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Abstract

We study fair resource allocation under a connectedness constraint wherein a set of indivisible

items are arranged on a path and only connected subsets of items may be allocated to the agents.

An allocation is deemed fair if it satis�es equitability up to one good (EQ1), which requires that

agents’ utilities are approximately equal. We show that achieving EQ1 in conjunction with

well-studied measures of economic e�ciency (such as Pareto optimality, non-wastefulness,

maximum egalitarian or utilitarian welfare) is computationally hard even for binary additive

valuations. On the algorithmic side, we show that by relaxing the e�ciency requirement,

a connected EQ1 allocation can be computed in polynomial time for any given ordering of

agents, even for general monotone valuations. Interestingly, the allocation computed by our

algorithm has the highest egalitarian welfare among all allocations consistent with the given

ordering. On the other hand, if e�ciency is required, then tractability can still be achieved

for binary additive valuations with interval structure. On our way, we strengthen some of the

existing results in the literature for other fairness notions such as envy-freeness up to one

good (EF1), and also provide novel results for negatively-valued items or chores.

1 Introduction

The question of how to fairly divide a set of resources among agents has been extensively studied in

economics, mathematics, and computer science. The formal treatment of such resource allocation

problems—commonly referred to as fair division—dates back several decades [1]. There is now a

rich literature on fair division problems [2, 3, 4], comprising of a variety of solution concepts and

associated existential and computational results. Many of these insights have found impressive

practical applications such as in rent division [5], credit assignment [6], and cluster computing [7].

Many real-world resource allocation problems exhibit a natural spatial or temporal structure,

and in such scenarios, it is desirable to have contiguous allocations. For example, when allocating

supercomputing time, a contiguous processing window is preferable over one that involves multiple

restarts. Similarly, when assigning o�ce space in a department building, each research group might

prefer a contiguous segment of rooms for ease of communication.

In this work, we study the seemingly con�icting goals of fairness and contiguity in the context

of allocating indivisible resources (or goods). Speci�cally, we consider a set of indivisible goods

that are represented by the vertices of a path graph, and require that each agent is allocated a

connected subgraph. Fair allocation of indivisible goods has received growing interest within both

arti�cial intelligence as well as theoretical computer science literature [8, 9, 10, 11, 12], motivated,

in part, by notable real-world applications such as course allocation [13] and property division [14].

The research area has been further popularized by the website Spliddit (http://www.spliddit.org/)

that provides implementations of provably fair algorithms for a wide array of resource allocation

problems [15].

While there are countless formulations of what it means to be fair, each with its own merit, in

this work we focus on one well-established notion of fairness called equitability [16]. An equitable

allocation is one in which agents derive equal utilities from their assigned shares. Equitability is a

particularly compelling fairness criterion in settings such as dividing climate change responsibilities

among countries [17] and in designing taxation policies. It also enjoys empirical support, as lab

experiments and an online user study have found that equitability—or “aversion of interpersonal

http://www.spliddit.org/


inequity”’—can be an important predictor of the perceived fairness of an allocation, possibly more so

than the classic “intrapersonal” criterion of envy-freeness [18, 19]. Equitability is also a key property

in the well-known adjusted winner algorithm [2] which has been applied to divorce settlements.

For indivisible items, perfect equitability may not be possible, which motivates the need for

a natural relaxation called equitability up to one good (EQ1) [20]. This notion requires that the

inequity between any pair of agents can be eliminated by removing some item from the happier

agent’s bundle. Since an empty allocation is vacuously fair, the study of fairness notions is often

coupled with economic e�ciency. To this end, we study EQ1 alongside various e�ciency measures

such as Pareto optimality, non-wastefulness, and maximum egalitarian (max-min) or utilitarian

(sum) welfare (see Preliminaries for the relevant de�nitions).

The study of connected fair allocations of general graphs was initiated by [21] with a focus on

other fairness notions such as envy-freeness, proportionality, and maximin share. Concurrently,

[22] showed that for a path graph, a connected and approximately equitable allocation always exists

and can be e�ciently computed. This work also provided a non-constructive proof of existence of

egalitarian-optimal and approximately equitable allocations, but did not consider other e�ciency

notions. Importantly, the notion of approximate equitability in Suksompong’s work is strictly

weaker than EQ1, and as we observe later, his algorithm could fail to �nd EQ1 allocations even

when such allocations are known to exist. Thus, the existential and computational questions

pertaining to EQ1 allocations remain unanswered by prior work.

Our Contributions: We initiate the study of EQ1 allocations under connectedness constraints

and make the following contributions:

1. Hardness results for EQ1 and e�cient allocations: We show that checking the existence

of a connected EQ1 allocation satisfying any of the aforementioned e�ciency measures is

NP-hard even under binary additive valuations (Theorems 1 and 2 and Corollary 1). All of our

results follow from a single construction that also has implications for other fairness notions

such as envy-freeness up to one good (EF1) as well as negatively-valued items (or chores).

2. Algorithmic result for complete EQ1 allocations: By relaxing the e�ciency condi-

tion and only requiring completeness (i.e., not leaving any good unassigned), we obtain a

polynomial-time algorithm for computing a connected EQ1 allocation whose egalitarian wel-

fare is the highest among all allocations that are consistent with a given ordering of agents

(Theorem 3). This resolves an open problem of [22]. Notably, our algorithm applies to any

instance with monotone (possibly non-additive) valuations.

3. Structured preferences: We provide an e�cient algorithm for checking the existence of a

connected, non-wasteful, and EQ1 allocation when agents have binary additive valuations

with extremal interval structure (Theorem 5).

2 Related Work

Fair division problems have been classically studied in the context of divisible resources, most

prominently in the cake-cutting literature; see [4, Chapter 13] for an excellent survey. There is also

a vast literature on connected (or contiguous) cake-cutting, spanning various notions of fairness and

economic e�ciency [23, 5, 24, 25, 26, 27, 28, 29, 30]. In particular, for equitability, it is known that

for any given ordering of the agents, there exists a connected equitable division of a cake consistent

with the ordering [31]. Although no �nite procedure can compute an exactly equitable division

even without the connectedness constraint [32], it is known that an ε-equitable connected division

can be computed using �nite protocols [33]. Equitability has also been studied in combination with

other fairness notions. For example, while there always exists a connected equitable division that



is also proportional [31], there might not exist a connected division that is simultaneously equitable

and envy-free [34].

For indivisible resources, the study of connected fair division has more recent origins [35, 21, 22].

A number of fairness notions such as proportionality, envy-freeness, and maximin share have been

examined in this model when the resources are goods [21, 36, 37, 38, 39, 22, 40], chores [41], and

mixed items involving both goods and chores [42]. A noteworthy result in this context concerns

the existence of allocations satisfying envy-freeness up to one good (EF1) when the number of agents

is at most four [38], or when agents have identical valuations [38, 40]. As we observe in Remark 4,

the latter result follows as a corollary of our main algorithmic result.

For indivisible goods without the connectedness requirement, [43] provided an e�cient algo-

rithm for achieving equitability up to any good. Subsequently, [20] studied (approximate) equitability

along with Pareto optimality. Among other results, they showed that an EQ1 and Pareto optimal

allocation might fail to exist even with binary valuations, and provided e�cient algorithms for

checking the existence of such allocations. By contrast, as we show in Theorem 2, the problem

becomes NP-complete when connectedness is also required.

3 Preliminaries

Let N = {a1, a2, . . . , an} be a set of n ∈ N agents, and G = (V,E) be an undirected graph. Each

vertex v ∈ V of the graph G corresponds to an indivisible good (or item) with m := |V | goods

overall. A (connected) bundle is a set of goods S ⊆ V whose corresponding vertices induce a

connected subgraph of G. We let C(V ) ⊆ 2V denote the set of all connected subsets of V . Unless

stated otherwise, we will assume that G is a path given by {v1, v2, . . . , vm} where {vi, vi+1} ∈ E
for i ∈ [m− 1].

A (connected) allocation A : N → C(V ) assigns to each agent ai a connected bundle A(ai) ∈
C(V ) such that no good is assigned to more than one agent. We will denote an allocation as an

ordered tuple A = (A1, A2, . . . , An), where Ai := A(ai). An allocation is said to be complete if it

does not leave any good unassigned; that is, for any good v, there exists some agent ai such that

v ∈ Ai. A partial allocation is one that is not complete. Unless stated explicitly otherwise, the term

‘allocation’ will refer to a complete allocation.

The preferences of agent ai are speci�ed by a valuation function ui : C(V )→ N ∪ {0}. We say

that the valuation functions are monotone if for any pair of connected bundles S, S′ ∈ C(V ) such

that S ⊆ S′, we have ui(S) ≤ ui(S
′). The valuation functions are said to be additive if for each

agent ai and each bundle S ∈ C(V ), ui(S) :=
∑
v∈S ui({v}), where ui(∅) := 0. Note that since

all valuations are non-negative, any additive valuation function is also monotone. We will assume

throughout that the valuations are additive (however, note that our algorithmic results apply to

monotone, possibly non-additive valuations). For simplicity, we will write ui,j := ui({vj}). An

n-tuple of valuation functions U = {u1, . . . , un} is called a valuation pro�le. We say that agents

have binary (additive) valuations if ui,j ∈ {0, 1} for all ai ∈ N and vj ∈ V .

Fairness notions: An allocation A is said to be

• equitable (EQ) if for every pair of agents ai, ak ∈ N , the utilities of ai and ak for their

respective bundles are equal, that is, ui(Ai) = uk(Ak),

• equitable up to one good (EQ1) if for every pair of agents ai, ak ∈ N such that Ak 6= ∅, there

exists some good v ∈ Ak such that ui(Ai) ≥ uk(Ak \ {v}),

• envy-free (EF) if for every pair of agents ai, ak ∈ N , ui(Ai) ≥ ui(Ak), and



• envy-free up to one good (EF1) if for every pair of agents ai, ak ∈ N , ui(Ai) ≥ ui(Ak \ {v})
for some v ∈ Ak .

The notions of EQ, EQ1. EF, and EF1 were formulated in the context of resource allocation by [16],

[20], [44], and [13], respectively.
1

Notice that equitability and envy-freeness (and their corresponding relaxations) coincide when

agents have identical valuations (i.e., if ui = uk for every ai, ak ∈ N ) but are incomparable in

general. Although our focus in this paper is on (approximate) equitability, some of our results also

have implications for (approximate) envy-freeness.

E�ciency notions: An allocation A is said to be

• Pareto optimal (PO) if for no other connected allocation B, we have ui(Bi) ≥ ui(Ai) for

every agent ai, with at least one of the inequalities being strict, and

• non-wasteful (NW) if for any good v, there exists some agent ai such that v ∈ Ai and

ui({v}) > 0.
2

The utilitarian welfare of A is the sum of utilities of all agents in A, i.e.,

∑
ai∈N ui(Ai), and the

egalitarian welfare of A is the utility of the least happy agent, i.e., minai∈N ui(Ai).

Non-wastefulness and Pareto optimality can be incomparable notions even when G is a path.
3

However, for binary valuations, NW ⇒ PO ⇒ complete (since, for binary valuations, a non-

wasteful allocation maximizes the utilitarian social welfare and is therefore Pareto optimal), and

there are simple examples where these implications are strict.

Connected fair division problem: The input to this problem is a tuple I = 〈G,N ,U〉 con-

sisting of a graph G, a set of agentsN , and a valuation pro�le U . The goal is to determine whether

I admits a connected allocation satisfying the desired notions of fairness and e�ciency. Notice that

if G is a clique, we recover the standard fair division model without the connectedness constraint.

In this work, we will exclusively focus on the case where G is a path graph.

(a, b)-sparse instances: Given any 1 ≤ a ≤ m and 1 ≤ b ≤ n, we say that an instance with

binary valuations is (a, b)-sparse if each agent approves (i.e., has value of 1 for) at most a goods

and each good is approved by at most b agents.

4 Hardness Results for EQ1 and E�cient Allocations

Note that in the absence of the connectedness constraint, a non-wasteful allocation can be easily

computed by assigning each good to an agent that has a positive value for it. By contrast, con-

nectedness poses a substantial computational challenge even when we are only looking to satisfy

non-wastefulness (without any fairness constraints), as the problem turns out to be NP-complete

(Theorem 1).

Theorem 1. Determining whether there exists a connected non-wasteful allocation is NP-complete

for a path and a (4, 4)-sparse binary valuations instance.

1
[45] studied a weaker approximation of envy-freeness than EF1, but their algorithm is known to compute an EF1

allocation.

2
To make this notion well-de�ned, we will assume throughout that in any given instance, for every good there is at least

one agent with a non-zero value for it. This assumption is without loss of generality as our negative results (pertaining

to computational hardness and non-existence) hold even under this assumption, and our positive results (algorithms and

existence results) do not need this assumption.

3
Consider three goods v1, v2, v3 on a path and two agents with valuations u1 = (1, 10, 0) and u2 = (10, 1, 1). The al-

locationA := ({v1}, {v2, v3}) is non-wasteful but is Pareto dominated by the (wasteful) allocationB := ({v2, v3}, {v1}).
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Figure 1: The instance used in the proof of Theorem 1.

To prove Theorem 1, we will show a reduction from a structured version of Satisfiability

called Linear Near-Exact Satisfiability (LNES) which is known to be NP-complete [46]. An

instance of LNES consists of 5p clauses (where p ∈ N) denoted as follows:

C = {U1, V1, U
′
1, V

′
1 , · · · , Up, Vp, U ′p, V ′p} ∪ {C1, · · · , Cp}.

We will refer to the �rst 4p clauses as the core clauses, and the remaining clauses as the auxil-
iary clauses. The set of variables consists of p main variables x1, . . . , xp and 4p shadow variables
y1, . . . , y4p.

Each core clause consists of two literals and has the following structure:

∀ i ∈ [p], Ui ∩ Vi = {xi} and U ′i ∩ V ′i = {x̄i}.

Each main variable xi occurs exactly twice as a positive literal and exactly twice as a negative literal.

The main variables only occur in the core clauses. Each shadow variable makes two appearances:

as a positive literal in an auxiliary clause and as a negative literal in a core clause. Each auxiliary

clause consists of four literals, each corresponding to a positive occurrence of a shadow variable.

The LNES problem asks whether, given a set of clauses with the aforementioned structure, there

exists an assignment τ of truth values to the variables such that exactly one literal in every core

clause and exactly two literals in every auxiliary clause evaluate to true under τ .

Proof. (of Theorem 1) Let φ be an instance of LNES. We will begin with a description of the reduced

instance.

Goods: Introduce one good for every core clause, denoted by Ui, Vi, U
′
i , and V ′i , and two goods

for every auxiliary clause, denoted by CLi and CRi . We refer to these as core and auxiliary goods,

respectively. We also introduce 2p dummy goods D1, D
′
1, . . . , Dp, D

′
p as well as p + 1 separator

goods S0, S1, . . . , Sp. Thus, the total number of goods is m = 4p+ 2p+ 2p+ (p+ 1) = 9p+ 1.

The goods are arranged as shown in Figure 1.

Agents: For every main variable xi, we will introduce two agents axi and ax̄i for the two

literals; these are referred to as main agents of the positive and negative type, respectively. For

every i ∈ [p], the agent axi
approves (i.e., values at 1) the goods Ui, Vi, Di, D

′
i, while the agent ax̄i

approves the goods U ′i , V
′
i , Di, D

′
i. We also introduce a shadow agent for every shadow variable.

If y is a shadow variable occurring in the core clause Ui and auxiliary clause Cj , then the shadow

agent corresponding to y approves the goods Ui, C
L
j , and CRj . The set of goods approved by y

is analogously de�ned if it appears in the core clauses Vi, U
′
i , or V ′i . Finally, we introduce p + 1

separator agents s0, s1, . . . , sp such that for every i ∈ {0, 1, . . . , p}, si only approves the separator

good Si. Thus, the total number of agents is n = 2p + 4p + (p + 1) = 7p + 1. Observe that the

constructed instance is (4, 4)-sparse. We now turn to the proof of equivalence of the two instances.

The Forward Direction. Let τ be a satisfying assignment for the LNES instance. We will

construct the desired allocation as follows: For every i ∈ [p], if the main variable xi evaluates to

true (i.e., if τ(xi) = 1), then assign Ui and Vi to agent axi , Di and D′i to agent ax̄i , and U ′i and

V ′i to the (unique) shadow agents that approve these goods. Otherwise, if τ(xi) = 0, then assign

U ′i and V ′i to agent ax̄i
, Di and D′i to agent axi

, and Ui and Vi to the (unique) shadow agents that

approve these goods. Additionally, for every i ∈ {0, . . . , p}, assign Si to the agent si. Finally, for



every i ∈ [p], assign the goods CLi and CRi to the two shadow agents whose corresponding literals

satisfy the auxiliary clause Ci.

The above allocation assigns each good to an agent that approves it and is therefore non-wasteful.

It is also easy to see that the allocation is connected: The only agents that receive more than one

good under this allocation are the main agents, and they always receive either two adjacent core

goods or two adjacent dummy goods.

The Reverse Direction. We will now show how to recover an LNES assignment given a

connected and non-wasteful allocation A for the fair division instance.

Observe that due to non-wastefulness, each separator good is assigned to a unique separator

agent, and the separator agents are not assigned any other goods. Thus, for every i ∈ {0, 1, . . . , p},
Asi = {Si}. Similarly, the 2p dummy goods D1, D

′
1, . . . , Dp, D

′
p must be allocated among at least

p main agents, which leaves at most p main agents for receiving the core goods. Furthermore, the

separator goods prevent any shadow agent from getting more than one auxiliary good. Thus, the

2p auxiliary goods are assigned to exactly 2p shadow agents, leaving the other 2p shadow agents

for receiving the core goods.

Since each core good is approved by a unique shadow agent, at most 2p core goods can be

allocated among shadow agents. Thus, the remaining 2p (or more) core goods should go to the

main agents. However, due to non-wastefulness, a main agent cannot get more than two core goods.

Overall, this means that one set of p main agents gets exactly two core goods each (the “lucky”

agents), while the other set of p main agents gets two dummy goods each (the “unlucky” agents).

Notice that the two main agents corresponding to a main variable cannot both be lucky (since that

would leave one or more dummy goods unassigned), nor can both be unlucky (as that would create

a similar violation for the core goods).

This brings us to a natural way of deriving an assignment τ from the allocation A. If the main

agent of the positive (respectively, negative) type is unlucky, then we let τ(xi) = 0 (respectively,

τ(xi) = 1). Furthermore, if A allocates a core good to a shadow agent, then the corresponding

shadow variable is set to 0, while shadow variables corresponding to shadow agents who receive

auxiliary goods are set to 1. Note that exactly 2p of the 4p shadow variables are set to 1. It can be

veri�ed that τ is indeed a satisfying assignment.

Notice that the allocation obtained in the forward direction in the proof of Theorem 1 is EQ1

and EF1, and the argument for the reverse direction is driven only by non-wastefulness. Thus,

we also obtain hardness results for EQ1+NW and EF1+NW allocations. Additionally, for binary

additive valuations, an allocation is non-wasteful if and only if its utilitarian welfare is at least m.

These observations establish the hardness of a number of related problems.

Corollary 1. Checking the existence of a connected allocation that is (a) EQ1 and NW, (b) EF1 and
NW, (c) EQ1 and has utilitarian welfare at leastm, or (d) EF1 and has utilitarian welfare at leastm
is NP-complete for a path and a (4, 4)-sparse binary valuations instance.

Remark 1. The hardness result in Corollary 1 can be extended to multiplicative approximations of

EQ1 and EF1. Given any α ∈ [0, 1], an allocation A is said to satisfy α-EQ1 (respectively, α-EF1)

if for every pair of agents ai, ak ∈ N such that Ak 6= ∅, there exists some good v ∈ Ak such that

ui(Ai) ≥ α · uk(Ak \ {v}) (respectively, ui(Ai) ≥ α · ui(Ak \ {v})).
4

The reasoning is similar:

The allocation in the forward direction is EQ1 as well as EF1, and hence also α-EQ1 and α-EF1.

The argument in the reverse direction only uses non-wastefulness, and therefore vacuously holds

for α-EQ1 (or α-EF1). As a result, we obtain that for any rational α ∈ [0, 1], it is NP-complete to

determine the existence of a connected α-EQ1 (or α-EF1) allocation that is non-wasteful or has

utilitarian welfare at least m.

4
Similar approximations have been studied in the context of envy-freeness up to any good (EFX) [47, 48].



A straightforward adaptation of the construction in Theorem 1 also gives us the following:

Theorem 2. Checking the existence of a connected allocation that is (a) EQ1 and PO, (b) EF1 and
PO, (c) EQ1 and has egalitarian welfare at least 2, or (d) EF1 and has egalitarian welfare at least 2 is
NP-complete for a path and a (6, 4)-sparse binary valuations instance.

The proof of Theorem 2 is presented in the Appendix A.

Recently, [37, Theorem 7] have shown NP-hardness of checking the existence of a connected

EF1+PO allocation of a path even for binary valuations. Their construction involves items that are

valued by all agents, thus requiring O(n) sparsity. By contrast, our result in Theorem 2 shows

hardness even for O(1) sparse instances. Finally, we note that the proof of Theorem 1 can also be

adapted to show NP-hardness for egalitarian or utilitarian-optimal EQ1 allocations of chores (the

relevant transformation is u′i,j = ui,j − 1).
5

5 Algorithmic Results for Complete EQ1 Allocations

The intractability results in the previous section prompt us to relax the e�ciency requirement in

search of positive results, and ask the following question: Does there always exist a connected and

complete EQ1 allocation of a path?

A natural approach towards this question is to start with a connected and exactly equitable

division in a cake-cutting instance derived by relaxing the indivisibility constraint (such divisions

are guaranteed to exist [31, 27, 50]). The fractional cake division could then be rounded to obtain a

connected and approximately equitable allocation of indivisible goods. Unfortunately, there exist

instances where every rounding of the fractional cake division fails to satisfy EQ1.
6

An alternative approach is to work directly with the indivisible goods instance. For a path

graph, any connected allocation can be naturally associated with a left-to-right ordering of agents,

say σ. We call a connected (partial) allocation σ-consistent if it assigns connected bundles from left

to right according to σ. [22] has shown that there is a polynomial-time local search algorithm that,

for any �xed ordering σ of agents, �nds a connected, complete, σ-consistent, and approximately

equitable allocation. Speci�cally, his algorithm computes a umax-EQ allocation, where umax :=
maxai∈N ,v∈V ui({v}) is the highest valuation any agent has for any good, and an allocation A is

umax-EQ if for every ai, ak ∈ N , we have |ui(Ai)− uk(Ak)| ≤ umax.

Notice that umax-EQ is a strictly weaker guarantee than EQ1, and there exist instances where

Suksompong’s algorithm fails to compute an EQ1 allocation (even though such an allocation exists).
7

Thus, this approach, too, does not resolve the existence of EQ1 and complete allocations. Moreover,

this algorithm could fail to satisfy standard criteria of economic e�ciency. Given this limitation, [22]

posed the computation of ‘approximate equitable allocations with non-trivial welfare guarantees’

as an open problem.

We address this gap by providing a polynomial-time algorithm for computing a connected,

complete, and EQ1 allocation (Theorem 3). Our algorithm also provides the following economic ef-

�ciency guarantee: For any given agent ordering σ, our algorithm returns a connected, σ-consistent,

and EQ1 allocation whose egalitarian welfare is the highest among all connected and σ-consistent

5
For negatively-valued items (or chores), an allocation is said to satisfy EQ1 if for every pair of agents ai, ak ∈ N such

that Ai 6= ∅, there exists a chore v ∈ Ai such that vi(Ai \ {v}) ≥ vk(Ak) [49].

6
Consider an instance with seven goods v1, . . . , v7 and three agents with identical valuations u = (1, 1, 1, 1, 1, 1, 12).

Any connected and equitable division assigns v1, . . . , v6 to one agent and equally divides v7 between the other two. In

any rounding, some agent will get an empty bundle, thus violating EQ1.

7
Consider the instance in Footnote 6 where umax = 12. Starting with the allocation A := ({∅}, {v1, . . . , v6}, {v7}),

Suksompong’s local search algorithm immediately returnsA as the output since it is umax-EQ, even though it violates EQ1.

Observe that the allocation B := ({v1, v2, v3}, {v4, v5, v6}, {v7}) is EQ1 and has a higher egalitarian welfare.



allocations. In other words, a connected and egalitarian-optimal allocation for any �xed ordering

of the agents is, without loss of generality, fair (i.e., EQ1) and e�ciently computable.

Theorem 3. There is a polynomial-time algorithm for computing a connected, complete, and EQ1 al-
location of a path consistent with a given ordering of agents. Furthermore, this allocation is egalitarian-
optimal among all connected allocations consistent with the given ordering.

Note that the strong existence guarantee of Theorem 3 cannot be extended to EQ1 and Pareto

optimal allocations. Indeed, consider an instance with �ve goods and three agents where u1 =
(1, 0, 0, 0, 0), u2 = (0, 1, 0, 0, 0), and u3 = (0, 0, 1, 1, 1). For σ = (1, 2, 3), the unique connected,

σ-consistent, and Pareto optimal allocation is ({v1}, {v2}, {v3, v4, v5}) which violates EQ1.

ALGORITHM 1: Algorithm for �nding a connected and complete EQ1 allocation.

Input: An instance I = 〈G,N ,U〉 and an ordering of agents σ.

Output: A connected allocation A.

. Phase 1: Compute the optimal egalitarian welfare θ

1 k ← 1 . Start with the smallest value in the preprocessed list L

2 θ ← uk . Initialize the guess for optimal egalitarian welfare
3 while k ≤ n(m+ 1)2 do
4 Starting from the leftmost available good, move rightward along G and tentatively assign a minimal

connected bundle worth at least uk+1
to each successive agent in σ.

5 if the assignment in Line 4 is infeasible then
6 Exit while-loop and start Phase 2.

7 else
8 θ ← uk+1 . Update the guess
9 k ← k + 1 . Update k

. Phase 2: Find a θ-unsafe agent via a left-to-right scan

10 A← (∅, . . . , ∅)
11 i← 1
12 while i ≤ n do
13 if there exists a σ-consistent partial allocation that is identical to A for the agents a1, . . . , ai−1, and, in

addition, assigns connected bundles worth at least uk+1 to ai and worth at least θ = uk to each of
ai+1, . . . , an then

14 Ai ← the minimal connected bundle worth at least uk+1
to agent ai starting from the leftmost

available good.

15 G← G \Ai . Update the set of remaining goods
16 i← i+ 1

17 else
18 Exit while-loop and start Phase 3. . ai is the leftmost θ-unsafe agent

. Phase 3: Finalize the remaining assignments via a right-to-left scan

19 k ← n
20 while k > i do
21 Ak ← the minimal connected bundle worth at least θ = uk

to agent ak starting from the rightmost

available good.

22 G← G \Ak . Update the set of remaining goods
23 k ← k − 1

24 Ai ← G . Assign all remaining goods to the θ-unsafe agent ai
25 return A

Description of the algorithm: Let σ := (a1, a2, . . . , an). Our algorithm (see Algorithm 1)
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Figure 2: Illustrating the notion of θ-unsafe agent on an instance with binary valuations. For θ = uk = 2 and
uk+1 = 3, agent a1 is θ-safe because there exists a partial allocation in which a1’s utility is at least uk+1 and
that of each of its successors is at least uk . Agent a2 is θ-unsafe because giving a utility of at least uk+1 to both
a1 and a2 necessarily involves a3’s utility being less than uk .

consists of three phases.

In Phase 1, the algorithm computes the optimal egalitarian welfare θ for σ-consistent allocations.

To compute this value, the algorithm starts with a preprocessed listL = (u1, u2, . . . ) containing all

distinct realizable utility values of any agent for any connected bundle, where u1 := 0 < u2 < u3

and so on. (The list L is of lengthO(nm2) since the number of distinct connected bundles in a path

is O(m2).) In round k, the algorithm checks whether there exists a connected and σ-consistent

partial allocation with egalitarian welfare uk+1
. To do this, the algorithm starts from the leftmost

available good and iteratively assigns minimal connected bundles to the agents a1, a2, . . . such

that each agent gets a utility of at least uk+1
; here, minimal refers to cardinality-wise smallest

bundle. If a feasible partial allocation exists, the algorithm updates its ‘guess’ of the achievable

egalitarian welfare to θ = uk+1
and moves to round k + 1. Otherwise, it �xes θ = uk and

moves to Phase 2. Thus, for the instance in Figure 2, the partial allocation in round 1 (θ = 0) is

({v1}, {v2, v3}, {v4}), and that in round 2 (θ = 1) is ({v1, v2}, {v3, v4}, {v5, v6, v7, v8}). In round

3, the algorithm encounters infeasibility, so it �xes θ = 2.

In Phase 2, the algorithm searches for a θ-unsafe agent. Given any θ = uk , we say that agent ai is

θ-safe if there exists a connected and σ-consistent (partial) allocation in which each of a1, a2, . . . , ai
gets a utility of at least uk+1

, and each of ai+1, . . . , an gets a utility of at least uk . A θ-unsafe agent

is one that is not θ-safe (see Figure 2). Note that a θ-unsafe agent must exist since we know from

Phase 1 that an egalitarian welfare of uk+1
is not possible. The procedure in Phase 1 can be easily

adapted to compute the leftmost θ-unsafe agent, say ai. Having found ai, the algorithm now �xes

the assignments of its predecessors a1, . . . , ai−1 (but not ai) by starting from the leftmost available

good and iteratively assigning each agent a minimal connected bundle worth at least uk+1
. The

algorithm now moves to Phase 3.

In Phase 3, the algorithm �nalizes the assignments of the remaining agents via a right-to-left
scan of the path G. Speci�cally, starting from the rightmost available good, the algorithm moves

leftwards alongG and iteratively assigns minimal connected bundles worth at least uk to the agents

in the reverse order an, an−1, and so on. Upon encountering ai for the second time, the algorithm

assigns to it all the remaining goods, and returns the �nal allocation as the output. The proof of

Theorem 3 follows.

Proof. (of Theorem 3) We will show that the above algorithm (Algorithm 1) satis�es the desired

properties.

Let us start with the running time analysis of the algorithm assuming that agents have additive

valuations (later in Remark 2, we will provide a similar analysis for general monotone valuations).



Since there are O(m2) possible connected bundles for each of the n agents, the computation of

L requires computing the utility of O(nm2) bundles by adding up the individual utilities of the

constituent goods. This amounts to a total running time ofO(nm2 log(umax)) for the preprocessing

phase. Further, we assume that the agents’ utilities for all possible bundles are cached so as to

facilitate constant time access in the remainder of the algorithm.

The total running time for Phase 1 is O(nm3), since there are at most n(m+ 1)2
iterations of

the while-loop and each iteration involves scanning at most m goods. Phase 2 involves at most n
iterations of the while-loop, and each iteration requires assigning connected bundles to all agents

from left to right, which takes O(m) time. Thus, the total running time for Phase 2 is O(nm). In

Phase 3, each good is considered at most once during the right-to-left scan, resulting in a running

time of O(m). Thus, overall, the algorithm takes O(nm3 + nm2 log(umax)) time.

The allocationA returned by the algorithm is complete because all leftover goods are allocated in

the last step, and is σ-consistent because this property is maintained by the algorithm at every step.

Furthermore,A is also connected since the algorithm assigns connected bundles to a1, . . . , ai−1 from

left to right and to an, . . . , ai+1 from right to left. (The feasibility of the right-to-left assignment is

guaranteed by the fact that ai−1 is θ-safe, as ai is leftmost θ-unsafe agent.) Since G is a path, the

set of leftover goods assigned to ai in Phase 3 is also connected.

We will now argue that A is egalitarian-optimal among all connected and σ-consistent allo-

cations. First, observe that the value θ = uk �xed at the end of Phase 1 is indeed the optimal
egalitarian welfare of any connected and σ-consistent allocation. (Otherwise, by monotonicity of

valuations, there must exist a connected and σ-consistent allocation with egalitarian welfare uk+1

or higher in which agents receive minimal bundles. This, however, would contradict the infeasi-

bility encountered for θ = uk+1
.) Next, we will show that the egalitarian welfare of A is equal to

uk , which will establish egalitarian-optimality. Indeed, each of a1, . . . , ai−1 gets a utility of at least

uk+1 > uk in Phase 2, and each of an, . . . , ai+1 gets a utility of at least uk in Phase 3. The utility

of ai for its assigned bundle is exactly uk because of the following two reasons: First, ai’s utility is

at least θ = uk since ai−1 is θ-safe (recall that ai is the leftmost θ-unsafe agent). Second, since ai
is θ-unsafe, assigning a bundle worth at least uk+1

to ai (and each of its predecessors a1, . . . , ai−1)

would imply that one of its successors ai+1, . . . , an gets utility strictly below uk , which contradicts

the assignments in Phase 3. Thus, ai’s utility must be strictly below uk+1
, and hence, equal to

uk = θ.

Finally, to prove thatA is EQ1, notice that if the utility of an agent is strictly greater than uk (in

particular, each of a1, . . . , ai−1 gets a utility at least uk+1 > uk), then by minimality of bundles,

there must exist a boundary good whose removal results in the agent’s residual utility being strictly

below uk+1
, and therefore less than or equal to uk . Since each agent gets a utility at least uk , A

must be EQ1.

We observe that the running time of Algorithm 1 can be improved to O(nm2) via following

modi�cations: In the preprocessing step, as before, we go through all possible O(nm2) bundles.

We cache these bundles, and compute umax which amounts to the running time of O(nm2) for

this step. Next, in Phase 1, we use binary instead of the linear search to �nd the optimal egalitarian
welfare θ. With these modi�cations, Phase 1 runs in time O(m logmn). In Phase 2, the θ-unsafe

agent can be found in O(m) time with a combination of left-to-right scan that tentatively assigns

bundles worth uk+1
and a right-to-left scan that assigns bundles worth uk . Finally, Phase 3 runs

takes O(m) time as before.

Remark 2. Note that the algorithm in Theorem 3 and the analysis of its correctness only use the

monotonicity of valuations, and therefore the result extends to non-additive utilities. The running

time analysis in this case relies on the existence of a valuation oracle that, given a connected

bundle, returns the agent’s utility for that bundle. Since the number of distinct connected bundles



in a path isO(m2), afterO(nm2) valuation queries, each agent’s value for every connected bundle

is available to the algorithm. The rest of the analysis is identical to that in Theorem 3.

Remark 3. Another relevant implication is that our algorithm can be easily adapted for negative

valuations to obtain the e�cient computation of connected EQ1 allocations for chores. The latter

result provides a tractable alternative to a recent result showing NP-hardness for connected and

exactly equitable chore allocations [41].

Remark 4. [38] and [40] have independently shown that when agents have identical monotone

valuations, a connected EF1 allocation of a path can be e�ciently computed. Since EF1 and EQ1

coincide for identical valuations, our result in Theorem 3 implies this result as a corollary.

Additionally, we note that although the algorithm of [38] and its analysis are presented for

identical valuations, a natural extension of their algorithm for general valuations can be used to

derive an alternative proof of Theorem 3.

The existence result in Theorem 3 is quite general, since it applies to any �xed ordering of

agents and any monotone valuations instance, and reconciles fairness (i.e., EQ1) with a weak form

of economic e�ciency (i.e., completeness). On closer inspection, though, we �nd that it implies an

even stronger existence result. Speci�cally, given an agent ordering σ, let Aσ denote the set of all

connected, σ-consistent, EQ1 and complete allocations for the given instance. From Theorem 3,

we know that Aσ is non-empty. Furthermore, since there are only �nitely many allocations, there

must exist an allocation in Aσ that is not Pareto dominated by any other allocation in Aσ . We call

this property PO*. In Section B, we show the following result using a variant of Algorithm 1:

Theorem 4. Given an instance with binary additive valuations and any agent ordering σ, a connected,
σ-consistent, EQ1, and PO* allocation of a path can be computed in polynomial time.

6 Structured Preferences

In this section, we will explore a di�erent avenue for circumventing the intractability associated with

non-wasteful EQ1 allocations. Unlike in Theorem 3 where we relaxed the e�ciency requirement,

this time we will instead assume that agents have structured preferences. In particular, we will

focus on binary extremal valuations wherein for each agent ai, either there exists `i ∈ [m] such that

ui,j = 1 for all j ∈ {1, . . . , `i} and 0 otherwise (i.e., ai is left-extremal), or there exists ri ∈ [m]
such that ui,j = 1 for all j ∈ {ri, . . . ,m} and 0 otherwise (i.e., ai is right-extremal). Similar domain

restrictions have been previously considered in the context of voting problems [51].

Theorem 5. There is a polynomial-time algorithm that, given an instance with binary extremal and
additive valuations, returns a connected, non-wasteful, and EQ1 allocation whenever such an allocation
exists.

Proof. We will show that the desired allocation, if it exists, can be obtained by concatenating the

solutions from two subproblems, one on a purely left-extremal and the other on a purely right-

extremal subinstance.

Suppose there exists a connected, non-wasteful (NW), and EQ1 allocation A. Let σ denote the

agent ordering under A. By relabeling the agents, we have that σ = (a1, . . . , an). We claim that

without loss of generality, all left-extremal agents precede all right-extremal agents in σ. Indeed,

if there is a pair of adjacent agents ai, ai+1 where ai is right-extremal and ai+1 is left-extremal,

then by an exchange argument we can obtain another connected, non-wasteful, and EQ1 allocation

B where such a violation does not occur. Speci�cally, by swapping the bundles of ai and ai+1,

we maintain connectedness and non-wasteful. Additionally, for binary additive valuations, non-

wastefulness implies that the utility of an agent is equal to the cardinality of its bundle. Therefore,



swapping bundles results in swapping the utility values of ai and ai+1, which means that the old

and new allocations have identical utility pro�les (up to relabeling). Thus, allocation B must also

satisfy EQ1.

Let vj ∈ V be such that the set V L := {v1, . . . , vj} is allocated among the left-extremal agents

and V R := {vj+1, . . . , vm} is allocated among the right-extremal agents in A. Then, the subin-

stance restricted to V L only has left-extremal valuations and admits a connected, non-wasteful, and

EQ1 allocation (indeed, the restriction of A to V L satis�es these properties). A similar implication

holds for the purely right-extremal subinstance V R. Therefore, it su�ces to provide a polynomial-

time algorithm for checking the existence of a connected, non-wasteful, and EQ1 allocation in a

binary left-extremal instance. Notice that the same algorithm can be used for the right-extremal

subinstance via an easy ‘mirror transformation’. If both subinstances admit desired allocations,

then the concatenated allocation is clearly connected and non-wasteful in the original instance. By

checking this allocation for EQ1, we obtain the desired algorithm for the original instance. Thus,

in rest of the proof, we will focus only on left-extremal valuations.

Let A′ denote the restriction of allocation A to the left-extremal subinstance, and let n′ and m′

correspondingly denote the number of agents and items, respectively. SinceA′ is non-wasteful and

EQ1 and the valuations are binary, the minimum and maximum utilities under A′ must be bm
′

n′ c
and dm

′

n′ e, respectively. That is, an agent is either a ‘�oor’ or a ‘ceiling’ agent. By an exchange

argument, it can be shown that for any pair of left-extremal agents ai, ak such that i < k, we have

`i ≤ `k (i.e., ai’s interval �nishes before ak’s) without loss of generality. Similarly, it holds that the

�oor agents precede the ceiling agents (here, the exchange argument transfers a boundary item).

Let n′f and n′c denote the number of �oor and ceiling agents, respectively. Thus, n′f and n′c are

the unique pair of non-negative integers satisfying the equations n′f + n′c = n′ and n′f · bm
′

n′ c +

n′c · dm
′

n′ e = m′. (If m′ = kn′ for some k ∈ N, then n′f = n′ and n′c = 0.) The desired algorithm

considers the agents in the order in which their intervals �nish, and constructs an allocation as

follows: Starting from the leftmost available good, the algorithm assigns a connected bundle of

bm
′

n′ c goods to each of the �rst n′f agents, and a connected bundle of dm
′

n′ e goods to each of the next

n′c agents. If this allocation is non-wasteful and EQ1, then the algorithm reports YES and returns

the said allocation, otherwise it reports NO.

7 Concluding Remarks

We initiated the study of EQ1 allocations under connectedness constraints. The pursuit of con-

nected EQ1 allocations satisfying non-trivial e�ciency guarantees resulted in computational hard-

ness. This result motivated the exploration of two avenues for tractability: relaxing the e�ciency

requirement and assuming structured preferences. Some of our results found broader applicability

to other fairness notions (e.g., EF1) and negatively-valued items.

Going forward, it would be very interesting to explore the domain of binary intervals without

the extremal structure in search of tractability results. Another relevant direction could be to map

the intractability frontier for binary valuations in terms of (a, b)-sparsity. Our results establish

hardness of a number of problems even under (4, 4)-sparsity. On the other hand, (1, b)-sparse

instances are e�ciently solvable for any b. Resolving the complexity of intermediate cases is a

natural next step. Finally, extensions to general graphs [21] or settings with mixed items involving

goods as well as chores [42] could also be of interest.
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Appendix A Proof of Theorem 2

Let us recall the statement of Theorem 2.

Theorem 2. Checking the existence of a connected allocation that is (a) EQ1 and PO, (b) EF1 and
PO, (c) EQ1 and has egalitarian welfare at least 2, or (d) EF1 and has egalitarian welfare at least 2 is
NP-complete for a path and a (6, 4)-sparse binary valuations instance.

We will start by discussing the proof of part (a) of Theorem 2, followed by that of part (c) which

uses the same construction. Parts (b) and (d) use a slightly di�erent construction, and their proofs

will be presented subsequently.

Proof. (of part (a)) We will show a reduction from Linear Near-Exact Satisfiability (LNES) and

our construction will be similar to that of Theorem 1. Recall that an instance of LNES consists of

5p clauses (where p ∈ N) denoted as follows:

C = {U1, V1, U
′
1, V

′
1 , · · · , Up, Vp, U ′p, V ′p} ∪ {C1, · · · , Cp}.

We will refer to the �rst 4p clauses as the core clauses, and the remaining clauses as the auxiliary
clauses. The set of variables consists of p main variables x1, . . . , xp and 4p shadow variables (our

notation for the shadow variables will di�er slightly from that used in Theorem 1).

Each core clause consists of two literals and has the following structure:

∀ i ∈ [p], Ui ∩ Vi = {xi} and U ′i ∩ V ′i = {x̄i}.

Each main variable xi occurs exactly twice as a positive literal and exactly twice as a negative

literal. The main variables only occur in the core clauses. Each shadow variable makes two appear-

ances: as a positive literal in an auxiliary clause and as a negative literal in a core clause. For i ∈ [p],
we will let pi, ri, qi, and si denote the shadow variables that appear (as negative literals) in the core

clauses Ui, Vi, U
′
i and V ′i , respectively. That is, Ui := (p̄i ∧ xi), Vi := (r̄i ∧ xi), U ′i := (q̄i ∧ x̄i),

and V ′i := (s̄i ∧ x̄i). Each auxiliary clause consists of four literals, each corresponding to a positive

occurrence of a shadow variable.

The LNES problem asks whether, given a set of clauses with the aforementioned structure, there

exists an assignment τ of truth values to the variables such that exactly one literal in every core

clause and exactly two literals in every auxiliary clause evaluate to true under τ .

Construction of the reduced instance. Let φ be an instance of LNES. We will begin with the

description of the reduced instance.

Goods: For every i ∈ [p], we introduce one good for every core clause denoted by Ui, Vi, U
′
i ,

V ′i , and six goods for every auxiliary clause denoted by CL1
i , CL2

i , S1
i , S

2
i , C

R1
i , CR2

i . We refer to

Ui, Vi, U
′
i , V

′
i as the core goods, CL1

i , CL2
i , CR1

i , CR2
i as the auxiliary goods, and S1

i , S
2
i as the

separator goods. Next, we introduce two goods for each shadow variable, i.e., corresponding to each

of pi, qi, ri, si, we introduce the following shadow goods: p1
i , p

2
i , r

1
i , r

2
i , q

1
i , q

2
i , s

1
i , s

2
i . Finally, we

introduce 2p dummy goods denoted byD1, D
′

1, . . . , Dp, D
′

p, two additional separator goods S1
0 , S

2
0 ,

and three special goodsS1, S2, S3. Thus, the total number of goods ism = 4p+6p+8p+2p+2+3 =
20p+ 5. The goods are arranged as shown in Figure 3.

Agents: For every main variable xi, we will introduce two agents axi
and ax̄i

for the two

literals; these are referred to as main agents of the positive and negative type, respectively. For

every i ∈ [p], the agent axi approves (i.e., values at 1) the goods Ui, Vi, Di, D
′
i, while the agent ax̄i

approves the goods U ′i , V
′
i , Di, D

′
i. We also introduce a shadow agent for every shadow variable. If



U1, p1
1, p2

1, r1
1 , r2

1 , V1, U ′1, q1
1 , q2

1 , s1
1, s2

1, V ′1 , · · · , Up, p1
p, p2

p, r1
p, r2

p, Vp, U ′p, q1
p , q2

p , s1
p, s2

p, V ′p
(Core and shadow goods)

S1
0 , S2

0 , CL1
1 , CL2

1 , S1
1 , S2

1 , CR1
1 , CR2

1 , · · · , CL1
p , CL2

p , S1
p , S2

p , CR1
p , CR2

p

(Separator and auxiliary goods)

D1, D
′

1, D2, D
′

2, · · · , Dp, D
′

p, S1, S2, S3

(Dummy and special goods)

Figure 3: The instance used in the proof of part (a) of Theorem 2. The path graph is such that the goods in the
top row are to the left of those in the middle row, which are to the left of those in the bottom row.

pi is a shadow variable occurring in core clause Ui and auxiliary clause Cj , then the corresponding

shadow agent pi approves the shadow goods p1
i , p

2
i and the auxiliary goods CL1

j , CL2
j , CR1

j , CR2
j .

The valuations of the other shadow agents ri, qi, si are de�ned analogously. Next, we introduce

p+ 1 separator agents t0, . . . , tp such that for every i ∈ {0} ∪ [p], ti approves two separator goods

S1
i , S

2
i . Lastly, we introduce special agent as that approves the special goods S1, S2, S3.

This completes the construction of our reduction. Notice that the constructed instance is (6, 4)-
sparse. Before presenting the proof of equivalence, we will establish in Lemma 1 that each agent

(except for the special agent) has a utility of 2 under any EQ1 and Pareto optimal allocation.

Lemma 1. In any EQ1 + PO allocation, the utility of the special agent as is equal to 3 and that of
every other agent is equal to 2.

Proof. (of Lemma 1) Notice that in any Pareto optimal allocation A, the special goods S1, S2, S3

must be allocated to the special agent as. This is because these goods lie at the end of the path

and are uniquely valued by as, and therefore any allocation A′ that does not assign these goods

to as can be shown to be Pareto dominated by another allocation that is identical to A′ except for

the assignment of the special goods to the special agent. Therefore, the utility of as under Pareto

optimal allocation must be equal to 3 (recall that as does not value any good other than the special

goods).

Now let A denote any EQ1 and Pareto optimal allocation. Since the utility of the special agent

in A is equal to 3, EQ1 requires that the utility of every other agent in A is at least 2.

Since each separator agent t0, t1, . . . , tp approves exactly two goods, it must be that for every

i ∈ {0, 1, . . . , p}, the separator goods S1
i , S

2
i are assigned to ti in A. Furthermore, since the

separator goods S1
i , S

2
i are placed next to each other on the path and these are the only goods

approved by ti, we can assume, without loss of generality, that these are the only goods assigned

to ti.

Now consider a shadow agent pi that appears in the core clause Ui and the auxiliary clause Cj .

Thus, pi approves two shadow goods p1
i , p

2
i and four auxiliary goods CL1

j , CL2
j , CR1

j , CR2
j . Note

that pi cannot receive more than two approved goods; if it does, then by connectedness constraint,

its bundle should necessarily include separator goods whose assignment has already been �xed.

Thus, each shadow agent pi (analogously qi, ri, si) will have a utility of exactly 2 in A.

A similar argument shows that for any i ∈ [p], the main agent of positive (or negative) type

axi (or ax̄i ) will have a utility of at most 2 since all such agents approve two core goods and two

dummy goods. We therefore have that in any EQ1 and Pareto optimal allocation, all agents other

than the special agent achieve a utility of exactly 2. This completes the proof of Lemma 1.

The Forward Direction. Given a satisfying assignment τ for LNES, we will construct the

desired allocation as follows:



• Allocate the special goods S1, S2, S3 to the special agent as.

• For each i ∈ {0, 1, . . . , p}, the separator agent ti receives the separator goods S1
i and S2

i .

• If τ(xi) = 1, then allocate {Ui, p1
i , p

2
i , r

1
i , r

2
i , Vi} to agent axi and {Di, D

′
i} to agent ax̄i .

In addition, allocate {U ′i , q1
i , q

2
i } to qi, and {s1

i , s
2
i , V

′
i } to si. Recall that qi and si are the

shadow variables that appear as negated literals in the core clauses U ′i and V ′i , respectively,

along with x̄i.

Otherwise, if τ(xi) = 0, then allocate {U ′i , q1
i , q

2
i , s

1
i , s

2
i , V

′
i } to agent ax̄i and {Di, D

′
i} to

agent axi . In addition, allocate {Ui, p1
i , p

2
i } to pi, and {r1

i , r
2
i , Vi} to ri.

• Finally, for every j ∈ [p], allocate the sets {CL1
j , CL2

j } and {CR1
j , CR2

j } to the two shadow

agents whose corresponding literals satisfy the auxiliary clause Cj .

Observe that each good is assigned to exactly one agent in the aforementioned allocation. Fur-

thermore, each agent’s bundle is connected; in particular, each shadow agent either receives a set

of adjacent core and shadow goods (if the corresponding shadow variable evaluates to false under

τ ), or a set of adjacent auxiliary goods (if it evaluates to true).

It is easy to verify that the utility of the special agent is equal to 3, and that of every other agent

is equal to 2. Thus, the allocation is EQ1.

We will now argue that the above allocation, sayA, is Pareto optimal. Suppose, for contradiction,

that another allocation A′ Pareto dominates A. Since the special agent and each separator agent

receives all of its approved goods under A, the utilities of these agents under A and A′ must be

equal. Furthermore, if a main agent has a strictly higher utility underA′, then by the connectedness

constraint, its bundle must contain a separator good, which leads to an infeasible assignment since

these goods are necessarily allocated to the separator agents. A similar argument shows that a

shadow agent, too, cannot receive a higher utility under A′. Therefore, A must be Pareto optimal.

The Reverse Direction. We will now show how to recover an LNES assignment given a

connected EQ1 and Pareto optimal allocation, say A.

SinceA is EQ1 and Pareto optimal, we know from Lemma 1 that the special agent receives three

approved goods and every other agent receives two approved goods under A. Thus, in particular,

for every i ∈ {0, 1, . . . , p}, the separator goods S1
i , S

2
i are allocated to the separator agent ti.

Along with the connectedness constraint, this implies that for every i ∈ [p], at least one of the

main agents axi or ax̄i will achieve a utility of 2 by either receiving the intervalUi, p
1
i , p

2
i , r

1
i , r

2
i , Vi

or U ′i , q
1
i , q

2
i , s

1
i , s

2
i , V

′
i . This, in turn, forces at least one pair of shadow agents—either {pi, ri} or

{qi, si}—to obtain their utilities from the auxiliary goods.

We will now show that exactly one of these two pairs of agents derive their utility from the

shadow goods, while the other pair meets the utility requirement though the auxiliary goods. Indeed,

since there are 4p auxiliary goods (corresponding to p auxiliary clauses), at most 2p shadow agents

can obtain the desired utility from the auxiliary goods. Therefore, for every i ∈ [p], exactly one

pair of shadow agents—either {pi, ri} or {qi, si}—are assigned shadow goods, while the other pair

receives auxiliary goods. Note that this observation also shows that for every i ∈ [p], exactly one

out of axi or ax̄i is assigned the dummy goods {Di, D
′
i}.

Overall, we have that one set of p main agents gets exactly two core goods each (we will refer

them as the “lucky” agents), while the other set of p main agents gets two dummy goods each (the

“unlucky” agents). Notice that the two main agents corresponding to a main variable cannot both

be lucky, nor can both be unlucky due to the argument presented earlier.

This brings us to a natural way of deriving an LNES assignment τ from the allocation A. If

the main agent of the positive (respectively, negative) type is unlucky, then we let τ(xi) = 0



U1, p1
1, p2

1, r1
1 , r2

1 , V1, U ′1, q1
1 , q2

1 , s1
1, s2

1, V ′1 , · · · , Up, p1
p, p2

p, r1
p, r2

p, Vp, U ′p, q1
p , q2

p , s1
p, s2

p, V ′p
(Core and shadow goods)

S1, S2, CL1 , CR1 , · · · , CLp , CRp , D1
1 , D2

1 , D3
1 , · · · , D1

p, D2
p, D3

p

(Separator and auxiliary goods followed by the dummy goods)

Figure 4: The instance used in proof of part (b) of Theorem 2. The path graph is constructed such that the goods
in the top row are to the left of those in the bottom row.

(respectively, τ(xi) = 1). Furthermore, if A allocates a core good to a shadow agent, then the

corresponding shadow variable is set to 0, while shadow variables corresponding to shadow agents

who receive auxiliary goods are set to 1. Note that exactly 2p of the 4p shadow variables are set to

1 under this assignment and there are no con�icting assignments, implying that τ is indeed a valid

solution to the LNES instance. This completes the proof of part (a) of Theorem 2.

Proof. (of part (c)) To prove part (c), we �rst observe that the argument in the forward direction

remains the same as in part (a), since the allocation constructed in the proof is EQ1 and satis�es

the desired egalitarian welfare condition.

In the reverse direction, it is possible that under the given allocation, say A, the special agent

as no longer receives all three special goods. However, since the egalitarian welfare of A is at least

2, each agent must receive at least two approved goods. Along with connectedness, this means

that either S1 or S3 is not assigned to as under A. Since the special goods are not approved by any

other agent, we can modify A to obtain another allocation, say A′, that is identical to A except for

the allocation of the special goods, which are all assigned to the special agent. It is easy to see that

A′ is connected, EQ1, and has egalitarian welfare at least 2. By an identical argument as in part (a),

we can now infer a satisfying LNES assignment.

We now move on to the proof of part (b) of Theorem 2, followed by that of part (d) which uses

a similar construction.

Proof. (of part (b)) We will once again show a reduction from Linear Near-Exact Satisfiability

(LNES).

Construction of the reduced instance. Let φ be an instance of LNES. We will begin with

the description of the reduced instance.

Goods: For every i ∈ [p], we introduce one core good for every core clause denoted by Ui,
Vi, U

′
i , V

′
i , and two auxiliary goods for every auxiliary clause denoted by CLi , C

R
i . Next, we

introduce two goods for each shadow variable, i.e., corresponding to each of pi, qi, ri, si, we in-

troduce the shadow goods p1
i , p

2
i , r

1
i , r

2
i , q

1
i , q

2
i , s

1
i , s

2
i . Finally, we introduce 3p dummy goods

D1
1, D

2
1, D

3
1, . . . , D

1
p, D

2
p, D

3
p and two separator goods S1

0 , S
2
0 . Thus, the total number of goods

is m = 4p+ 2p+ 8p+ 3p+ 2 = 17p+ 2. The goods are arranged as shown in Figure 4.

Agents: As before, we have the main agents of the positive and negative type for every main

variable xi, denoted by axi and ax̄i , respectively. For every i ∈ [p], the agent axi approves the

goods Ui, Vi, D
1
i , D

2
i , D

3
i , while the agent ax̄i approves the goods U ′i , V

′
i , D

1
i , D

2
i , D

3
i . We also

introduce a shadow agent for every shadow variable. If pi is a shadow variable occurring in core

clause Ui and auxiliary clause Cj , then the corresponding shadow agent pi approves the shadow

goods p1
i , p

2
i and the auxiliary goods CLj , C

R
j . The valuations of the other shadow agents ri, qi, si

are de�ned analogously. Lastly, we introduce a separator agent a0 that approves the two separator

goods S1, S2. This completes the construction of the reduced instance. Notice that the constructed

instance is (5, 4)-sparse. Before presenting the proof of equivalence, we will prove a structural

result in Lemma 2.



Lemma 2. In any EF1 + PO allocation, the utility of the separator agent a0 is equal to 2. Moreover,
for every i ∈ [p], exactly one of axi or ax̄i is allocated the triplet of goods {D1

i , D
2
i , D

3
i }.

Proof. (of Lemma 2) Observe that in any EF1 and Pareto optimal allocation A, the separator goods

S1, S2 must be allocated to separator agent a0. Indeed, S1, S2 are valued only by a0. If S1, S2 are

allocated to two distinct agents in some allocationA′, thenA′ can be shown to be Pareto dominated

by another allocation identical to A′ except for the assignment of separator goods to the separator

agent. Otherwise, if S1, S2 are allocated to the same agent (di�erent from a0) in A′, then EF1 is

violated from a0’s perspective. Therefore, the utility of the separator agent a0 under any EF1 and

Pareto optimal allocation is equal to 2. This implies that no main or shadow agent can obtain utility

from goods in both rows of Figure 4.

To prove the second part of the lemma, we �rst observe that for every i ∈ [p], the goods

D1
i , D

2
i , D

3
i must be assigned between the main agents axi

and ax̄i
in any Pareto optimal allocation.

This is because these goods are approved only by axi and ax̄i and no other agent. Furthermore,

these agents can obtain a utility of at most 2 from the core goods. Therefore, any allocation A in

which one or more of the dummy goods D1
i , D

2
i , D

3
i are assigned to agents other than axi

and ax̄i

can be shown to be Pareto dominated by another allocation, say A′, that is identical to A except

for the assignment of these dummy goods, which are allocated exclusively among axi
and ax̄i

.

Next, suppose that both axi and ax̄i are allocated only the dummy goodsD1
i , D

2
i , D

3
i in a Pareto

optimal allocation, say A. Assume, without loss of generality, that the utilities of axi and ax̄i in A
are 1 and 2, respectively. Then, A can be shown to be Pareto dominated by another allocation that

is identical to A with the exception that one of the core goods, say Ui, is assigned to axi
, and the

triplet {D1
i , D

2
i , D

3
i } to ax̄i

, contradicting the Pareto optimality of A. Thus, the triplet of dummy

goods {D1
i , D

2
i , D

3
i } must be completely assigned to either axi

or ax̄i
.

The Forward Direction. Given a satisfying assignment τ for LNES, we will construct the

desired allocation as follows:

• Allocate the separator goods S1, S2 to the separator agent a0.

• If τ(xi) = 1, then allocate {Ui, p1
i , p

2
i , r

1
i , r

2
i , Vi} to agent axi

and {D1
i , D

2
i , D

3
i } to agent

ax̄i
. In addition, allocate {U ′i , q1

i , q
2
i } to qi, and {s1

i , s
2
i , V

′
i } to si. Recall that qi and si are the

shadow variables that appear as negated literals in the core clauses U ′i and V ′i , respectively,

along with x̄i.

Otherwise, if τ(xi) = 0, then allocate {U ′i , q1
i , q

2
i , s

1
i , s

2
i , V

′
i } to agent ax̄i and {D1

i , D
2
i , D

3
i }

to agent axi
. In addition, allocate {Ui, p1

i , p
2
i } to pi, and {r1

i , r
2
i , Vi} to ri.

• Finally, for every j ∈ [p], allocate {CLj } and {CRj } to the two shadow agents whose corre-

sponding literals satisfy the auxiliary clause Cj .

Notice that in the constructed allocation, each good is allocated to exactly one agent, and each

agent receives a connected interval. Also, the utility of the separator agent is 2, and exactly one

agent corresponding to each variable receives a triplet of the corresponding dummy goods. Note

that the utility of each main agent is either 2 or 3, and the utility of each shadow agent is either

1 or 2. Furthermore, any main agent is allocated at most two goods valued by any shadow agent.

Hence, the constructed allocation is EF1.

We will now argue that the above allocation, sayA, is Pareto optimal. Suppose for contradiction,

that another allocation A′ Pareto dominates A. The second part of Lemma 2 implies that in any

EF1 and Pareto optimal allocation, for every i ∈ [p], the main agents axi and ax̄i cannot both have

utility 3. Thus, the utilities of the main agents under A and A′ should be equal. Furthermore, one



of the main agents corresponding to each variable will be allocated shadow goods corresponding to

a pair of shadow agents (either {pi, ri} or {qi, si}). This implies that for at least one of these pairs,

the two shadow agents should each receive a utility of 1 under A′. Hence, by a similar argument

as above, all shadow agents will also have the same utility under A and A′, establishing that A′

cannot Pareto dominate A, as desired.

The Reverse Direction. We will now show a way to recover an LNES assignment given a

connected EF1 and Pareto optimal allocation, say A.

Since A is EF1 and Pareto optimal, we know from Lemma 2 that the separator agent receives

the two approved goods, and for each variable xi, exactly one of the corresponding main agents

axi
or ax̄i

receives the triplet of dummy goods {D1
i , D

2
i , D

3
i }. By EF1, the other main agent will

achieve a utility 2 by either receiving the interval {Ui, p1
i , p

2
i , r

1
i , r

2
i , Vi} or {U ′i , q1

i , q
2
i , s

1
i , s

2
i , V

′
i }.

This, in turn, forces at least one pair of shadow agents—either {pi, ri} or {qi, si}—to obtain their

utilities from the auxiliary goods. Note that for any such pair, both agents will have a utility of at

least 1 due to EF1 condition.

We will now show that exactly one of the two pairs of shadow agents derive their utility from

the shadow goods, while the other pair meets the utility requirement though the auxiliary goods.

Indeed, since there are 2p auxiliary goods (corresponding to p auxiliary clauses), at most 2p shadow

agents can obtain the desired utility from the auxiliary goods. Therefore, for every i ∈ [p], exactly

one pair of shadow agents—either {pi, ri} or {qi, si}—are assigned shadow goods, while the other

pair receives auxiliary goods.

Overall, we have that one set of p main agents gets exactly two core goods each (we will refer

them as the “lucky” agents), while the other set of p main agents gets three dummy goods each

(the “unlucky” agents). Notice that the two main agents corresponding to a main variable cannot

both be lucky, nor can both be unlucky due to the argument presented in Lemma 2.

This brings us to a natural way of deriving an LNES assignment τ from the allocation A. If

the main agent of the positive (respectively, negative) type is unlucky, then we let τ(xi) = 0
(respectively, τ(xi) = 1). Furthermore, if A allocates a core good to a shadow agent, then the

corresponding shadow variable is set to 0, while shadow variables corresponding to shadow agents

who receive auxiliary goods are set to 1. Note that exactly 2p of the 4p shadow variables are set to

1 under this assignment and there are no con�icting assignments, implying that τ is indeed a valid

solution to the LNES instance. This completes the proof of part (b) of Theorem 2.

Proof. (of part (d)) To prove part (d), we adapt the construction in part (b) with a small change: For

every i ∈ [p], we introduce four auxiliary goods CL1
i , CL2

i , CR1
i , CR2

i instead of the original two

CLi , C
R
i . Note that such an instance is (6, 4)-sparse. We adapt the changes in the construction to

the allocation constructed in the forward direction by replacing CLi (respectively, CRi ) with the set

of goods {CL1
i , CL2

i } (respectively, {CR1
i , CR2

i }). In the reverse direction, it is possible that under

the given allocation, say A, the main agents no longer receive all three dummy goods. Similar to

the argument in part (c), we can construct an allocation A′ that is identical to A except that we

allocate the triplet of dummy goods {D1
i , D

2
i , D

3
i } to the corresponding main agent. At this stage,

with a similar argument as in the reverse direction of part (b), we can recover a satisfying LNES

assignment.



Appendix B EQ1 and PO* Allocations

In this section, we give a variant of Algorithm 1 to compute EQ1 and PO* allocations. Formally,

given an agent ordering σ, we say that allocationA is PO* if it is connected, σ-consistent, complete,

and EQ1, and no other connected, σ-consistent, complete, and EQ1 allocation Pareto dominates A.

From the aforementioned argument, it follows that a PO* allocation always exists.

Intriguingly, while Algorithm 1 can be used to establish the existence of a PO* allocation even

for general monotone valuations, it can fail to return such an allocation even for binary addi-

tive valuations. Indeed, consider an instance with �ve goods v1, . . . v5 and three agents with

valuations u1 = (1, 0, 0, 1, 0), u2 = (0, 1, 1, 0, 0), and u3 = (0, 0, 0, 1, 1). Given the ordering

σ = (1, 2, 3), Algorithm 1 computes a σ-consistent and EQ1 allocation ({v1, v2}, {v3, v4}, {v5})
with utility pro�le (1, 1, 1), which is Pareto dominated by another σ-consistent and EQ1 allocation

({v1}, {v2, v3}, {v4, v5}) with utility pro�le (1, 2, 2).

Thus, for a given agent ordering σ, PO* is stronger than EQ1+completeness as in this case, the

former implies the latter. We note that PO* with respect to an ordering σ could be weaker (i.e.,

Pareto dominated) than an EQ1+complete allocation with respect to a di�erent ordering σ′.

This motivates the following natural question: Given an ordering σ, can a PO* allocation be

e�ciently computed? While we are unable to settle this question for general monotone valuations,

in Theorem 4 we show that a variant of Algorithm 1 e�ciently computes a PO* allocation for binary

additive valuations. Let us recall the statement of Theorem 4.

Theorem 4. Given an instance with binary additive valuations and any agent ordering σ, a connected,
σ-consistent, EQ1, and PO* allocation of a path can be computed in polynomial time.

We will start by describing the algorithm underlying this result, which, in turn, builds on

Algorithm 1. This will be followed by a formal proof of Theorem 4.

Description of the algorithm for EQ1 and PO* allocations: Let σ := (a1, a2, . . . , an). Our

algorithm for Theorem 4 consists of four phases. Phases 1 and Phase 2 are identical to those in

Algorithm 1, and are used to �nd the optimal egalitarian welfare θ and the leftmost θ-unsafe agent

ai, respectively. Recall that in Phase 2, we also �x the allocations of the agents a1, a2, . . . , ai−1.

In the third phase, which we denote by Phase 3*, we partition the agents ai, . . . , an in two groups
as follows: We start with a partial allocation of the �rst i − 1 agents a1, a2, . . . , ai−1, and then

consider the remaining agents sequentially from left to right. That is, in round j ∈ {i, i+1, . . . , n},
we consider the leftmost unallocated agent according to σ, namely aj . Starting with the leftmost

available good, we allocate a minimal bundle worth θ+ 1 to aj (note that θ+ 1 is a realizable utility

value under binary valuations). Next, the algorithm checks whether there exists a connected and

σ-consistent allocation such that each subsequent agent receives utility θ (this step is similar to that

in Algorithm 1). If the check passes (i.e., if there is a feasible partial allocation where the agents

aj+1, . . . , an receive utility θ each), then we assign aj to group 1 and allocate to it the minimal

bundle with utility θ + 1 (this is a temporary allocation). Otherwise, we assign aj to group 2 and

allocate to it the minimal bundle worth θ. The above procedure is repeated for all subsequent agents,

following which the algorithm proceeds to the fourth phase.

In Phase 4*, we �nalize the allocation of the agents ai, . . . , an (recall that the allocation in Phase

3* is only tentative). At �rst, we mimic the allocation for agents ai, . . . , an−1 from Phase 3*, and

allocate the remaining goods to an. In this allocation, ifun(An) ≤ θ+1, then the algorithm �nalizes

the bundles of all agents and returns the allocation. Otherwise, the algorithm performs a right-to-
left scan of the path G similar to Phase 3 of Algorithm 1. In particular, starting from the rightmost

available good, the algorithm moves leftwards along G and iteratively assigns minimal connected



bundles with utility θ+ 1 to group 1 or θ to group 2 agents in the reverse order an, an−1, . . . , ai+1.

The remaining goods are assigned to agent ai and the �nal allocation is returned as the output.

Proof. (of Theorem 4) First, observe that the set of goods allocated in Phase 4* at least contains all
the goods allocated in a temporary allocation of Phase 3* (it may contain some additional goods).

This is because, during a left-to-right partial temporary allocation in Phase 3*, we may not consider

leftover goods to the right of the allocated bundle for agent an. Hence, in the �nal allocation in

Phase 4*, algorithm has enough goods such that each group 1 agent receives a utility of at least

θ + 1, and each group 2 agent receives a utility of at least θ.

Next, we show that the allocation A returned by the algorithm is σ-consistent, complete, and

EQ1. Notice that for the two cases in Phase 4*, in the last iteration, we allocate the leftover goods

to agent an or agent ai; hence, completeness follows trivially. Also, A is σ-consistent because the

algorithm maintains this property at every step. Note that each of the agents a1, . . . , ai−1 receives

a bundle with utility θ + 1 under allocation A. In Phase 4*, consider the case when �nal allocation

is a completion of temporary partial allocation from Phase 3* by assigning leftover goods to agent

an. Here, it is easy to see that the agents ai, . . . , an are each allocated bundles with utility θ or

θ + 1. Hence, the allocation is EQ1. For the other case, when the �nal allocation is built with a

right-to-left traversal and the leftover goods are assigned to agent ai, it is easy to see that, except

for agent ai all other agents receive a bundle with utility either θ or θ+ 1. Moreover, ai belongs to

group 2 (using the de�nition of θ-unsafe agent), and it receives a bundle with utility at least θ. Now,

let S, S′ be the set of goods allocated to agent ai under the allocation A, and allocation (say A′)
by Algorithm 1 for when we run it on the same instance respectively. Observe that S ⊆ S′ since

the agents ai+1, . . . , an receive a minimal bundle with utility either θ or θ+ 1 under the allocation

A′ while these agents receive a minimal bundle of utility exactly θ under the allocation A. At this

stage, just like in the proof of Algorithm 1, we can conclude that ui(S) = θ. Hence, the allocation

A is indeed EQ1.

Finally, we show that A is PO* with a proof by contradiction. Let B be a σ-consistent EQ1

allocation that Pareto dominatesA. From Theorem 3, we know that the optimal egalitarian welfare

for any connected and σ-consistent allocation is θ. Hence, each agent receives a bundle with utility

either θ or θ + 1 under allocation A due to the way our algorithm works. Moreover, each agent re-

ceives a bundle with utility either θ or θ+1 under allocationB as θ is the optimal egalitarian welfare

for the instance and allocation B is EQ1. Let j be the leftmost agent such that uj(Aj) < uj(Bj).

We claim that j > i where ai is the θ-unsafe agent. This is because the agents a1, a2, . . . , ai−1

each receive a bundle with utility θ + 1 under allocation A and ai is the θ-unsafe agent. It is

easy to see that uj(Bj) = θ + 1. Let A′ be an allocation which is identical to allocation A for all

agents a1, a2, . . . , aj−1, and allocates a minimal connected bundle to aj such that uj(A
′
j) = θ+ 1.

Furthermore, let A∗ (respectively, B∗) be the set of goods to the right of bundle A′j (respectively,

Bj ). We claim that B∗ ⊆ A∗. This is because for all ` < j, u`(A`) = u`(B`), and our algorithm

allocated minimal bundles. But since uj(Aj) = θ, in Phase 3*, our algorithm labeled aj as group 1

agent. This implies that the set of goods A∗ is not su�cient to ensure a utility θ for all subsequent

agents. Since B∗ ⊆ A∗, the allocation B is not EQ1 which is a contradiction.

Finally, let us turn to the running time analysis. Since we only consider binary valuations,

the list L of all distinct realizable utility values contains at most m distinct values, and can be

precomputed in O(nm) time. By a similar running time analysis as in the proof of Theorem 3, it

follows that the total running time for Phase 1 is O(m2), and that for Phase 2 is O(nm).

In Phase 3*, for each �xed j, in order to decide the group of agent aj , each of the unallocated

goods is considered towards at most one bundle. Hence, the total running time for this and each

subsequent iteration isO(m). Since there are at most n iterations, the total running time for Phase

3* is O(nm). In Phase 4*, we �nalize the allocation of the agents ai, . . . , an by constructing at



most two complete allocations corresponding to the two cases. Each good is considered towards at

most one bundle in each of these allocations. Thus, the algorithm requires O(m) time in Phase 4*.

Hence, the overall running time of our algorithm is O(m2 + nm).

We close this section by noting that the problem of computing PO* allocations remains an in-

teresting open question for general monotone valuations. Our algorithm for this problem does not

extend too far beyond the binary regime, as the following example shows: Consider an instance with

four goods v1, v2, v3, v4 and two agents a1, a2 with valuations u1 = (1, 3, 1, 0), u2 = (0, 0, 0, 2).

Suppose the agent ordering is σ = (1, 2). The optimal egalitarian welfare is θ = 2, and a2 is the left-

most θ-unsafe agent. On this instance, our algorithm returns the EQ1 allocation ({v1, v2}, {v3, v4}),

which is Pareto dominated by the EQ1 allocation ({v1, v2, v3}, {v4}).
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