
Efficient Computation and Strategic Control

in Conditional Approval Voting1

Evangelos Markakis and Georgios Papasotiropoulos

Abstract

We focus on a generalization of the classic Minisum approval voting rule, introduced
by Barrot and Lang (2016), and referred to as Conditional Minisum (cms), for multi-
issue elections with preferential dependencies. The price we have to pay when we
move to this higher level of expressiveness is that we end up with a computationally
hard rule. Motivated by this, we first focus on finding special cases that admit
efficient algorithms for cms. Our main result in this direction is that we identify the
condition of bounded treewidth (of an appropriate graph, emerging from the provided
ballots) as the necessary and sufficient condition for exact polynomial algorithms,
under common complexity assumptions. Furthermore, we investigate the complexity
of problems related to the strategic control of such elections by adding or deleting
either voters or alternatives and we show that in most variants of these problems,
cms is computationally resistant against control.

1 Introduction

Over the years, the field of social choice theory has focused more and more on decision
making over combinatorial domains. This involves either multi-winner elections (e.g. for
the formation of a committee) or elections for a set of issues that need to be decided upon
simultaneously, often referred to as multiple referenda. As an example of the latter, think
of a local community that needs to decide on possible facilities or services to be established,
based on current available budget.

In this work, we focus on approval voting as a means for collective decision making, which
offers a simple and easy to use format for running elections on multiple issues with multiple
alternatives each, by having each voter express an approval or disapproval separately for
each alternative of each issue. There is already a range of voting rules that are based on
approval ballots, including the classic Minisum solution as well as more recently introduced
methods (see Related Work).

However, the rules most commonly studied for approval voting are applicable only when
the issues under consideration are independent. As soon as the voters exhibit preferential
dependencies between the issues, we have more challenges to handle and this is not uncom-
mon in practical scenarios. A resident of a municipality may wish to support public project
A, only if public project B is also implemented (which she evaluates as more important); a
group of friends may want to go to a certain movie theater only if they decide to have dinner
at a nearby location; a faculty member may want to vote in favor of hiring a new colleague
only if the other new hires have a different research expertise etc. It is rather obvious that
voting separately for each issue cannot provide a good solution in any of these settings.
Consequently, several approaches have been suggested to take into account preferential de-
pendencies. Nevertheless, the majority of these works are suitable for rules where voters
are required to express a ranking over the set of issues or have a numerical representation
of their preferences instead of approval-based preferences.

The first work that introduced a framework for expressing dependencies exclusively in
the context of approval voting was by Barrot and Lang [3]. They defined the notion of a

1The results presented here will also appear in [36].

1

conditional approval ballot and introduced new voting rules, that generalized some of the
known rules from the literature of the standard approval setting. Among the properties
that were studied, it was also exhibited that a higher level of expressiveness implies higher
computational complexity. The Minisum solution is efficiently computable in the standard
setting but its generalization, referred to as Conditional Minisum (or cms in short), is NP-
hard. Hence, it becomes natural to investigate whether the problem admits exact algorithms
for special cases or approximation algorithms with provable guarantees. Furthermore, we
know nothing about the complexity of strategic aspects of a cms election, which has been
a very prominent research agenda within computational social choice.

Contribution. We first study algorithmic aspects of the Conditional Minisum voting rule
for approval voting with preferential dependencies. In Section 3, we focus on conditions that
lead to exact polynomial time algorithms. For this, we consider the intuitively simple (but
still NP-hard) case, where each issue can depend on at most one other issue for every voter,
and our main insight is that one can draw conclusions by looking at the global dependency
graph of an instance (taking the union of dependencies by all voters). Restrictions on the
structure of the global graph allow us to identify the condition of bounded treewidth as the
only restriction that leads to optimal efficient algorithms. More precisely, our results provide
characterizations for the families of cms instances that can be placed in P and FPT, implying
that the condition of bounded treewidth serves as the lynchpin between expressiveness and
efficiency of computation. These results also establish a connection with a well studied class
of Constraint Satisfaction Problems, which can be of independent interest.

Moving on, in Section 4, we initiate for cms the study of some standard notions of
election control. These problems concern the attempt by an external agent to enforce a
certain outcome by adding or deleting either voters or alternatives in the election. We
consider a total of 8 variants of this question, depending on the number of issues to be
controlled and on whether we have addition or deletion of voters/alternatives. Our findings
reveal that cms is sufficiently resistant against such moves.

Related Work. Approval voting for multi-issue elections has gained great attention in
the recent years, driven by its simplicity and practical potential. Apart from the classic
Minisum solution, other rules have also been considered, such as the Minimax solution [9],
Satisfaction Approval Voting [8], and families based on Weighted Averaging Aggregation
[2]. For surveys on the desirable properties of approval voting, we refer to [7] and [27]. None
of these rules however allow voters to express dependencies. The first work that exclusively
took this direction for approval-based elections is by Barrot and Lang [3]. Namely, three
voting rules were proposed for incorporating such dependencies (including the Conditional
Minisum rule that we consider here) and some of their properties were studied, mainly on
the satisfiability of certain axioms. Driven by the NP-hardness results of [3], algorithmic
aspects were further studied in our work in [35], where certain tractable special cases were
identified. Our work in the current paper provides a generalization to some of these results.

Even if one moves away from approval-based elections, the presence of preferential de-
pendencies remains a major challenge when voting over combinatorial domains. Several
methodologies have been considered achieving various levels of trade-offs between expres-
siveness and efficient computation. Some representative examples include, among others,
sequential voting [31, 1, 15, 40], compact representation languages [6, 33, 21], or completion
principles for partial preferences [30, 13]. An extended survey for voting in combinatorial
domains can be found in [32]. See also [12] for an informative work on both the proposed
solution concepts and their applications in AI.

Finally, in our work we also consider some versions of election control that fall within the
standard approaches that have been used for studying the complexity of affecting election

2

outcomes. For an extensive study on this topic, we refer to [18]. Indicatively, the study
of such problems with adding or deleting voters or alternatives began with the paper of
Bartholdi et al. [4] and some subsequent works are, among others, [25, 17, 34].

2 Formal Background

Let I = {I1, . . . , Im} be a set of m issues, where each issue Ij is associated with a finite
domain Dj of alternatives. An outcome is an assignment of a value for every issue, and let
D = D1 ×D2 × · · · ×Dm be the set of all possible outcomes. Let also V = {1, . . . , n} be a
group of n voters who have to decide on a common outcome from D.

Voting Format. To express dependencies among issues, we mostly follow the format
described in [3]. Each voter i ∈ [n] is associated with a directed graph Gi = (I, Ei), called
dependency graph, whose vertex set coincides with the set of issues. A directed edge (Ik, Ij)
means that issue Ij is affected by Ik. We also let N −

i (Ij) be the (possibly empty) set of
direct predecessors of issue Ij in Gi. We first explain briefly how the voters are expected
to submit their preferences, before giving the formal definition. For an issue Ij that has no
predecessors in Gi (its in-degree is 0), voter i is allowed to cast an unconditional approval
ballot, stating the alternatives of Dj that are approved by her. In the case that issue Ij has
a positive in-degree in Gi, then let {Ij1 , Ij2 , . . . , Ijk} ⊆ I be all its direct predecessors (also
called in-neighbors). Voter i then needs to specify all the combinations that she approves
in the form {t : r} where r ∈ Dj , and t ∈ Dj1 ×Dj2 × · · · ×Djk . Every such combination
{t : r} signifies the satisfaction of voter i with respect to issue Ij , when all alternatives in t
have occurred and the outcome of Ij is r. Both cases of zero and positive in-degree for an
issue can be unified in the following definition of conditional approval ballots.

Definition 1. A conditional approval ballot of a voter i over issues I = {I1, . . . , Im} with
domains D1, . . . , Dm respectively, is a pair Bi = 〈Gi, {Aj , j ∈ [m]}〉, where Gi is the depen-
dency graph of voter i, and for each issue Ij , Aj is a set of conditional approval statements
in the form {t : r} with t ∈

∏
k∈N−

i (Ij)
Dk, and r ∈ Dj .

To simplify the presentation, when a voter has expressed a common dependency for
k > 1 alternatives of an issue Ij , we can group them together and write {t : {d1j , d2j , . . . , dkj }},
instead of {t : d1j}, {t : d2j}, . . . , {t : dkj }. Additionally, for every issue Ij with in-degree 0
by some voter i, a vote in favor of dj will be written simply as {dj}, instead of {∅ : dj}. We
note also that even though there is a similarity between CP-nets and conditional ballots, in
[3] it is highlighted that they induce different semantics and are incomparable.

An important quantity for parameterizing families of instances is the maximum in-
degree2 of each graph Gi, namely ∆i = maxj∈[m]{|N −

i (Ij)|}. Given a voter i with conditional

ballot Bi, we will denote by Bj
i the restriction of her ballot for issue Ij . Moreover, a condi-

tional approval voting profile is given by a tuple P = (I, V,B), where B = (B1, B2, . . . , Bn).

Definition 2. The global dependency graph of a set of voters is the undirected simple
graph that emerges from ignoring the orientation of edges in the graph (I,

⋃
i∈[n]Ei).

Example 1. As an illustration, we consider 3 co-authors of some joint research, several
weeks before the submission deadline, who have to decide on 3 issues: whether they will
work more before the submission on obtaining new theorems, whether they have enough

2When ∆i is large for some voter i, the input might become exponentially large. Alternatively, one could
try a succinct way of representing ballots using propositional formulae. We will not examine further this
issue, since for the cases that we consider, the in-degree is constant.

3

material to split their work into two, or even multiple papers or submit all their results in
a single submission, and whether they should invite a new co-author to work with them
because of his insights that can help on improving their results. The first author insists on
more work before the submission, additionally he approves the choice of two submissions if
and only if they work more on new theorems. Furthermore, he does not want to have a new
co-author if and only if they split their work. The second author does not have time for more
work before the deadline, he has no strong opinion on multiple submissions, approving both
alternatives, and he agrees with inviting a new co-author only if they decide both to work
more for new results and to submit a single paper. Finally, the last author is interested in
working more and in splitting their work and she does not have a strong opinion on whether
she prefers to invite a new co-author or not, unless they all decide not to work more neither
to make more than a single submission, in which case she disagrees with such an invitation.

More formally, let I = {I1, I2, I3} be the aforementioned issues where D1 = {w,w},
D2 = {m,m}, D3 = {c, c}. The voters’ preferences and the dependency graphs follow.

voter 1 voter 2 voter 3
w {w,m,m} {w,m}

w : m wm : c wm : {c, c}
w : m wm : c wm : {c, c}
m : c wm : c wm : {c, c}
m : c wm : c wm : c

I1

I2

I3
corresponds to voter 1
corresponds to voters 2,3
corresponds to voters 1,2,3

Voting Rule. In this work, we study a generalization of the classic Minisum solution in
the context of conditional approval voting. To do so, we firstly define a measure for the
dissatisfaction of a voter given an assignment of values to all the issues, using the following
generalization of Hamming distance.

Definition 3. Given an outcome s = (s1, s2, . . . , sm) ∈ D, we say that voter i is dissatisfied
(or disagrees) with issue Ij , if the projection of s on N −

i (Ij), say t, satisfies that {t : sj} /∈ Bj
i .

We denote as δi(s) the total number of issues that dissatisfy voter i.

Coming back to Example 1, the values of δi(s) for every outcome s and voter i follow.

δi(·) wmc wmc wmc wmc wmc wmc wmc wmc

voter 1 1 0 1 2 3 2 1 2
voter 2 2 1 1 2 1 0 1 0
voter 3 0 0 1 1 1 1 3 2

The rule that our work deals with is Conditional Minisum (cms) and outputs the out-
come that minimizes the total number of disagreements over all voters (which is wmc for
the profile of Example 1). Formally, the algorithmic problem that we study is as follows.

conditional minisum (cms)

Given: A voting profile P with m binary issues and n voters casting condi-
tional approval ballots.

Output: A boolean assignment s∗ = (s∗1, . . . , s
∗
m) to all issues that achieves

mins∈D
∑

i∈[n] δi(s).

If the global dependency graph of an instance is empty, i.e., ∆i = 0 for every voter i,
then the election degenerates to Unconditional Minisum which is simply the classic Minisum
rule in approval voting over multiple independent issues.

4

Finally, in the sequel, we will extensively make use of the treewidth of a graph G, denoted
as tw(G). For the relevant definition, we refer to [38] or to any textbook of parameterized
complexity such as [14]. Note also that any missing proof is deferred to the Appendix.

3 Optimal Algorithms

The price we pay for the higher expressiveness of cms is its increased complexity. Here, we
focus on understanding the properties that allow cms to be implemented in polynomial time.
For this, we stick to the case where ∆i ≤ 1 for every voter i, which is already NP-hard, and at
the same time forms the most obvious, first-step generalization of Unconditional Minisum to
the setting of dependencies. To investigate what further restrictions can make the problem
tractable, we utilize the global dependency graph of an instance, defined in Section 2, as the
aggregation of all the dependencies of the voters into a single graph. To see how to exploit
the global dependency graph, it is instructive to inspect the NP-hardness proof for cms in
[3], which holds for instances where ∆i = 1 for every voter i, and each dependency graph
is acyclic. Examining the profiles created in that reduction, we notice that no restrictions
can be stated for the form of the global dependency graph corresponding to the produced
instances, since, an acyclic dependency graph for every voter does not necessarily lead to an
acyclic global dependency graph and furthermore, the bounded in-degree in each Gi, does
not imply a constant upper bound for the maximum in-degree of the global graph.

Our insight is that it may not be only the structure of each voter’s dependency graph
that causes the problem’s hardness, but in addition, the absence of any structural property
on the global dependency graph. Motivated by this, we investigate conditions for the global
dependency graph, that enable us to obtain the optimal solution in polynomial time. Our
findings reveal that this is indeed feasible for the classes of graphs with constant treewidth.

In our results, we make extensive use of Constraint Satisfaction Problems (csps). A
csp instance is described by a tuple (V,D,C), where V is the set of variables, D is the
Cartesian product of the domains of the variables, and C is a set of constraints. Each
constraint involves a subset of the variables, and is represented by all the combinations of
variables that make it satisfied. We will pay particular attention to the so-called binary
csps, where each constraint involves at most two variables. The decision problem for a
csp asks whether we can find an assignment to the variables of V so that all constraints
of C are satisfied, whereas a natural optimization version [20] is to minimize the number
of unsatisfied constraints. When analyzing csps, a useful concept in the literature is the
primal or Gaifman graph of an instance, defined below.

Definition 4. The primal (or Gaifman) graph of a csp instance is an undirected graph,
whose vertices are the variables of the instance and there is an edge between two vertices,
if and only if they co-appear in at least one constraint.

The proof of the following theorem is based on formulating our problem as minimizing
the number of unsatisfied constraints in an appropriate binary csp instance, whose primal
graph has constant treewidth. For these classes of csps, one can then use known results
from [19]3 or [29] for solving them efficiently.

Theorem 1. If the global dependency graph of a cms instance with ∆i ≤ 1 for every voter
i, has constant treewidth, then the problem is optimally solvable in polynomial time, even
for arbitrary domain cardinality for each issue.

3The original results in [19] do not deal with the optimization version, but as demonstrated in later works
(e.g., Proposition 4.3 from [28]), it can be extended for this version.

5

Remark 1. Theorem 1 cannot be generalized so as to apply to instances where ∆i ≥ 2 for
some voter i, since in that case the global dependency graph will not necessarily coincide
with the primal graph of the corresponding csp (which is an essential part of the proof).
On the other hand, it can be generalized when there is a weight wi for each voter i so that
the objective becomes the weighted sum of the dissatisfaction scores.

A natural question is whether we can solve other classes of instances, containing graphs
of non-constant treewidth, by focusing on other parameters of the problem. Quite surpris-
ingly, it turns out that bounded treewidth is essentially the only property that can yield
efficiency guarantees. To establish this claim, we will first show a “reverse” direction to
Theorem 1, namely that binary csps can be reduced to solving cms. Hence, together with
Theorem 1, this means that cms is computationally equivalent to binary csp, and thus to
any other problem for which the same result has been already established, e.g., such as the
partitioned subgraph isomorphism [37].

Theorem 2. Every binary CSP with primal graph G, can be reduced in polynomial time to
a cms instance with ∆i ≤ 1 for every voter i, and with G as the global dependency graph.

Proof. For convenience, we will work with the standard decision version of csp where one
asks if there is a solution that satisfies all the constraints.

Let P be a binary csp instance, and without loss of generality, assume that every con-
straint involves exactly two variables. We construct a cms instance P ′, where the issues
correspond to the variables and the voters correspond to the constraints of P . In particular,
for every variable xj of the csp instance, we add an issue Ij and for every constraint we
add a voter, with the following preferences: let xj , xk be the two variables involved in the
constraint. We pick one of the two variables (arbitrarily), say xk, and we set Ik as the issue
that the voter cares about, conditioned on Ij . We also set her conditional ballot for issue Ik
in such a way, so that the voter becomes satisfied precisely for all combinations of values for
xj and xk that make the constraint satisfied. The voter is also satisfied unconditionally with
every outcome for every other issue of the produced instance. Obviously, the dependency
graph of every voter has maximum in-degree equal to one.

As an example, suppose that a constraint is of the form x1 ∨ x2 and the variables x1, x2
have binary domain. Then we introduce a new voter, and two issues, I1, I2 (the issues may
have been introduced already by other constraints in the instance), and we can select I2 as
being dependent on I1. The conditional ballot regarding the satisfaction of the voter for I2
is {x1 : x2}, {x1 : x2}, {x1 : x2}. In addition, the voter has an unconditional ballot for I1,
in the form {x1, x1}, thus approving every value for I1.

To complete the reduction, we consider the decision version of cms where we ask if there
is an assignment with no dissatisfactions, i.e., the instance P ′ has an affirmative solution
only when all voters are satisfied with all the issues. It is obvious that this is a polynomial
time reduction (the conditional ballot of each voter for her single issue of interest can be
described in O(d2) time, where d is the maximum domain cardinality of the csp variables).
It is quite obvious also that every edge from the primal graph of P corresponds to an edge
in the global dependency graph of P ′, and vice versa. Hence:

Claim 1. The primal graph of csp instance P is identical to the global dependency graph
of the cms instance P ′.

Finally, it remains to see that there exists a solution to P ′ if and only if there exists
a solution to P . Indeed, any solution to P ′ corresponds to an assignment of values to the
issues such that all voters are satisfied with all issues, which means that all the constraints
of the csp instance P are satisfied. The converse is also easily verified.

6

Theorem 2 allows us to apply some known hardness results on binary csps, namely
[23, 24], which imply that one cannot hope to have an efficient algorithm for a class of cms
instances, if the class contains instances with non-constant treewidth. Hence, Theorem 1
is essentially tight, and this resolves the problem of finding a characterization for instances
that admit polynomial time solutions for cms, subject to a standard complexity assumption.

Corollary 1. Let G be a recursively enumerable (e.g., decidable) class of graphs, and let
cms(G) be the class of instances with a global dependency graph that belongs to G, and with
∆i ≤ 1 for every voter i. Assuming FPT 6= W[1], there is a polynomial algorithm for
cms(G) if and only if every graph in G has constant treewidth.

Proof. If G is a class of graphs, as in the statement, then by Theorem 2, an algorithm for the
class of cms instances whose global dependency graph belongs to G implies an algorithm
for the csp instances whose primal graph belongs to G. The proof can now be completed
by applying the hardness results for binary csps by [23, 24].

Remark 2. If we strengthen the complexity assumption used, from FPT 6= W[1] to ETH,
we can obtain an even stronger impossibility. In particular, by exploiting the result of [37],
and the proof of Theorem 2, we can show that under ETH, one cannot even hope for an
algorithm on cms(G) that runs in time f(G)||P ||o(tw(G))/log(tw(G)), where ||P || is the size of
the cms instance and G ∈ G. This implies that the running time O(ntw(G)) of the algorithm
from Theorem 1 is the best possible up to an O(log (tw(G))) factor in the exponent.

Parameterized complexity of cms. The algorithm used in the proof of Theorem 1,
runs in time exponential in tw(G), where G is the global dependency graph and thus it
places cms in XP w.r.t the treewidth parameter. One can wonder if anything more can be
said concerning the fixed parameter tractability of the problem. Given the equivalence of
our problem with binary csp, we can use existing results [39, 22] to extract some further
characterizations and obtain an almost complete picture with respect to the most relevant
parameters. On the positive side, we can see that our problem is in FPT w.r.t. the parameter
“treewidth + domain size”. On the negative side, we cannot hope to prove FPT only w.r.t
the treewidth parameter, independent of the domain size, as stated below.

Corollary 2. When ∆i ≤ 1 for every voter i, cms is in FPT w.r.t the parameter tw + d,
where tw is the treewidth of the global dependency graph and d is the maximum domain size.
Moreover, it is W [1]-hard w.r.t. tw and w.r.t. d.

4 Strategic Control of CMS Elections

In this section, we consider strategic aspects of cms and study questions related to con-
trolling an election of interdependent issues, which falls under the broad and well studied
umbrella of influencing election outcomes. Suppose that there is an external agent (called
controller) who has a strong preference for a specific value of some (or every) issue in a cms
election. One of the instruments for enforcing a desirable value for the issue(s) the controller
cares about, is by enabling new voters to participate or by disabling some existing voters,
which can be done for example by changing the criteria for eligibility of voters. Furthermore,
a controller could add more choices for the issues under consideration or delete existing ones,
towards enforcing her will. We refer to [11] for related examples. Finally, it is reasonable to
assume that the controller does not have unlimited power, and therefore, she is capable of
adding or deleting only a certain number of voters or alternatives.

Each combination of control features (i.e., addition vs deletion, voters vs alternatives,
single issue vs multiple issues) gives rise to a different control type. In this manner, we

7

obtain 8 distinct algorithmic problems. Following the terminology of [25], we say that a
voting rule is vulnerable to a certain control type, if the corresponding problem is always
solvable in polynomial time. If the problem is C-hard for a complexity class C, we consider
the rule to be resistant to the specific control type (typically C is the class NP). In the cases
where it is not possible for a controller to affect the election towards fulfilling her will, we
say that the rule is immune to the corresponding control type. The formal definitions of the
control problems appear in the following subsections and are adaptations to cms elections,
of the original definitions of control problems provided in [4]. As noted in [26], the “dream
case” would be an efficiently computable voting rule which would be either resistant or
immune to all control types. Hence, given the results of Section 3, we are mainly interested
in elections that satisfy the conditions identified there, or even in further restricted cases.
For an overview of the results we obtained in this section, we refer to the following Table.

CDV CAV CDA CAA
∆ = 0
d = O(1)

∆ = 0
d = ω(1)

∆ = 0
d = O(1)

∆ = 0
d = ω(1)

∆ = 0
d = Ω(1)

∆ = 1
d = O(1)

∆ = 1
d = Ω(n)

∆ = 0
d = Ω(1)

∆ = 1
d = Ω(n)

∆ = 2
d = O(1)

ALL R R R R V ? R I I I

1 V R V R V V R I R R

Table 1: Results on Controlling cms elections. R stands for Resistant, V for Vulnerable and I for
Immune. For a cms instance, we denote as ∆ the maximum in-degree of every voter’s dependency
graph (∆ = maxi∈[n] ∆i), d the maximum domain size and n the number of voters.

4.1 Controlling Voters

We start with the problems of adding or deleting voters for enforcing a specific outcome
either for a single issue or for every issue of the election.

Instance: A cms election (I,D, V,B), where V is the set of registered voters, a set V ′

of yet unregistered voters with V ∩ V ′ = ∅ (for use only by cav), an integer quota q, a
distinguished alternative pj ∈ Dj for a specific issue Ij or an outcome p ∈ D specifying an
alternative for every issue.
Problem cav-1 (resp. cdv-1): Does there exist a set V ′′ ⊆ V ′ (resp. V ′′ ⊆ V), with
|V ′′| ≤ q, such that pj is the value of issue Ij in every optimal cms solution of the profile
(I,D, V ∪ V ′′, B) (resp. of the profile (I,D, V \ V ′′, B))?
Problem cav-all (resp. cdv-all): Does there exist a set V ′′ ⊆ V ′, (resp. V ′′ ⊆ V)
with |V ′′| ≤ q, such that p is the unique optimal cms solution of the profile (I,D, V \V ′′, B)
(resp. of the profile (I,D, V \ V ′′, B))?

Remark 3. One has the option of either breaking ties in favor of the controller, if there are
multiple optimal solutions in cms (as in [16]), or demand that the controller’s will is fulfilled
in every optimal outcome. We focus on the second case, as is also done in the seminal paper
of Bartholdi et al. [4]. Additionally, it is possible that the controller has a strong opinion
not just for a single or all issues, but for a subset of issues. As a starting point, we have
chosen to consider the two extremes (and intuitively simpler versions).

We now present our results for these 4 problems, exhibiting that it is not generally easy
for a controller to enforce her will in such elections. In fact, resistance to control by adding
or deleting voters can be established even for very simple forms of elections, without even
the presence of conditional ballots, as in the next theorem.

Theorem 3. cav-all and cdv-all are NP-hard even for Unconditional Minisum and for
binary domain in each issue.

8

Theorem 3 may not be very surprising, since controlling all issues could be a quite strict
requirement. The next step is to see whether such hardness results go through when the
controller wishes to control just a single issue. For Unconditional Minisum this is not the
case if we insist on a constant domain size for the designated issue. The reason is that this
can be reduced to an FPT version of the well known Set MultiCover problem.

Proposition 1 (implied by [10]). cav-1 and cdv-1 can be solved in polynomial time for
Unconditional Minisum if the domain size of each issue is constant.

As a consequence, any potential hardness result for cav-1 and cdv-1 would have to
consider either non-constant domain or conditional ballots. Indeed, it suffices to move to
non-constant domain size, to establish NP-hardness.

Theorem 4. cav-1 and cdv-1 are NP-hard, even for Unconditional Minisum, but with
non-constant domain size in at least one issue.

We now have a complete picture for the unconditional setting and the hardness results
transfer for conditional ballots too. The status of cdv-1 and cav-1 for constant domain
size in the presence of conditional ballots, remains as an open problem.

4.2 Controlling Alternatives

We now consider the analogous control problems, regarding the addition or deletion of alter-
natives, instead of voters. It turns out that the picture, from the computational complexity
viewpoint, differs sufficiently from the problems considered in the previous subsection.

Instance: A cms election (I,D, V,B), where D = D1 × · · · ×Dm, and Dk is the set of
qualified alternatives of each issue Ik, a set D′k of spoiler alternatives for each Ik (for use
only by caa), an integer quota q, a distinguished alternative pj ∈ Dj for a specific issue
Ij or an outcome p ∈ D specifying an alternative for every issue.
Problem caa-1 (resp. cda-1): Does there exist a set D′′ ⊆ ∪k∈[m]D

′
k (resp. D′′ ⊂

∪k∈[m]Dk), with |D′′| ≤ q, such that pj is the value of the issue Ij in every optimal cms
solution of the profile where the domain of each issue Ik is enlarged by the alternatives
in D′′ ∩D′k (resp. reduced by the alternatives in D′′ ∩D′k)?
Problem cda-all: Does there exist a set D′′ ⊂ ∪k∈[m]Dk, with |D′′| ≤ q, such that
p is the unique optimal cms solution of the profile where the domain of each issue Ik is
reduced by the alternatives in D′′ ∩D′k?
Note: For cda-1 and cda-all, we also require that for every k, |Dk \D′′| ≥ 1.

Remark 4. We firstly note that all the comments made in Remark 3 are applicable here as
well. Also, we have not included caa-all in our definitions as cms is trivially immune to
adding alternatives to enforce a qualified alternative in every issue. Concerning the problem
caa-1, we assume that the voters in B may express an opinion about any outcome of every
issue, either it is a qualified one or a spoiler. Additionally, another way to define such
problems would be to allow the controller to completely delete or add issues. However,
given the existence of dependency graphs, erasing an issue can make the preferences of a
voter ill-defined. Lastly, the constraint that |Dk \ D′′| ≥ 1, for cda-1 and cda-all, is to
ensure that the controller cannot eliminate all the alternatives of an issue.

Proposition 2. Unconditional Minisum, with arbitrary domain size is immune to caa-1.
For the same setting, cda-1 and cda-all can be solved in polynomial time.

As soon as we move however to instances with conditional ballots, the problems do
become hard (with the exception of Proposition 3). We start with the hardness of cda-all.

9

Theorem 5. cda-all is NP-hard, when ∆i ≤ 1 for every voter i, and even when the
treewidth of the global dependency graph is at most one, but with non-constant domain size
in at least one issue.

Moving to cda-1 and caa-1 we show that they behave similarly for non-constant do-
main. The proof of Theorem 6 below, shows a connection with some natural problems on
graphs, that have been previously linked to election control for other voting rules [5].

Theorem 6. caa-1 and cda-1 are NP-hard, when ∆i ≤ 1 for every voter i, and even when
the treewidth of the global dependency graph is at most one, but with non-constant domain
in at least one issue.

Proof. We will now only prove the hardness of cda-1. The proof for caa-1 is similar and
the corresponding adjustments can be found in the Appendix. We will perform a reduction
from the NP-hard problem max out-degree deletion (mod) [5].

Instance: A directed graph G = (V,E), a special vertex p ∈ V and an integer k ≥ 1.
Output: Does there exist V ′ ⊆ V with |V ′| ≤ k such that p is the only vertex of
maximum out-degree in G[V \ V ′]?

For S ⊆ V , we denote by degS(u) the out-degree of vertex u in a graph G = (V,E),
when we count only outgoing edges towards the vertices of S. Let P = (G = (V,E), p, k)
be an instance of mod in a directed graph with n vertices and m edges We create a cda-1
instance, where we have one issue Ij for every vertex vj , j ∈ [n] and an extra issue I0,
hence I = {I0, I1, I2, . . . , In}. For j ∈ [n], the domain of issue Ij is binary in the form
Dj = {dj , dj}. The domain of I0, say D0, contains (k + 1)(n − 1) + 1 alternatives. In
particular, it contains an alternative bp that corresponds to the designated vertex p ∈ V ,
and for every vertex v ∈ V \ {p}, there are k+ 1 alternatives b`v, for ` ∈ [k+ 1]. Essentially,
these are identical k+ 1 ’copies’ encoding the selection of v in I0, and play a significant role
in the reverse direction of the reduction. As for the voters, there are two types of voters,
edge voters and vertex voters. There is one edge voter for every edge (i, j) ∈ E, with a
dependency graph having one edge from Ij to I0, and voting as follows:

• For the issue I0, she votes conditioned on Ij for {dj : bi} if i = p or otherwise for
{dj : b`i},∀` ∈ [k + 1].

• For all other issues she is satisfied with any outcome.

For every vertex other than p, we also have a block of L identical voters, where it suffices
to take L = m+ 1. Each voter in the j-th block, with j ∈ V \ {p} has a dependency graph
with 1 edge, from I0 to Ij and votes as follows:

• For the issue Ij , she is satisfied with the combinations {b`j : dj} for any `. Also, if the

value of I0 differs from b`j , for any `, she is satisfied with any value on Ij . Hence, the
only restriction is that when the value of I0 comes from an alternative corresponding
to vertex j, the voter can be satisfied w.r.t. Ij only by dj .

• For all other issues, she is satisfied with any outcome.

In total, we have m + (n − 1)L voters. We also use k as the quota parameter, and we
suppose the controller wants to enforce the outcome bp at issue I0. Clearly, for every voter
i, ∆i ≤ 1 in her dependency graph, and the global dependency graph is a star centered on
I0. The maximum domain cardinality is O(kn) = O(n2).

For a better view of the construction we comment on Figure 1, which illustrates the
reduction to cda-1. In particular, it illustrates only a part of the construction that pertains
to the vertices of a subgraph G′ of the initial graph G given in the instance of mod (as shown

10

Figure 1: Illustrative example of the reduction in the proof of Theorem 6

b11

b21

bk+1
1

b12

b22

bk+1
2

b14

b24

bk+1
4

bp

I1 I2 I3 I4

I0

b13

b23

bk+1
3

d̄3
d3

d̄4
d4

d̄2
d2

d̄1
d1

v1v2
v3 p

v4

voters’ preferences

I0

I1 I2 I3 I4

union of dep. graphs

G′ subgraph of G

in the upper-left part of the figure). The figure also depicts the voters’ ballots (rightmost
part of the figure) and the global dependency graph which emerges (lower-left part of the
Figure). To be more precise, the lower-left part shows the union of the dependency graphs
of all voters, where both orientations are present for the edges shown. Hence, the global
dependency graph is simply a star centered on I0. The connections in the rightmost part
of Figure 1 represent acceptable pairs of alternatives by voters. More precisely, a dotted
connection between the alternatives dj and b`j for some j and `, represents the conditional

approval ballot {b`j : dj} of the block of the L identical vertex voters that correspond to

vj of G′. A solid connection between the alternatives dj and b`i (resp. between di and
bp) represents the conditional approval ballot {dj : b`i} (resp. {dj : bp}) of an edge voter
corresponding to edge (vi, vj) (resp. (p, vj)) of G′.

Suppose there exists a set S of vertices in G of size at most k, say WLOG that S =
{1, . . . , k} ⊆ V , whose deletion leaves p as the only vertex of maximum out-degree. We now
choose to delete the corresponding alternatives {d1, . . . , dk} from the issues {I1, . . . , Ik}. If
we select bp for the issue I0, then the total dissatisfaction score can be brought down to
m − degV \S(p) by choosing dj for every issue Ij where dj has not been deleted. To see
this, the only edge voters that are satisfied w.r.t. I0 are edges that are outgoing from p and
whose other endpoint belongs to V \ S. Hence all remaining m − degV \S(p) voters will be
dissatisfied w.r.t. I0. Regarding the vertex voters, they will all be satisfied on all issues.

On the other hand, if we select for I0 some b`j for any ` ∈ [k + 1], we need to consider
two cases, depending on j. If j ∈ V \ S, then by the same reasoning as before, the best we
could achieve is to have a dissatisfaction score equal to m− degV \S(j). But since p has the
maximum out-degree, this would yield a worse solution. Now suppose j ∈ S. Then we know
that dj has been deleted from Ij . Hence, the j-th block of vertex voters will be dissatisfied
w.r.t. Ij , and since L > m, this cannot yield an optimal solution. To conclude, after the
deletion of the selected alternatives, bp has to be selected for I0 in any optimal solution.

For the reverse direction, suppose that there is a set D′′ of at most k alternatives, the
deletion of which, forces bp to be selected for I0 in every optimal solution. It is WLOG
to assume that D′′ does not contain anything from D0. To elaborate on this claim, since
there are k + 1 copies of alternatives for every i ∈ V \ {p} that have an identical role,

11

there is no change in the optimal outcome by deleting up to k alternatives from I0 (some
representative will survive for every i). Moreover, we can assume that none of the deleted
alternatives equals dj for some issue Ij 6= I0 since if it were, we can swap it with dj without
harming the cost of the optimal solution (one cannot strengthen the support of bp in I0 by
deleting dj for some j). Also, bear in mind that we are not allowed to delete both dj and
dj from an issue Ij , j ∈ [n], as there are no other choices left for Ij .

To summarize, the deleted alternatives must come from distinct issues among I1, . . . , In
and they all correspond to some dj for j ∈ [n]. It is now easy to observe that deleting
from V the set S formed by the vertices corresponding to these alternatives in D′′, makes
p the unique vertex of maximum out-degree in the induced subgraph of G. If not, there is
a vertex, say v ∈ V \ S, with greater or equal out-degree. In that case, if we select b`

′

v for
I0 for some arbitrary `′, and dj for all issues Ij , for which dj has not been deleted, we will
obtain a solution with at most the same dissatisfaction score as the optimal solution that
used bp. Indeed, we will have fewer or equal dissatisfactions from the edge voters w.r.t. I0,
and also all the blocks of the vertex voters will be satisfied (the block of voters who care
about Iv is satisfied because dv has not been deleted, since v ∈ V \S). This contradicts the
fact that bp was elected for I0 in every optimal solution.

Moving to a constant domain size, cda-1 and caa-1 seem to behave differently.

Proposition 3. cda-1 can be solved in polynomial time, when ∆i ≤ 1 for every voter i, the
treewidth of the global dependency graph is constant and the domain size is also constant
for every issue.

Hence, a constant domain size makes a difference for cda-1 when we stick to the as-
sumptions from Section 3 on each ∆i and on the treewidth. For caa-1, we are not yet aware
if the same result holds (the proof arguments certainly do not go through). However, we
have established intractability, as soon as we move to slightly richer instances with ∆i ≤ 2.

Theorem 7. caa-1 is NP-hard, when ∆i ≤ 2 for every voter i, even when the treewidth of
the global dependency graph is at most one and even for binary domain size in every issue.

Overall, we close current section concluding that cms is indeed sufficiently computation-
ally resistant in most of the variants of the control problem considered.

5 Conclusions and Further Work

We studied computational aspects of cms elections, from the perspective of the winner deter-
mination problem using exact and parameterized algorithms as well as from the perspective
of controlling election outcomes. We mostly focused on the case of ∆i = 1 as a non-trivial,
natural, first-step generalization of the classic Minisum rule into conditional voting. For
this case, we conclude that cms provides a satisfactory tradeoff between expressiveness and
efficiency under certain assumptions, and at the same time exhibits sufficient resistance to
control in the considered settings.

There are still several interesting problems for future research. Algorithmic results for in-
stances with even higher expressiveness (e.g., ∆i ≤ 2) seem more challenging. Additionally,
one can consider other objective functions, such as the Conditional Minimax rule, defined
also in [3], for which, algorithmic results remain elusive. From a strategic point of view,
some cases of our control questions have been left open, but more interestingly, one can go
further and study other strategic moves such as destructive versions of control or bribery in
a cms election. Along this spirit, cms was proven to be non-strategyproof by [3], but the
complexity of finding the manipulation has not been examined yet.

12

References

[1] Stéphane Airiau, Ulle Endriss, Umberto Grandi, Daniele Porello, and Joel Uckelman.
Aggregating dependency graphs into voting agendas in multi-issue elections. In 22nd
International Joint Conference on Artificial Intelligence (IJCAI), 2011.

[2] Georgios Amanatidis, Nathanaël Barrot, Jérôme Lang, Evangelos Markakis, and
Bernard Ries. Multiple referenda and multiwinner elections using Hamming distances:
Complexity and manipulability. In 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 715–723, 2015.

[3] Nathanaël Barrot and Jérôme Lang. Conditional and sequential approval voting on
combinatorial domains. In 25th International Joint Conference on Artificial Intelligence
(IJCAI), pages 88–94, 2016.

[4] John J Bartholdi III, Craig A Tovey, and Michael A Trick. How hard is it to control
an election? Mathematical and Computer Modelling, 16(8-9):27–40, 1992.

[5] Nadja Betzler and Johannes Uhlmann. Parameterized complexity of candidate control
in elections and related digraph problems. Theoretical Computer Science, 410(52):5425–
5442, 2009.

[6] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David
Poole. CP-nets: A tool for representing and reasoning with conditional ceteris paribus
preference statements. Journal of Artificial Intelligence Research, 21:135–191, 2004.

[7] Steven J. Brams and Peter C. Fishburn. Going from theory to practice: the mixed
success of approval voting. In Handbook on Approval Voting, pages 19–37. Springer,
2010.

[8] Steven J. Brams and D. Marc Kilgour. Satisfaction approval voting. Available at SSRN:
https://ssrn.com/abstract=1608051, 2010.

[9] Steven J. Brams, D. Marc Kilgour, and M. Remzi Sanver. A minimax procedure for
electing committees. Public Choice, 3-4(132):401–420, 2007.

[10] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron, and Nimrod Tal-
mon. Mixed integer programming with convex/concave constraints: Fixed-parameter
tractability and applications to multicovering and voting. Theoretical Computer Sci-
ence, 2020.

[11] Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon. Elections with
few voters: Candidate control can be easy. Journal of Artificial Intelligence Research,
60:937–1002, 2017.

[12] Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. Preference handling
in combinatorial domains: From AI to Social Choice. AI Magazine, 29(4):37–37, 2008.

[13] Tuğçe Çuhadaroğlu and Jean Lainé. Pareto efficiency in multiple referendum. Theory
and Decision, 72(4):525–536, 2012.

[14] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized algorithms,
volume 4. Springer, 2015.

13

https://ssrn.com/abstract=1608051

[15] Giorgio Dalla Pozza, Maria Silvia Pini, Francesca Rossi, and K. Brent Venable. Multi-
agent soft constraint aggregation via sequential voting. In 22nd International Joint
Conference on Artificial Intelligence (IJCAI), 2011.

[16] Jessica Davies, George Katsirelos, Nina Narodytska, and Toby Walsh. Complexity
of and algorithms for borda manipulation. In Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, pages 657–662, 2011.

[17] Piotr Faliszewski, Edith Hemaspaandra, and Lane A Hemaspaandra. Multimode con-
trol attacks on elections. Journal of Artificial Intelligence Research, 40:305–351, 2011.

[18] Piotr Faliszewski and Jörg Rothe. Control and bribery in voting. In Handbook of
Computational Social Choice, pages 146–268. Cambridge University Press, 2016.

[19] Eugene Freuder. Complexity of k-tree structured constraint satisfaction problems. In
Proceedings of the 4th AAAI Conference on Artificial Intelligence AAAI 1990, pages
4–9, 1990.

[20] Eugene C Freuder and Richard J Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58(1-3):21–70, 1992.

[21] Christophe Gonzales, Patrice Perny, and Sergio Queiroz. GAI-networks: Optimization,
ranking and collective choice in combinatorial domains. Foundations of Computing and
Decision Sciences, 33(1):3–24, 2008.

[22] Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction and database problems. The Computer Journal, 51(3):303–325,
2008.

[23] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54(1):1–24, 2007.

[24] Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of con-
junctive queries tractable? In Proceedings of the 33rd Symposium on the Theory of
Computing, STOC 2001, pages 657–666, 2001.

[25] Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg Rothe. Anyone but him: The
complexity of precluding an alternative. Artificial Intelligence, 171(5-6):255–285, 2007.

[26] Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg Rothe. Hybrid elections
broaden complexity-theoretic resistance to control. Mathematical Logic Quarterly,
55(4):397–424, 2009.

[27] D. Marc Kilgour. Approval balloting for multi-winner elections. In Handbook on Ap-
proval Voting, pages 105–124. Springer, 2010.

[28] Dusan Knop, Martin Koutecký, Tomás Masaŕık, and Tomás Toufar. Simplified al-
gorithmic metatheorems beyond MSO: treewidth and neighborhood diversity. Logical
Methods in Computer Science, 15(4), 2019.

[29] Arie M. C. A. Koster, Stan P. M. van Hoesel, and Antoon W. J. Kolen. Solving partial
constraint satisfaction problems with tree decomposition. Networks, 40(3):170–180,
2002.

[30] Gilbert Laffond and Jean Lainé. Condorcet choice and the Ostrogorski paradox. Social
Choice and Welfare, 32(2):317–333, 2009.

14

[31] Jérôme Lang and Lirong Xia. Sequential composition of voting rules in multi-issue
domains. Mathematical Social Sciences, 57(3):304–324, 2009.

[32] Jérôme Lang and Lirong Xia. Voting in combinatorial domains. In Handbook of Com-
putational Social Choice, pages 197–222. Cambridge University Press, 2016.

[33] Minyi Li, Bao Quoc Vo, and Ryszard Kowalczyk. An efficient majority-rule-based
approach for collective decision making with CP-nets. In 12th International Conference
on the Principles of Knowledge Representation and Reasoning, 2010.

[34] Hong Liu, Haodi Feng, Daming Zhu, and Junfeng Luan. Parameterized computa-
tional complexity of control problems in voting systems. Theoretical Computer Science,
410(27-29):2746–2753, 2009.

[35] Evangelos Markakis and Georgios Papasotiropoulos. Computational aspects of condi-
tional minisum approval voting in elections with interdependent issues. In 29th Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2020, pages 304–310, 2020.

[36] Evangelos Markakis and Georgios Papasotiropoulos. Winner determination and strate-
gic control in conditional approval voting. In 30th International Joint Conference on
Artificial Intelligence, IJCAI 2021, forthcoming, 2021.

[37] Dániel Marx. Can you beat treewidth? Theory of Computing, 6:85–112, 2010.

[38] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-
width. Journal of Algorithms, 7(3):309–322, 1986.

[39] Marko Samer and Stefan Szeider. Constraint satisfaction with bounded treewidth re-
visited. Journal of Computer and System Sciences, 76(2):103–114, 2010.

[40] Lirong Xia and Vincent Conitzer. Approximating common voting rules by sequential
voting in multi-issue domains. In International Symposium on Artificial Intelligence
and Mathematics (ISAIM), 2012.

15

A Missing Proofs from Section 3

Theorem 1. If the global dependency graph of a cms instance with ∆i ≤ 1 for every voter
i, has constant treewidth, then the problem is optimally solvable in polynomial time, even
for arbitrary domain cardinality for each issue.

Proof. Consider an instance P = (I,D, V,B) of cms with n voters and m issues, and let
G be its global dependency graph. Suppose the treewidth of G is bounded by k ∈ O(1),
and let d be the maximum cardinality among the domains. We form an instance of the
minimization version of binary csp, with m · n constraints, where each constraint expresses
the satisfaction of a specific voter for a specific issue.

Recall that we have assumed the maximum in-degree of every voter’s dependency graph
is at most 1, thus each constraint involves at most two variables, which means that the
obtained csp is indeed binary. Also, we can express each constraint by providing at most
d2 combinations of the two involved variables. Hence, the construction of the csp instance
can be done in polynomial time.

Since each constraint that involves two variables4 corresponds to an edge of the global
dependency graph and constraints with exactly one variable do not contribute any edges
neither to the primal nor to the global dependency graph, the following can be easily verified.

Claim 2. The primal graph of the produced csp instance is identical to the global dependency
graph of the cms instance.

cms has been formulated as minimizing the number of unsatisfied constraints in a binary
csp with primal graph of constant treewidth and these classes of CSPs are solvable in O(nk)
time by [19]5 or [29].

Corollary 2. When ∆i ≤ 1 for every voter i, cms is in FPT w.r.t the parameter tw + d,
where tw is the treewidth of the global dependency graph and d is the maximum domain size.
Moreover, it is W [1]-hard w.r.t. tw and w.r.t. d.

Proof. First, let us introduce some notation for ease of presentation. We will denote as
Π{S} the parameterized version of a problem Π having all variables in S as parameters.
Π{S} is in FPT if every instance I of Π can be solved in time O(f(S)|I|c) for some constant
c, and a computable function f , independent of any variable of Π other than the parameters
in S. A set S dominates a set S′ if whenever all parameters of S′ are bounded by some
constants, all parameters of S are bounded too. For a cms instance having ∆i ≤ 1 for every
voter i, let tw be the treewidth of the global dependency graph, and let d be the maximum
domain size over all issues. For a csp instance we will denote by tw′ the treewidth of its
primal graph, by d′ the maximum domain size of every variable, and by arr the maximum
number of variables that co-appear in a constraint.

To prove the positive statement one only needs to observe that csp{arr, d′, tw′} is
in FPT [24] and that Theorem 1 indicates that if arr = 2, then cms{tw, d} reduces to
csp{arr, d′, tw′}. For the negative statement, due to Corollary 1, cms{d} cannot be in
FPT unless FPT=W[1]. It remains to prove that even cms{tw} cannot be in FPT. In [39]
(Theorem 1 therein), it was proved that binary csp{S} is not in FPT unless S dominates
a limited number of parameter combinations. Using the domination lattice provided in the
same work (Section 3 therein), we conclude that binary csp{tw, arr} is W[1]-hard, which
due to Theorem 2, implies that cms{tw} is W[1]-hard too.

4For uniformity, we could add dummy issues in the cms instance (resp. dummy variables in the csp
instance) so that the final csp only has constraints with exactly two variables.

5In fact, the original results in [19] do not deal with the optimization version, but as demonstrated in
later works (see e.g., Proposition 4.3 from [28], it can be extended for this version as well.

16

B Missing Proofs from Section 4.1

Theorem 3. cav-all and cdv-all are NP-hard even for Unconditional Minisum and for
binary domain in each issue.

Proof. (i) We start with cdv-all, and we will have a reduction from the vertex cover
problem. Thus we start with an instance (G = (V,E), k), which asks if there is a vertex
cover of size at most k, and create an instance P of cdv-all.

For every edge e ∈ E, we add an issue Ie having two possible outcomes, and denote its
domain by De = {de, de}. For every vertex v ∈ V , we add a voter voting unconditionally
for de, if e is incident to v and being satisfied with both {de, de} otherwise. Let there
also be 2 dummy voters who are satisfied only with de for every issue Ie. Hence, all the
ballots are unconditional, and we have an empty global dependency graph. For the quota
parameter, we use q = k, and suppose that the controller wants to enforce the outcome de
on every issue Ie. This completes the description of the cdv-all instance, where the goal is
to decide if there exists a set V ′′ of size at most q, such that deleting those voters enforces
the controller’s desirable outcome.

Suppose that there exists a vertex cover S ⊆ V of G, of size at most k. Since each
edge of G has at least one endpoint in S, by removing all voters that correspond to S, each
alternative de loses at least one approval vote. Hence, de would cause two dissatisfactions to
the dummy voters (the others are indifferent), whereas de causes at most one dissatisfaction.
Therefore, selecting the outcome de for every issue Ie is a unique optimal solution,

For the reverse direction, suppose there exists a set of voters S, whose removal causes
the outcome (de)e∈E to become the unique optimal solution. First, we may assume that S
does not contain any of the dummy voters (otherwise, add them back to the instance, and
the total dissatisfaction score will not be affected). Suppose that S is not a vertex cover in
G, and that at least one edge e is not covered by S. But this means that the removal of S
from the cdv-all instance will leave intact the two voters that are satisfied only with de,
and therefore de can also be selected in an optimal solution (it causes the same number of
dissatisfactions as de). This contradicts the fact that the removal of S resulted in a unique
optimal solution with de selected for every issue Ie.

(ii) We continue now with the hardness of cav-all. The proof is a simple adaptation of a
reduction given for almost the same problem but in the context of the classic (unconditional)
approval voting rule in [25]. For the sake of completeness, we provide the full construction
here. We stress that we cannot directly establish NP-hardness by applying the result of
that work because when there are no conditional ballots, the version of approval voting as
defined there selects as winner(s) the candidates who have the highest number of approvals,
whereas Unconditional Minisum selects only candidates who are approved by at least 50%
of the voters. In the instances used in the reductions of [25] (see Theorem 4.43 therein),
there are losing candidates who are approved by more than 50% of the voters, hence their
proofs do not apply directly.

We start with an instance P of exact-3-cover (x3c) where B = {b1, . . . , bm} with
m = 3k is the universe, and F = {S1, . . . , Sn} is a collection of sets with |Si| = 3, for every
set Si. The goal is to decide if there is an exact cover, i.e. a subcollection of sets from F
such that each element of the universe belongs to exactly one of these sets.

We now define a cms election where the set of issues is I = B ∪ {Im+1} and each issue
has a binary domain, with Dj = {bj , bj} for j ∈ [m], and Dm+1 = {w,w}. The set of voters
is as follows:

• There are k − 2 registered voters who are satisfied with bj for j ∈ [m], and with w.
They are dissatisfied with the complements of these outcomes.

• There is one registered voter who is satisfied only with bj for j ∈ [m] and with w.

17

• There are n unregistered voters corresponding to the sets of x3c instance. The voter
corresponding to Si is satisfied only with the 3 outcomes of Si, and with w.

To finish the description, we set the quota parameter q equal to k and the desirable outcome
of the controller to be (b1, . . . , bm, w). Hence, the goal in the cav-all instance is to decide
if there exists a set of unregistered voters V ′′ with |V ′′| ≤ k such that adding V ′′ to the
registered voters makes the desirable outcome the unique optimal solution.

Suppose now that there exists an exact cover in P . Since m = 3k, the cover consists of
exactly k sets. Select as V ′′ the k unregistered voters corresponding to the cover. We now
have a total of 2k − 1 voters in the election. For the first m issues, the outcome bj satisfies
exactly k−1 voters and dissatisfies k voters, hence the optimal solution selects bj for j ∈ [m].
For the last issue, the value w satisfies k voters and dissatisfies the remaining k − 1 voters.
Hence, the unique optimal solution when adding the set V ′′ is precisely (b1, . . . , bm, w).

For the opposite direction, suppose that there is a set V ′′ of unregistered voters, with
|V ′′| ≤ k, such that when adding them to the registered voters, the unique optimal solution
is the controller’s desirable outcome. First notice that this implies that |V ′′| = k, otherwise
there is not enough support for w to be selected. The only other possibility would be to
have |V ′′| = k − 1, but then we have a tie, and there would be more optimal solutions with
w instead of w. Since for the other issues, each bj already has a support by k− 2 registered
voters, then none of them received a support by two or more of the added voters. But these
voters express a support for a total of 3k = m such outcomes, therefore, each bj for j ∈ [m],
receives support by exactly one of the added voters.

Theorem 4. cav-1 and cdv-1 are NP-hard, even for Unconditional Minisum, but with
non-constant domain size in at least one issue.

Proof. We will only describe the proof of NP-hardness for cav-1 and the same can be
established for cdv-1 in a very similar fashion, using almost the same reduction.

We will have a reduction from the problem of controlling a classic approval voting election
by adding voters, proved NP-hard in [25]. We recall that in an approval voting election,
voters express their approved set of candidates, and the winner (or winners in case of ties) is
the candidate with the highest number of approvals. The control problem there is to ensure
that a designated candidate is the unique winner of the election. Our reduction starts with
an instance P of the control problem in approval voting, where V and V ′ are the registered
and unregistered sets of voters respectively, p is a designated candidate, and q is a quota.
The goal is to select a set V ′′ ⊆ V ′ with |V ′′| ≤ q, so that the approval voting rule, when
run on the voters in V ∪ V ′′ will select p as the unique winner.

We create an instance P ′ of cav-1 where the sets of voters, registered and unregistered,
are the same as in P . If the number of candidates in P is m, we create a single issue in
P ′ whose domain has exactly m possible alternatives, and p is the designated alternative
that the controller wants to promote in P ′. For every voter in P (whether coming from V
or V ′), the corresponding voter in P ′ specifies an unconditional ballot on the single issue,
containing only his approved options in P . We also use the same quota parameter q as in
P . This completes the description of P ′, which can be clearly constructed in polynomial
time.

It is now easy to see that there exists a set V ′′ ⊆ V ′ of at most q voters so as to ensure
that p will be the outcome on the single issue of P ′, using the cms rule for the voters of
V ∪ V ′′, if and only if the same set of voters can ensure that p will be the unique winner
in the approval voting election of P . Indeed, if the cms rule, run on the voters of V ∪ V ′′,
selects the outcome p in the instance P ′, this means by the definition of the cms rule that
p causes the minimum number of dissatisfactions among all possible alternatives, i.e., it has
the highest number of approvals. This directly yields that p will be the unique winner in
the instance P . The reverse direction is easy to see as well, with the same reasoning.

18

C Missing Proofs from Section 4.2

Proposition 2. cda-1 and cda-all can be solved in polynomial time whereas caa-1 is
immune, for Unconditional Minisum, with arbitrary domain size.

Proof. To solve cda-1 and cda-all we only have to observe that to control a single issue
by deleting alternatives in the unconditional case, one can check if the quota is large enough
to delete all alternatives that achieve higher approval score than the designated one(s). At
what concerns caa-1, the definition of immunity directly applies, since the controller cannot
enforce a designated alternative in Unconditional Minisum by adding some other alternative
(whether for the same or for a different issue).

Theorem 5. cda-all is NP-hard, when ∆i ≤ 1 for every voter i, and even when the
treewidth of the global dependency graph is at most one, but with non-constant domain size
in at least one issue.

Proof. Let P = (G = (V,E), k) be an instance of Vertex Cover with n vertices and m
edges, and a bound k on the size of the cover. We will present a reduction to an instance
of cda-all. Let there be one issue for every vertex of G and an extra issue I0, hence
I = {I0, I1, I2, . . . , In}, where for j ∈ [n], Dj = {dj , dj}. The domain of I0 differs and
contains (k + 1)m + 1 alternatives and in particular, for every edge ei, there are k + 1
alternatives e`i , for ` ∈ [k + 1]. Essentially, these are identical k + 1 ’copies’ encoding
the selection of ei, and play a significant role in the reverse direction of the reduction.
Additionally, D0 contains one extra alternative, denoted by e0. As for the voters, there is
one edge voter for every edge ei = {u, v} of G, voting as follows:

• For the issue I0, she supports unconditionally only the alternatives {e`i},∀` ∈ [k + 1]
(these alternatives have an identical role for voter i).

• Concerning the issue Iu, she votes conditionally on I0 for {e`i : du}∀` ∈ [k + 1], and
similarly for issue Iv, she votes {e`i : dv}∀` ∈ [k + 1].

• For all other issues she is satisfied with any outcome.

Additionally there are 3 dummy voters who are satisfied only with e0 for issue I0 and only
with dj for each Ij , j ∈ [n]. To complete the reduction, we use k as the quota parameter,
and suppose the controller wants to enforce the outcome p = ({dj}j∈[n], e0) by removing at
most k alternatives. It is easy to observe that for every voter i, ∆i ≤ 1 in her dependency
graph, and the global dependency graph is a star centered on I0, thus with treewidth equal
to 1. The maximum domain cardinality is O(km) = O(nm), which can be quadratic w.r.t.
the number of voters.

We note that in the instance of cda-all that we have constructed, the designated
outcome p has a total dissatisfaction score of exactly 3m but it is not the unique winner.

If there exists a vertex cover in G of size at most k which is formed say WLOG by
{v1, . . . , vk} ⊆ V , we choose to delete the corresponding alternatives {d1, . . . , dk} from the
issues {I1, . . . , Ik} ⊆ I. Let us count the cost of any solution that selects any e`i as the choice
for issue I0 for ` ∈ [k+ 1]. This dissatisfies m−1 among the edge voters w.r.t. I0, and these
voters will also be dissatisfied with the two issues corresponding to their edge, regardless of
the assignment on the n issues, hence a total score of 3(m − 1) from them. The i-th voter
is satisfied with I0 but will be dissatisfied with at least one issue from I1, . . . In, due to the
vertex cover property. The three dummy voters are also dissatisfied with I0. This results in
a total dissatisfaction score of at least 3m+ 1. Therefore, selecting the designated outcome
p is now the unique optimal solution with a total dissatisfaction score of 3m (each of the
first m voters is dissatisfied with exactly 3 issues).

19

For the reverse direction, suppose that there is a set D′′ of at most k alternatives, the
deletion of which, forces p to be the unique optimal solution. It is WLOG to assume that
D′′ does not contain anything from D0. To elaborate on this claim, suppose that p was
not the unique optimal solution before the deletion of the k alternatives, which means that
another optimal solution existed choosing some e`i on I0, for some i ∈ [m] and ` ∈ [k+1]. By
deleting up to k alternatives from D0, one cannot completely eliminate all the alternatives
that correspond to ei, and this is the reason we added k + 1 such copies. Hence, after the
deletion of these alternatives, p would still not be a unique optimal solution. Thus, all the
deletions concern the issues I1, . . . , In. Moreover, none of the deleted alternatives can be in
the form dj for some issue Ij (we cannot delete alternatives that belong to our designated
outcome p). To summarize, the deleted alternatives must come from distinct issues among
I1, . . . In and each of them equals dj for some j ∈ [n]. It is now easy to observe that the
vertices corresponding to these alternatives in D′′ form a vertex cover of size at most k in
G. If not, there is some edge, say ei = (u, v) that is not covered. In that case, if we select
e`i for I0 for some arbitrary `, and dj for all issues Ij where dj has not been deleted, we can
see that we will obtain a solution with the same dissatisfaction score of 3m, contradicting
the fact that p was a unique optimal solution.

Theorem 6. caa-1 and cda-1 are NP-hard, when ∆i ≤ 1 for every voter i, and even when
the treewidth of the global dependency graph is at most one, but with non-constant domain
in at least one issue.

Proof. The proof of NP-hardness of cda-1 can be found in the main body of the paper. For
the NP-hardness of caa-1, the proof is based on a similar reasoning as in the proof of cda-
1, but with appropriate adjustments. First, it is more convenient to perform a reduction
from a slightly different problem, which is the max-outdegree addition (moa) problem
defined and proved NP-hard in [5].

Instance: A directed graph G = (V1 ∪ V2, E), where V1 denotes the set of registered
vertices, and V2 is the set of unregistered vertices, a distinguished vertex p ∈ V1 and an
integer k ≥ 1.
Output: Does there exist a set V ′ ⊆ V2 with |V ′| ≤ k such that p is the only vertex that
has maximum outdegree in G[V1 ∪ V ′]?

Starting from an instance of moa, where n = |V1|+ |V2|, let I = {I0, I1, I2, . . . , In}. For
j ∈ V1, we have two qualified alternatives, Dj = {dj , dj} and no spoiler ones. For j ∈ V2,
we have one qualified alternative6, Dj = {dj}, and we will have dj as a spoiler alternative,
D′j = {dj}. The domain of I0 corresponds to all the vertices and equals D0 = {b1, . . . , bn}.
In contrast to cdv-1, we do not need to have k + 1 “copies” for each bi, since the spoiler
alternatives that will be added are not going to be from D0. As for the voters, there is one
edge voter for every edge of the graph, regardless of whether its endpoints belong to V1 or
V2 and one vertex voter for every vertex of the graph. All voters have similar preferences
as in the cda-1 reduction, from which their ballots for each issue Ij with j ∈ {0, 1, . . . , n}
can be immediately obtained by replacing, {b`j}∀`∈[k+1] with bj . For example, an edge voter
arising from an edge (i, j) will vote for the combination {dj : bi} regarding I0. Using similar
arguments as in the proof for cda-1, we conclude that there is a way to add up to k vertices
and make p the unique vertex with maximum out-degree if and only if there is a set of at
most k alternatives to add in the caa-1 instance to fulfill controller’s will.

Proposition 3. cda-1 can be solved in polynomial time, when ∆i ≤ 1 for every voter i,
when the treewidth of the global dependency graph is constant and the domain size is also
constant.

6If one wishes to avoid issues with unary starting domain, we can also add one dummy qualified alter-
native, so that no issue is trivialized before the addition of any spoiler alternatives.

20

Proof. Let q be the quota parameter and let Ij be the issue where the controller wants to
enforce a specific alternative. If q ≥ |Dj | − 1, then we can simply delete precisely all other
|Dj | − 1 alternatives of Ij so that the controller’s will is the only choice left. If q < |Dj | − 1,
this implies that q = O(1). But then we can check all possible ways of picking up to q
items from the available set of all alternatives of all issues (a polynomial in m). For every
such combination, and since the conditions of Theorem 1 hold, we can solve the remaining
cms instance and check if we can have the controller’s choice in every optimal solution (by
solving cms with and without the designated alternative).

Theorem 7. caa-1 is NP-hard, when ∆i ≤ 2 for every voter i, even when the treewidth of
the global dependency graph is at most one and even for binary domain size in every issue.

Proof. Consider an instance P of Vertex Cover, asking if there is a cover of size at most k in
a graph G = (V,E), with |V | = n, |E| = m. We create an instance P ′ of caa-1 with n+ 1
issues I = {I0, I1, . . . , In}. The issue I0 has two qualified alternatives, D0 = {d0, d0}. Each
issue Ij for j ∈ [n] corresponds to a vertex od G, and has one qualified alternative, denoted
by dj , and one unqualified one denoted by dj . Formally, Dj = {dj} and D′j = {dj}, for
j ∈ [n]. As for the voters, we have a total of 2m−1 voters. The first m voters correspond to
the edges of G, and they are satisfied with all the alternatives in the issues Ij , j ∈ [n]. For
issue I0, each edge voter has a dependence on the two issues corresponding to its endpoints.
In particular, for an edge (j, `), the corresponding edge voter has a dependence of I0 on
both Ij and I`. He is satisfied with respect to I0, only when either dj or d` is selected,
and d0 is selected as well. Thus he is satisfied with the combinations {(dj , x) : d0} for any
x ∈ {d`, d`}, and with {(x, d`) : d0} for any x ∈ {dj , dj}. These together encode precisely
the constraint (dj ∨ d`) : d0. Any other combination of alternatives of Ij , I`, and I0 make
this edge voter dissatisfied w.r.t. I0. The remaining m− 1 dummy voters are satisfied with
all the alternatives of the first n issues and are also satisfied only with d0 for issue I0. To
complete the construction, we use k from P as the quota of P ′, and we assume that the
controller wants to enforce d0 on issue I0. It is easy to check that the maximum in-degree
for every voter is at most two, and that the global dependency graph is a star centered on
I0, and hence with treewidth equal to one.

Suppose that P has a vertex cover S of size at most k. We then add in P ′ the unqual-
ified alternatives for the issues that belong to the vertex cover of G. By selecting those
alternatives, and with d0 for I0, and any alternative for the remaining issues, we claim that
all the edge voters are satisfied w.r.t. I0 (since for every edge, at least one of the added
alternatives together with d0 satisfy the corresponding constraint). Thus, there is only 1
unit of dissatisfaction from every dummy voter on I0, with a total score of m − 1. Any
solution where d0 is not the selected choice for I0 would dissatisfy all the edge voters, and
would have a score of at least m, hence cannot be optimal. Thus, we have ensured that in
every optimal solution, I0 is assigned the value of d0.

For the reverse direction, suppose that there is a set of at most k unqualified alternatives
that, when added, ensure that d0 is selected in every optimal solution. We know that
selecting d0 causes the dummy voters to be dissatisfied, hence the optimal dissatisfaction
score is at least m − 1. If d0 was chosen for I0, we know that the total dissatisfaction
score is m (due to the edge voters), and since this cannot be optimal, we have that the
dissatisfaction score in an optimal solution is exactly m − 1. But this means that all the
remaining m voters, or equivalently all edge voters, have to be satisfied with all issues in the
optimal solution, i.e., satisfied with I0 as well. Thus, the added alternatives need to satisfy
every edge voter, which means that if a voter’s dependence of I0 is based on issues Ij and
I`, then either dj or d` has been added (or both), and hence the set of added alternatives
correspond to a vertex cover of size at most k.

21

Evangelos Markakis
Athens University of Economics and Business
Athens, Greece
Email: markakis@gmail.com

Georgios Papasotiropoulos
Athens University of Economics and Business
Athens, Greece
Email: gpapasotiropoulos@gmail.com

22

markakis@gmail.com
gpapasotiropoulos@gmail.com

	Introduction
	Formal Background
	Optimal Algorithms
	Strategic Control of CMS Elections
	Controlling Voters
	Controlling Alternatives

	Conclusions and Further Work
	Missing Proofs from Section 3
	Missing Proofs from Section 4.1
	Missing Proofs from Section 4.2

