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Abstract

It is common to see a handful of reviewers reject a highly novel paper, because they
view, say, extensive experiments as far more important than novelty, whereas the
community as a whole would have embraced the paper. More generally, the disparate
mapping of criteria scores to final recommendations by different reviewers is a major
source of inconsistency in peer review. In this paper we present a framework inspired
by empirical risk minimization (ERM) for learning the community’s aggregate map-
ping. The key challenge that arises is the specification of a loss function for ERM.
We consider the class of L(p, q) loss functions, which is a matrix-extension of the
standard class of Lp losses on vectors; here the choice of the loss function amounts
to choosing the hyperparameters p, q ∈ [1,∞]. To deal with the absence of ground
truth in our problem, we instead draw on computational social choice to identify de-
sirable values of the hyperparameters p and q. Specifically, we characterize p = q = 1
as the only choice of these hyperparameters that satisfies three natural axiomatic
properties. Finally, we implement and apply our approach to reviews from IJCAI
2017.

1 Introduction

The essence of science is the search for objective truth, yet scientific work is typically
evaluated through peer review — a notoriously subjective process [9, 23, 4, 14, 27, 19]. One
prominent source of subjectivity is the disparity across reviewers in terms of their emphasis
on the various criteria used for the overall evaluation of a paper. Lee [25] refers to this
disparity as commensuration bias, and describes it as follows:

“In peer review, reviewers, editors, and grant program officers must make in-
terpretive decisions about how to weight the relative importance of qualitatively
different peer review criteria — such as novelty, significance, and methodological
soundness — in their assessments of a submission’s final/overall value. Not all
peer review criteria get equal weight; further, weightings can vary across review-
ers and contexts even when reviewers are given identical instructions.”

Lee [25] further argues that commensuration bias “illuminates how intellectual priorities in
individual peer review judgments can collectively subvert the attainment of community-wide
goals” and that it “permits and facilitates problematic patterns of publication and funding
in science.” There have been, however, very few attempts to address this problem.

A fascinating exception, which serves as a case in point, is the 27th AAAI Conference
on Artificial Intelligence (AAAI 2013). Reviewers were asked to score papers, on a scale
of 1–6, according to the following criteria: technical quality, experimental analysis, formal
analysis, clarity/presentation, novelty of the question, novelty of the solution, breadth of
interest, and potential impact. The admirable goal of the program chairs was to select
“exciting but imperfect papers” over “safe but solid” papers, and, to this end, they provided
detailed instructions on how to map the foregoing criteria to an overall recommendation.
For example, the preimage of ‘strong accept’ is “a 5 or 6 in some category, no 1 in any
category,” that is, reviewers were instructed to strongly accept a paper that has a 5 or
6 in, say, clarity, but is below average according to each and every other criterion (i.e.,
a clearly boring paper). It turns out that the handcrafted mapping did not work well,
and many of the reviewers chose to not follow these instructions. Indeed, handcrafting



such a mapping requires specifying an 8-dimensional function, which is quite a non-trivial
task.1 Consequently, in this paper we do away with a manual handcrafting approach to this
problem.

Instead, we propose a data-driven approach based on ideas from machine learning, de-
signed to learn a mapping from criteria scores to recommendations capturing the opinion
of the entire (reviewer) community. From a machine learning perspective, the examples are
reviews, each consisting of criteria scores (the input point) and an overall recommendation
(the label). We make the assumption that each reviewer has a monotonic mapping in mind,
in the sense that a paper whose scores are at least as high as those of another paper on
every criterion would receive an overall recommendation that is at least as high; the reviews
submitted by a particular reviewer can be seen as observations of that mapping. Given this
data, our goal is to learn a single monotonic mapping that minimizes a loss function (which
we discuss momentarily). We can then apply this mapping to the criteria scores associated
with each review to obtain new overall recommendations (which can either replace the orig-
inal ones or can be provided alongside the original ones as additional information for the
program chairs).

Our approach to learn this mapping is inspired by empirical risk minimization (ERM).
In more detail, for some loss function, our approach is to find a mapping that, among all
monotonic mappings from criteria scores to the overall scores, minimizes the loss between
its outputs and the overall scores given by reviewers across all reviews. However, the choice
of loss function may significantly affect the final outcome, so that choice is a key issue.

Specifically, we focus on the family of L(p, q) loss functions, with hyperparameters p, q ∈
[1,∞], which is a matrix-extension of the more popular family of Lp losses on vectors. Our
question, then, is:

What values of the hyperparameters p ∈ [1,∞] and q ∈ [1,∞] in the specification
of the L(p, q) loss function should be used?

A challenge we must address is the absence of any ground truth in peer review. To this
end, we take the perspective of computational social choice [6], since our framework aggre-
gates individual opinions over mappings into a consensus mapping. From this viewpoint,
it is natural to select the loss function so that the resulting aggregation method satisfies
socially desirable properties, such as consensus (if all reviewers agree then the aggregate
mapping should coincide with their recommendations), efficiency (if one paper dominates
another then its overall recommendation should be at least as high), and strategyproof-
ness (reviewers cannot pull the aggregate mapping closer to their own recommendations by
misreporting them).

With this background, the main contributions of this paper are as follows. We first
provide a principled framework for addressing the issue of subjectivity regarding the various
criteria in peer review.

Our main theoretical result is a characterization theorem that gives a decisive answer to
the question of choosing the loss function for ERM: the three aforementioned properties are
satisfied if and only if the hyperparameters are set as p = q = 1. This result singles out an
instantiation of our approach that we view as particularly attractive and well grounded.

We also provide empirical results, which analyze properties of our approach when applied
to a dataset of 9197 reviews from IJCAI 2017. One vignette is that the papers selected by
L(1, 1) aggregation have a 79.2% overlap with the actual list of accepted papers, suggesting

1See also [32] for a similar case in the peer-review process of the OSDI conference. OSDI 2006 did
not allow reviewers to report an overall score, but instead, the PC co-chairs synthesized this score from
a weighted combination of criteria scores. Here, we instead take a community-based approach and learn
a mapping common to the community of reviewers. Further, we do not assume linear aggregation of the
criteria scores, but allow a more general monotonic mapping.



that our approach makes a significant difference compared to the status quo (arguably for
the better).

Finally, we note that the approach taken in this paper may find other applications. In-
deed, the problem of selecting a loss function is ubiquitous in machine learning [38, 29, 30],
and the axiomatic approach provides a novel way of addressing it. Going beyond loss func-
tions, machine learning researchers frequently face the difficulty of picking an appropriate
hypothesis class or values for certain hyperparameters.2 Thus, in problem settings where
such choices must be made — particularly in emerging applications of machine learning (such
as peer review) — the use of natural axioms can help guide these choices.

2 Our Framework

Suppose there are n reviewers R = {1, 2, . . . , n}, and a set P of m papers, denoted using
letters such as a, b, c. Each reviewer i reviews a subset of papers, denoted by P (i) ⊆ P.
Conversely, letR(a) denote the set of all reviewers who review paper a. Each reviewer assigns
scores to each of their papers on d different criteria, such as novelty, experimental analysis,
and technical quality, and also gives an overall recommendation. We denote the criteria
scores given by reviewer i to paper a by xia, and the corresponding overall recommendation
by yia. Let X1,X2, . . . ,Xd denote the domains of the d criteria scores, and let X = X1×X2×
· · ·×Xd. Also, let Y denote the domain of the overall recommendations. For concreteness, we
assume that each Xk as well as Y is the real line. However, our results hold more generally,
even if these domains are non-singleton intervals in R, for instance.

We further assume that each reviewer has a monotonic function in mind that they use
to compute the overall recommendation for a paper from its criteria scores. By a monotonic
function, we mean that given any two score vectors x and x′, if x is greater than or equal
to x′ on all coordinates, then the function’s value on x must be at least as high as its value
on x′. Formally, for each reviewer i, there exists g?i ∈ F such that yia = g?i (xia) for all
a ∈ P (i), where

F = {f : X→ Y | ∀x,x′ ∈ X,x ≥ x′ ⇒ f(x) ≥ f(x′)}
is the set of all monotonic functions.

2.1 Loss Functions

Recall that our goal is to use all criteria scores, and their corresponding overall recommen-
dations, to learn an aggregate function f̂ that captures the opinions of all reviewers on how
criteria scores should be mapped to recommendations. Inspired by empirical risk minimiza-
tion, we do this by computing the function in F that minimizes the L(p, q) loss on the data.
In more detail, given hyperparameters p ∈ [1,∞], q ∈ [1,∞], we compute

f̂ ∈ argmin
f∈F


∑
i∈R

 ∑
a∈P (i)

|yia − f(xia)|p


q
p


1
q

. (1)

This class of L(p, q) losses (p ∈ [1,∞], q ∈ [1,∞]) is a matrix-extension of the more common
Lp losses on vectors, and represents a general and popular class as we discuss below. In
words, the loss is computed by taking the Lq norm over the loss associated with individual
reviewers, where the loss associated to a reviewer is defined as the Lp norm computed on the
error of f with respect to the reviewer’s overall recommendations. We refer to aggregation
by minimizing L(p, q) loss as defined in Equation (1) as “L(p, q) aggregation.”

2Popular techniques such as cross-validation for choosing hyperparameters also in turn depend on speci-
fication of a loss function.



For a function f , the L(p, q) loss is simply the L(p, q) matrix norm of the difference
between the matrix [yia]i∈R,a∈P and the matrix [f(xia)]i∈R,a∈P (the entry of the matrices
is set to zero if the reviewer does not review the paper). The class of L(p, q) norms represents
the standard “entrywise” class of matrix norms. It includes various popular matrix norms
as special cases such as the Frobenius norm (p = q = 2), the max norm (p = q = ∞), and
the 1-norm (p = 1, q =∞). This class has had numerous applications in machine learning,
statistics, and signal processing [21, 10, 20, 34, 55, 36, 18, 7]. Moreover, unlike some other
matrix norm classes (like Schatten or induced norm classes) the entrywise L(p, q) class is
quite interpretable; for instance, the L(1, 1) loss simply sums up the absolute differences
between the overall scores given by reviewers and those given by the function f .

Equation (1) does not specify how to break ties between multiple minimizers. For con-
creteness, we use the minimum L2 norm for tie-breaking (although of our results hold under
any reasonable tie-breaking method, such as the minimum L` norm for any ` ∈ (1,∞)).
Formally, letting

F̂ = argmin
f∈F


∑
i∈R

 ∑
a∈P (i)

|yia − f(xia)|p


q
p


1
q

be the set of all L(p, q) loss minimizers, we break ties by choosing

f̂ ∈ argmin
f∈F̂

√∑
i∈R

∑
a∈P (i)

f(xia)2. (2)

Observe that since the L(p, q) loss and constraint set are convex, F̂ is also a convex set.

Hence, f̂ as defined by Equation (2) is unique.

Once the function f̂ has been computed, it can be applied to every review (for all

reviewers i and papers a) to obtain a new overall recommendation f̂(xia). There is a
separate — almost orthogonal — question of how to aggregate the overall recommendations
of several reviewers on a paper into a single recommendation. In our theoretical results we
are agnostic to how this additional aggregation step is performed, but we return to it in our
experiments in Section 4.

We remark that an alternative approach would be to learn a monotonic function ĝi :
X→ Y for each reviewer (which best captures their recommendations), and then aggregate

these functions into a single function f̂ . We chose not to pursue this approach, because in
practice there are very few examples per reviewer, so it is implausible that we would be able
to accurately learn the reviewers’ individual functions.

2.2 Axiomatic Properties

In social choice theory, the most common approach — primarily attributed to Arrow [2] —
for comparing different aggregation methods is to determine which desirable axioms they
satisfy. We take the same approach in order to determine the values of the hyperparameters
p and q for the L(p, q) aggregation in Equation (1).

We stress that axioms are defined for aggregation methods and not aggregate func-
tions. Informally, an aggregation method is a function that takes as input all the reviews
{(xia, yia)}i∈R,a∈P (i), and outputs an aggregate function f̂ : X → Y. We do not define an
aggregation method formally to avoid introducing cumbersome notation that will largely
be useless later. It is clear that for any choice of hyperparameters p, q ∈ [1,∞], L(p, q)
aggregation (with tie-breaking as defined by Equation 2) is an aggregation method.

Social choice theory essentially relies on counterfactual reasoning to identify scenarios
where it is clear how an aggregation method should behave. To give one example, the



Pareto efficiency property of voting rules states that if all voters prefer alternative a to
alternative b, then b should not be elected; this situation is extremely unlikely to occur,
yet Pareto efficiency is obviously a property that any reasonable voting must satisfy. With
this principle in mind, we identify a setting in our problem where the requirements are very
clear, and then define our axioms in that setting.

For all of our axioms, we restrict attention to scenarios where every reviewer reviews
every paper, that is, P (i) = P for every i. Moreover, we assume that the papers have
‘objective’ criteria scores, that is, the criteria scores given to a paper are the same across all
reviewers, so the only source of disagreement is how the criteria scores should be mapped to
an overall recommendation. We can then denote the criteria scores of a paper a simply as
xa, as opposed to xia, since they do not depend on i. We stress that our framework does not
require these assumptions to hold — they are only used in our axiomatic characterization,
namely Theorem 1 in the next section.

An axiom is satisfied by an aggregation method if its statement holds for every possible
number of reviewers n and number of papers m, and for all possible criteria scores and
overall recommendations. We start with the simplest axiom, consensus, which informally
states that if there is a paper such that all reviewers give it the same overall recommendation,
then f̂ must agree with the reviewers; this axiom is closely related to the unanimity axiom
in social choice.

Axiom 1 (Consensus). For any paper a ∈ P, if all reviewers report identical overall rec-

ommendations y1a = y2a = · · · = yma = r for some r ∈ Y, then f̂(xa) = r.

Before presenting the next axiom, we require another definition: we say that paper
a ∈ P dominates paper b ∈ P if there exists a bijection σ : R → R such that for all i ∈ R,
yia ≥ yσ(i)b. Equivalently (and less formally), paper a dominates paper b if the sorted overall
recommendations given to a pointwise-dominate the sorted overall recommendations given
to b. Intuitively, in this situation, a should receive a (weakly) higher overall recommendation
than b, which is exactly what the axiom requires; it is similar to the classic Pareto efficiency
axiom mentioned above.

Axiom 2 (Efficiency). For any pair of papers a, b ∈ P, if a dominates b, then f̂(xa) ≥ f̂(xb).

Our positive result, which will be presented shortly, satisfies this notion of efficiency. On
the other hand, we also use this axiom to prove a negative result; an important note is that
the negative result requires a condition that is significantly weaker than the aforementioned
definition of efficiency. We revisit this point about requiring a much weaker condition for
the negative result at the end of Section 3.2.1.

Our final axiom is strategyproofness, a game-theoretic property that plays a major role in
social choice theory [33]. For the application of peer review, we consider strategyproofness
motivated by the many instances of strategic behavior uncovered and studied recently in
peer review [5, 54, 51, 52, 16, 31, 46]. Intuitively, in our problem setting, strategyproof-
ness means that reviewers have no incentive to misreport their overall recommendations:
they cannot bring the aggregate recommendations — the community’s consensus about the
relative importance of various criteria — closer to their own through strategic manipulation.3

Axiom 3 (Strategyproofness). For each reviewer i ∈ R, and all possible manipulated rec-
ommendations y′i ∈ Ym, if yi = (yi1, yi2, . . . , yim) is replaced with y′i, then

‖(f̂(x1), . . . , f̂(xm))− yi‖2 ≤ ‖(ĝ(x1), . . . , ĝ(xm))− yi‖2, (3)

3This is vaguely reminiscent of work on impartial peer evaluation [1, 22, 17, 3, 54], but in that setting the
utility of a reviewer depends on whether their own paper was selected — a strategic issue that is orthogonal
to our work.



where f̂ and ĝ are the aggregate functions obtained from the original and manipulated re-
views, respectively.

The use of the L2 norm in Equation (3) of the strategyproofness axiom is made only for
concreteness, and all our results hold for any norm L`, ` ∈ [1,∞].

3 Main Result

In Section 2, we introduced L(p, q) aggregation as a family of rules for aggregating individual
opinions towards a consensus mapping from criteria scores to recommendations. But that
definition, in and of itself, leaves open the question of how to choose the values of p and q in
a way that leads to the most socially desirable outcomes. The axioms of Section 2.2 allow
us to give a satisfying answer to this question. Specifically, our main theoretical result is a
characterization of L(p, q) aggregation in terms of the three axioms.

Theorem 1. For p, q ∈ [1,∞], L(p, q) aggregation satisfies consensus, efficiency, and strat-
egyproofness if and only if p = q = 1.

We remark that for p = q, Equation (1) does not distinguish between different reviewers,
that is, the aggregation method pools all reviews together. We find this interesting, because
the L(p, q) aggregation framework does have enough power to make that distinction, but
the axioms guide us towards a specific solution, L(1, 1), which does not.

Turning to the proof of the theorem, we start from the easier ‘if’ direction.

3.1 p = q = 1 Satisfies All Three Axioms

Lemma 1. L(p, q) aggregation with p = q = 1 satisfies consensus, efficiency and strate-
gyproofness.

Proof. The key idea of the proof lies in the form taken by the minimizer of L(1, 1) loss.
When each reviewer reviews every paper and the papers have objective criteria scores,
L(1, 1) aggregation reduces to computing

f̂ ∈ argmin
f∈F

{∑
i∈R

∑
a∈P
|yia − f(xa)|

}
, (4)

where ties are broken by picking the minimizer with minimum L2 norm. We claim that the
aggregate function is given by

f̂(xa) = left-med({yia}i∈R) ∀a ∈ P,

where left-med(·) of a set of points is their left median. We prove this claim by showing
four parts:

(i) f̂ is a valid function,

(ii) f̂ is an unconstrained minimizer of the objective in (4),

(iii) f̂ satisfies the constraints of (4), i.e., f̂ ∈ F , and

(iv) f̂ has the minimum L2 norm among all minimizers of (4).



We start by proving part (i). This part can only be violated if there are two papers a

and b such that xa = xb, but left-med({yia}i∈R) 6= left-med({yib}i∈R), leading to f̂ having
two function values for the same x-value. However, we assumed that each reviewer i has
a function g?i used to score the papers. So, for the two papers a and b, we would have
yia = g?i (xa) = g?i (xb) = yib for every i, giving us left-med({yia}i∈R) = left-med({yib}i∈R).

Therefore, f̂ is a valid function.
For part (ii), consider the optimization problem (4) without any constraints. Denote the

objective function as G(f). Rearranging terms, we obtain

G(f) =
∑
a∈P

∑
i∈R
|yia − f(xa)| . (5)

Consider the inner summation
∑
i∈R |yia − f(xa)|; it is well known that this quantity is

minimized when f(xa) is any median of the {yia}i∈R values. Hence, we have

G(f) =
∑
a∈P

∑
i∈R
|yia − f(xa)|

≥
∑
a∈P

∑
i∈R
|yia − left-med({yia}i∈R)|

= G(f̂),

(6)

where f is an arbitrary function. Therefore, f̂ minimizes the objective function even in the
absence of any constraints, proving part (ii).

Turning to part (iii), we show that f̂ satisfies the monotonicity constraints, i.e., f̂ ∈ F .
Suppose a, b ∈ P are such that xa ≥ xb. Using the fact that each reviewer i scores papers
based on the function g?i , we have yia = g?i (xa) and yib = g?i (xb). And since g?i ∈ F
obeys monotonicity constraints, we obtain yia ≥ yib for every i. This trivially implies that
left-med({yia}i∈R) ≥ left-med({yib}i∈R), i.e., f̂(xa) ≥ f̂(xb), completing part (iii).

Finally, we prove part (iv). Observe that Equation (6) is a strict inequality if there is a
paper a for which f(xa) is not a median of the {yia}i∈R values. In other words, the only

functions f that have the same objective function value as f̂ are of the form

f(xa) ∈ med({yia}i∈R) ∀a ∈ P, (7)

where med(·) of a collection of points is the set of all points between (and including) the left
and right medians. Hence, all other minimizers of (4) must satisfy Equation (7). Observe

that f̂ is pointwise smaller than any of these functions, since it computes the left median at
each of the x-values. Therefore, f̂ has the minimum L2 norm among all possible minimizers
of (4), completing the proof of part (iv).

Combining all four parts proves that f̂ is indeed the aggregate function chosen by L(1, 1)
aggregation. We use this to prove that L(1, 1) aggregation satisfies consensus, efficiency and
strategyproofness.

Consensus. Let a ∈ P be a paper such that y1a = y2a = · · · = yma = r for some r.
Then, left-med({yia}i∈R) = r. Hence, f̂(xa) = r, satisfying consensus.

Efficiency. Let a, b ∈ P be such that a dominates b. In other words, the sorted overall
recommendations given to a pointwise-dominate the sorted overall recommendations given
to b. So, by definition, left-med({yia}i∈R) is at least as large as left-med({yib}i∈R). That

is, f̂(xa) ≥ f̂(xb), satisfying efficiency.
Strategyproofness. Let i be an arbitrary reviewer. Observe that in this setting, the aggre-

gate score f̂(xa) of a paper a depends only on the score yia and not on other scores {yib}b6=a
given by reviewer i. In other words, the only way to manipulate f̂(xa) = left-med({yi′a}i′∈R)



Criteria scores: x1 = [1/4, 3/4],x2 = [3/4, 1/4]

Overall scores (yij ’s):

Paper 1 Paper 2

Reviewer 1 0 0

Reviewer 2 1 0

Reviewer 3 0 z

(a) Example data with 2 papers, 3 reviewers, and
2 criteria. When z = 1 the data for the two papers
is symmetric. Setting z < 1 makes Paper 1 dom-
inate Paper 2 and the efficiency axiom mandates
f̂(x1) ≥ f̂(x2).

(f̂(x1), f̂(x2)) is the Fermat point of triangle

with vertices (y11, y12), (y21, y22), (y31, y32):

(0,0)

(0,1)

(1,0)

(0, ½)

(b) The Fermat point is (.21, .21) when z = 1
(black circle), but (.12, .15) when z = 1/2 (red tri-
angle). Hence L(2, 1) aggregation with z = 1/2

results in f̂(x1) < f̂(x2).

Figure 1: An example of aggregation under L(2, 1) loss, and violation of the efficiency axiom.

is by changing yia. Consider three cases. Suppose yia < f̂(xa). In this case, if reviewer i

reports y′ia ≤ f̂(xa), then there is no change in the aggregate score of a. On the other hand,

if y′ia > f̂(xa), then either the aggregate score of a remains the same or increases, making

things only worse for reviewer i. The other case of yia > f̂(xa) is symmetric to yia < f̂(xa).

Consider the third case, yia = f̂(xa). In this case, manipulation can only make things

worse since we already have |yia − f̂(xa)| = 0. In summary, reporting y′ia instead of yia
cannot help decrease |yia− f̂(xa)|. Also, recall that yia does not affect the aggregate scores
of other papers, and hence manipulation of yia does not help them either. Therefore, by
manipulating any of the yia scores, reviewer i cannot bring the aggregate recommendations
closer to her own, proving strategyproofness.

3.2 Violation of the Axioms When (p, q) 6= (1, 1)

We now tackle the harder ‘only if’ direction of Theorem 1. We do so in three steps: efficiency
is violated by p ∈ (1,∞) and q = 1 (Lemma 2), strategyproofness is violated by L(p, q)
aggregation for all q > 1 (Lemma 3), and consensus is violated by p = ∞ and q = 1
(Lemma 4). Together, the three lemmas leave p = q = 1 as the only option. Below we state
the lemmas and give some proof ideas; the theorem’s full proof is relegated to Appendix A.

It is worth noting that, although we have presented the lemmas as components in the
proof of Theorem 1, they also have standalone value (some more than others). For example,
if one decided that only strategyproofness is important, then Lemma 3 below would give
significant guidance on choosing an appropriate method.

3.2.1 Violation of Efficiency

In our view, the following lemma presents the most interesting and counter-intuitive result
in the paper.

Lemma 2. L(p, q) aggregation with p ∈ (1,∞) and q = 1 violates efficiency.

It is quite surprising that such reasonable loss functions violate the simple requirement of
efficiency. In what follows explain this phenomenon via a connection between our problem
and the notion of the ‘Fermat point’ of a triangle [43]. The explanation provided here
demonstrates the negative result for L(2, 1) aggregation. The complete proof of the lemma
for general values of p ∈ (1,∞) is quite involved, as can be seen in Appendix A.



The construction of the negative result is illustrated in Figure 1 and described in more
detail here. Consider a setting with 3 reviewers and 2 papers, where each reviewer reviews
both papers. We let x1 and x2 denote the respective objective criteria scores of the two
papers. Assume that no score in {x1,x2} is pointwise greater than or equal to the other
score in that set; an example is shown in Figure 1(a). Let the overall recommendations given
by the reviewers be y11 = 0, y21 = 1, y31 = 0 to the first paper and y12 = 0, y22 = 0 and
y23 = z to the second paper. Under these scores, let f̂ denote the aggregate function that
minimizes the L(2, 1) loss. We see that in this data, when z < 1, the first paper dominates

the second, and hence the efficiency axiom mandates f̂(x1) ≥ f̂(x2).
The outcome of the L(2, 1) aggregation is related to the notion of the Fermat point

of a triangle. The Fermat point of a triangle is a point such that the sum of its (Eu-
clidean) distances from all three vertices is minimum. Consider a triangle in R2 with vertices
(y11, y12), (y21, y22), (y31, y32); see Figure 1(b). Then by definition, the Fermat point of this

triangle is exactly (f̂(x1), f̂(x2)). Intuitively, the p = 2 in the L(p = 2, q = 1) loss relates
to the Euclidean distances used in the Fermat point, and the q = 1 relates to summing the
distances to all vertices.

In our specific example, we have (y11, y12) = (0, 0), (y21, y22) = (1, 0), and (y31, y32) =
(0, z). When z = 1 the Fermat point equals (0.21, 0.21) and is symmetric across both
coordinates. Now when the vertex (z, 0) is moved down (by decreasing z), the Fermat point
paradoxically moves to the left and down. For instance, setting z = 1

2 , the Fermat point of
this triangle as (0.12, 0.15). Thus the aggregate score of paper 1 under L(2, 1) aggregation
is strictly smaller than of paper 2, thereby violating efficiency for the L(2, 1) loss.

As a final but important remark, the proof of Lemma 2 only requires a significantly
weaker notion of efficiency. In this weaker notion, we first consider two papers 1 and 2 such
that their reviews are symmetric: formally, switching the labels “1” and “2” and switching
the labels of some reviewers and criteria leaves the data unchanged.4 The weaker version of
efficiency says that reducing the review scores of paper 2 mandates f̂(x1) ≥ f̂(x2). In the
example of Figure 1(a), when z = 1, switching the labels of the two papers, the labels of
reviewers 2 and 3, and the labels of the two criteria yields data identical to the original. In
the example above, reducing z to z < 1 breaks the symmetry and makes paper 2 inferior to
paper 1 in this data. The axiom requires f̂(x1) ≥ f̂(x2) in this case.

3.2.2 Violation of Strategyproofness

Lemma 3. L(p, q) aggregation with q ∈ (1,∞] violates strategyproofness.

We prove the lemma via a simple construction with just one paper and two reviewers,
who give the paper overall recommendations of 1 and 0, respectively. For q ∈ (1,∞), the
aggregate score is

f̂ = argmin
f∈R

{
|1− f |q + |f |q

}
,

and for q =∞, it is
f̂ = argmin

f∈R
max

(
|1− f |, |f |

)
.

Either way, the unique minimum is obtained at an aggregate score of 0.5. If reviewer 1
reported an overall recommendation of 2, however, the aggregate score would be 1, which
matches her ‘true’ recommendation, thereby violating strategyproofness. See Appendix A.2
for the complete proof.

4Note that we assume no prior importance on various criteria and any such importance should be learnt
from the data.



# of reviews by a reviewer 1 2 3 4 5 6 7 8 ≥ 9
Frequency 238 96 92 120 146 211 628 187 7

Table 1: Distribution of number of papers reviewed by a reviewer.

3.2.3 Violation of Consensus

Lemma 4. L(p, q) aggregation with p =∞ and q = 1 violates consensus.

Lemma 4 is established via another simple construction: two papers, two reviewers, and
overall recommendations

y =

[
0 1
2 1

]
,

where yia denotes the overall recommendation given by reviewer i to paper a. Crucially,
the two reviewers agree on an overall recommendation of 1 for paper 2, hence the aggregate
score of this paper must also be 1. But we show that L(∞, 1) aggregation would not return
an aggregate score of 1 for paper 2. The formal proof appears in Appendix A.3.

4 Implementation and Experimental Results

In this section, we provide an empirical analysis of a few aspects of peer review through the
approach of this paper. We employ a dataset of reviews from the 26th International Joint
Conference on Artificial Intelligence (IJCAI 2017), which was made available to us by the
program chair. To our knowledge, we are the first to use this dataset.

At submission time, authors were asked if review data for their paper could be included
in an anonymized dataset, and, similarly, reviewers were asked whether their reviews could
be included; the dataset provided to us consists of all reviews for which permission was
given. Each review is tagged with a reviewer ID and paper ID, which are anonymized for
privacy reasons. The criteria used in the conference are ‘originality’, ‘relevance’, ‘signifi-
cance’, ‘quality of writing’ (which we call ‘writing’), and ‘technical quality’ (which we call
‘technical’), and each is rated on a scale from 1 to 10. Overall recommendations are also on
a scale from 1 to 10. In addition, information about which papers were accepted and which
were rejected is included in the dataset.

The number of papers in the dataset is 2380, of which 649 were accepted, which amounts
to 27.27%. This is a large subset of the 2540 submissions to the conference, of which 660
were accepted, for an actual acceptance rate of 25.98%. The number of reviewers in the
dataset is 1725, and the number of reviews is 9197. All but nine papers in the dataset have
three reviews (485 papers), four reviews (1734 papers), or five reviews (152 papers). Table 1
shows the distribution of the number of papers reviewed by reviewers.

We apply L(1, 1) aggregation (i.e., p = q = 1), as given in Equation (1), to this dataset

to learn the aggregate function. Let us denote that function by f̃ .5 The optimization prob-
lem in Equation (1) is convex, and standard optimization packages can efficiently compute
the minimizer. Hence, importantly, computational complexity is a nonissue in terms of
implementing our approach.

Once we compute the aggregate function f̃ , we calculate the aggregate overall recom-
mendation of each paper a by taking the median of the aggregate reviewer scores for that
paper obtained by applying f̃ to the objective scores:

yf̃ (a) = median({f̃(xia)}i∈R(a)) ∀a ∈ P. (8)

5Code available at https://github.com/ritesh-noothigattu/choosing-how-to-choose-papers.



In case of multiple medians in (8), we took the mean of all medians. Recalling that 27.27%
of the papers in the dataset were actually accepted to the conference, in our experiments
we define the set of papers accepted by the aggregate function f̃ as the the top 27.27% of
papers according to their respective yf̃ values. We now present the specific experiments we
ran, and their results.
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4.1 Varying Number of Reviewers

In our first experiment, for each value of a parameter k ∈ {1, . . . , 5}, we subsampled k
distinct reviews for each paper uniformly at random from the set of all reviews for that
paper (if the paper had fewer than k to begin with then we retained all the reviews). We

then computed an aggregate function, f̂k, via L(1, 1) aggregation applied only to these

subsampled reviews. Next, we found the set of top 27.27% papers as given by f̂k applied to
the subsampled reviews. Finally, we compared the overlap of this set of top papers for every
value of k with the set of top 27.27% papers as dictated by the overall aggregate function
f̃ .

The results from this experiment are plotted in Figure 2, and lead to several observations.
First, the incremental overlap from k = 4 to 5 is very small because there are very few papers
that had 5 or more reviews. Second, we see that the amount of overlap monotonically
increases with the number of reviewers per paper k, thereby serving as a sanity check on
the data as well as our methods. Third, we observe the overlap to be quite high (≈ 60%)
even with a single reviewer per paper.

4.2 Loss Per Reviewer

Next, we look at the loss of different reviewers, under f̃ (obtained by L(1, 1) aggregation).
In order for the losses to be on the same scale, we normalize each reviewer’s loss by the
number of papers reviewed by them. Formally, the normalized loss of reviewer i (for p = 1)
is

1

|P (i)|
∑
a∈P (i)

|yia − f̃(xia)|.

The normalized loss averaged across reviewers is found to be 0.470, and the standard devi-
ation is 0.382. Figure 3 shows the distribution of the normalized loss of all the reviewers.
Note that the normalized loss of a reviewer can fall in the range [0, 9]. These results thus



indicate that the function f̃ is indeed at least a reasonable representation of the mapping
of the broader community.

4.3 Overlap of Accepted Papers

We also compute the overlap between the set of top 27.27% papers selected by L(1, 1)

aggregation f̃ with the actual 27.27% accepted papers. It is important to emphasize that
we believe the set of papers selected by our method is better than any hand-crafted or rule-
based decision using the scores, since this aggregate represents the opinion of the community.
Hence, to be clear, we do not have a goal of maximizing the overlap. Nevertheless, a very
small overlap would mean that our approach is drastically different from standard practice,
which would potentially be disturbing. We find that the overlap is 79.2%, which we think
is quite fascinating — our approach does make a significant difference, but the difference is
not so drastic as to be disconcerting.

Out of intellectual curiosity, we also computed the pairwise overlaps of the papers ac-
cepted by L(p, q) aggregation, for p, q ∈ {1, 2, 3}. We find that the choice of the reviewer-
norm hyperparameter q has more influence than the paper-norm hyperparameter p; we refer
the reader to Appendix B.1 for details.

4.4 A Visualization of the Learnt Mapping

In Appendix B.2 we present visualizations and interpretations of L(1, 1) aggregate mapping
learnt from the IJCAI 2017 data, which provide insights into the preferences of the commu-
nity. We present here the key takeaways based on visual inspection of the visualizations,
and refer the reader to the appendix for more detail. First, we observe that writing and
relevance do not have a significant influence on the overall recommendations: Really bad
writing or relevance is a significant downside, excellent writing or relevance is appreciated,
but everything else in between in irrelevant. Second, technical quality and significance exert
a high and approximately linear influence. Third, if modeling this mapping, linear models
are partially applicable — for some criteria one may indeed assume a linear model, but not
for all.

5 Limitations, Discussion, and Open Problems

We address the problem of subjectivity in peer review by combining approaches from ma-
chine learning and social choice theory. A key challenge in the setting of peer review (e.g.,
when choosing a loss function) is the absence of ground truth, and we overcome this challenge
via a principled, axiomatic approach.

Our work also contributes to recent endeavors in understanding the peer review pro-
cess [24, 42, 50, 47, 44, 48]. Specifically, the mapping learnt via L(1,1) aggregation can
be used to understand the community’s aggregate preferences over various criteria. We
illustrate this via an empirical analysis in Section 4 and in Appendix B.

A critical aspect of peer review is confidentiality or privacy [11] with respect to who
reviewed which paper. There are other values of p and q where the aggregate mapping
could potentially reveal some information about individual reviewers (e.g., that two specific
reviews were written by the same person). On the other hand, L(1,1) aggregation performs
the optimization (1) by simply pooling all reviews together, and does not use any association
of who reviewed which paper. It thus guards against this issue, and can even be executed
on publicly available data for conferences following open review (i.e., where all reviews are
public but reviewer identities are private).



One can think of the theoretical results of Section 3 as supporting L(1, 1) aggregation
using the tools of social choice theory, whereas the empirical results of Section 4 focus on
studying its behavior on real data. Understanding this helps clear up a possible source of
confusion: are we not overfitting by training on a set of reviews, and then applying the aggre-
gate function to the same reviews? The answer is negative, because the process of learning
the function f̂ amounts to an aggregation of opinions about how criteria scores should be
mapped to overall recommendations. Applying it to the data yields recommendations in Y,
whereas this function from X to Y lives in a different space.

We now conclude with a discussion of the limitations of our work and relevant open
problems.

• Our framework assumes that the set of criteria listed by the program chairs encapsu-
lates the criteria used by any reviewer for evaluating a paper. To address situations
where this is violated, the program chairs may solicit information on the insufficiency
of the criteria from reviewers directly, and this information can also help improve the
choice of criteria used in subsequent conferences. On a technical front, this leads to
an open problem of designing statistical methods to detect the insufficiency of given
criteria in conference peer review (see also 42, Section 3.9).

• It is of interest to understand the statistical aspects of estimating the community’s
consensus mapping function, assuming the existence of a ground truth. In more detail,
suppose each reviewer’s true function g?i is a noisy version of some underlying function
f?? that represents the community’s beliefs. Then how can one recover f?? in a statis-
tically efficient manner, perhaps via L(1, 1) aggregation or otherwise? Conceptually
this non-parametric estimation problem is related to isotonic regression [39, 12, 8].
The key difference is that the observations in our setting consist of evaluations of mul-
tiple functions, where each such function is a noisy version of the original monotonic
function. In contrast, isotonic regression is primarily concerned with noisy evalua-
tions of a common function. Nevertheless, insights from isotonic regression suggest
that the monotonicity assumption of our setting can yield attractive — and sometimes
near-parametric [39, 40, 41] — rates of estimation.

• It is of interest to further incorporate additional information from reviews such as self-
reported confidence [26] or self-reported expertise of reviewers (by, e.g., reweighting
the terms in the L(1, 1) aggregation accordingly) or even the review text [15, 28].

• There are various other problems in peer review such as miscalibration [13, 37, 53],
noise [45], fraud [51, 52, 16], biases [50, 49, 35]. These problems have been treated
independently of each other in the literature, and addressing them jointly along with
the problem of subjectivity is a challenging and important open problem.

• Our framework assumes that reviewers use criteria to come up with an overall score.
In practice, some reviewers may first arrive at a overall judgment and tailor criteria
scores to fit their overall judgment. The instructions for reviewing could be designed
to mitigate this issue.

• Our work focuses on learning one representative aggregate mapping for the entire
community of reviewers. Instead, the program chairs of a conference may wish to
allow for multiple mappings that represent the aggregate opinions of different sub-
communities (e.g., theoretical or applied researchers). In this case, one may modify
our framework to also learn this (unknown) partition of reviewers and/or papers into
multiple sub-communities with different mapping functions, and frame the problem in
terms of learning a mixture model. The design of computationally efficient algorithms
for L(p, q) aggregation under such a mixture model is a challenging open problem.



As a final remark, we see our work as an unusual synthesis between computational social
choice and machine learning. We hope that our approach will inspire exploration of addi-
tional connections between these two fields of research, especially in terms of viewing choices
made in machine learning — often in an ad hoc fashion — through the lens of computational
social choice.
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A Proof Of Theorem 1

Recall that the proof of our main result, Theorem 1, includes four lemmas. Here we prove
the three lemmas whose proofs were omitted from the main text.

A.1 Proof of Lemma 2

Consider L(p, 1) aggregation with an arbitrary p ∈ (1,∞). We show that efficiency is
violated using the following construction. There are 2 papers, 3 reviewers and each reviewer
reviews both papers. Assume that the papers have objective criteria scores x1 and x2, and
that neither of these scores is pointwise greater than or equal to the other. Let the overall
recommendations by the reviewers for the papers be defined by the matrix

y =

z 0
0 1
0 0

 ,
where z is a constant strictly bigger than 1 and yia denotes the overall recommendation by
reviewer i to paper a. Observe that paper 1 dominates paper 2. But, we will show that
there exists a value z > 1 such that the aggregate score of paper 1 is strictly smaller than
the aggregate score of paper 2.

Let fi denote the value of function f on paper i, i.e. fi := f(xi). And let f̂i(z) denote the
aggregate score of paper i; observe that we write it as a function of z because the aggregate
score of each paper would depend on the chosen score z. Since we are minimizing L(p, 1)
loss, the aggregate function satisfies:

(f̂1(z), f̂2(z)) ∈ argmin
(f1,f2)∈R2

{∥∥(z, 0)− (f1, f2)
∥∥
p

+
∥∥(0, 1)− (f1, f2)

∥∥
p

+
∥∥(f1, f2)

∥∥
p

}
. (9)

We do not have any monotonicity constraints in (9) because the two papers have incompa-

rable criteria scores. For simplicity, let f := (f1, f2), f̂(z) := (f̂1(z), f̂2(z)), and denote the
objective function in Equation (9) by Gz(f). That is,

Gz(f1, f2) =
[
|z − f1|p + |f2|p

] 1
p

+
[
|f1|p + |1− f2|p

] 1
p

+
[
|f1|p + |f2|p

] 1
p

. (10)

For the overall proof to be easier to follow, proofs of all claims are given at the end of this
proof. Also, just to re-emphasize, the whole proof assumes z > 1.

Claim 1. Gz is a strictly convex objective function.

Claim 1 states that Gz is strictly convex, implying that it has a unique minimizer f̂(z).
Hence, there is no need to consider tie-breaking.

Claim 2. f̂1(z) and f̂2(z) are bounded. In particular, f̂1(z) ∈ [0, 1] and f̂2(z) ∈ [0, 1].

Claim 2 states that the aggregate score of both papers lies in the interval [0, 1] irrespective
of the value of z. This allow us to restrict ourselves to the region [0, 1]2 when computing
the minimizer of (10). Hence, for the rest of the proof, we only consider the space [0, 1]2.
In this region, the optimization problem (9) can be rewritten as

(f̂1(z), f̂2(z)) = argmin
f1∈[0,1],f2∈[0,1]

{[(
z − f1

)p
+ fp2

] 1
p

+
[
fp1 +

(
1− f2

)p] 1
p

+
[
fp1 + fp2

] 1
p

}
.



To start off, we analyze the objective function as we take the limit of z going to infinity.
Later, we show that the observed property holds even for a sufficiently large finite z.

For the limit to exist, redefine the objective function asHz(f1, f2) = Gz(f1, f2)−Gz(0, 0),
i.e.,

Hz(f1, f2) =
[(
z − f1

)p
+ fp2

] 1
p − z +

[
fp1 +

(
1− f2

)p] 1
p

+
[
fp1 + fp2

] 1
p − 1. (11)

For any value of z, the function Hz has the same minimizer as Gz, that is,

(f̂1(z), f̂2(z)) = argmin
f1∈[0,1],f2∈[0,1]

Hz(f1, f2).

Claim 3. For any (fixed) f1 ∈ [0, 1], f2 ∈ [0, 1],

lim
z→∞

Hz(f1, f2) = H?(f1, f2),

where

H?(f1, f2) = −f1 +
[
fp1 +

(
1− f2

)p] 1
p

+
[
fp1 + fp2

] 1
p − 1. (12)

The proof proceeds by analyzing some important properties of the limiting function H?.

Claim 4. The function H?(f) is convex in f ∈ [0, 1]2. Moreover, the function H?(f) is
strictly convex for f1 ∈ (0, 1] and f2 ∈ [0, 1].

Claim 5. H? is minimized at v̂ = (v̂1, v̂2), where

v̂1 =
1

2

[
1

(2
p

p−1 − 1)

] 1
p

, v̂2 =
1

2
. (13)

Claim 6. v̂1 < v̂2.

Observe that Claim 6 is the desired result, but for the limiting objective function H?.
The remainder of the proof proceeds to show that this result holds even for the objective
function Hz, when the score z is large enough. Define ∆ = v̂2 − v̂1 > 0. We first show that
(i) there exists z > 1 such that ‖f̂(z) − v̂‖2 < ∆

4 , and then (ii) show that in this case, we

have f̂1(z) < f̂2(z).
To prove part (i), we first analyze how functions Hz and H? relate to each other. Using

Claim 3, for any fixed f1, f2, by definition of the limit, for any ε > 0, there exists zε (which
could be a function of f1, f2) such that, for all z > zε, we have

|Hz(f1, f2)−H?(f1, f2)| < ε. (14)

For a given f1, f2, denote the corresponding value of zε by zε(f1, f2). And, let Zε(f1, f2)
denote the set of all values of z > 1 for which Equation (14) holds for (f1, f2).

Claim 7. Zε(1, 1) ⊂ Zε(f1, f2) for every (f1, f2) ∈ [0, 1]2.

Claim 7 says that if Equation (14) holds for a particular value of z for f1 = f2 = 1, then
for the same value of z it holds for every other value of (f1, f2) ∈ [0, 1]2 as well. So, define

z̃ε := zε(1, 1) + 1. (15)



By definition, z̃ε ∈ Zε(1, 1). And by Claim 7, z̃ε ∈ Zε(f1, f2) for every (f1, f2) ∈ [0, 1]2.
So, set z = z̃ε. Then, Equation (14) holds for all (f1, f2) ∈ [0, 1]2 simultaneously. In other
words, for all (f1, f2) ∈ [0, 1]2, we simultaneously have

H?(f1, f2)− ε < Hz(f1, f2) < H?(f1, f2) + ε, (16)

i.e. Hz is in an ε-band around H? throughout this region. And observe that this band gets
smaller as ε is decreased (which is achieved at a larger value of z).

To bound the distance between v̂, the minimizer of H?, and f̂(z), the minimizer of Hz,
we bound the distance between the objective function values at these points.

Claim 8. H?(f̂(z)) < H?(v̂) + 2ε.

Although f̂(z) does not minimize H?, Claim 8 says that the objective value at f̂(z)
cannot be more than 2ε larger than its minimum, H?(v̂). We use this to bound the distance

between f̂(z) and the minimizer v̂. Observe that f̂(z) falls in the [H?(v̂) + 2ε]-level set of
H?. So, we next look at a specific level set of H?.

Define

τ := min
f∈[0,1]2:‖f−v̂‖2= ∆

4

H?(f). (17)

Observe that a minimum exists (infimum is not required) for the minimization in (17)
because we are minimizing over the closed set {f ∈ [0, 1]2 : ‖f − v̂‖2 = ∆

4 } and H? is
continuous.

For any fixed p ∈ (1,∞), Equation (13) shows that v̂1 is bounded away from 0. Hence,
Claim 4 shows that H? is strictly convex at and in the region around v̂. Further, H? is
convex everywhere else. Coupling this with the fact that (17) minimizes along points not
arbitrarily close to the minimizer v̂, we have τ > H?(v̂).

Define the level set of H? with respect to τ :

Cτ = {f ∈ [0, 1]2 : H?(f) ≤ τ}.

Claim 9. For every f ∈ Cτ , we have ‖f − v̂‖2 ≤ ∆
4 .

Define εo := τ−H?(v̂)
2 , and set ε = εo. Then, set z = z̃εo as before. Applying Claim 8, we

obtain
H?(f̂(z̃εo)) < H?(v̂) + 2εo = τ.

In other words, f̂(z̃εo) ∈ Cτ . And applying Claim 9, we obtain ‖f̂(z̃εo)−v̂‖2 ≤ ∆
4 , completing

part (i).

This implies that ‖f̂(z̃εo)− v̂‖∞ ≤ ∆
4 , which means∣∣∣f̂1(z̃εo)− v̂1

∣∣∣ ≤ ∆

4
and

∣∣∣f̂2(z̃εo)− v̂2

∣∣∣ ≤ ∆

4
. (18)

Using these properties, we have

f̂1(z̃εo) ≤ v̂1 +
∆

4

= v̂2 −∆ +
∆

4

≤ f̂2(z̃εo) +
∆

4
−∆ +

∆

4
= f̂2(z̃εo)− ∆

2
,



where the first inequality holds because of the first part of (18), the equality holds because
∆ = v̂2 − v̂1 and the second inequality holds because of the second part of (18). Therefore,
for z = z̃εo > 1, the aggregate scores of the two papers are such that

f̂1(z̃εo) < f̂2(z̃εo),

violating efficiency.

Proof of Claim 1 Take arbitrary f ,g ∈ R2 with f 6= g, and let θ ∈ (0, 1). We show that
Gz(θf + (1 − θ)g) < θGz(f) + (1 − θ)Gz(g). For this, we will first show that either (i) the
vector [(z, 0) − f ] is not parallel to the vector [(z, 0) − g], (ii) the vector [(0, 1) − f ] is not
parallel to the vector [(0, 1)− g] or (iii) the vector f is not parallel to the vector g. For the
sake of contradiction, assume that this is not true. That is, assume [(z, 0)− f ] is parallel to
[(z, 0)− g], [(0, 1)− f ] is parallel to [(0, 1)− g], and f is parallel to g. This implies that[

z − f1

−f2

]
= r

[
z − g1

−g2

]
,

[
−f1

1− f2

]
= s

[
−g1

1− g2

]
and

[
f1

f2

]
= t

[
g1

g2

]
,

for some r, s, t ∈ R.6 Note that, none of r, s, t can be 1 because f 6= g. The second equation
tells us that f1 = sg1 and the third one tells us that f1 = tg1. So, either f1 = g1 = 0 or
s = t. But from the first equation, z − f1 = rz − rg1. So if f1 = g1 = 0, it says that r = 1
which is not possible. Therefore, s = t. The third equation now tells us that f2 = tg2 = sg2.
But, the second equation gives us 1 − f2 = s − sg2, which implies that s = 1. But again
this is not possible, leading to a contradiction. Therefore, at least one of (i), (ii) and (iii) is
true.

Lp norm with p ∈ (1,∞) is a convex norm, i.e. for any x, y ∈ R2,

‖θx+ (1− θ)y‖p ≤ θ‖x‖p + (1− θ)‖y‖p. (19)

Further, since p ∈ (1,∞), the inequality in (19) is strict if x is not parallel to y. For our
objective (in Equation (9)),

Gz(θf + (1− θ)g) =
∥∥θ[(z, 0)− f ] + (1− θ)[(z, 0)− g]

∥∥
p

+
∥∥θ[(0, 1)− f ] + (1− θ)[(0, 1)− g]

∥∥
p

+
∥∥θf + (1− θ)g

∥∥
p
. (20)

Because of convexity of the Lp norm, each of the three terms on the RHS of Equation (20)
satisfies inequality (19). Further, because at least one of the pair of vectors in the three
terms is not parallel (since either (i), (ii) or (iii) is true), at least one of them gives us a
strict inequality. Therefore we obtain

Gz(θf + (1− θ)g) < θGz(f) + (1− θ)Gz(g).

�

Proof of Claim 2 The claim has four parts: (i) f̂1(z) ≥ 0, (ii) f̂1(z) ≤ 1, (iii) f̂2(z) ≥ 0

and (iv) f̂2(z) ≤ 1. Observe that parts (i), (iii) and (iv) are more intuitive, since they show
that the aggregate score of a paper is no higher than the maximum score given to it, and
no lower than the minimum score given to it. Part (ii) on the other hand is stronger; even

though paper 1 has a score of z > 1 given to it, this part shows that f̂1(z) ≤ 1 (which is

6A boundary case not captured here is when g is exactly one of the points (z, 0), (0, 1) or (0, 0), leading
to 1/r, 1/s or 1/t being zero respectively. But for this case, it is easy to prove that the other two pairs of
vectors cannot be parallel unless f = g.



much tighter than an upper bound of z, especially when z is large). We prove the simpler
parts (i), (iii) and (iv) first.

For the sake of contradiction, suppose f̂1(z) < 0. Then

Gz(f̂1(z), f̂2(z)) =
[
|z − f̂1(z)|p + |f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |1− f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |f̂2(z)|p

] 1
p

>
[
|z|p + |f̂2(z)|p

] 1
p

+
[
0 + |1− f̂2(z)|p

] 1
p

+
[
0 + |f̂2(z)|p

] 1
p

= Gz(0, f̂2(z)),

contradicting the fact that (f̂1(z), f̂2(z)) is optimal. Therefore, f̂1(z) ≥ 0, completing proof

of (i). Similarly, if f̂2(z) < 0, we can show that Gz(f̂1(z), f̂2(z)) > Gz(f̂1(z), 0), violating

optimality. Therefore, f̂2(z) ≥ 0, completing proof of (iii).

Next, for the sake of contradiction assume that f̂2(z) > 1. Then

Gz(f̂1(z), f̂2(z)) =
[
|z − f̂1(z)|p + |f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |1− f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |f̂2(z)|p

] 1
p

>
[
|z − f̂1(z)|p + 1

] 1
p

+
[
|f̂1(z)|p + 0

] 1
p

+
[
|f̂1(z)|p + 1

] 1
p

= Gz(f̂1(z), 1),

contradicting the fact that (f̂1(z), f̂2(z)) is optimal. Therefore, we also have f̂2(z) ≤ 1,
completing proof of (iv).

Finally, we prove the more non-intuitive part, (ii). Suppose for the sake of contradiction,

f̂1(z) > 1. Then,

Gz(f̂1(z), f̂2(z)) =
[
|z − f̂1(z)|p + |f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |1− f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |f̂2(z)|p

] 1
p

≥ |z − f̂1(z)|+ |f̂1(z)|+ |f̂1(z)|

≥ z + |f̂1(z)|,

where the first inequality comes from the fact that the Lp norm of each vector is at least
as high as the absolute value of its first element, and the second inequality follows from
the triangle inequality. Using the assumption that f̂1(z) > 1, we obtain

Gz(f̂1(z), f̂2(z)) > z + 1 = Gz(0, 0),

contradicting the fact that (f̂1(z), f̂2(z)) is optimal. Therefore, f̂1(z) ≤ 1, completing the
proof. �

Proof of Claim 3 Take any arbitrary f1 ∈ [0, 1] and f2 ∈ [0, 1]. Subtracting Equa-
tions (11) and (12) we obtain

Hz(f1, f2)−H?(f1, f2) =
[(
z − f1

)p
+ fp2

] 1
p −

(
z − f1

)
. (21)

Observe that since f2 ≥ 0, the RHS of Equation (21) is non-negative. Hence, the equation
does not change on using an absolute value, i.e.,

|Hz(f1, f2)−H?(f1, f2)| =
[(
z − f1

)p
+ fp2

] 1
p −

(
z − f1

)
. (22)

To prove the required result, we take a small detour and define φ(x) = (xp + fp2 )
1
p − x. We

show that φ(x)→ 0 as x→∞. For this, rewrite φ(x) as follows

φ(x) = x

(
1 +

fp2
xp

) 1
p

− x =

(
1 +

fp
2

xp

) 1
p − 1

1
x

.



Taking the limit of x to infinity, we have

lim
x→∞

φ(x) = lim
x→∞

(
1 +

fp
2

xp

) 1
p − 1

1
x

. (23)

Observe that for both the numerator and denominator in the RHS of Equation (23), we
have

lim
x→∞

{(
1 +

fp2
xp

) 1
p

− 1

}
= 0 and lim

x→∞

{
1

x

}
= 0.

Hence, applying L’Hospital’s rule on equation (23) gives us

lim
x→∞

φ(x) = lim
x→∞

− fp
2

xp+1

(
1 +

fp
2

xp

) 1
p−1

− 1
x2

= lim
x→∞

{
fp2
xp−1

(
1 +

fp2
xp

) 1
p−1
}

=

[
lim
x→∞

fp2
xp−1

]
∗

[
lim
x→∞

(
1 +

fp2
xp

) 1
p−1
]

= 0 ∗ 1 = 0,

where
[
limx→∞

fp
2

xp−1

]
= 0 because p > 1. Hence, we proved the required result,

limx→∞ φ(x) = 0. Going back to Equation (22), we rewrite it as

|Hz(f1, f2)−H?(f1, f2)| =
[(
z − f1

)p
+ fp2

] 1
p −

(
z − f1

)
= φ(z − f1).

Taking the limit of z to infinity, we obtain

lim
z→∞

|Hz(f1, f2)−H?(f1, f2)| = lim
z→∞

φ(z − f1) = lim
t→∞

φ(t) = 0, (24)

where the second step follows by setting t = z − f1. Equation (24) implies that

lim
z→∞

Hz(f1, f2) = H?(f1, f2).

�

Proof of Claim 4 In the region [0, 1]2, using (12), the function H? can be written as

H?(f1, f2) = −f1 + ‖(0, 1)− (f1, f2)‖p + ‖(f1, f2)‖p − 1. (25)

Observe that each term on the RHS of (25) is a convex function of f . Hence, their sum is
also convex in f .

The proof of strict convexity closely follows the proof of claim 1. Take arbitrary f ,g ∈
(0, 1]× [0, 1] with f 6= g, and let θ ∈ (0, 1). We show that H?(θf + (1−θ)g) < θH?(f) + (1−
θ)H?(g). For this, we will first show that either (i) [(0, 1)− f ] is not parallel to [(0, 1)−g] or
(ii) f is not parallel to g. For the sake of contradiction, assume that this is not true. That
is, assume [(0, 1)− f ] is parallel to [(0, 1)− g], and f is parallel to g. This implies that[

−f1

1− f2

]
= r

[
−g1

1− g2

]
and

[
f1

f2

]
= s

[
g1

g2

]
,



where r, s ∈ R. Note that, neither r nor s can be 1 because f 6= g. The first equation tells
us that f1 = rg1 and the second one tells us that f1 = sg1. And since g1 6= 0, this implies
that r = s. The second part of the second equation now tells us that f2 = sg2 = rg2. The
second part of the first equation becomes 1− f2 = r− rg2 which implies that r = 1, leading
to a contradiction. Therefore, at least one of (i) and (ii) is true.

Recall, Lp norm with p ∈ (1,∞) is a convex norm, i.e. for any x, y ∈ R2,

‖θx+ (1− θ)y‖p ≤ θ‖x‖p + (1− θ)‖y‖p. (26)

And since p ∈ (1,∞), the inequality in (26) is strict if x is not parallel to y. For H? (using
Equation (25)),

H?(θf + (1− θ)g) =− θf1 − (1− θ)g1

+
∥∥θ[(0, 1)− f ] + (1− θ)[(0, 1)− g]

∥∥
p

+
∥∥θf + (1− θ)g

∥∥
p
− 1. (27)

Because of convexity of the Lp norm, both the third and fourth term on the RHS of Equa-
tion (27) satisfy inequality (26). Further, because at least one of the pair of vectors in these
two terms is not parallel (since either (i) or (ii) is true), at least one of them gives us a strict
inequality. Therefore we obtain

H?(θf + (1− θ)g) < θH?(f) + (1− θ)H?(g).

�

Proof of Claim 5 To compute the minimizer of H?, we compute its gradients with respect
to f1 and f2. Using Equation (12), the partial derivative with respect to f1 is

∂H?

∂f1
= −1 + fp−1

1

[
fp1 + (1− f2)p

] 1
p−1

+ fp−1
1

[
fp1 + fp2

] 1
p−1

(28)

and with respect to f2 is

∂H?

∂f2
= 0− (1− f2)p−1

[
fp1 + (1− f2)p

] 1
p−1

+ fp−1
2

[
fp1 + fp2

] 1
p−1

. (29)

Observe that at f2 = 1
2 , irrespective of the value of f1, the partial derivative (29) is

∂H?

∂f2

∣∣∣∣
f2= 1

2

= − 1

2p−1

[
fp1 +

1

2p

] 1
p−1

+
1

2p−1

[
fp1 +

1

2p

] 1
p−1

= 0.

So, set v̂2 = 1
2 . Next, we find v̂1 such that the other derivative (28) is also zero at v̂ = (v̂1, v̂2).



Setting (28) to zero at v̂, we obtain

∂H?

∂f1

∣∣∣∣
f=v̂

= 0 = −1 + v̂p−1
1

[
v̂p1 +

1

2p

] 1
p−1

+ v̂p−1
1

[
v̂p1 +

1

2p

] 1
p−1

=⇒ 1 = 2v̂p−1
1

[
v̂p1 +

1

2p

] 1
p−1

=⇒
[
v̂p1 +

1

2p

]1− 1
p

= 2v̂p−1
1

=⇒
[
v̂p1 +

1

2p

]p−1

= 2pv̂
p(p−1)
1

=⇒ v̂p1 +
1

2p
= 2

p
p−1 v̂p1

=⇒ 1

2p
= v̂p1

(
2

p
p−1 − 1

)
∴ v̂1 =

1

2

[
1

(2
p

p−1 − 1)

] 1
p

.

Hence, ∇fH
?(f) = 0 at v̂. And since H? is convex in [0, 1]2 by Claim 4, v̂ is the minimizer

in this region. �

Proof of Claim 6 For any p > 1, we know

p

p− 1
> 1.

This implies that

2
p

p−1 − 1 > 1 and hence

[
1

2
p

p−1 − 1

] 1
p

< 1.

Finally, using the values from Claim 5, we obtain

v̂1 < v̂2.

�

Proof of Claim 7 Let z ∈ Zε(1, 1). Pick an arbitrary (f1, f2) ∈ [0, 1]2. As in the proof of
Claim 3, on subtracting Equations (11) and (12), and taking an absolute value, we obtain
Equation (22), that is,

|Hz(f1, f2)−H?(f1, f2)| =
[(
z − f1

)p
+ fp2

] 1
p −

(
z − f1

)
. (30)

Combining Equation (30) with the fact that 0 ≤ f2 ≤ 1, we obtain

|Hz(f1, f2)−H?(f1, f2)| ≤
[(
z − f1

)p
+ 1
] 1

p −
(
z − f1

)
. (31)

Now, define ψ(x) = (xp + 1)
1
p − x. We show that ψ(x) is a non-increasing function for

x ≥ 0. Computing the derivative, we have

dψ(x)

dx
= xp−1 (xp + 1)

1
p−1 − 1 =

(
xp

xp + 1

) p−1
p

− 1 ≤ 0



for x ≥ 0, showing that it is a non-increasing function. Going back to Equation (31), we
know that f1 ≤ 1. Therefore,

(
z−f1

)
≥
(
z−1

)
≥ 0. Using the fact that ψ is a non-increasing

function, we obtain ψ
(
z − f1

)
≤ ψ

(
z − 1

)
, which on expansion gives us[(

z − f1

)p
+ 1
] 1

p −
(
z − f1

)
≤
[(
z − 1

)p
+ 1
] 1

p −
(
z − 1

)
= |Hz(1, 1)−H?(1, 1)|. (32)

Combining Equations (31) and (32), and the fact that z ∈ Zε(1, 1), we obtain

|Hz(f1, f2)−H?(f1, f2)| ≤ |Hz(1, 1)−H?(1, 1)| < ε.

Hence, z ∈ Zε(f1, f2). �

Proof of Claim 8 The proof follows using three facts:

1. Equation (16) for f̂(z) says that H?(f̂(z)) < Hz(f̂(z)) + ε.

2. Because f̂(z) is the minimizer of Hz, we have Hz(f̂(z)) ≤ Hz(v̂).

3. For v̂, Equation (16) gives us Hz(v̂) < H?(v̂) + ε.

Putting these equations together:

H?(f̂(z)) < Hz(f̂(z)) + ε ≤ Hz(v̂) + ε < H?(v̂) + 2ε.

�

Proof of Claim 9 We prove the claim by contraposition. Pick an arbitrary f ∈ [0, 1]2

such that ‖f − v̂‖2 > ∆
4 . This means that there exists g ∈ [0, 1]2 on the line joining f and v̂

such that ‖g − v̂‖2 = ∆
4 . We could alternatively write g = θf + (1− θ)v̂, where θ ∈ (0, 1).

By convexity of H?,

H?(g) ≤ θH?(f) + (1− θ)H?(v̂). (33)

By definition of τ in (17), we know H?(g) ≥ τ . Also, we know H?(v̂) < τ . Using these
in (33), we obtain

τ < θH?(f) + (1− θ)τ.

Therefore, we obtain H?(f) > τ . In summary, if ‖f − v̂‖2 > ∆
4 , then H?(f) > τ . Taking the

contrapositive gives us the desired result. �

A.2 Proof of Lemma 3

Consider L(p, q) aggregation with arbitrary q ∈ (1,∞]. We show that strategyproofness
is violated. The construction for this is as follows. Suppose there is one paper a and two
reviewers. The first reviewer gives the paper an overall recommendation of 1 and the second
reviewer gives it an overall recommendation of 0. Let xa be the (objective) criteria scores
of this paper.

Let us first consider q ∈ (1,∞). For a function f : X → Y, all we care about in this
example is its value at xa. Hence, for simplicity, let fa denote the value of function f at xa,
i.e, fa := f(xa). Then our aggregation becomes

f̂a = argmin
fa∈R

{
|1− fa|q + |fa|q

}
.



We claim that fa = 0.5 is the unique minimizer. Observe that if fa = 0.5, then the
value of our objective is 0.5q + 0.5q < 1 when q ∈ (1,∞). On the other hand, if fa ≥ 1 or
if fa ≤ 0 then the value of our objective is at least 1. Hence fa ∈ (0, 1). By symmetry, we
can restrict attention to the range [0.5, 1) since if there is a minimizer in (0, 0.5) then there
must also be a minimizer in (0.5, 1). Consequently, we rewrite the optimization problem as

f̂a = argmin
fa∈[0.5,1)

{
(1− fa)q + fqa

}
. (34)

Consider the function h : [0.5, 1] → R defined by h(x) = xq. This function is strictly
convex (the second derivative is strictly positive in the domain) whenever q ∈ (1,∞). Hence
from the definition of strict convexity, we have

0.5
(
(1− fa)q + fqa

)
>
(
0.5(1− fa + fa)

)q
= 0.5q

whenever fa ∈ (0.5, 1). Consequently, the objective value of (34) is greater at fa ∈ (0.5, 1)

than at fa = 0.5. We conclude that f̂a = 0.5 whenever q ∈ (1,∞).
When q =∞, we equivalently write the optimization problem as

f̂a = argmin
fa∈R

max
(
|1− fa|, |fa|

)
.

This objective has a value of 0.5 if fa = 0.5 and strictly greater if fa 6= 0.5. Hence, f̂a = 0.5
for q =∞ as well.

The true overall recommendation of reviewer 1 differs from the aggregate f̂a by 0.5 (in
every L` norm). However, if reviewer 1 reported an overall recommendation of 2, then an
argument identical to that above shows that the minimizer is ĝa = 1. Reviewer 1 has thus
successfully brought down the difference between her own true overall recommendation and
the aggregate ĝa to 0. We conclude that strategyproofness is violated whenever q ∈ (1,∞].
�

A.3 Proof of Lemma 4

The construction showing that L(∞, 1) aggregation violates consensus is as follows. Suppose
there are two papers, two reviewers and both reviewers review both papers. Assume that the
papers have objective criteria scores x1 and x2, and that neither of these scores is pointwise
greater than or equal to the other. Let the overall recommendations of the reviewers for the
papers be given by the matrix

y =

[
0 1
2 1

]
,

where yia denotes the overall recommendation of reviewer i for paper a. Since both reviewers
give the same overall recommendation of 1 to paper 2, any aggregation method that satisfies
consensus must also give paper 2 an aggregate score of 1. We show that this is not the case
under L(∞, 1) aggregation.

Let fi denote the value of function f on paper i, i.e. fi := f(xi). And let f̂i denote the
aggregate score of paper i. Since we are minimizing L(∞, 1) loss, the aggregate function
satisfies:

(f̂1, f̂2) ∈ argmin
(f1,f2)∈R2

{∥∥(0, 1)− (f1, f2)
∥∥
∞ +

∥∥(2, 1)− (f1, f2)
∥∥
∞

}
. (35)



We do not have any monotonicity constraints in (35) because the two papers have incom-
parable criteria scores. Denote the objective function of (35) by G(f1, f2). We can simplify
this objective to

G(f1, f2) = max(|f1|, |f2 − 1|) + max(|2− f1|, |f2 − 1|). (36)

We claim that (0.5, 0.5) is a minimizer of G. The objective function value at this point is

G(0.5, 0.5) = max(0.5, 0.5) + max(1.5, 0.5) = 0.5 + 1.5 = 2.

For arbitrary (f1, f2) ∈ R2, we have

G(f1, f2) = max(|f1|, |f2 − 1|) + max(|2− f1|, |f2 − 1|)
≥ |f1|+ |2− f1|
≥ 2 = G(0.5, 0.5),

where the first inequality holds because the maximum of two elements is always larger than
the first, and the second inequality holds by the triangle inequality. Therefore, (0.5, 0.5)
is a minimizer of G. The L2 norm of this minimizer is 0.5

√
2 < 1. On the other hand,

any minimizer (f̂1, f̂2) with f̂2 = 1 would have an L2 norm of at least 1. It follows that
such a minimizer will not be selected. In other words, L(∞, 1) aggregation would select a
minimizer for which the aggregate score of paper 2 is not 1, violating consensus.7 �

0 1 2
0

1

2

Figure 4: The shaded region depicts the set of all minimizers of (35). f1 is on the x-axis
and f2 is on the y-axis.

Complete picture of minimizers For completeness, we look at the set of all minimizers
of G. This is given by

F̂ =
{

(f1, f2) | f1 ∈ [0, 2], f2 ∈ [1−min(f1, 2− f1), 1 + min(f1, 2− f1)]
}
.

Pictorially, this set is given by the shaded square in Figure 4. It is the square with vertices
at (0, 1), (1, 0), (2, 1) and (1, 2).

This shows that almost all minimizers violate consensus. For the specific tie-breaking
considered, the minimizer chosen is the one with minimum L2 norm, i.e., the projection of
(0, 0) onto this square. This gives us (0.5, 0.5), violating consensus.

7Observe that even if we used any Lk norm with k ∈ (1,∞) for tie-breaking, the Lk norm of (0.5, 0.5)

would be 0.5 k
√

2 < 1, while the Lk norm of any minimizer (f̂1, 1) would still be at least 1, violating consensus.



Observe that tie-breaking using minimum Lk norm, for k ∈ (1,∞], also chooses (0.5, 0.5)
as the aggregate function, violating consensus. For k = 1, all points on the line segment
f1 + f2 = 1 (0 ≤ f1 ≤ 1) would be tied winners, almost all of which violate consensus.
Further, even if one uses other reasonable tie-breaking schemes like maximum Lk norm,
they suffer from the same issue, i.e., there is a tied winner which violates consensus.

B Additional Empirical Results

We present some more empirical results in addition to those provided in the main text.

B.1 Influence of Varying the Hyperparameters

Although our theoretical results identify L(1, 1) aggregation as the most desirable, we would
like to paint a broader picture by determining how much impact the choice of p and q actually
has on selected papers. To this end, we compute the overlap between the papers selected by
L(p, q) aggregation, for p, q ∈ {1, 2, 3} (although in general p and q need not be integral, they
can be real as well as ∞). Table 2 shows the overlap between papers selected by L(p1, q1)
and L(p2, q2), where the rows represent (p1, q1) and columns represent (p2, q2). Note that
the table is symmetric. The results suggest that q has a more significant impact than p on
L(p, q) aggregation. For instance, L(1, 1) behaves more similarly to L(2, 1) and L(3, 1) than
to L(1, 2) and L(1, 3).

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3
1,1 100.0 87.5 82.7 96.1 88.0 82.6 92.3 87.5 82.1
1,2 87.5 100.0 94.5 88.3 94.9 93.1 87.7 94.6 92.3
1,3 82.7 94.5 100.0 84.0 92.1 95.2 83.5 91.8 94.0
2,1 96.1 88.3 84.0 100.0 89.8 84.4 95.7 89.5 84.0
2,2 88.0 94.9 92.1 89.8 100.0 94.1 89.8 98.8 93.7
2,3 82.6 93.1 95.2 84.4 94.1 100.0 84.4 94.1 98.6
3,1 92.3 87.7 83.5 95.7 89.8 84.4 100.0 89.7 84.0
3,2 87.5 94.6 91.8 89.5 98.8 94.1 89.7 100.0 93.8
3,3 82.1 92.3 94.0 84.0 93.7 98.6 84.0 93.8 100.0

Table 2: Percentage of overlap (in selected papers) between different L(p, q) aggregation
methods

B.2 Visualizing the Community Aggregate Mapping

Our framework is not only useful for computing an aggregate mapping to help in acceptance
decisions, but also for understanding the preferences of the community for use in subsequent
modeling and research. We illustrate this application by providing some visualizations and
interpretations of the aggregate function f̃ obtained from L(1, 1) aggregation on the IJCAI
review data.

The function f̃ lives in a 5-dimensional space, making it hard to visualize the entire
aggregate function. Instead, we fix the values of 3 criteria at a time and plot the function in
terms of the remaining two criteria. In all of the visualizations below, the fixed criteria are
set to their respective (marginal) modes: For ‘quality of writing’ the mode is 7 (715 reviews),
for ‘originality’ it is 6 (826 reviews), for ‘relevance’ it is 8 (888 reviews), for ‘significance’ it
is 5 (800 reviews), and for ‘technical quality’ it is 6 (702 reviews).



The key takeaways from this experiment are as follows. First, writing and relevance do
not have a significant influence (Figure 5(e)). Really bad writing or relevance is a significant
downside, excellent writing or relevance is appreciated, but everything else in between in
irrelevant. Second, technical quality and significance exert a high influence (Figure 5(f)).
Moreover, the influence is approximately linear. Third, linear models (i.e., models that are
linear in the criteria) are quite popular in machine learning, and our empirical observations
reveal that linear models are partially applicable for the mapping — for some criteria one
may indeed assume a linear model, but not for all.
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(a) Varying ‘relevance’ and ‘technical quality’
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(b) Varying ‘relevance’ and ‘significance’
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(c) Varying ‘originality’ and ‘technical quality’
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(d) Varying ‘originality’ and ‘significance’
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(e) Varying ‘quality of writing’ and ‘relevance’
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(f) Varying ‘significance’ and ‘technical quality’

Figure 5: Impact of varying different criteria under L(1, 1) aggregation
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(a) Varying ‘quality of writing’ and ‘significance’
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(b) Varying ‘quality of writing’ and ‘originality’
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(c) Varying ‘quality of writing’ and ‘technical
quality’
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(d) Varying ‘originality’ and ‘relevance’

Figure 6: Impact of varying different criteria under L(1, 1) aggregation (continued)


