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Abstract

The stable marriage problem (SMP) is a mathematical abstraction of two-sided
matching markets with many practical applications including matching resident doc-
tors to hospitals and students to schools. Several preference models have been con-
sidered in the context of SMPs, including orders with ties, incompleteness, and un-
certainty. Yet, behavioral aspects of human decision making, including the similarity
and compromise effects, which are captured by psychological choice models, have so
far been neglected. We introduce Behavioral Stable Marriage Problems (BSMPs),
bringing together the formalism of matching with cognitive models of decision mak-
ing to account for the impact of well known behavioral deviations from rationality on
core notions of SMPs, such as, stability and fairness. We show that proposal-based
approaches are affected by contextual effects and propose novel ILP and local-search-
based methods to efficiently find optimally stable and fair matchings for BSMPs.

1 Introduction
The stable marriage problem (SMP) has a wide variety of applications, including matching
doctors to hospitals, students to schools or, more generally, any two-sided market Roth
[2015]. Typically, n men and n women express their preferences, via a strict total order,
over the members of the other sex. Solving an SMP typically means finding a matching
between men and women satisfying certain properties, such as, stability, where no man and
woman who are not married to each other would both prefer each other to their partners
or to being single. Another desirable property is fairness, aiming at a balance between the
satisfaction of the two groups Gusfield and Irving [1989]. A rich literature has been developed
for SMPs Gusfield and Irving [1989], and many variants have been studied, including when
there is uncertainty in the preferences Aziz et al. [2020] or where preferences are expressed
according to multiple attributes Chen et al. [2018].

We explore the connection between how people make choices, the process of matching,
and the notions of stability and fairness. We assume that the preferences of each agent
are encapsulated via a Multi-alternative Decision Field Theory (MDFT) model Roe et al.
[2001a], that is, by a dynamic cognitive model of choice, capable of capturing behavioral as-
pects of human decision making. We choose this model for several reasons. MDFT belongs
to a family of models based on the principle of accumulation to threshold, by which delib-
eration consists in a cumulative gathering of evidence until a certain threshold is reached.
Among many proposed cognitive models, MDFT has been shown to capture choice behavior
more accurately in human studies. Moreover, unlike other models, e.g. those proposed by
Erev et al. [2017], MDFT is designed to handle scenarios with more than two options and
where preferences are expressed in terms of multiple attributes. Other cognitive models, see
for example Erev et al. [2017], Trueblood et al. [2014], rely heavily on strong psychological
assumptions and directly incorporate behavioral observations in their implementation. In
contrast, MDFT strikes a balance between the expressiveness of the underlying preference
structure and its psychological underpinnings. In fact, within an MDFT, the initial evalu-
ations of the options is expressed as an aggregation over features, and the MDFT models
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how this aggregation builds over time as separate components. Hence, an MDFT model is
an appealing combination of cardinal preferences with psychological processes. This is an
attractive feature from the point of view of integration with AI algorithms, and with match-
ing procedures in particular. One of the core characteristics of MDFT is that choices may
change based on the particular subset presented at any given point. This raises questions
for classical matching algorithms, such as Gale-Shapley Gale and Shapley [1962], a proposal
based method where an agent is selecting alternatives to propose to from an increasingly
smaller subset.

From an AI point of view, we extend the state of the art on SMPs by introducing, to best
of our knowledge, the first framework that incorporates simultaneously multi-attribute pref-
erences with uncertainty and cognitive modeling of bounded-rationality. From a cognitive
science perspective, our work provides a psychologically grounded computational model of
how humans may respond in the context of matching procedures. Integrating human prefer-
ence models into the models of decision making in COMSOC and AI research more generally
is an important direction for developing more applicable reserach Mattei [2020].

Contribution. We define a novel problem at the intersection of matching theory and
cognitive theories of preferences: the Behavioral Stable Matching Problems (BSMP). This
novel approach allows us to study the impact of behavioral effects and the MDFT choice
model on proposal based matching algorithms. To account for this algorithmic integration
of MDFT models into matching procedures, we propose two novel algorithms for finding
maximally stable matchings, based on local search and ILP: an ILP method for finding fair
matchings, and a local search method for finding matchings with maximal fairness for a
specified threshold of stability. We validate our algorithms on an experimental evaluation of
the proposed methods in terms of efficiency and of the stability and fairness of the returned
matchings.

2 Multialternative Decision Field Theory (MDFT)
MDFT Busemeyer and Diederich [2002] models preferential choice as an accumulative pro-
cess in which the decision maker attends to a specific attribute at each time to derive
comparisons among options and update his preferences accordingly. Ultimately the accu-
mulation of those preferences forms the decision maker’s choice. In MDFT an agent is
confronted with multiple options and equipped with an initial personal evaluation for them
according to different criteria, called attributes. For example, a student who needs to choose
a main course among those offered by the cafeteria will have in mind an initial evaluation
of the options in terms of how tasty and healthy they look. More formally, MDFT, in its
basic formulation Roe et al. [2001b], is composed of the following elements.

Personal Evaluation: Given set of options O = {o1, . . . , ok} and set of attributes
A = {A1, . . . , AJ}, the subjective value of option oi on attribute Aj is denoted by mij and
stored in matrix M. In our example, let us assume that the cafeteria options are Salad (S),
Burrito (B) and Vegetable pasta (V). Matrix M, containing the student’s preferences, could
be defined as shown in Figure 1 (left), where rows correspond to the options (S,B, V ) and
the columns to the attributes Taste and Health.

Figure 1: Evaluation (M), Contrast (C) and Feedback (S) matrix.

Attention Weights: Attention weights are used to express the attention allocated to
each attribute at a particular time t during the deliberation. We denote them by vector
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W(t) where Wj(t) represents the attention to attribute j at time t. We adopt the common
simplifying assumption that, at each point in time, the decision maker attends to only
one attribute Roe et al. [2001a]. Thus, Wj(t) ∈ {0, 1} and

∑
jWj(t) = 1, ∀t, j. In our

example, where we have two attributes, at any point in time t, we will have W(t) = [1, 0],
or W(t) = [0, 1], representing that the student is attending to, respectively, Taste or Health.
The attention weights change across time according to a stationary stochastic process with
probability distribution p, where pj is the probability of attending to attribute Aj . In our
example, defining p1 = 0.55 and p2 = 0.45 would mean that at each point in time, the
student will be attending Taste with probability 0.55 and Health with probability 0.45. In
other words, Taste matters slightly more than Health to this particular student.

Contrast Matrix: Contrast matrix C is used to compute the advantage (or disadvan-
tage) of an option with respect to the other options. In the MDFT literature Busemeyer
and Townsend [1993], Roe et al. [2001a], Busemeyer et al. [2019], C is defined by contrasting
the initial evaluation of one alternative against the average of the evaluations of the others,
as shown for the case with three options in Figure 1 (center).

At any moment in time, each alternative in the choice set is associated with a valence
value. The valence for option oi at time t, denoted vi(t), represents its momentary advantage
(or disadvantage) when compared with other options on some attribute under consideration.
The valence vector for k options o1, . . . , ok at time t, denoted by column vector V(t) =
[v1(t), . . . , vk(t)]T , is formed by V(t) = C×M×W(t). In our example, the valence vector
at any time point in which W(t) = [1, 0], is V(t) = [(1− 7)/2, (5− 3)/2, (2− 6)/2]T .

In MDFT, preferences for each option are accumulated across the iterations of the de-
liberation process until a decision is made. This is done by using Feedback Matrix S,
which defines how the accumulated preferences affect the preferences computed at the next
iteration. This interaction depends on how similar the options are in terms of their initial
evaluation expressed in M. Intuitively, the new preference of an option is affected positively
and strongly by the preference it had accumulated so far, while it is strongly inhibited by
the preference of other options which are similar. This lateral inhibition decreases as the
dissimilarity between options increases. Figure 1 (right) shows S computed for our running
example following the MDFT standard method described in Hotaling et al. [2010].

At any moment in time, the preference of each alternative is calculated by P(t + 1) =
S×P(t) + V(t+ 1), where S×P(t) is the contribution of the past preferences and V(t+
1) is the valence computed at that iteration. Starting with P(0) = 0, preferences are
then accumulated for either a fixed number of iterations (and the option with the highest
preference is selected) or until the preference of an option reaches a given threshold.

Definition 1 (Multi-Alternative Decision Theory Model (MDFT Model)). Given set of
options O = {o1, . . . , ok} and set of attributes A = {A1, . . . , AJ}, an MDFT Model is
defined by the n-tuple Q = 〈M,C,p,S〉, where: M is the k × J personal evaluation matrix;
C is the k× k contrast matrix; p is a probability distribution over attention weights vectors;
and S is the k × k feedback matrix.

Different runs of the same MDFT model may return different choices due to the uncer-
tainty on the attention weights distribution. The model can be run on a subset of options
Z ⊆ O of size k′ ≤ k, by eliminating from M all of the rows corresponding to options not in
Z and resizing the contrast matrix and the feedback matrix to size k′. If we run the model
a sufficient number of times on the same set, we obtain a proxy of the choice probability
distribution induced over the options in the set. More formally:

Definition 2 (Choice probability distribution induced by an MDFT model). Given an
MDFT model Q = 〈M,C,p,S〉, defined over options set O and with attributes in A, we

define the set of choice probability distributions {pQZ |∀Z,Z ⊆ O}, containing a probability
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distribution, denoted pQZ , for each subset Z of O, where pQZ (zi) is the probability that option
zi ∈ Z is chosen when Q is run on subset of options Z.

We note that the choice probability distributions induced by MDFT models may violate
the regularity principle, which states that, when extra options are added to a set, the choice
probability of each option can only decrease. This allows MDFT to effectively replicate
bounded-rational behaviors observed in humans Busemeyer and Townsend [1993]. Consider
an example involving an agent purchasing a car and considering the attributes of perfor-
mance and fuel efficiency. Assume at first that there are two options, say, A, and B. Assume
that A has better performance but poorer efficiency with respect to B. Behavioral studies
have shown that introducing a third option C, similar to A, will decrease A’s probability of
being chosen and will increase B’s probability of being selected instead Roe et al. [2001a].
This is known as the similarity effect. Now consider the case in which C is a compromising
option with evaluations lying between those of A and B on both attributes. In this case
human behavior will be skewed towards selecting C by the, so called, compromise effect
Busemeyer and Diederich [2002].

3 Stable Marriage Problems (SMPs)
In a stable marriage problem (SMP), we are given a set of n men M = {m1, . . . ,mn}, and
a set of n women W = {w1, . . . , wn}, where each person strictly orders all members of the
opposite gender. We wish to find a one-to-one matching s, of size n such that every man mi

and woman wj is matched to some partner, and no two people of opposite sex who would
both rather be married to each other than to their current partners. Such a pair is called
a blocking pair. In this setting, a matching with no blocking pairs always exists and is said
to be stable Manlove [2013].

The Gale-Shapley Algorithm The Gale-Shapley Algorithm (GS) Gale and Shapley
[1962] is a well-known algorithm to solve an SMP. It involves a number of rounds where
each un-engaged man “proposes” to his most-preferred woman to whom he has not yet
proposed. Each woman must accept, if single, or choose between her current partner (if she
has one) and the proposing man. GS returns a stable marriage in O(n2).

The pairing generated by GS with men proposing is male optimal, i.e., every man is
paired with his highest ranked feasible partner, and female-pessimal Gusfield and Irving
[1989]. Thus, it is desirable to require stable matchings to also be fair, for example, by min-
imizing the sex equality cost (SEC): SEC(s) =|

∑
(m,w)∈s(prm(w))−

∑
(m,w)∈s(prw(m)) |,

where prx(y) denotes the position of y in x’s preference.

Example 1. Consider the following SMP of size 3.

m1 : w1 > w2 > w3 w1 : m1 > m2 > m3

m2 : w2 > w1 > w3 w2 : m3 > m1 > m2

m3 : w3 > w2 > w1 w3 : m2 > m1 > m3

Stable matchings sm = {(m1, w1), (m2, w2), (m3, w3)} and sw = {(w1,m1), (w2,m3), (w3,
m2)} are, respectively, male and female optimal and have a SEC of, respectively, 4 and 3.

Finding a stable matching with minimum SEC is strongly NP-hard and approximation
techniques have been proposed for example in Iwama et al. [2010]. Local search approaches
have been used extensively in SMPs to tackle variants for which there are no polynomial
stability and/or fairness algorithms Gelain et al. [2013], Manlove [2013], Gelain et al. [2011].
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4 Related Work
The extension of classical SMPs that we present in this paper involves uncertainty in the
preferences, multiple attributes, and bounded-rationality via a psychologically-grounded
model of human behavior. While, to the best of our knowledge, this is the first attempt
to handle all three of these aspects while maintaining cognitive plausibility, there is a rich
literature on SMP extensions addressing one or more of them.

Aziz et al. [2017] consider SMPs with uncertain pair-wise preferences. From a knowledge
representation point of view, the two frameworks are closely related. In fact, considering
pairwise probabilities is equivalent to considering the choice probabilities induced on subsets
of size two by MDFTs. However, a fundamental difference is that MDFTs also induce choice
probability distributions over subsets of all other sizes. While this is irrelevant when focusing
only on the notion of stability, it plays an important role when proposal-based methods are
considered. The notion of α-behavioral stability, which we introduce in Section 5, coincides
with that of possibly stable matching in Aziz et al. [2017] when α > 0. The focus in Aziz
et al. [2017] is on complexity results and indeed, their hardness results for finding maximally
possibly stable matchings applies here. We concentrate on experimentally analyzing the
behavior of different algorithmic approaches when preferences are represented via MDFT.

Different models of uncertainty in preferences are also considered in Aziz et al. [2020],
where the complexity of different problem classes related to the probability of stability are
explored. The closest model to ours among those studied in Aziz et al. [2020] is the lottery
model, where each agent expresses his preferences over the opposite group as a probability
distribution over linear orders. This is, however, different from the preference structure
induced by MDFT models which consists of choice probability distributions over all subsets
of members of the opposite group. The technical focus is also different, since we don’t focus
on complexity issues but rather on the interaction between realistic behavioral simulations
and matching algorithms.

In our MDFT-based framework, the members of one group are evaluated quantitatively
by each member of the opposite group according to multiple attributes. Preferences ex-
pressed via multiple attributes have been considered before in the literature and, more
recently, in Miyazaki and Okamoto [2019] and Chen et al. [2018]. In both of these works the
preferences are expressed qualitatively and consists of collections of linear orders. Moreover,
the concepts of stability they define maintain the preference lists corresponding to different
attributes separate. In contrast, in our setting the preferences according to different at-
tributes are merged by the deliberation simulation into a choice or choice probabilities with
the intent of replicating human behavior.

In this work we are concerned with matching that are both stable and fair. This area
has received new attention recently with the growing conversation around fairness and equi-
tability in AI systems Rossi and Mattei [2019], Lee et al. [2019], Loreggia et al. [2018]. This
has resulted in recent works on new algorithms for different definitions of fairness Cooper
and Manlove [2020b], besides the sex equality we consider here, including parameterized
complexity of matchings with minimal egalitarian cost Gupta et al. [2019]. Other work
has focused on the complexity of sex equal stable matchings through the use of fair proce-
dures, where not all proposals happen on one side Tziavelis et al. [2019, 2020], Gelain et al.
[2011] as well as complexity for preference models other than MDFT including bounded lists
McDermid and Irving [2014] and in the general case Iwama et al. [2010]. While all these
works focus on various forms of stability, equity, and preference model, none of them has
investigated these concepts using a choice model as complex as MDFT and the resulting
preference structures nor considered the behavioral aspects.

Finally, worth mentioning, is a recent work applying DFT (that is, MDFT for binary
choices) to mimic the decision-making processes involving multiple agents Lee and Son
[2016]. In particular, the authors present a version of DFT which accounts for forgetting
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Figure 2: A behavioral profile. Attention weights probability fixed at p(A1) = 0.55 and
p(A2) = 0.45.

to model multi-agent decision-making and the stability of a decision under the dynamics of
opinion formation. While based on the same behavioral model, the framework described in
Lee and Son [2016] is quite different from ours, as it considers a hierarchical network model
of social choice rather than matching in two sided markets. Furthermore, the combination
between DFT and AI techniques has been investigated in Martin and Venable [2018], where
the authors designed a sequential procedure that uses DFT and soft constraints to model
decision making over a set of interdependent choices. While using the same psychological
model, the framework in Martin and Venable [2018] does not consider a multi-agent sce-
nario and only explores the interplay between modeling choices using a DFT model and
propagating their effects via constraint-based inference.

5 Behavioral Stable Marriage Problems (BSMPs)
In this section we formally define Behavioral Stable Marriage Problems. We are given a
set of n men and n women. Each women wi (resp. man mi) expresses her (resp. his)
preferences over the men (resp. women) via an MDFT model Qwi = 〈Mwi

,Cwi
,pwi

,Swi
〉

(resp. Qmi
= 〈Mmi

,Cmi
,pmi

,Smi
〉). Since, as described in Section 2, we adopt the

standard definitions for contrast and feedback matrices C and S, we will omit them, for the
sake of clarity, in what follows.

Definition 3 (Behavioral Profile). A Behavioral Profile is a collection of n men and n
women, where the preferences of each man and woman, xi, on the members of the opposite
group are represented by an MDFT model Qxi = 〈Mxi

,pxi
〉.

We note that each individual can, in principle, use different attributes to express their
preferences over the members of the other group. However, in all of our examples and
experiments we assume two attributes. For each group member xi, his/her model expresses
a (numerical) personal evaluation of each member of the opposite group with respect to two
attributes in Mxi

, and the importance of each attribute, pxi
(see an example in Figure 2). By

running the MDFT models many times we can approximate the induced choice probabilities

(Def. 2). For the profile in Fig. 2 we have p
Qm1

{w1,w2}(w1) = 0.485, p
Qm2

{w1,w2}(w1) = 0.556,

p
Qw1

{m1,m2}(m1) = 0.495, and p
Qw2

{m1,m2}(m1) = 0.562.

As for SMPs, a matching is a one-to-one correspondence between men and women.
However, in our setting, the answer to the question wether an individual would break his/her
current matching and elope with another partner becomes probabilistic.

Definition 4 (β-blocking). Let B be a behavioral profile, and s one of its matchings. Con-
sider pair (m,w) 6∈ s and let Qm, Qw, be the MDFT models of respectively m and w,
and s(m) and s(w) be their respective partners in s. We say pair (m,w) is β-blocking if

β = pQm

{w,s(m)}(w)× pQw

{m,s(w)}(m).

In other words, we say that pair (m,w), unmatched in s, is β-blocking if β is equal to
the joint probability of m choosing w instead of s(m) according to Qm and of w choosing
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m instead of s(w) according to Qw. The higher the β, the higher the probability that m
and w will break the current matching. As an example, pair (m1, w2) is 0.29-blocking for
matching s = {(m1, w1), (m2, w2)} given the behavioral profile in Figure 2.

Definition 5 (α-B-stable matching). Let B be a behavioral profile, and s one of its match-
ings. We say that s is α-behaviorally-stable (abbreviated, α-B-stable), if ((1 − β1) × . . . ×
(1 − βh)) ≤ α, and α is the minimum value for which this holds, where βi is the blocking
probability of pair πi, i ∈ {1, . . . , h}, un-matched in s, and h is the number of blocking pairs,
that is, h = n× (n− 1), if s has n pairs.

Intuitively, a matching is α-B-stable if the probability that none of the unmatched pairs
is blocking is smaller or equal than α. We note that 1-B-stability corresponds to stability
in the classical sense. The notions of β-blocking pair and α-B-stability require only choices
over subsets of size 2 for which we can approximate the induced probabilities. Given the
pair-wise probabilities described earlier, we see that matching s = {(m1, w1), (m2, w2)} is
0.514-B-stable for the profile in Figure 2. We conclude this section with the formal definition
of Behavioral Stable Marriage Problem.

Definition 6 (Behavioral Stable Marriage Problem (BSMP)). Given behavioral profile B,
the corresponding Behavioral Stable Marriage Problem (BSMP) is that of finding an α-B-
Stable matching with maximum α.

With abuse of notation, we will use BSMP and behavioral profile, as well as marriage
and matching, interchangeably in what follows.

6 Fairness
Given model Qm of man m, we define the probability that m’s choices will follow a particular
linear order as follows.

Definition 7 (Induced probability on linear orders). Consider MDFT model Q defined on
option set O. Let us consider linear order ω = ω1 > · · · > ωk, ωi ∈ O, defined over O. Then,
the probability of ω given Q is: pQ(ω) = pQO(ω1)× pQ{O−{ω1}}(ω2)× · · · × pQ{ωk−1,ωk}(ωk−1).

Intuitively, the probability of a linear order is defined as the joint probability that the
first element in the order will be chosen by the MDFT model among all of the options,
the second element will be chosen by the MDFT model from the remaining options, and so
forth. We now define the expected position as follows.

Definition 8 (Expected position). Consider BMSP B, man m and model Qm. The
expected position of woman w in m′s preferences is defined as follows: E[prm(w)] =∑
ω∈L(W ) p

Qm(ω) × prω(w), where L(W ) is the set of linear orders over the set of women

W , and prω(w) is the position of woman w in linear order ω.

We can now define the sex equality cost for BSMPs.

Definition 9 (Sex Equality cost). Given BSMP B and matching s we define the sex equality
cost of s as: SEC(s) =|

∑
(m,w)∈sE[(prm(w))]−

∑
(m,w)∈sE[(prw(m))] | .

Clearly, the lower SEC the more fair the matching. Figure 3 provides two examples of
BSMPs and SECs for matchings.

Since computing the expected position of an option is computationally prohibitive, we
obtain an approximation using the MDFT model to build linear orders. We do this by
choosing a first element, then a second one from the remain set, and so on. By repeating
this process a sufficiently large number of times, we can approximate the probability of linear
orders given the MDFT and, thus, obtain an approximate value for the expected positions.
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7 The Gale Shapley Algorithm and BSMPs
In this section we show how, on one hand, GS can be easily adapted to run on BSMPs while,
on the other, behavioral effects may negatively impact the α-B stability of the matching.

Algorithms B-GS and EB-GS. The Gale Shapley procedure can be extended in a
straightforward way to BSMPs by invoking the relevant MDFT models when a proposal
or an acceptance has to be made. When man m is proposing, model Qm will be run to
select the woman to propose to among the set of women to whom m has not proposed yet.
Similarly, when woman w, currently matched with, say, man m′ receives a proposal from
m, the choice will be picked by running Qw on the set {m,m′}. We call this variant of GS,
Behavioral Gale Shapley, denoted with B-GS. While it is clear that B-GS still converges,
since the sets of available candidates shrink by one every time a proposal is made, it is no
longer deterministic and may return different matchings when run on the same BSMP. This
is, of course, a consequence of the non-determinism of the underlying MDFT models.

We can also define another variant of GS that we call Expected Behavioral Gale Shapley
(EB-GS). We first note that, given a man, we can extract a linear order from the expected
positions of the women according to his MDFT model (breaking ties if needed). EB-GS
corresponds to running GS on the profile of linear orders obtained in this fashion.

Impact of Behavioral Effects. We now discuss how contextual effects impact the
α-B-stability of a matching returned by a proposal-based approach.

Consider the compromise effect, modelling the tendency humans have to pick an option
in the middle when confronted with others characterized by asymmetric strengths. An
instance is shown in Figure 3(a) where we see that m3 (resp. w3) is the compromising
option for women w1 and w2 (resp. for men m1 and m2), and is the preferred option for w3

(resp. m3). When proposals are made and all options are available, m3 (resp. w3) will be
preferred by any woman (resp. man). However, for m1, m2, w1 and w2 every other choice
between two alternatives is between incomparable options, yielding high uncertainty in the
outcome of the MDFT model. As seen in Figure 3 (a), both B-GS and EB-GS return a
matching which is sub-optimal w.r.t. α with high probability. An analogous situation can
be observed for the instance of the similarity effect shown in Figure 3(b). These examples
show that, in general, there is no guarantee that a matching returned by B-GS or EB-GS
will be optimal w.r.t. α-B stability.

In the second column of the tables in Figures 3 we show the sex equality cost of the
matchings. Not surprisingly, there is no guarantee on the fairness of the matchings returned
by B-GS or EB-GS. However, most importantly, there is also no guarantee on its ”unfairness”
(as instead is the case for GS on SMPs) which is again an effect of the non-determinism
injected by the behavioral models.

Figure 3: Compromise (a) and Similarity effect (b), impact on GS. Profile (left) and results
(right), for α-B stability value (α), Sex Equality Cost (SEC) and % of times returned by
B-GS (%B-GS) out of 100 runs. EB-GS result in blue.
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8 Integer Linear Programs for BSMPs
In order to test the efficacy of our algorithms we first developed integer linear program
(ILP) formulations to find solutions that are maximally α-B-Stable, which we call B-ILP,
as well as a formulation to find the most fair solution according to the sex equality cost
with no guarantees on stability, FB-ILP. There is a long history of using ILP formulations
for various versions of stable marriage Roth et al. [1993] and matching problems Lian et al.
[2018] and even SAT encoding Drummond et al. [2015]. These are implementations for our
simple baselines and optimizing them for deployment would be an interesting area of future
work Pettersson et al. [2021].

Algorithm FB-ILP. For each combination of mi ∈ M and wj ∈ W , |M | = |W | = n,
we introduce a binary variable miwj that takes value 1 if mi is matched with wj and 0
otherwise. We assume that for FB-ILP we have access to an n× n matrix posM [i, j] where
entry i, j gives us the expected position of wj in the ranking of mi, and the same matrix is
available for the women, denoted posW .

Recall that finding the solution with lowest sex equality cost requires minimizing SEC =
|
∑
i,j∈n posM [i, j] · miwj −

∑
i,j∈n posW [j, i] · miwj |. We cannot implement this absolute

value directly as the optimization objective in Gurobi Gurobi Optimization [2020] as it is
non-linear due to the presence of the absolute value. Since the SECs are always ≥ 0 we
can overcome this using a standard trick in ILPs using indicator variables Bertsimas and
Tsitsiklis [1997]. The SEC objective can be viewed as adding up the total man cost and
the total woman cost, so we add indicator variables tmc ≥ 0 and twc ≥ 0 and minimize the
difference between these two quantities. Hence, our full FB-ILP can be written as follows.

min ind, s.t.,
(1)

∑
j∈nmiwj = 1 ∀i ∈ n

(2)
∑
i∈nmiwj = 1 ∀j ∈ n

(3)
∑
i,j∈nmiwj = n

(4)
∑
i,j∈n posM [i, j] ·miwj = tmc

(5)
∑
i,j∈n prW [j, i] ·miwj = twc

(6) twc ≥ 0
(7) twc ≥ 0
(8) twc− tmc = ind

In the constraints above (1) and (2) ensures that every man mi has exactly one match
across all possible women and every woman wj has one match across all possible men. The
redundant constraint (3) ensures that we have exactly n matches, i.e., everyone is matched.
Constraint (4) captures the total cost to the men by multiplying the expected position by
the indicator variables for the matches. Likewise constraint (5) captures the total woman
cost. Constraint (8) is necessary to ensure that Gurobi handles our absolute value constraint
correctly. We know that both tmc ≥ 0 and twc ≥ 0 from constraints (6) and (7), hence
when Gurobi uses the Simplex Algorithm to solve, it will set tmc = ind and twc = 0 if
ind > 0 and otherwise we will have tmc = 0 and tmc = −ind. In either case we have a
bounded objective function and we can find a solution if one exists.

Algorithm B-ILP. To find the optimal α-B-Stable solution with B-ILP, we begin with
the same setup. For each mi ∈M and wj ∈W we introduce a binary variable miwj defined
as above. In addition, for B-LP we assume that for each man and each woman we are given
an n×n matrix Prmi

where entry Prmi
[j, k] gives the probability that man mi prefers wj to

wk. There are two interrelated complications with formulating this probabilistic matching
problem as an ILP: first we need the product of the probabilities which is a convex not
linear function, and, second, stability is a pairwise notion over a given matching. To deal

with both of these issues we introduce ∀((i, j), (k, l)) ∈
((n

2)
2

)
possible combinations of pairs

of pairs, an indicator variable miwj + mkwl to indicate that both miwj is matched and
mkwl is also matched. This allows us to compute the blocking probability of mi and wl as
well as of mk and wj . Given the formulation in Aziz et al. [2020], we know that we want
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to maximize the probability that no blocking pair exists. Hence for every pair of possible
marriages miwj +mkwl we can compute the probability that these four individuals are not
involved in blocking pairs by taking the likelihood that they swap partners, formally let
block[(ij), (kl)] = (1 − Prmi

[l, j] ∗ Prwl
[i, k]) ∗ (1 − Prmk

[j, l] ∗ Prwj
[k, i]). To handle the

convex constraint we simply take the log of this quantity and maximize using an indicator
variable we which we implement using the Gurobi And constraint. We can write the full
program as follows.

max
∑
∀(i,j),(k,l)∈((

n
2)
2

)
pairmiwj+mkwl

∗ log(block[(ij), (kl)]), s.t.,

(1)
∑
j∈nmiwj = 1 ∀i ∈ n

(2)
∑
i∈nmiwj = 1 ∀j ∈ n

(3)
∑
i,j∈nmiwj = n

(4) AND(miwj ,mkwl) = pairmiwj+mkwl
∀(i, j), (k, l) ∈

((n
2)
2

)
In the constraints above (1) and (2) ensures that every man mi has exactly one match
across all possible women and every woman wj has one match across all possible men. The
redundant constraint (3) ensures that we have exactly n matches, i.e., everyone is matched.
Constraint (4) uses the Gurobi Gurobi Optimization [2020] AND constraint to set the value
of pair miwj +mkwl to be 1 if and only if both miwj and mkwl are both 1. This allows
us to capture all possible pairs of man/woman pairs and maximize the probability that no
blocking pair occurs.

9 Local search approaches for BSMPs
We present two algorithms based on local-search (LS) to find matchings with either high
α-B-stability or with both a guaranteed level of α-B-stability and a low SEC. LS algorithms
do not have any theoretical guarantee of returning optimal solutions, but often produce
near-optimal solutions and scale better than complete procedures Hentenryck and Michel
[2005].

The B-LS algorithm. B-LS, explores the space of matchings to find one with max-
imum α-B-stability. Each matching s is evaluated by its level α of behavioral stability.
When we find a matching, we compute for each non-matched pair its β-blocking level. The
neighborhood of a matching s consists of all the matchings that can be obtained from s
by rotating a blocking pair (i.e, swapping partners). B-LS explores the neighborhood by
rotating blocking pairs in decreasing order of β until a matching with a higher α-B-stability
is found or the neighborhood is exhausted. In the latter case, the search restarts from a
randomly generated matching. The search ends after a max number of iterations, returning
the matching with maximum α found so far.

Algorithm FB-LS Algorithm FB-LS is designed to take in input a value α and return
a matching with the lowest SEC that is also α-B-stable. Intuitively, FB-LS runs B-LS on
the space of matchings meeting a certain level of fairness. This is done by discarding any
matching that does not meet the fairness requirement while exploring the neighborhood.
In order to use FB-LS, we first run B-LS on the unconstrained space. This allows us to
compute the maximum level of α-B-stability achievable, lets call it αmax. We also compute
the SEC for the matching returned by this run of B-LS, called seαmax

. We then fix the lowest
level of behavioral stability that we consider reasonable, denoted αmin, with αmin ≤ αmax.
Then FB-LS performs an incremental search where for each SEC value, se, it launches B-LS
to find the a matching with maximum α-B-stability value, say αse and with SEC cost se.
FB-LS starts with se = seαmax and gradually decreases se until it no longer finds a matching
with behavioral stability αse ≥ αmin.
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10 Experimental Results
We generate 100 random BSMPs for each size n between 10 and 16 where the M matrices
are of size n × 2 and contain random preferences between 0 and 9. Attention weights
probabilities are fixed to p([0, 1]) = 0.45 and p([1, 0]) = 0.55.

Figure 4: Average α-B-Stability (y-axis) and SEC (x-axis) when varying the number of
agents.

Figure 4 shows α-B-Stability and SEC values of matchings returned by the algorithms
averaged over the 100 instances. Each point on the lines represents the size of the problems
from n = 10 to n = 15 moving from left to right. For n = 16 the ILP formulations timed-out
at 6 hours while B-LS converges at around 340s (see Table 2).

Not surprisingly, the quality of the solutions deteriorates as we move to larger problem
sizes. The average results for B-ILP (dark blue-line) represent the optimal values for α-
B-stability but exhibit average high SEC. In contrast, we can see how FB-LS (green line)
allows to find matchings which have low SEC and are at most 30% less stable than optimal.
As predicted, B-GS on average performs very poorly and remains sub-optimal even if the
best values, instead of the average, are considered (B-GSmax(α)). At the bottom left corner
we see the FP-ILP (red line) collapsed to a single point, as it always returns extremely
unstable matchings of almost zero SEC. Our results show very small variance in terms of
α-B-stability, except for B-GS and EB-GS (see Table 3). Table 1 shows instead the SEC
results plotted in Figure 4 with their standard deviations. All algorithms (except FB-ILP
not shown since µ ∼= 0 and σ2 ∼= 0) have significant variance in terms of SEC, likely explained
by the difference in preferences across instances. As expected, FB-LS exhibits the lowest
SEC variance.

On average the pre-processing times to compute the pairwise choice probabilities and the
expected positions ranged between 16s and 73s and 10.5s and 36s, respectively. In Table 2
we show the running time for all of the algorithms. The B-GS time corresponds to running
the algorithm 100 times on the same instance. While B-GS and EB-GS are significantly
faster, for each n they returned a maximally behaviorally stable matching only around 30%
of the time. B-ILP and B-LS have comparable running times up to n = 16 when the ILP
method doesn’t terminate. The convergence analysis performed for n = 16 is shown in
Fig. 5. We can see that, on average, B-LS plateaus at 500 iterations, corresponding to
approximately 340s. It should also be noted that B-ILP, when terminating, always returns
a maximally B-stable matching while B-LS does so around 88% of the time and returns a
matching 1.006∗10−6 far from optimal otherwise. Our experimental results show that when
the goal is to find a maximally stable matching, B-ILP is a viable and complete option for
smaller problems. If fairness is also considered, then, FB-LS produces high quality solutions
compromising between the two criteria while scaling well with the size of the problem. This
experimental study has also confirmed the negative impact of the underlying behavioral
models on the quality of solutions returned by proposal based approaches.
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B-ILP FB-LS B-GS max(α) EB-GS

# Agents µ σ2 µ σ2 µ σ2 µ σ2

10 7.1 32.7 5.3 25.3 7.7 35.9 8.4 37.0
11 7.8 29.6 5.5 22.5 8.6 34.2 9.5 53.4
12 8.1 46.2 5.7 31.2 9.3 57.9 9.4 53.5
13 12.3 76.1 7.9 59.0 12.2 81.5 10.8 80.5
14 13.3 73.1 9.3 58.9 13.0 79.2 12.5 77.6
15 14.2 116.80 9.4 84.0 13.4 107.8 14.6 115.6

Table 1: Sex Equality Cost mean (µ) and standard deviation (σ2).

Algorithm 10 11 12 13 14 15 16

B-ILP 1.03s 2.74s 3.90s 6.61s 12.6s2 27.05s N/A
B-LS 0.66s 2.01s 4.40s 15.17s 20.93s 24.94s 342s

FB-ILP 0.13s 0.15s 0.18s 0.22s 0.12s 0.12s 0.24s
FB-LS 2.83s 8.81s 35.16s 72.0s 90.223s 120.76s 941s
B-GS 1.93s 2.81s 3.18s 4.04s 4.55s 5.87s 7.2s

EB-GS 0.01s 0.015s 0.017s 0.02s 0.022 0.26 0.028s

Table 2: Average execution time for B-ILP, B-LS and B-GS when varying the number of
agents.

Figure 5: Convergence of B-LS algorithm implementation with respect to α-B-Stability
when n = 16

B-ILP FB-LS B-GS max(α) EB-GS

# Agents µ σ2 µ σ2 µ σ2 µ σ2

10 0.0208 5∗10−4 0.0149 3∗10−4 0.0175 5∗10−4 2∗10−14 6∗10−26
11 0.0099 2∗10−4 0.0081 2∗10−4 0.0083 2∗10−4 1∗10−15 1∗10−28
12 0.0041 3∗10−5 0.0034 3∗10−5 0.0023 2∗10−5 2∗10−17 5∗10−32
13 0.0020 5∗10−6 0.0016 4∗10−6 0.0009 2∗10−6 5∗10−29 2∗10−55
14 0.0009 3∗10−6 0.0008 2∗10−6 0.0005 2∗10−6 8∗10−50 4∗10−97
15 0.0004 3∗10−7 0.0002 2∗10−7 0.0001 5∗10−8 3∗10−50 5∗10−98

Table 3: α-B-Stability

11 Future work
In the future we would like consider the impact of behavioral models in more complex
settings, such one-to-many and many-to-many matching problems by studying their inte-
gration with other matching algorithms such as the Boston Mechanism Kojima and Unver
[2014] and other applied matching mechanisms. We also plan to investigate further the
interplay between fairness and behavioral modeling in algorithms targeting fairness both at
the matching and the procedural level Tziavelis et al. [2020], Cooper and Manlove [2020a]
and in methods proposed to achieve fairness over time which ties particularly well with the
concept of repeated choices underlying the MDFT models Sühr et al. [2019].
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Haris Aziz, Péter Biró, Tamás Fleiner, Serge Gaspers, Ronald de Haan, Nicholas Mattei, and
Baharak Rastegari. Stable matching with uncertain pairwise preferences. In Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017,
pages 344–352. ACM, 2017.
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