non-standard utility model where voters care
more about more expensive projects.



inequality, both conditions ui(R(E)) >
∑
c∈T α(c) and ∃a∈C .ui(R(E) ∪ {a}) >

∑
c∈T α(c)

boil down to |A(i) ∩R(E)| >
∑
c∈T α(c) = |T |.

Our main result is that Rule X satisfies EJR up to one project, and hence it satisfies
EJR in the approval-based model.

Theorem 2. Rule X satisfies EJR up to one project in the participatory budgeting model.

As we established in the introduction (Theorem 1), the most prominent rule that satisfies
EJR for approval-based committee election does not extend this guarantee beyond unit costs.
Let us briefly recall the definition of this rule.

Definition 6 (Proportional Approval Voting (PAV)). Consider an approval-based election.
PAV selects a feasible outcome that maximizes

∑
i∈N H(|A(i) ∩W |), where H(r) is the r-th

harmonic number, i.e., H(r) =
∑r
j=1

1/j.

Onetown, as shown in Figure 2, showed that PAV fails EJR (in the sense of Definition 3).
Example 1 below constructs an alternative instance on which PAV does not satisfy EJR. In
fact, this example shows that PAV does not even approximate EJR up to a constant factor.

Example 1. Fix a constant r ∈ N (r > 2), and consider the following approval-based profile:

r2 − 1 voters: {a1, a2, . . . , ar},
1 voter: {b1, b2, . . . , br}.

The candidates a1, a2, . . . , ar cost 1/r dollars each; the candidates b1, b2, . . . , br cost 1/r3

dollars each. EJR requires that the one voter who approves candidates b1, . . . , br must
approve at least r candidates in the outcome. However, PAV selects {a1, a2, . . . , ar}, leaving
the voter with nothing.

In Appendix B we discuss other properties of Rule X.

4 Greedy Cohesive Rule

In Section 3 we discussed the EJR axiom for the PB model, and saw that it is implemented
by Rule X. One may wonder if there is natural strengthening of EJR that is still satisfiable.
In this section we propose such a strengthening, and show that there is a rule that satisfies
the new, stronger property. Interestingly, even in the approval-based committee-election
model our new property is substantially stronger than EJR, and hence this new rule provides
the strongest known proportionality guarantees. On the other hand, compared to Rule X, it
is computationally more expensive and arguably less natural.

Full Justified Representation (FJR)

Our new proportionality axiom strengthens EJR by weakening its requirement that groups
must be cohesive. Thus, the new axiom guarantees representation to groups that are only
partially cohesive.

Definition 7 (Full Justified Representation (FJR)). We say that a group of voters S is
weakly (β, T )-cohesive for β ∈ R and T ⊆ C, if |S| > cost(T ) · n and ui(T ) > β for every
voter i ∈ S.

A rule R satisfies full justified representation (FJR) if for each election instance E
and each weakly (β, T )-cohesive group of voters S there exists a voter i ∈ S such that
ui(R(E)) > β.



In the approval-based committee-election model, FJR boils down to the following require-
ment: Let S be a group of voters, and suppose that each member of S approves at least β
candidates from some set T ⊆ C with |T | 6 `, and let |S| > /̀k · n. Then at least one voter
from S must have at least β representatives in the committee. It is clear that in the special
case of β = `, we obtain Definition 2, hence FJR implies EJR. The same implication holds
in the general PB model.

Proposition 1. FJR implies EJR in the general PB model.

Proof. Suppose that rule R satisfies FJR and take an (α, T )-cohesive group of voters S for
some α : T → [0; 1], T ⊆ C. For every voter i ∈ S and every candidate c ∈ T we have
ui(c) > α(c). We set β =

∑
c∈T α(c); clearly, we have also ui(T ) > β, thus S is weakly

cohesive. As R satisfies FJR, we have that ui(R(E)) > β =
∑
c∈T α(c), which completes

the proof.

In turn, it is easy to see that FJR is implied by the core property (cf. Definition 9). It is
related to, but stronger than, some other relaxations of the core discussed by Peters and
Skowron [2020, Section 5.2]. The two major rules known to satisfy EJR for approval-based
committee elections (Rule X and PAV) both fail FJR; to the best of our knowledge, no
known rule satisfies FJR for approval-based committee elections, let alone for the general
PB model.

Proposition 2. Rule X and PAV do not satisfy FJR.

Since no known aggregation rule satisfies FJR, one might wonder whether FJR existence
can be guaranteed. It turns out that it can: we present a rule satisfying this strong notion
of proportionality.

Definition 8 (Greedy Cohesive Rule (GCR)). The Greedy Cohesive Rule (GCR) is defined
sequentially as follows: we start with an empty outcome W = ∅. At each step, we search
for a value β > 0, a set of voters S ⊆ N , and a set of candidates T ⊆ C such that S is
weakly (β, T )-cohesive. If such values of β, S, and T do not exist, then we stop and return
W . Otherwise, we pick values of β, S, and T that maximize β, breaking ties in favor of
smaller cost(T ).6 We add all the candidates from T to W , remove all voters in S from the
election and repeat the search.

Let us first check that the Greedy Cohesive Rule always selects a feasible outcome (i.e.,
that does not exceed the budget limit). Indeed, whenever the algorithm adds some set T
to W , then by definition of weakly cohesive groups, we have |S| > cost(T ) · n, and hence it
removes at least cost(T ) ·n voters after this step. Thus, if GCR selects an outcome with total
cost cost(W ), then it must have removed at least cost(W ) · n voters during its execution.
Hence cost(W ) 6 1.

Theorem 3. Greedy Cohesive Rule satisfies FJR.

Proof. Suppose that there exists a weakly (β, T )-cohesive group S which witnesses that FJR
is not satisfied. Consider the voter i ∈ S who was removed first by GCR and the outcome
W right after that step (since S is weakly cohesive, such i always exists). Since i ∈ S and S
witnesses the FJR failure, we have ui(W ) < β. We know that i was removed as a member of
some weakly (β′, T ′)-cohesive group S′. Just before S′ was removed, none of the members of
S had been removed. Thus, we have β′ > β, as GCR maximizes this value. However, since
T ′ ⊆W , we have β′ 6 ui(T

′) 6 ui(W ) < β—a contradiction to β′ > β. Hence, such a group
S does not exist.

We discuss other properties of GCR in Appendix C.

6This way of breaking ties is important for our analysis of the priceability of GCR in Appendix C.1. The
proof of Theorem 3 does not use it, so GCR satisfies FJR for any way of breaking ties.



5 Conclusion

In this paper, we have formulated two axioms, EJR and FJR, that capture the idea of
proportionality in the participatory budgeting (PB) model. We have argued that none of
the prominent committee election rules extend to the PB model so that it would satisfy
even much weaker forms of proportionality. We have designed a simple and natural rule for
the PB model, Rule X. It satisfies EJR and other proportionality-related properties such as
priceability, and it is computable in polynomial time. The stronger of our two properties,
FJR, is also satisfiable, albeit by a different and arguably less natural voting rule. It is an
interesting open question whether there exists a natural voting rule that satisfies FJR and
shares other desirable properties of Rule X.

In Appendix D we discuss how Rule X and GCR can be adapted for committee elections
where voters have ordinal preferences, that is, voters express their preferences by ranking
the candidates. We discuss properties of these two rules in the ordinal model.

In Appendix E, we present experiments comparing different variants of Rule X, Phragmén’s
rule, and PAV. These experiments are based on real data from participatory budgeting
elections carried out in several major Polish cities (we looked at nine different elections). In
our first experiment, we compared three different strategies of making Rule X exhaustive.
We observed substantial differences between different variants of Rule X. We conclude that
Rule X gives a lot of flexibility to a mechanism designer, because it often selects outcomes
that do not spend all of the budget, while still satisfying strong fairness requirements like
EJR. Depending on the specific objectives, a mechanism designer can choose to complete
this outcome using different strategies. Among the strategies we described in Appendix B.3,
we observed that the outcomes produced by Exh2 are better from a utilitarian perspective.
It also divides the budget between different city districts in a substantially fairer way than
outcomes produced by Exh1. Therefore we suggest Exh2 as the preferred method.

In our second experiment we compared Rule X, Phragmén’s rule, and PAV. We observed
that for approval-based utilities the results returned by Rule X and Phragmén’s rule are
comparably good, both in terms of the total utility obtained by the voters and in terms of
proportionality. On the other hand, if we take a model with more fine-grained utilities, the
difference between the two rules becomes apparent. This difference is unsurprising since
Phragmén’s rule does not take into account the more fine-grained information on utilities,
but operates only on approval ballots. On the other hand, our results suggest that there
is indeed a considerable advantage of using rules (like Rule X) that take into account the
full information contained in cardinal additive utilities. We conclude that Rule X performs
as well as Phragmén’s rule for approval ballots and outperforms it when more fine-grained
information on voters’ utilities are available. Somewhat surprisingly, we show that the
sequential variant of PAV produces highly disproportional outcomes compared to Phragmén’s
rule and Rule X. Altogether, our experiments confirm our theoretical results and suggest
that Rule X outperforms the other two rules in terms of proportionality and/or efficiency.

As we discussed in the introduction, many cities run PB by dividing the overall budget
between districts and running separate elections in each district. In particular, this is true in
the Polish cities that provide our experimental election data. We claimed in the introduction
that this practice of separate elections leads to inferior outcomes. We designed a final
experiment to study this question. Our results show a visible advantage of using global rules
such as Rule X over separate district elections. E.g., Rule X always produces outcomes with
a more equal distribution of voter utility, and in most cases also provides a higher total
utility in comparison to the rules that are in actual use in the elections we examined.

Acknowledgments Grzegorz Pierczyński and Piotr Skowron were supported by Poland’s
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A Omitted Proofs

A.1 Proof of Theorem 2

Theorem. Rule X satisfies EJR up to one project in the participatory budgeting model.

Proof. For the sake of contradiction, assume that there exists an election E, a subset of
voters S ⊆ N and a set of candidates T ⊆ C such that: (i) cost(T ) 6 |S|/n, (ii) ui(c) >
α(c) > 0 (candidates with α(c) = 0 can be skipped) for each i ∈ S and c ∈ T , and
(iii) ui(R(E) ∪ {a}) 6

∑
c∈T α(c) for each i ∈ S and a ∈ T .

Assume for a while that the voters from S have unrestricted initial budgets, and let us
analyze how Rule X would proceed in such a case. For simplicity of presentation, without
loss of generality, let us rename the candidates in T so that T = {c1, . . . , ct} and so that for
1 6 i < j 6 t candidate ci is picked by Rule X before candidate cj .

Whenever a candidate c ∈ T is selected, the voters pay for this candidate. Voter i pays
pi(c) dollars for c, and in return, she gets utility ui(c). Thus, the price-per-utility she pays
equals ρi(c) = pi(c)/ui(c). Rule X works in a way that all voters from S who pay for c obtain
the same price-per-utility ratio, i.e., for all i, j ∈ S and c ∈ C we have that ρi(c) = ρj(c).
Further, this price-per-utility equals at most cost(c)/uS(c), independently of whether any voters
from N \ S pay for c or not (if no voters from N \ S pays for c, then the price-per-utility
equals exactly cost(c)/uS(c)):

ρi(c) =
pi(c)

ui(c)
=
pi(c) ·

∑
j∈S uj(c)∑
j∈S uj(c)

ui(c)
=

1∑
j∈S uj(c)

·
∑
j∈S

pi(c)

ui(c)
· uj(c)

=
1∑

j∈S uj(c)
·
∑
j∈S

pj(c) 6
cost(c)

uS(c)
.

(1)

Since ui(c) > α(c) for each i ∈ S and c ∈ T , the price-per-utility for c ∈ T equals at most
cost(c)/|S|α(c). Now, consider the voter who in the first possible iteration uses more than 1/n
dollars7. For this voter, call her i, let us consider the function f defined as follows. For
each value x, the function f returns the price that i needs to pay to achieve the utility x.
We make this function continuous, by assuming that the candidates are divisible. That
is, if the voter pays p for her first paid candidate c with utility ui(c), then f(ui(c)/2) = p/2,
f(ui(c)/3) = p/3, and so on. The key observation is that the function f is convex. This is
because Rule X selects the candidates in increasing order of price-per-utility. This function
is depicted below.

7The only case when there is no such voter is when every candidate c ∈ C such that uS(c) > 0 has
already been elected before. In this case, the utility of i from the elected outcome is clearly at least∑

c∈T ui(c) >
∑

c∈T α(c).



ui(c1)

pi(c1)

ui(c)
c /∈ T

pi(c)

ui(c2)

pi(c2)

∑
c∈T α(c)

t

We are interested in the value f(
∑
c∈T α(c)). This value would be maximized if the

fragments of the function with the lowest slope were the shortest. However, we know that the
part of the function that corresponds ρi(c) must be of length at least equal to ui(c) > α(c).
Thus:

f

(∑
c∈T

α(c)

)
6
∑
c∈T

α(c) · ρi(c) 6
∑
c∈T

α(c) · cost(c)

|S|α(c)
=
∑
c∈T

cost(c)

|S|
=

cost(T )

|S|
6

1

n
.

Now, consider the first moment when i uses more than 1/n dollars. Until this time
moment, Rule X behaves exactly in the same way as if the voters from S had their initial
budgets set to 1/n (this follows from how we chose i). Further, we know that in this moment,
if we chose a candidate that would be chosen if the voters had unrestricted budgets, then the
utility of voter i would be greater than

∑
c∈T α(c). This gives a contradiction, and completes

the proof.

Proof of Proposition 2

Proposition. Rule X and PAV do not satisfy FJR.

The proof consists of two examples:

Example 2 (Rule X). Consider the following instance of approval-based committee elections
for n = 22 voters, m = 13 candidates, and where the goal is to select a committee of size
k = 11:

voters 1-3 : {c1, c2, c3, c4, c8} voters 13-15: {c1, c2, c3, c4, c12}
voters 4-6 : {c1, c2, c3, c4, c9} voters 16-18: {c5, c6, c7, c8, c9, c10, c11, c12}
voters 7-9 : {c1, c2, c3, c4, c10} voters 19-21: {c5, c6, c7}
voters 10-12: {c1, c2, c3, c4, c11} voter 22: {c13}.

In the first 4 steps, Rule X chooses candidates c1, c2, c3, c4 (this happens for ρ = 1/11·15).
After that, each voter of the first 15 ones has 1/22 − 4/11·15 dollars. In next 3 steps, for
ρ = 1/11·6, candidates c5, c6, c7 are chosen: 6 voters who support them spend all their
money (1/22− 3/11·6 = 0). After that, the algorithm stops. Each of the first 15 voters has
4 candidates she approves; voters 16-18 approve 3 selected candidates. Thus, no member
of the weakly (5, {c1, c2, c3, c4, c8, c9, c10, c11, c12})-cohesive group of the first 18 voters has 5
representatives.



Example 3 (PAV). This example was first considered by Peters and Skowron [2020,
Section 1]. We have m = 15 candidates and n = 6 voters, with the following preferences:

voter 1 : {c1, c2, c3, c4} voter 4 : {c7, c8, c9}
voter 2 : {c1, c2, c3, c5} voter 5 : {c10, c11, c12}
voter 3 : {c1, c2, c3, c6} voter 6 : {c13, c14, c15}.

The size of the committee to be elected is k = 12. PAV chooses in this case
committee {c1, c2, c3, c7, c8, c9, c10, c11, c12, c13, c14, c15}. Hence, no voter from the weakly
(4, {c1, c2, c3, c4, c5, c6})-cohesive group consisting of the first 3 voters has 4 representa-
tives.

B Other Properties of Rule X

In this section we discuss other properties of Rule X, apart from EJR.

B.1 Approximating the Core

An important proportionality property advocated for PB is the core [Aziz et al., 2017, Fain
et al., 2018]. It strengthens EJR by removing the cohesiveness requirement on groups S of
voters.

Definition 9 (The Core). For a given election instance (N,C, cost, {ui}i∈N ), we say that
an outcome W is in the core, if for every S ⊆ N and T ⊆ C with |S| > cost(T ) · n there
exists i ∈ S such that ui(W ) > ui(T ). We say that an election rule R satisfies the core
property if for each election instance E the winning outcome R(E) is in the core.

While this is a clean and appealing notion, unfortunately, there are elections where no
outcome is in the core, even with unit costs.

Example 4.8 We have 6 voters and 6 candidates with unit costs, and k = 3. Utilities satisfy

u1(c1) > u1(c2) > 0, u2(c2) > u2(c3) > 0, u3(c3) > u3(c1) > 0;

u4(c4) > u4(c5) > 0, u5(c5) > u5(c6) > 0, u6(c6) > u6(c4) > 0,

and all unspecified utilities are equal to 0. Let W ⊆ C be any feasible outcome, so |W | 6 3.
Then either |W ∩{c1, c2, c3}| 6 1 or |W ∩{c4, c5, c6}| 6 1. Without loss of generality assume
the former, and again without loss assume that c2 6∈W and c3 6∈W . Then S = {v2, v3} and
T = {c3} block W and show it is not in the core, since 2 = |S| > cost(T ) ∗ n = 1

3 · 6 = 2 and
both u2(c3) > u2(c1) > u2(W ) and u3(c3) > u3(c1) > u3(W ).

Notably, this example is not approval-based. It is unknown whether the core is always
non-empty for approval-based elections (with or without the unit cost assumption).

In the committee context, Peters and Skowron [2020] showed that Rule X returns an
outcome that never violates the core too badly; formally, Rule X provides a multiplicative
approximation to the core.9 We can generalize this result to the general PB setting: Rule X
continues to provide a good multiplicative approximation to the core property.

Definition 10. For α > 1, we say that an outcome is in the α-core if for every S ⊆ N and
T ⊆ C with

∑
c∈T cost(c) 6 |S|/n there exists i ∈ S and c ∈ T such that ui(R(E) ∪ {c}) >

ui(T )
α .
8This example is adapted from Fain et al. [2018, Appendix C].
9Our approximation notion is different from the one proposed by Fain et al. [2018] and the one proposed

by Cheng et al. [2019] and Jiang et al. [2020].



Theorem 4. Given an election E, by umax we denote the highest utility a voter can get
from a feasible outcome. Analogously, by umin we denote the smallest, yet still positive utility
a voter can get from a feasible outcome:

umax = max
i∈N

max
cost(W )61

ui(W ) and umin = min
i∈N

min
ui(W )>0

ui(W ).

Rule X satisfies the α-core property for α = 4 log(2 · umax/umin).

Proof. Towards a contradiction, assume there exist an election instance E, a winning
outcome W ∈ R(E), a subset of voters S ⊆ N , and a subset of candidates T ⊆ C with∑
c∈T cost(c) 6 |S|/n such that for each i ∈ S and c ∈ T it holds that ui(W ∪ {c}) < ui(T )/α.
Now, consider a fixed subset S′ ⊆ S, and let:

∆(S′) =
∑
i∈S′

(
ui(T )− ui(W )

)
.

Similarly, as in the proof of Theorem 2, assume for a while that the voters from S′ have
unrestricted initial budgets, and let us analyze how Rule X would proceed in such a case.
By the pigeonhole principle it follows that in each step of the rule there exists a not-elected
candidate c ∈ T \W such that:

uS′(c)

cost(c)
>

∆(S′)

cost(T )
.

Indeed, if for each c ∈ T \W we had uS′ (c)
cost(c) <

∆(S′)
cost(T ) , then:

∆(S′) 6
∑

c∈T\W

uS′(c) <
∑

c∈T\W

cost(c) · ∆(S′)

cost(T )
6 ∆(S′),

a contradiction.
Thus, the price-per-utility that the voters pay for the selected candidates equals at most

cost(T )
∆(S′) . (This follows from the fact that Rule X selects candidates in such an order that

the maximal price-per-utility the voters pay in a given round is minimized. The precise
arguments are the same as in the proof of Theorem 2.) Now, consider the first moment
when some voter in S′—call it i—uses more than its initial budget 1/n. Until this time
moment, Rule X bahaves exactly in the same way as if the voters from S′ had their initial
budgets set to 1/n. Further, we know that in this moment, if we chose a candidate c ∈ T that
would be chosen if the voters had unrestricted budgets, then the voter i would pay more

than 1/n in total, and thus, would get the utility of more than 1
n ·

∆(S′)
cost(T ) . Since we assumed

ui(W ∪ {c}) < ui(T )/α, we get that:

ui(T )

α
> ui(W ) + ui(c) >

1

n
· ∆(S′)

cost(T )
.

Since α > 2, and so ui(T )− ui(W ) > ui(T )/2, we get that:

ui(T )− ui(W ) >
ui(T )

2
>

α∆(S′)

2n · cost(T )
.

Let S′′ = S′ \ {i}. Clearly, we have that:

∆(S′′) = ∆(S′)− (ui(T )− ui(W )) 6 ∆(S′)

(
1− α

2n · cost(T )

)
.



The above reasoning holds for each S′ ⊆ S. Thus, we start with S′ = S and apply it
recursively, in each iteration decreasing the size of S′ by 1. After |S|/2 iterations we are left
with a subset Se such that:

∆(Se) 6 ∆(S)

(
1− α

2n · cost(T )

) |S|
2

6 ∆(S)

(
1− α

2n · cost(T )

) cost(T )n
2

< ∆(S)

(
1

e

)α
4

.

Now, observe that ∆(Se) > |S|/2 · umin (for each i ∈ S it must hold that ui(T )− ui(W ) > 0)
and that ∆(S) 6 |S| · umax. Thus, we get that:

|S|
2
umin · e

α
4 < |S| · umax,

which is equivalent to e
α
4 < 2 · umax

umin
and, further, to α < 4 log(2 · umax/umin). This gives a

contradiction and completes the proof.

The bound of α = 4 log(2 · umax/umin) is asymptotically tight, and the hard instance can
be constructed even for the approval-based committee-election model (there, umax/umin 6 k).
The precise construction is given by Peters and Skowron [2020].

B.2 Priceability of Rule X

Peters and Skowron [2020] introduced a concept called priceability, which imposes a certain
kind of balance on a voting rule. Every rule that, like Rule X, equally splits the budget
between voters and then sequentially purchases projects using the money of its supporters
will be priceable. Priceability does not place any restrictions on how the rule splits the
project’s cost among supporters. The concept also allows initial budgets higher than 1; an
outcome is priceable if there exists some budget limit for which it is priceable.

Definition 11 (Priceability). A price system is a pair ps = (b, {pi}i∈N ), where b > 1 is
the initial budget (where each voter controls equal part of the budget, namely b/n), and for
each voter i ∈ N , pi : C → R is a payment function that specifies the amount of money a
particular voter pays for the elected candidates.10,11 An outcome W is supported by a price
system ps = (b, {pi}i∈N ) if the following conditions hold:

(C1). ui(c) = 0 =⇒ pi(c) = 0 for each i ∈ N and c ∈ C,12

(C2). Each voter has the same initial budget of b/n dollars:
∑
c∈C pi(c) 6 b/n for each

i ∈ N .

(C3). Each elected candidate is fully paid:
∑
i∈N pi(c) = cost(c) for each c ∈W .

(C4). The voters do not pay for non-elected candidates:
∑
i∈N pi(c) = 0 for each c /∈W .

(C5). For each unelected candidate c 6∈ W , the unspent budget of her supporters is at
most cost(c):

∑
i∈N :ui(c)>0

(
p−

∑
c′∈W pi(c

′)
)
6 cost(c) for each c /∈W .

10Peters and Skowron [2020] assumed that each voter is initially given one dollar, which corresponds to
setting b = n, but that there is an additional variable that specifies the total price that needs to be paid for
an elected candidate. These two formulations are equivalent, but the present definition seems more natural
for PB.

11The requirement that b > 1 ensures that the voters have at least enough money to buy candidates with
total cost 1 (that is, the value of the real budget). Without this requirement, an empty outcome W = ∅
would be priceable (with b = 0).

12While condition (C1) is well-justified in the approval-based setting, in the general PB model it is very
weak. Indeed, the condition does not put any restrictions on the payments when ui(c) is very small, yet
positive.



An outcome W is said to be priceable if there exists a price system ps = (b, {pi}i∈N ) that
supports W (that satisfies conditions (C1)–(C5)).

It is known that Rule X is priceable in the approval-based committee-election model
and in the general PB model this property is also preserved—indeed, the rule implicitly
constructs the price system satisfying the above conditions.

B.3 Exhaustiveness

A basic and very desirable efficiency notion is exhaustiveness, which requires that a voting
rule spends its entire budget. Of course, due to the discrete model, we cannot guarantee
that the rule will spend exactly 1 dollar (i.e., the entire budget); however, we can require
that no additional project is affordable.

Definition 12 (Exhaustiveness, Aziz et al., 2018b). An election rule R is exhaustive
if for each election instance E and each non-selected candidate c /∈ R(E) it holds that
cost(R(E) ∪ {c}) > 1.

Notably, Rule X fails to be exhaustive. It can happen that at the end of Rule X’s
execution, some project remains affordable, but the project’s supporters do not have enough
money to pay for it – Rule X then refuses to fund the project. For example, if we have
two voters and two candidates, such that v1 approves {c1} and v2 approves {c2}. Suppose
that both candidates cost 1 dollar. Then Rule X returns W = ∅. In fact, it turns out that
exhaustiveness is incompatible with priceability.

Example 5. We have 3 candidates and 3 voters. The first 2 voters approve {c1}, and the
third one approves {c2, c3}. We have cost(c1) = 1 and cost(c2) = cost(c3) = 1/3. The only
exhaustive outcomes are {c1} and {c2, c3}. However, neither of them is priceable—indeed, to
buy both c2 and c3, the third voter needs to control at least 2/3 dollars. Then the first two
voters control 4/3 dollars and can buy candidate c1, a contradiction. On the other hand, to
buy c1, the first two voters need to control at least 1 dollar. Then, the third voter controls
at least 1/2 dollars and buys c2 or c3, a contradiction.

In some contexts, it may actually be a desirable feature of Rule X that it is not exhaustive,
especially if unspent budget can be used in other productive ways (such as in next year’s PB
election). Arguably, in non-exhaustive examples, no remaining project has sufficient support
to justify its expense; on that view, no further projects should be funded. In other situations,
unspent budget may not be reusable, such as when the budget comes from a grant where
unspent money needs to be returned (and the relevant decision makers do not obtain value
from the grant-maker’s alternative activities), or when the ‘budget’ is time (for example,
when we use PB to plan activities for a day-long company retreat). In such situation, one
might prefer an exhaustive rule.

Peters and Skowron [2020] proposed to complete the outcome elected by Rule X with the
use of Phragmén’s sequential rule (with initial budgets of the voters equal to the remainder
left after running Rule X). We defined Phragmén’s rule in the introduction. However, there
is no obvious way of generalizing Phragmén’s rule to non-approval utilities.13

Since we have generalized Rule X to work for general additive valuations, there is another
way for us to make it exhaustive. Recall that Rule X fails to be exhaustive in situations

13One possibility, similar to our generalization of Rule X, would be to require that voters’ payment for
selected projects must be proportional to their utilities. Interestingly, this idea seems to not work at all for
Phragmén’s rule. For example, consider a committee election with two projects, c1 and c2, committee size
k = 1, and two voters: The first voter assigns utility 1 to c1 and utility 100 to c2; the second voter assigns
utility 1 to c1 and 99 to c2. When forced to use proportional payments, Phragmén’s rule would choose c1, a
very inefficient choice.



where the remaining projects’ supporters do not have sufficient funds left. However, in
elections where ui(c) > 0 for all i ∈ N and C ∈ C, every voter supports every candidate,
and thus this problem never occurs. In fact, Rule X is exhaustive when run on profiles of
this type.

Proposition 3. Consider an election E = (N,C, cost, {ui}i∈N ) such that ui(c) > 0 for each
i ∈ N and c ∈ C. The outcome returned by Rule X for E is exhaustive.

Proof. For the sake of contradiction assume that an outcome W returned by Rule X for
an election instance E is not exhaustive. Then, there exists a candidate c /∈ W such that
cost(W ∪ {c}) 6 1. The voters paid in total cost(W ) dollars for W ; their initial budget was
1, thus after W is selected they all have at least cost(c) unspent money. However, this means
that at the end of the execution of Rule X there exists a possibly very large value of ρ such
that: ∑

i∈N
min

(
1
n − pi(W ), ui(c)ρ

)
=
∑
i∈N

(
1
n − pi(W )

)
> cost(c).

Consequently, c (or some other candidate) would be selected by Rule X, a contradiction.

Thus, we can make Rule X exhaustive by perturbing the input utilities so that all
utility values are positive; we call this strategy Exh1. Specifically, for a small ε > 0
(ε� minui(c)>0 ui(c)), and for each i ∈ N, c ∈ C such that ui(c) = 0 in the initial instance
we set uεi (c) = ε. Next, we run Rule X on the modified instance {uεi}i∈N ; by Proposition 3
the outcome is exhaustive. Finally we return the outcome identified by Rule X as ε→ 0; the
result is well-defined by the following result.

Proposition 4. Consider any election E = (N,C, cost, {ui}i∈N ). There exists some ε > 0
such that for all 0 < ε1, ε2 < ε, Rule X returns the same outcome when run on {uε1i }i∈N
and {uε2i }i∈N .

This process gives rise to a different voting rule, an exhaustive variant of Rule X. Note
that this rule is not priceable since it may ask voters to pay for candidates that they assign
utility 0. By necessity, this rule sometimes elects candidates that cannot be afforded by its
supporters. In these cases, when we elect such a candidate c, we will ask all supporters of
c to pay all their remaining money for c, and split the remaining cost to be paid equally
among voters who do not support c. Say that the maximum amount paid by a non-supporter
for c is x; Rule X selects those candidate that minimize the value x at each step. Because
voters are asked to spend their entire remaining budget if a non-affordable candidate they
like is elected, this extension of Rule X will not distort the outcome too much.

Peters et al. [2021] suggested yet another method of completing outcomes returned by
Rule X. This method, which we call Exh2, was proposed in the context of approval ballots,
but it naturally extends to cardinal utilities. In Exh2 we run Rule X with the initial value
of the budget bi set to a value possibly greater than the actual available budget, i.e., bi > 1.
Using a binary search we find the highest value of bi such that the total cost of the projects
selected by Rule X does not exceed the actual budget. This method does not guarantee
that the budget is exhausted (for a detailed discussion, see [Peters et al., 2021]), but in most
cases this is indeed the case.

In Appendix E.1 we experimentally compare Exh1 and Exh2 based on data collected
from real participatory budgeting instances. Our experiments show that Exh2 typically
returns outcomes with higher values of total voters’ satisfaction, and we suggest it as the
preferred method.



C Additional Results about the Greedy Cohesive Rule

C.1 Priceability and Exhaustiveness of GCR

GCR satisfies neither priceability (Definition 11) nor exhaustiveness (Definition 12). However,
in Appendix C.1, using a generalization of Hall’s marriage theorem, we prove that the outcome
of GCR can always be completed to a priceable outcome. We also show that GCR can
be made exhaustive in a way that is almost priceable. In Appendix C.2, we discuss some
drawbacks of GCR by discussing two examples where GCR arguably selects a bad outcome.

We start by proving three useful lemmas.

Lemma 1 (Polyandrious generalization of Hall’s marriage theorem). Let G = (U + V,E)
be a bipartite graph and for every A ⊆ U denote by NG(A) the neighbourhood of A, i.e.
NG(A) = {v ∈ V : ∃u ∈ A.{u, v} ∈ E}. Let q ∈ N. Then for each A ⊆ U we have that
|NG(A)| > |A| · q if and only if there exists a one-to-q mapping from each vertex in U to
some q vertices in V , such that to each vertex from V at most one vertex from U is mapped.

Proof. Consider the graph G′ obtained by replacing set U with its q copies: U1, . . . , Uq (we
also copy edges). Consider now any set A ∈

⋃
i Ui. As

⋃
i Ui consists of q separate copies,

there exists i ∈ [q] such that |A ∩ Ui| > |A|/q. Hence, from our assumption we have that
|NG(A)| > |NG(A ∩ Ui)| > q|A ∩ Ui| > |A|. Now, from Hall’s marriage theorem, in G′

there exists a matching between
⋃
i Ui and V , covering set

⋃
i Ui. Hence, in graph G it

is enough to map each vertex u ∈ U to these q vertices in V , to which q copies of u are
matched in G′. Naturally, the implication holds also in the reverse direction—if there exists
a one-to-q mapping in G as described above, then trivially for all A ⊆ U we have that
|NG(A)| > q|A|.

Lemma 2. Let S be n (β, T )-cohesive group which is selected in some step of GCR. For every
subset A ⊆ T , the size of the set of voters S′ := {i ∈ S : ui(A) > 0} is at least cost(A) · n.

Proof. The statement is trivial for cost(A) = 0, so assume that cost(A) > 0. Suppose for
the sake of contradiction that the set S′ ⊆ S defined above has smaller size than cost(A) · n.
Then group S \ S′ together with set T \A is (β, T \A)-cohesive. Indeed,

|S \ S′| > |S| − cost(A) · n > cost(T ) · n− cost(A) · n = cost(T \A) · n.

Thus, as cost(A) > 0, we have cost(T \A) < cost(T ). Thus, GCR would select S \S′ instead
of group S, a contradiction.

Lemma 3. For every outcome of the GCR rule, there always exists a payment function
satisfying conditions (C1)–(C4) with b = 1.

Proof. Consider a single step of GCR and let S be an (β, T )-cohesive group considered in
that step. We will prove that there exists a price system in which voters from S pay cost(c)
dollars for each candidate c ∈ T 14.

Denote by d the least common multiple of the denominators of the rational numbers
from the set: {cost(c) : c ∈ T}. Note that 1/d is a divisor of all these costs. Assume that
each candidate c is splitted into cost(c) · d parts, each one associated with cost 1/d. Besides,
assume that each voter has d coins, each one worth 1/d·n dollars.

14Note that if a candidate c ∈ T has been considered in previous steps of the algorithm, she does not
need to be paid again. However, this case would even strengthen the proof (we could just not charge voters
assigned to paying for her and conditions (C1)–(C4) would be satisfied), so further we assume that T contains
only candidates not elected yet.



Consider the bipartite graph G = (AT +AS , E), where AS is the set of all voters’ coins
and AT is the set of all candidates’ parts. In G there is an edge between a coin of a voter
i ∈ S and a part of a candidate c ∈ T if and only if ui(c) > 0.

Now, consider a set A ⊆ AT , and let us assess the size of the neighbourhood NG(A). Let
C(A) denote the set of candidates whose some parts belongs to A. There is an edge from
p ∈ A to a coin of a voter i only if i assigns a positive utility to the candidate of p. Thus,
NG(A) consists of coins of those voters, who assign a positive utility to some candidate from
C(A). By Lemma 2 there are at least cost(C(A)) · n such voters, each voter comes with d
coins, thus:

|NG(A)| > cost(C(A)) · n · d > cost(A) · n · d.

Further, since each part of A costs exactly 1/d, we get that:

|NG(A)| > cost(A) · n · d = 1/d · |A| · n · d = |A| · n.

Hence, from Lemma 1 we have that there exists a mapping from AT to AS such that every
part of every candidate c is mapped to n coins and to each coin at most one candidate is
mapped.

Now the payment function is constructed as follows: for every voter i ∈ S and candidate
c ∈ T , if exactly q coins of i are mapped with some parts of c, then pi(c) = q/d·n. It is
straightforward to check that such a payment function satisfies conditions (C1)–(C4) for
b = 1, which completes the proof.

Finally, we can state the main result of this subsection.

Theorem 5. Every outcome W elected by GCR can be completed to some priceable outcome.

Proof. From Lemma 3, we know that there exists a family of payment functions {p}i∈N
satisfying conditions (C1)–(C4) for W . Now, to obtain outcome W ′ supported by a valid
price system, it is enough to run Rule X for this instance with initial outcome set to W and
the initial endowment of every voter i ∈ N set to 1/n−

∑
c∈W pi(c).

C.2 Some Drawbacks of the Greedy Cohesive Rule

Since GCR satisfies FJR but Rule X does not, we may conclude that GCR is a better rule.
Clearly, GCR is custom-engineered to satisfy FJR. Thus, we may expect the rule to be
deficient in other dimensions. The results presented in Appendix C.1 certainly suggest that
GCR is not pathological, but in this section we consider some examples where Rule X seems
to select better outcomes than GCR.

We begin by discussing a property that Peters and Skowron [2020] call laminar propor-
tionality . This property identifies a family of well-behaved preference profiles and specifies
the outcome on those profiles. The axiom is defined for the case of approval-based committee
elections. Rule X satisfies; the following example shows that GCR does not.

Example 6 (GCR fails laminar proportionality). Let N = {1, 2, 3, 4} and k = 8, and
introduce the candidate sets X = {c1, . . . , c4}, Y = {c5, . . . , c10}, and Z = {c11, c12}. The
first three voters approve X ∪ Y , and the fourth one approves X ∪ Z. Two copies of the
profile are depicted below. The candidates are represented by boxes; each candidate is
approved by the voters who are below the corresponding box.



v1 v2 v3 v4

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

v1 v2 v3 v4

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

In this election instance, laminar proportionality would require that the voting rule selects
all the candidates from X since they are approved by everyone. After electing the candidates
in X, four seats are left to fill. Since the group {v1, v2, v3} the three times as large as the
group {v4}, laminar proportionality requires that we elect three candidates from Y and one
candidate from Z. Thus, the committee indicated by the green boxes on the left-hand figure
is laminar proportional.

On the other hand, in the first step GCR can choose the weakly (6, Y )-cohesive group
{v1, v2, v3} and in the second step it can select the weakly (2, Z)-cohesive group {v4}. This
results in the blue committee depicted in the right-hand figure; this committee fails laminar
proportionality.

Example 6 shows that in general, GCR is not laminar proportional, as it can return
committees which are prohibited by the axiom. However, this example is not fully satisfactory,
as it depends on tie-breaking. For example, in the first step we could choose the weakly
(6, {c2, c3, c4, c5, c6})-cohesive group containing the first three voters, and in the second
step the weakly (2, {c1, c11})-cohesive group containing the last voter. An open question
is whether GCR can always elect a committee satisfying laminar proportionality (among
others). However, the following example shows that for some ’nearly laminar’ instances,
GCR does not match the general intuition standing behind this axiom.

Example 7. Modify the instance described in Example 6 in the following way: we have
N = [4000]. Voter 1 approves only candidates from Y , voters 2 to 3000 approve X ∪ Y ,
voters 3001 to 3999 approve X ∪ Z and voter 4000 approves Z.

v1 v2 − v3000 v3001 − v3999 v4000

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

This instance is not laminar (because of the two voters not approving X), but it is close to
being laminar and it is reasonable to expect that the elected committee should be the same



as the green one from Example 6. Rule X uniquely elects that committee. On the other
hand, GCR selects first the weakly (6, Y )-cohesive group containing the first 3000 voters and
in the second step the weakly (2, Z)-cohesive group containing the last 1000 voters. After
that the algorithm stops, electing committee Y ∪ Z, as depicted above. Note that in this
case, the choice of weakly cohesive groups is unique.

Examples 6 and 7 do not rule out the existence of an FJR rule that is also laminar
proportional; the existence of a natural example of such a rule is an interesting open problem.

D Rule X and GCR for Ordinal Ballots

In this section we discuss how our two rules can be adapted for committee elections where
voters have ordinal preferences, that is, voters express their preferences by ranking the
candidates. The main idea is straightforward: we convert voters’ preference rankings into
additive valuations, by using positional scoring rules, and then apply our rules to the
resulting election. Note that if we use scoring rules that assign positive values to positions
in voters’ rankings, we always obtain exhaustive rules. We will show that when we use a
lexicographic conversion scheme in which voters care infinitely more about their top-ranked
candidate than their second-ranked candidate and so on, then Rule X satisfies an axiom
called Proportionality for Solid Coalitions (PSC). which was first introduced to analyze the
Single Transferable Vote [Woodall, 1994, Tideman and Richardson, 2000]. (GCR does not
satisfy PSC.) Rule X as applied to ordinal preferences is related to the Expanding Approvals
rule of Aziz and Lee [2020]. Interestingly, due to its flexibility, Rule X can be used to extend
the proportionality idea behind PSC beyond a lexicographic interpretation of preferences:
Depending on how we convert voters’ preference rankings to cardinal utilities, we obtain
different forms of proportionality (cf., Faliszewski et al., 2019). For example, if we use Borda
scores, the rule chooses outcomes where the average position of selected candidates in voters’
rankings is high.

D.1 Model for Ordinal Preferences

In this section we assume that each voter i ∈ N submits a strict preference order �i over the
set of candidates. The order ci1 �i ci2 � . . . � cim means that ci1 is voter’s i most preferred
candidate, ci2 is her second most-preferred candidate, and so on. By posi(c) we denote the
position of candidate c in i’s preference ranking. In the above example we have posi(ci1) = 1,
posi(ci2) = 2, and so on. For sets A and B, we write A �i B if a �i b for all a ∈ A, b′ ∈ B.

Further, we assume unit costs, so that the goal is to select a committee of k candidates,
and thus that the cost of each candidate is 1/k.

Definition 13 (Proportionality for Solid Coalitions (PSC)). An outcome W satisfies PSC if
for each ` ∈ [k], each subset of voters S ⊆ N with |S| > n /̀k, and each subset of candidates
T such that T �i C \ T for all i ∈ S, it holds that |W ∩ T | > min(`, |T |).

A rule satisfies PSC if for each election it only returns outcomes that satisfy PSC.

Definition 13 focuses on voters’ top preferences—intuitively, it requires that if c �i c′,
then the utility that voter i assigns to candidate c is infinitely higher than that assigned
to c′. Rule X naturally extends to such preferences, which we call lexicographic utilities,
but we need to adapt Definition 1 to use a slightly different interpretation of the price per
unit of utility, ρ. So far we assumed that ρ is a positive real value; in order to adapt the
definition to lexicographic preferences we assume that ρ ∈ [m], and that the multiplication



by candidates’ utilities is defined as follows:

ρ · ui(c) =

{
1 if ρ > posi(c),

0 otherwise.

Proposition 5. Rule X for lexicographic utilities satisfies PSC.

Proof. Consider a committee W returned by Rule X for an election instance (N,C, k, {�i
}i∈N ). Let ` ∈ [k], S ⊆ N , and T be as in Definition 13. The voters in S initially have the
following budget:

|S| · 1/n > n /̀k · 1/n = /̀k.

Consider the steps of Rule X as the price per unit of utility, ρ, increases from 1 to |T |.
In each such step, each voter from S can pay only for the candidates in T . Indeed, each
candidate c ∈ C \ T occupies a worse position than |T | in those voters’ preference rankings,
and so for each i ∈ S we have ρ · ui(c) = 0 (since ρ 6 |T |). When ρ reaches |T |, then for
each candidate c ∈ T and each i ∈ S we have ui(c) = 1. The voters from S have enough
money to buy ` candidates, and so they will buy at least min(`, |T |) candidates from T .

One may wonder, given the lexicographic utility scheme, whether PSC is just a consequence
of Rule X satisfying EJR. Example 8 below shows that this is not the case and that the
two axioms are logically incomparable in this context. FJR and PSC are also logically
incomparable.

Example 8. Consider three voters with the following preference orders over C =
{c1, c2, c3, c4}:

1 : c1 � c2 � c3 � c4
2: c2 � c3 � c1 � c4
3: c3 � c1 � c2 � c4.

Assume k = 2. In this example PSC would require that two candidates from {c1, c2, c3} are
elected. On the other hand, committee {c1, c4} satisfies FJR.

Now, consider two voters with the following preferences:

1 : c1 � c2 � c3 � c4
2: c4 � c1 � c3 � c2.

Assume k = 1. Here, EJR requires that c1, c2, or c4 must be selected. On the other hand,
{c3} is a committee that satisfies PSC.

GCR can also be adapted to lexicographic utilities. In this case, it is sufficient to assume
that the utilities are exponentially decreasing with the positions—for each i ∈ N and c ∈ C
we set ui(c) = m−posi(c). Then, for each c we have that ui(c) >

∑
c′≺ic ui(c

′), and so the
utility a voter assigns to a candidate in position p is higher than the utility that it would
assign to any committee all of whose members are ranked below p.

Proposition 6. GCR for lexicographic utilities fails PSC.



Proof. We show that GCR fails PSC. Consider the following preference profile:

1 : c1 � c7 � c8 � c6 � c4 � c5 � c2 � c3 � c9 � c10 � c11 � c12

2: c1 � c7 � c8 � c6 � c4 � c5 � c2 � c3 � c9 � c10 � c11 � c12

3: c1 � c2 � c3 � c6 � c4 � c5 � c7 � c8 � c9 � c10 � c11 � c12

4: c1 � c2 � c3 � c6 � c4 � c5 � c7 � c8 � c9 � c10 � c11 � c12

5: c1 � c2 � c3 � c6 � c4 � c5 � c7 � c8 � c9 � c10 � c11 � c12

6: c1 � c2 � c3 � c6 � c4 � c5 � c7 � c8 � c9 � c10 � c11 � c12

7: c2 � c3 � c1 � c7 � c8 � c4 � c5 � c6 � c9 � c10 � c11 � c12

8: c3 � c2 � c1 � c7 � c8 � c4 � c5 � c6 � c9 � c10 � c11 � c12

9: c4 � c5 � c9 � c7 � c8 � c1 � c2 � c3 � c6 � c10 � c11 � c12

10: c5 � c4 � c9 � c7 � c8 � c1 � c2 � c3 � c6 � c10 � c11 � c12

11: c10 � c11 � c12 � c7 � c8 � c1 � c2 � c3 � c4 � c5 � c6 � c9
12: c11 � c10 � c12 � c7 � c8 � c1 � c2 � c3 � c4 � c5 � c6 � c9.

Assume k = 4. Here, GCR will first pick S = {1, . . . , 6} as a weakly cohesive group, with
the corresponding set of candidates T = {c1, c6}. Indeed, if T consisted of 3 candidates,
then S would need to have at least 9 voters. However, any 9 voters rank at least 4 different
candidates at the top position, thus at least one of them would have a lower satisfaction than
the voters from S have from T . By the same argument, T cannot consist of 4 candidates. If
T consisted of 2 candidates but S included one voter from 7, . . . , 12, then the satisfaction of
voter 1 or 2 would also be lower. Indeed, these two voters rank c2, c3, c4, c5, c10, and c11

(that is candidates that appear in the top positions) below c6.
Hence, GCR picks c1 and c6, and removes the first 6 voters from further consideration.

In the second step, the rule picks c7 and c8. This is because each other candidate appears at
most twice before c7 and c8 in the remaining voters’ rankings. Thus, the rule picks c1, c6, c7
and c8.

On the other hand, by looking at voters 3, . . . , 8 we observe that PSC requires that two
candidates from c1, c2, c3 should be selected.

E Experiments

In this section we look at data describing voters’ preferences, collected from participatory
budgeting elections carried out in several major cities in Poland. Based on this data we
make a number of observations regarding election rules that we discuss in this paper.

In election instances that we have considered the projects were divided into several groups.
One group consisted of city-wide projects, and each other group contained projects that
were assigned to one of several city districts. Each voter was allowed to approve at most
ten city-wide projects, and at most ten projects from her district. A part of the municipal
budget was assigned to city-wide projects and the other part was divided among the districts,
proportionally to their populations. Currently, the cities that we consider use a rule that
selects projects greedily until the budget is exhausted; the projects are picked in the order of
the number of garnered approval votes.

In our experimental analysis we used two types of voters’ preferences:

Approval utilities: corresponding directly to the approval-ballots from our PB data.

Cardinal utilities: for each voter i and each project cj we obtained the value of the
cardinal utility ui(cj) as follows. If i does not approve cj , we assume that ui(cj) = 0.



If i approves cj , we sample ui(cj) from the normal distribution centred at cost(cj).
Intuitively, this means that voters care more about (take a greater utility from) funding
expensive projects they like. This assumption is consistent with properties considered
by Talmon and Faliszewski [2019], and with the metod of preference elicitation called
“value-for-money” [Benade et al., 2017]. We also tested similar assumptions, where the
values ui(cj) were sampled from the uniform and exponential distributions, but the
results led to qualitatively consistent conclusions. We also checked the case, where the
utilities were sampled from distributions centred at a constant value instead of values
dependent on the costs of the projects; in such cases, the results were similar to those
that we observed for approval-based ballots, thus we do not describe them in detail in
the further part of this section.

The rules that we are interested in comparing are Rule X, the greedy approval rule, which
is a rule currently used for selecting projects, Phragmén’s rule, and the sequential version of
PAV (sPAV)15. We have limited the experiments to polynomial-time algorithms, since the
instances are too large to efficiently run e.g. the non-sequential versions of Phragmén’s rule
or PAV for them.

Since Phragmén’s rule does not extend to cardinal utilities, we assume that this rule
is used only for approval ballots. Specifically, if we have a preference profile with cardinal
utilities constructed from approval ballots, then we give Phragmén’s rule as input the initial
approval ballots that were used as the base for constructing cardinal utilities.

In our experiments we apply the greedy approval rule in exactly the same way as it is used
by the cities, that is this rule is used separately in each district. In contrast, we run Rule
X, Phragmén’s rule, and sPAV on instances constructed by merging district-wide elections.
This way, we analyse whether the considered rules would make proportional choices, even if
the projects were not preassigned to specific districts.

In our analysis we used the following metrics:

Total utility (util). The total utility of the voters from the selected set of projects W ,
that is

∑
i∈N

∑
c∈W ui(c).

Distribution of projects (proj-dis). For each election instance we look at the projects
selected from each district. We compute their cost and divide it by the fraction of the
budget that is proportional to the population of the district (excluding city-wise projects
that have been selected). From those ratios we take a variance.

Distribution of utilities (util-dis). For each election instance and each voter i we com-
pute her normalised utility from the set of selected projects W , which we define as∑
i∈N

∑
c∈W ui(c) divided by n ·

∑
c∈W ui(c). We compute the variance of these values.

We normalise each of these three metrics: when computing the value of the metric for a
committee W we divide it by the value of the metric for the committee returned by the
greedy approval rule.

E.1 Comparing Exhaustive Variants of Rule X

We start by comparing three different ways of making Rule X exhaustive. The first two
methods, Exh1 and Exh2 were described in Appendix B.3. The third method, Exh3, uses
the utilitarian strategy: we first select projects using Rule X, and then add projects greedily,

15In fact, instead of PAV we use a rule that greedily maximizes smoothed Nash welfare, i.e., a rule that in
every round picks a candidate c maximizing

∑
i∈N log(1 + ui(W ∪ {c})), where W is a committee elected so

far. In such form, the rule has a straightforward generalization to cardinal utilites.



Election util util-dis proj-dis (var)

Exh1 Exh2 Exh3 Exh1 Exh2 Exh3 Exh1 Exh2 Exh3

Approval utilities

Cracow-18 1.28 1.39 1.68 0.67 0.64 0.58 1.61 1.39 11.11

Cracow-19 1.33 1.61 1.9 0.8 0.66 0.62 2.71 1.86 17.57

Cracow-20 1.11 1.5 1.68 0.99 0.69 0.66 2.9 2.47 12.35

Czestochowa-20 0.8 1.13 1.16 1.23 0.9 0.92 5.45 5.34 7.09

Warsaw-17 1.26 1.36 1.54 1.11 0.91 0.99 41.77 7.37 26.09

Warsaw-18 1.33 1.43 1.69 1.01 0.9 0.98 34.05 8.73 54.89

Warsaw-19 1.33 1.37 1.63 1.24 1.07 1.25 35.98 6.98 50.48

Cardinal utilities

Cracow-18 0.25 0.39 1.69 0.42 0.39 0.66 1.64 1.5 58.13

Cracow-19 0.29 0.46 1.8 0.46 0.33 0.62 2.8 1.9 4.58

Cracow-20 0.21 0.61 2.0 0.29 0.28 0.38 2.78 2.98 4.16

Czestochowa-20 0.08 1.33 1.5 0.74 0.76 0.67 4.68 6.46 66.12

Warsaw-17 0.63 1.07 2.19 0.56 0.6 1.69 63.01 13.21 361.12

Warsaw-18 0.8 1.16 2.24 0.72 0.7 1.67 41.28 18.18 432.02

Warsaw-19 0.68 1.07 1.98 0.73 0.66 1.09 55.11 24.81 316.19

Table 1: The results of the experiments comparing exhaustive variants of Rule X.

in each round selecting a project that maximises the ratio of the total utility to the cost and
that fits in the remaining budget.

The results of our experiments for approval utilities are presented in Table 1. We make
the following conclusions:

1. Different exhaustive variants of Rule X vary significantly. Rule X gives a lot of flexibility
to a mechanism designer, selecting often smaller outcomes, yet still satisfying strong
fairness requirements, such as EJR. Depending on the specific objectives, a mechanism
designer can decide to complete this outcome using different strategies. If the total
utility is a primary criterion, then using variant Exh3 gives considerably better results
than the other two variants.

2. Both Exh1 and Exh2 produce outcomes that balance voters’ satisfaction much better
than the current solution (in this sense, both of them are more proportional). However,
the outcomes produced by Exh2 are qualitatively better and divide the budget between
districts in a substantially fairer way than the ones produced by Exh1. Therefore we
suggest Exh2 as the preferred method, when proportionality is the primary criterion.

E.2 Comparing Rule X, Phragmén’s rule, and PAV

In our second set of experiments we have compared Rule X with Phragmén’s rule, and
PAV. The results of those experiments are presented in Table 2. We make the following
observations:



Election util util-dis (var) proj-dis (var)

RX Phrag PAV RX Phrag PAV RX Phrag PAV

Approval utilities

Cracow-18 1.39 1.39 0.38 0.64 0.64 1.95 1.39 1.39 19.14

Cracow-19 1.61 1.6 0.64 0.66 0.65 1.36 1.86 1.65 1.15

Cracow-20 1.5 1.5 0.77 0.69 0.7 0.99 2.47 2.49 1.29

Czestochowa-20 1.13 1.1 0.83 0.9 0.96 1.05 5.5 4.41 20.97

Warsaw-17 1.36 1.37 0.4 0.91 0.93 1.19 7.37 6.24 86.22

Warsaw-18 1.43 1.44 0.47 0.9 0.91 1.4 8.73 10.14 102.03

Warsaw-19 1.4 1.41 0.37 1.07 1.1 1.32 6.98 8.59 83.46

Warsaw-20 1.41 1.42 0.91 0.89 0.91 0.96 1.14 1.16 0.24

Warsaw-21 1.62 1.64 0.93 0.73 0.8 0.84 1.06 1.09 0.19

Cardinal utilities

Cracow-18 0.39 0.28 1.46 0.39 0.37 0.72 1.49 1.28 33.98

Cracow-19 0.46 0.4 1.55 0.33 0.36 0.81 1.94 1.78 1.11

Cracow-20 0.61 0.59 1.83 0.28 0.29 0.44 3.08 2.33 1.16

Czestochowa-20 1.33 0.47 1.63 0.75 1.15 0.66 6.33 4.28 57.07

Warsaw-17 1.07 0.92 1.43 0.58 0.56 1.45 13.67 12.33 154.05

Warsaw-18 1.17 0.96 1.4 0.7 0.69 1.36 18.86 14.35 118.95

Warsaw-19 1.06 0.84 1.36 0.66 0.71 1.2 24.78 17.08 179.77

Warsaw-20 1.01 0.79 1.28 0.83 0.91 0.89 1.16 1.13 15.09

Warsaw-21 1.19 0.68 1.35 0.58 0.45 0.73 1.13 1.04 10.13

Table 2: The results of the experiments comparing Rule X, Phragmén’s rule, and PAV.

1. For approval utilities, Rule X and Phragmén’s rule give very similar results. According
to the utilitarian criterion, and to the distribution of utilities, these results are better
than the results returned by the currently used method. Also, those rules divide the
budget proportionally among the districts (the variance in the proj-dis criterion is
relatively low). PAV is considerably worse, both in terms of the total utility of the
selected projects, and in terms of proportionality.

2. For cardinal utilities we observe a difference between Rule X and Phragmén’s rule.
This difference is expected since Phragmén’s rule does not take into account the
more fine-grained information on utilities, but operates only on approval ballots. On
the other hand, our results suggest that there is indeed a considerable advantage of
using rules that use cardinal utilities. We further observe that for cardinal utilities
PAV returns outcomes with a higher total utility, but this happens at the huge cost
of proportionality. Rule X always selects proportional outcomes, and outperforms
Phragmén’s rule with respect to the utilitarian criterion.
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