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Abstract

When aggregating logically interconnected judgments from n agents, the result might be in-
consistent with the logical connection. This inconsistency is known as the doctrinal paradox
or discursive dilemma, which plays a central role in the field of judgment aggregation. Despite
a large body of literature on the worst-case analysis of the doctrinal paradox, little is known
about its likelihood under natural statistical models, except for a few i.i.d. distributions [List,
2005].
In this paper, we characterize the likelihood of the doctrinal paradox under a much more gen-
eral and realistic model called the smoothed social choice framework [Xia, 2020b], where
agents’ ground truth judgments are arbitrarily correlated while the noises are independent.
Our main theorem states that under mild conditions, the smoothed likelihood of the doctrinal
paradox is either 0, exp(−Θ(n)), Θ(n−1/2) or Θ(1). This not only answers open questions
by List [2005] for i.i.d. distributions, but also draws clear lines between situations with frequent
and with vanishing paradoxes.

1 Introduction
Suppose a defendant is involved in an accident that one person got injured. A jury of n jurors
(agents) is making decisions on the following three propositions:

Proposition ω1: whether the injury is caused by the defendant
Proposition ω2: whether the injury is serious enough to make the defendant guilty.
Proposition ω3: whether the defendant is guilty or not.

All jurors are required to be logically consistent in their judgments, i.e. ω3 is true if and only if both
ω1 and ω2 are true. Then, the majority rule is applied to aggregate the jurors’ judgments on each
proposition. However, such aggregation is not always logically consistent as shown in the following
simple example, known as the doctrinal paradox or discursive dilemma.

Example 1 (Doctrinal paradox). Consider that a jury of three jurors with the judgements in Table 1.
We observe that the aggregation result is inconsistent with the common logic ω3 ↔ ω1 ∧ ω2 despite

Propositions ω1 ω2 ω3 ω3
?↔ ω1 ∧ ω2

Agent 1 Yes No No True
Agent 2 No Yes No True
Agent 3 Yes Yes Yes True

Aggregation Yes Yes No False

Table 1: The judgements of agents in Example 1
the fact that all agents’ judgements are consistent.

More generally, the doctrinal paradox refers to the phenomenon where a group of n agents sub-
mit logically consistent judgements on p premises (e.g. ω1 and ω2 in Example 1) and one conclusion
(e.g. ω3 in Example 1), yet the aggregated judgements are not logically consistent.

The doctrinal paradox Brandt et al. [2016], Grossi and Pigozzi [2014], List [2012] plays a central
role in the field of judgement aggregation and its applications. A growing number of literature has
shown the negative effects of doctrinal paradox in the application fields of law [Kornhauser and
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Sager, 1986, Hanna, 2009, Chilton and Tingley, 2012], economics [Mongin, 2019], computational
social choice [Bonnefon, 2010, Brandt et al., 2016], philosophy [Sorensen, 2003, Mongin, 2012]
and psychology [Bonnefon, 2011].

Doctrinal paradox is usually unavoidable under some mild assumptions on the aggregation
rules [List and Pettit, 2002] However, little is known about the likelihood of doctrinal paradox except
for a few i.i.d. distributions [List, 2005]. The i.i.d. assumption has also received a lot of criticisms as
it ignores correlations among agents. Therefore, the following research question still remains open:

How likely does the doctrinal paradox happen under realistic models?

The question is already highly challenging under i.i.d. assumptions. To the best of our knowl-
edge, no result is known about the probability of doctrinal paradox for the simple case that corre-
sponds to the Impartial Culture (IC) in voting theory, where all agents’ judgments are i.i.d. uni-
formly distributed. In this paper, we answer the above question under smoothed social choice
framework [Xia, 2020b], which is much more realistic and allows agents’ votes to be arbitrarily
correlated.

In smoothed social choice framework, the “ground truth” of every agent’s vote is chosen by an
adversary. All agents’ “ground truth” distributions are selected from a set of distributions Π over all
kinds of votes on the premises. While discussing the probability of doctrinal paradox, we let r be any
aggregation rule and f be any logical connection between the conclusion and the premises. We note
that the “worst-case” of doctrinal paradox is the cases where its probability is maximized. Under
smoothed social choice model, the worst-case assumes that a max-adversary aims to maximize the
likelihood of doctrinal paradox, which is called max-smoothed likelihood of doctrinal paradox and
denoted by

D̃P
max

Π,r,f (n) , sup
~π∈Πn

PrP∼~π (P is a doctrinal paradox) ,

where ~π = (π1, · · · , πn) ∈ Πn is the collection of the distributions of n agents chosen by the
adversary, and profile P is the collection of n agents’ votes generated from ~π. In contrast, the “best-
case” assumes that a min-adversary aims to minimize the probability of doctrinal paradox, which is
called min-smoothed likelihood of doctrinal paradox and is denoted by,

D̃P
min

Π,r,f (n) , inf
~π∈Πn

PrP∼~π (P is a doctrinal paradox) .

Our Contributions. The main merit of this paper is the following dichotomy theorem on the
smoothed likelihood of doctrinal paradox.

Theorem 1. (Smoothed Likelihood of Doctrinal Paradox, informal) Under mild assumptions, for
any n ∈ Z≥0, any aggregation rule r and any logical connection f , D̃P

max

Π,r,f (n) is either 0,

exp(−Θ(n)), Θ(n−1/2) or Θ(1) and D̃P
min

Π,r,f (n) is either 0, exp(−Θ(n)), Θ(n−1/2) or Θ(1).
The condition for each case will be clearly stated in our formal definition.

A small max-smoothed likelihood of doctrinal paradox implies that doctrinal paradox is rare
under all cases, which is good news, see e.g., Example 6. Similarly, a large min-smoothed likelihood
of doctrinal paradox implies that doctrinal paradox is common under all cases, which is usually bad
news. A direct corollary of Theorem 1 (Corollary 2, when there is only one distribution in Π)
answers the open question by List [2005] for i.i.d. distributions. Note that Corollary 2 covers the
case that all agents’ distributions are uniformly at random, which is not covered in List [2005]. In
Section 5, we also numerically verified the results in Theorem 1 under generic settings.

Related Works. List and Pettit [2002] proved the first impossible theorem for doctrinal paradox
and attracted researchers’ attentions on the worst-cases analysis. Pauly and Van Hees [2006], Mon-
gin [2008], Dietrich and List [2008], Awad et al. [2017], Mongin [2019], Baharad et al. [2020] and
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Marcoci and Nguyen [2020] proved similar impossible theorems for doctrinal paradox with relaxed
requirements or under different settings. Sacrificing some important properties of the aggregation
rule is one of the ways to reduce the likelihood of doctrinal paradox [Nehring and Pivato, 2018,
Rahwan and Tohmé, 2010, Nehring and Puppe, 2008], but those aggregation rules also received
criticisms [Lyon and Pacuit, 2013].

The probability of doctrinal paradox also draws attentions from researchers. List [2005], Bon-
nefon [2007] and Bonnefon [2010] provides imperial results to the probability of doctrinal paradox.
Far less literature studies the theoretical analysis to the probability of doctrinal paradox. List [2005]
provided the probability of doctrinal paradox under i.i.d. assumptions. However, their analysis only
took limited types of distributions into accounts. Even the simple cases like i.i.d. uniform dis-
tributions are missing. Furthermore, the theorems in [List, 2005] does not allow arbitrary logical
connection between the premises and the conclusion, which further constrains the applications of
their theorem.

The smoothed social choice framework [Xia, 2020b] used in this paper was inspired by the
smoothed complexity theory proposed in Spielman and Teng [2009], and provides a much more
realistic setting for social choice than i.i.d. In a position paper, Baumeister et al. [2020] proposed to
conduct smoothed analysis in computational social choice without presenting technical results.

2 Preliminaries
Notation. Let [n] , {1, · · · , n} denote the set of n agents. Let p denote the number of premises.
The binary judgement of agent j on the i-th premise is denoted by ωj,i ∈ {0, 1}, where ωj,i = 1
means “YES” and ωj,i = 0 means “NO”. The conclusion is usually written as φ and sometimes
written as ωp+1 for simplicity. Because all premises are binary, there are m , 2p different com-
binations of judgements on the premises. To better present the results, instead of asking the agents
to submit their judgements ~ωj = (ωj,1, · · · , ωj,p), equivalently, we ask each agent to submit an
m-dimensional vector ~vj , called her vote, whose ~ωj-th component is 1 and all other components are
0’s. Let V , {~v ∈ {0, 1}m : ||~v||1 = 1} denote the set of all votes whose components are 0’s except
on one ωj .

~vj can be easily extended to describe fractional votes, in particular distributions over judg-
ments. In a fractional profile, each agent can divide the weight of his/her vote ~v to multiple
types of judgments, such that for every judgment ~ω, ~v(~ω) is the weight on ~ω. Moreover, we re-
quire that ~vT~1 = 1 (see Example 2, all vectors in this paper are column vectors by default). Let
Vfrc , {~v ∈ [0, 1]m : ||~v||1 = 1} denote the set of all fractional votes. Clearly, we have V ⊆ Vfrc.

Basic Settings. We let f : V → {0, 1} denotes the logical connection between the premises and the
conclusion, that is,

∀ j ∈ [n], φj = f(~vj),

where φj ∈ {0, 1} reprsents agent j’s conclusion. We slightly abuse the definition of f and allow it
to take agents judgements ~ω as its input. Mathematically.

∀ ~ω ∈ {0, 1}p, f(~ω) , f(~v), where ~v(~ω) = 1

LetΩi denote the set of all judgements whose i-th premise is 1. Formally, let

Ωi ,

{ {
~ω ∈ {0, 1}p : ~ω(i) = 1

}
∀i ∈ [p]{

~ω ∈ {0, 1}p : f(~ω) = 1
}

if i = p+ 1
.

For any n ∈ Z>0, let P = (~v1, · · · , ~vn) ∈ (Vfrc)
n denote a (fractional) profile of n agents.

A (judgement) aggregation rule is a function r : (Vfrc)
n → {0, 1}p+1, which takes a profile as

input and outputs binary values for all premises and the conclusion. For any (fractional) profile
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P ∈ (Vfrc)
n, we define Hist(P ) ,

∑
j∈[n] ~vj to be the histogram of P , which represents the total

weight of each combination of judgements in P .

Quota Rules. Quota rule is a natural generalization of the majority rule, where the threshold for
win may be different from 0.5. Like the majority rule, quota rule also has the property of anonymity,
neutrality, independence and monotonicity (see Appendix A.2 for formal definitions). In this paper,
we focus on quota rules that independently aggregate agents’ judgments on the conclusion and
premises.

Formally, given any vector of acceptance thresholds (threshold in short), denoted by ~q =
(q1, · · · , qp+1) ∈ [0, 1]p+1 and any vector of breaking criteria (breaking in short), denoted by
~d = (d1, · · · , dp+1) ∈ {0, 1}p+1, we define the quota rule r~q,~d(P ) as follows. For any profile
P ∈ (Vfrc)

n and any i ∈ [p+ 1], we let ni =
∑

~ω∈Ωi
Hist(P )(~ω) denote the total weight of agents

whose i-th judgement is 1, then apply the quota rule with threshold qi and breaking di. That is,

∀ i ∈ [p+ 1], r~q,~d(P )(i) ,

 1 if ni > qi · n
di if ni = qi · n
0 otherwise

, (1)

where r~q,~d(P )(i) is the i-th component of r~q,~d(P ). We say that a profile P is tied in ωi if ni = qi ·n.

The Doctrinal Paradox. We say that a profile P is a doctrinal paradox (under a judgement
aggregation rule r) if the r(P ) is inconsistent with the agents’ logical connection function. Formally,

Definition 1 (Doctrinal paradox). Given any n ∈ Z+, any logical connection function f : Vnfrc →
{0, 1}p+1, and any quota rule r, a profile P ∈ Vnfrc is a doctrinal paradox, if

r(P )(p+ 1) 6= f
(
r(P )(1), · · · , r(P )(p)

)
.

Because doctrinal paradox only depends on the aggregation result, we also say that an aggregation
result ~α = (α1, · · · , αp+1) is a doctrinal paradox if αp+1 6= f(α1, · · · , αp). Note that ~α consists of
p+ 1 elements, which correspond to the aggregated results of the p premises and one conclusion.

Example 2. Continuing with the setting of Example 1, the logical connection is φ↔ ω1∧ω2, which
is equivalent to the logical connection function

f(~v) =

{
1 if ~v = (0, 0, 0, 1)
0 otherwise .

A (fractional) profile P of three votes, a quota rule r (which uses the majority rule with the breaking
in favor of 1 on both premises while in favor of 0 on conclusion). Its aggregation are shown in
Table 2.

ω1 ω2 weight ~v φ
Agent 1 1 0 1 (0, 0, 1, 0) 0
Agent 2 0 1 1 (0, 1, 0, 0) 0

Agent 3 1 0 0.5 (0, 0, 0.5, 0.5) 0
1 1 0.5 1

Hist(P ) (0, 1, 1.5, 0.5)
ni in (1) 2 1.5 0.5

Breaking di 1 1 0
Threshold qi 0.5 0.5 0.5

qi · n 1.5 1.5 1.5
Aggregation α 1 1 0

Table 2: The profile, rule, and aggregation result for Example 2.

It can be seen from the table that r(P ) = (1, 1, 0), which is inconsistent w.r.t. f . Therefore, P is
a doctrinal paradox.
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3 Smoothed Likelihood of Doctrinal Paradox
We note that any probability distribution π over V can be viewed as a fractional profile with a single
vote, whose ~ω-th dimension is π(~ω). Therefore, any quota rule r can be applied to the profile that
consists of a single vote π, and we let r(π) denote the aggregation result for simplicity. To present
the main theorem, we first define effective refinements of distributions as follows.

Definition 2 (Effective Refinements). For any distribution π over V , any n ∈ Z+, and any quota
rule r, we say that a vector ~α = (α1, · · · , αp+1) ∈ {0, 1}p+1 is an effective refinement of π, if the
following two conditions both hold:

(1) ∀ i ∈ [p+ 1] such that π is not tied in ωi, αi = r(π)(i).

(2) ∃P ∈ Vn such that r(P ) = ~α.

If condition (1) holds, then we call ~α a refinement of π. Let

Eπ =
{
~α ∈ {0, 1}p+1 : ~α is an effective refinement of π

}
denote the set of all effective refinements of π.

In words, condition (1) requires ~α to match the aggregation result on all non-tied propositions.
Condition (2) requires the existence of profiles with the aggregation result ~α.

Example 3. Continuing with the setting of Example 2, π = (0.3, 0.2, 0, 0.5) is tied in the conclusion
and the first premise. There are four refinements of π: (1, 0, 0), (1, 0, 1), (0, 0, 0) and (0, 0, 1).
(0, 0, 1) and (1, 0, 1) are not effective, because no profile can make conclusion φ = 1 while keeping
both ω1 to be 0. The other two refinements are effective. For example, (0, 0, 0) is effective because
it is the aggregation of the profile where all agents have 0 judgements on both premises.

Let CH(Π) denote the convex hull of Π. Next, we define four conditions (κ1 to κ4) to present
Theorem 1.

κ1: ∀P ∈ Vn, P is not a doctrinal paradox. That is, no profile of n votes is a doctrinal paradox.
κ2: ∀π ∈ CH(Π), ∀ ~α ∈ Eπ , ~α is not a doctrinal paradox. That is, all distributions in the convex
hull of Π are “far” from all doctrinal paradoxes.
κ3: ∃π ∈ CH(Π) such that ∀~α ∈ Eπ , ~α is not a doctrinal paradox. That is, some distribution in the
convex hull of Π is “far” from all doctrinal paradoxes.
κ4: ∃ i ∈ [m] such that “ ωp+1 ↔ ωi and qp+1 = qi” or “ ωp+1 ↔ ¬ωi and qp+1 = 1 − qi”.
Intuitively, κ4 says that the conclusion only relies on one premise and the thresholds are consistent
with the relationship between the conclusion and the premise.

Example 4 (Conditions κ1-κ4). Consider the same logical connection and quota rule as in Ex-
ample 2. Let Π = {π1 = (0.25, 0.25, 0.25, 0.25), π2 = (0.04, 0.32, 0.32, 0.32)}. Let us examine
conditions κ1 to κ4 as follows:
κ1 is false for any n ≥ 2 and is true when n = 1. When n = 2, P = (1, 0, 0, 1) is the only
doctrinal paradox. When n ≥ 3, P = (n + 1 − 2bn/3c − dn/3e, bn/3c, bn/3c, dn/3e − 1) is a
doctrinal paradox. We note that κ2 and κ3 are false if κ1 is true. Therefore, we assume n ≥ 2 for
κ2 and κ3.
κ2 is False. CH(Π) = {π = a · π1 + (1 − a) · π2 : a ∈ [0, 1]}. When a 6= 0, π is a doctrinal
paradox and contains no ties. When a = 0, π = π1 is tied in conclusion and both premises. Its
effective refinement ~α = (1, 1, 0) is a doctrinal paradox.
κ3 is False. π2 is a doctrinal paradox and contains no ties.
κ4 is False according to the definitions of f and r.
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We say that a distribution π is strictly positive, if there exists ε > 0 such that for every ~ω ∈
{0, 1}p, π(~ω) ≥ ε. A set of distributions Π is strictly positive, if there exists ε > 0 such that every
π ∈ Π is strictly positive (by ε). We believe that being strictly positive is a mild requirement for
judgement aggregation (c.f. Xia [2020b]’s argument for voting). Π is closed if it is a closed set in
Rm. We now present the main theorem of this paper.

Theorem 1 (Smoothed Likelihood of Doctrinal Paradox). Given any closed and strictly positive
set Π of distributions over V , any logical connection function f : V → {0, 1}, and any quota rule r.
For any n ∈ Z>0,

D̃P
max

Π,r,f (n) =


0 if κ1 is true
exp(−Θ(n)) otherwise, if κ2 is true
Θ(n−1/2) otherwise, if κ4 is true
Θ(1) otherwise

D̃P
min

Π,r,f (n) =


0 if κ1 is true
exp(−Θ(n)) otherwise, if κ3 is true
Θ(n−1/2) otherwise, if κ4 is true
Θ(1) otherwise

.

We believe that Theorem 1 is quite general, as it works for any logical connection functions and
only makes mild assumptions on Π.

Notice that both max and min smoothed likelihood of doctrinal paradox has four cases: the 0
case, the exponential case, the polynomial case, and the constant case. The first three cases are
good news, particularly in the max part, which states that the doctrinal paradox vanishes when the
number of agents is large. The last case is bad news, in particular for the min part, which states that
the doctrinal paradox does not vanish.

Next, let us look at a few applications of Theorem 1. The first is good news, where the max-
smoothed likelihood of doctrinal paradox is exponentially small.

Example 5 (Exponentially small case). Let us consider the same quota rule and the same log-
ical connection as in Example 2 and 4. Let Π = {π1 = (0.05, 0.05, 0.05, 0.85), π2 =
(0.1, 0.1, 0.1, 0.7)}. Following a similar reasoning as in Example 4, we have:

(κ1, κ2, κ3, κ4) =

{
(true, false, false, false) if n = 1
(false, true, true, false) if n ≥ 2

Therefore, according to Theorem 1, the smoothed likelihood of doctrinal paradox is as shown in
Table 3. Also see Figure 2b for our numerical verification.

If applying Theorem 1 to Example 4, we will have the results in Table 3. Also see Figure 2a in
section 5 for the numerical verification.

Smoothed likelihood n = 1 n ≥ 2 (eg. 4) n ≥ 2 (eg. 5)
D̃P

max

Π,r
~q,~d
,f (n) 0 Θ(1) exp(−Θ(n))

D̃P
min

Π,r
~q,~d
,f (n) 0 Θ(1) exp(−Θ(n))

Table 3: Smoothed likelihood of doctrinal paradox in Example 4-5.

The next example is also good news because the doctrinal paradox vanishes as n→∞, though
not as fast as in Example 5 w.r.t. the max-adversary.

Example 6 (Θ(n−1/2), exp(−Θ(n)) and 0 cases). Let the logical connection be φ ↔ ωi, set of
distributions Π = {π1 = (0.9, 0.1), π2 = (0.3, 0.7)}1 and quota rule r~q,~d such that (qi, qp+1) =

1Because the doctrinal paradox only depends on the votes to premise ωj (or conclusion φ), we use the marginal distribu-
tion on ωi to simplify notations. Here, π = (pr, 1 − pr) mean ωi = 0 with probability pr while ωi = 1 with probability
1− pr.
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(0.5, 0.5) and (di, dp+1) = (1, 0). We have the following results for κ1-κ4:

(κ1, κ2, κ3, κ4) =

{
(true, false, false, true) if n is odd
(false, false, true, true) if n is even

Then, we apply Theorem 1 and conclude the smoothed likelihood in Table 4. Also see Figure 2c in
section 5 for numerical verification.

Smoothed likelihood n is odd n is even
D̃P

max

Π,r
~q,~d
,f (n) 0 Θ(n−1/2)

DPmin
Π,r

~q,~d
,f (n) 0 exp(−Θ(n))

Table 4: Smoothed likelihood of doctrinal paradox in Example 6.

The following corollary of Theorem 1 with Π = {π} answers the open questions in [List, 2005]
about the probabilities of doctrinal paradox under all i.i.d. distributions.

Corollary 2 (Likelihood of doctrinal paradox under i.i.d. distributions). Given any strictly positive
distribution π over V , any logical connection function f : V → {0, 1}, and any quota rule r. For
any n ∈ Z>0,

PrP∼(π,··· ,π) (P is a doctrinal paradox) =


0 if κ1 is true
exp(−Θ(n)) otherwise, if κ5 is true
Θ(n−1/2) otherwise, if κ4 is true
Θ(1) otherwise

,

where κ5 is: ∀ ~α ∈ Eπ , ~α is not a doctrinal paradox.

In particular, when π is the uniform distribution over V and the aggregation rule is the majority,
the likelihood of doctrinal paradox is either Θ(1) or 0 depending on the logical connection function
f .

4 Our Techniques and the Proof of Theorem 1
In this section, we first introduce the polyhedra presentation of doctrinal paradoxes. Then, we will
prove Theorem 1 under its polyhedra presentation.

Polyhedra Presentation. We define polyhedronH in m-dimensional space by a set of inequalities
constrains. That is, H =

{
~x : A ~x ≤ ~b

}
. Next, we show that the region of doctrinal paradox can

be presented by a set of polyhedra. For any i ∈ [p + 1], define vector ~ci ∈ {qi − 1, qi}m as the
characterization vector for proposition ωi:

~ci(~ω) ,

{
qi − 1 if ~ω ∈ Ωi

qi otherwise . (2)

When calculating the inner product ~ci · Hist(P ), ~ci gives the weight of qi to all votes (sum to n · qi)
and gives an extra weight of −1 on all votes that ωi = 1 (sum up to −ni). One can see that the sign
of ~ci · Hist(P ) is closely related with the quota aggregation results. We define sign function sign(·)
and 1(·) as follows,

sign(x) ,

{
1 if x > 0
−1 otherwise and 1(κ) ,

{
1 if κ is true
0 otherwise .

7



Then, we define

A~α ,

 sign(α1) · ~cT1
...

sign(αp+1) · ~cTp+1

 and ~b~α ,

 sign(α1) · d1 − 1(α1 = 1)
...

sign(αp+1) · dp+1 − 1(αp+1 = 1)

 .

Let H~α = {~x : A~α ~x ≤ ~b~α} denote the polyhedra and let H~α, ≤0 = {~x : A~α ~x ≤ ~0} denote
its characteristic cone. Let C = {H~α : ~α is a doctrinal paradox} denote the set of all polyhedra
corresponding to doctrinal paradoxes. In Lemma 3, we reveal a connection between C and the
doctrinal paradox.

Lemma 3 (Polyhedra Representation of Doctrinal Paradox). Given any profile P ∈ Vn and any
distribution π on V , any quota rule r and any logical connection function f , we have the following
two statements for doctrinal paradoxes,

(1). ∀H ∈ C, Hist(P ) /∈ H ⇔ P is not a doctrinal paradox.

(2). ∀H ∈ C, π /∈ H≤0 ⇔ all refinements of π are not doctrinal paradoxes.

Before presenting the proof, we first use an example to visualizes a polyhedron and its charac-
teristic cone for doctrinal paradoxes.

Example 7 (Polyhedra presentation of doctrinal paradox). We consider a system with one premise
ω1. The logical connection between conclusion φ and premise ω1 is φ ↔ ω1. The parameters for
quota rule are (q1, qC) = (0.25, 0.65) and (d1, dC) = (1, 1). According to Equation (2), we know
that ~c1 = (q1, q1 − 1)T and ~c2 = (qC , qC − 1)T. Then, the aggregation results of ~α = (1, 0) and
~α = (0, 1) are both doctrinal paradoxes. Thus, C =

{
H(1,0),H(0,1)

}
. H(1,0) is represented by

A(1,0) and~b(1,0) defined as follows.

A(1,0) =

(
q1 q1 − 1
−qC 1− qC

)
and ~b(1,0) =

(
0
−1

)
.

It is not hard to verify that for any profile P of n agents,A(1,0) · Hist(P ) ≤ ~b(1,0) if and only if

n1 ≥ q1 · n and n1 ≤ qC · n− 1

where n1 represents the number of votes for ω1 = 1 in P . Figure 1 illustrates the regions corre-
sponding toH(1,0) and its characteristic cone.

𝒏𝟏

𝜶 = (𝟎, 𝟎)
not a doctrinal paradox

𝓗(𝟏,𝟎)

𝒏-𝒏𝟏

𝓗 𝟏,𝟎 ,≤𝟎

Figure 1: Illustration of the polyhedron H(1,0) in Example 7. The characteristic cone H(1,0),≤0 is the combi-
nation ofH(1,0) and the region between n1 = tC · n and n1 = tC · n− 1.
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Proof for Lemma 3 According to the definition of C, we only need to prove the following statement
for polyhedra:

Statement 4. For any profile P ∈ Vn and any distribution π on V , any quota rule r~q,~d and any
logical connection function f ,

Hist(P ) ∈ H~α ⇔ r~q,~d(P ) = ~α and

π ∈ H~α,≤0 ⇔ ~α is a refinement of π.

Let ~ω~̀ be the corresponding type of vote when the vote on premises is ~̀. Mathematically,
~ω~̀ ∈ V and ~ω~̀(~̀) = 1. For all i ∈ [p + 1], the characterization vector ~ci can be written as,

~ci = (qi − 1) ·
(∑

~̀∈Ωi
~ω~̀

)
+ qi

(∑
~̀/∈Ωi

~ω~̀

)
. Then,

~cTi · Hist(P ) = ~cTi ·

∑
~̀

Hist(P )(~̀) · ~ω~̀


= (qi − 1) ·

∑
~̀∈Ωi

Hist(P )(~̀)

+ qi

∑
~̀/∈Ωi

Hist(P )(~̀)


= n · qi −

∑
~̀∈Ωi

Hist(P )(~̀)

︸ ︷︷ ︸
number of votes for ωi = 1

.

According to the definition of quota rule, we know that,

~cTi · Hist(P ) ≤ di − 1 ⇔ r~q,~d(P )(i) = 1 and

−~cTi · Hist(P ) ≤ −di ⇔ r~q,~d(P )(i) = 0

Then, the first part of Statement 4 follows by the definition of H~α. Follow similar procedure as
above, we have,

~cTi · π = qi −
∑
~̀∈Ωi

π(~̀)

Thus, for any distribution π over V ,

~cTi · π ≤ 0 ⇔ ∃ ~α ∈ Eπ such that ~α(i) = 1 and

−~cTi · π ≤ 0 ⇔ ∃ ~α ∈ Eπ such that ~α(i) = 0

Then, the second part of Statement 4 follows by the definition ofH~α,≤0. �

Smoothed likelihood of Polyhedra. For any distribution π over V and any n ∈ Z 0, the active
dimension ofH is formally defined as: dimH,n(π) ,{

dim(H≤0) if π ∈ H≤0 and ∃P ∈ Vn such that Hist(P ) ∈ H
−∞ otherwise .

We say a polyhedra is active (to π at n) if and only if dimH,n(π) 6= −∞. In words, an active
polyhedron requires (1) there exists a profile of n votes, whose histogram is in the polyhedron (2) π
is in the characteristic cone of the polyhedron. In the next lemma, we reveal a relationship between
the active dimensions of polyhedra in C and the smoothed probability of the doctrinal paradox.
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Lemma 5 (Active Dimension→Smoothed Probability, a direct application of Theorem 1 in [Xia,
2020a]). Given any closed and strictly positive set Π of distributions over V , any logical connection
function f : V → {0, 1} and any quota rule r. For any n ∈ Z>0,

D̃P
max

Π,r,f (n) =


0 if C1 is true
exp(−Θ(n)) otherwise, if C2 is true
maxH∈C Θ

(
n(dimH(π)−m)/2

)
otherwise

D̃P
min

Π,r,f (n) =


0 if C1 is true
exp(−Θ(n)) otherwise, if C3 is true
minH∈C Θ

(
n(dimH(π)−m)/2

)
otherwise

,

where C1 is: ∀P ∈ Vn, P is not doctrinal paradox.
C2 is: ∀π ∈ CH(Π) and ∀H ∈ C, dimH(π) = −∞
C3 is: ∃π ∈ CH(Π) and ∀H ∈ C, dimH(π) = −∞.

Note that C1 is the same as κ1 in Theorem 1. By Lemma 3, we know that κ2 (or κ3) is very similar
with C2 (or C3), which says that all (or some) distributions in CH(Π) are “far” from all active
polyhedra of doctrinal paradoxes.

Proof Sketch for Theorem 1. (See Appendix B.1 for full proof) The only gap left between Lemma 5
and Theorem 1 is that the active dimension dimH,n(π) is still unknown. We sketch the proof in the
following two steps:

Step 1: determine dim(H≤0) (the dimensionality of characteristic cones). We first show
that ~c1, · · · ,~cp are linearly independent by contradiction. For any i ∈ [p], we assume that
~ci =

∑
i′ 6=i ai′ · ~ci′ , where ai′ are real valued coefficients. Because ~ci is not a zero vector

and different with any ~ci′ , there must exist a pair of i′1, i
′
2 ∈ [p] \ {i} such that ai′1 6= 0 and

ai′2 6= 0. Let ~ci(`1, `2,~0) to be the coordinate of ~ci corresponds to ωi′1 = `1, ωi′2 = `2 and
all other premises are 0. Because ~ci has the save value in all components that ωi = 0. We
should have ~ci(0, 0,~0) = ~ci(1, 0,~0) = ~ci(1, 1,~0), which is contradict with the observation that
~ci(0, 0,~0)− ~ci(1, 0,~0) = ai′1 6= 0 and ~ci(1, 0,~0)− ~ci(1, 1,~0) = ai′2 6= 0.

Using similar techniques (but the analysis procedure is much more complex), it can be proved
that ~cp+1 is linearly independent with {~c1, · · · ,~cn} when κ4 is not true. Then, by the standard
conclusion on the dimensionality of polyhedra, we know that dim(H≤0) = m for all H ∈ C when
κ4 is false. When κ4 is true, the logical connection can be denoted as either φ ↔ ωi or φ ↔ ¬ωi.
For both cases, we have sign0→−1(αp+1)·~cp+1 = −sign0→−1(αi)·~ci. Thus, the following equation
must hold inH~α,≤0.

~xT ·
(
sign0→−1(αp+1) · ~cp+1

)
= ~xT ·

(
sign0→−1(αi) · ~ci

)
= 0.

Thus, when κ4 is true, dim(H≤0) = m− 1 for allH ∈ C.

Step 2: determine whether the polyhedra is active.
From the proof of Lemma 3, we know that H~α is active if and only if ~α is an effective refinement
of π. Then, we know that none of the polyhedra in C is active if and only if π has no effective
refinements of doctrinal paradoxes. Thus, we know that C2 (and C3) in Lemma 5 is equivalent to
κ2 (and κ3) in Theorem 1. �

5 Experiments
We conduct numerical experiments to verify the results in Theorem 1. The first three experi-
ments (Figure 2) follows the same setting as Example 4, 5, 6 respectively. In Figure 2, DPmax

Π

and DPmin
Π (the blue circles and red stars) represent the estimated max-smoothed likelihood and
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Figure 2: Numerical verification of Theorem 1.

the min-smoothed likelihood of doctrinal paradox. The dot curves illustrate the fittings of the es-
timated smoothed probabilities. The expressions and fitness of all fitting curves are presented in
Appendix C. Recalling the notations used in our definition of D̃P

max

Π,r,f (n), we say ~π ∈ Πn is one
kind of distribution assignment. We run one million (106) independent trials to estimate the proba-
bility of doctrinal paradoxes under each distribution assignment. Then, DPmax

Π (or DPmin
Π ) takes the

maximum (or the minimum) probability of doctrinal paradoxes among all distribution assignments.
It is easy to see that the results are consistent with Theorem 1. For example, Figure 2a shows that
both the max-smoothed likelihood and the min-smoothed likelihood of doctrinal paradox are Θ(1),
which matches the result in Table 3.

Then, we present two experiments under more complex settings. Both experiments uses the
following logical connection, breaking criteria and set of distributions:
Logical connection: conclusion φ = 1 if (ω1, ω2, ω3) ∈ {(0, 0, 0), (0, 1, 0), (1, 1, 0)} and φ = 0
otherwise.
Breaking criteria: ~d = (1, 0, 1, 0).
Set of distributions: Π = {π1, π2}, where π1 = (0.25, 0.25, 0.05, 0.05, 0.05, 0.05, 0.05, 0.25) and
π2 = (0.32, 0.32, 0.008, 0.008, 0.008, 0.32, 0.008, 0.008).
Other settings and the theoretical smoothed likelihoods drawn from Theorem 1 are shown in the
Table 5.

In Figure 3, we present the numerical result for two more complex settings, which matches our
theoretical results.
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Name of setting Majority Quota
Threshold ~q (0.5, 0.5, 0.5, 0.5) (0.2, 0.2, 0.2, 0.2)

D̃P
max

Π,r
~q,~d
,f (n) exp(−Θ(n)) Θ(1)

D̃P
min

Π,r
~q,~d
,f (n) exp(−Θ(n)) exp(−Θ(n))

Table 5: Settings and results for the experiments with three premises
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Figure 3: Numerical verification for the complex setting of three premises.

6 Conclusions and Future Works
This paper provides a highly generic theorem for the likelihood of doctrinal paradox under the natu-
ral framework of smoothed social choice. A direct corollary of our theorem solves an open question
in the field of judgment aggregations: the likelihood of doctrinal paradox under i.i.d. assumptions.
One interesting future direction is to study the likelihood of doctrinal paradox for non-strictly pos-
itive distributions. The smoothed probability of doctrinal paradoxes under more general settings
remains an open question for the field of judgment aggregations.
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Supplementary Material for COMSOC-21 Submission:
The Smoothed Likelihood of Doctrinal Paradox

A Detailed Settings for Section 2 (Preliminary)

A.1 Vectorized indexing for votes or histogram

We fix the judgement of ~ω = ~̀= (`1, · · · , `p) to correspond to the (`1 · · · `p(2) + 1)-th component
of ~v, where `1 · · · `p(2) is the binary number taking `i as the i-th digit. For example, if ωj,1 = 1 and
ωj,2 = 0, we will have ~vj(10(2) + 1) = ~vj(3) = 1 while all other components of ~vj are zero.

A.2 Properties of Quota Rules
The properties of quota rules include :
Anonymity: each pair of agents play interchangeable roles.
Neutrality: each pair of propositions are interchangeable.
Independence: the aggregation of a certain proposition only depends on agents’ judgement on this
proposition.
Monotonicity: adding vote to the current winner will never change the winner

B Missing Proofs

B.1 Full proof for Theorem 1
Theorem 1 (Smoothed Likelihood for Doctrinal Paradox). Given any strictly positive set Π of
distributions over V , any logic function f : V → {0, 1}, and any quota rule r. For any n ∈ Z>0,

D̃P
max

Π,r,f (n) =


0 if κ1 is true
exp(−Θ(n)) otherwise, if κ2 is true
Θ(n−1/2) otherwise, if κ4 is true
Θ(1) otherwise

D̃P
min

Π,r,f (n) =


0 if κ1 is true
exp(−Θ(n)) otherwise, if κ3 is true
Θ(n−1/2) otherwise, if κ4 is true
Θ(1) otherwise

.

Proof. The only gap between Lemma 5 (including Lemma 3) and Theorem 1 is that the active
dimension dimH(π) is still unknown. We sketch the proof in the following two steps:

Step 1: determine dim(H≤0) (the dimensionality of characteristic cones).
Step 1.1: the linear independence of {~c1, · · · ,~cp}. We first show that ~c1, · · · ,~cp are linearly
independent by contradiction. For any i ∈ [p], we assume that ~ci =

∑
i′ 6=i ai′ · ~ci′ , where ai′ are

real valued coefficients. Because ~ci is not a zero vector and different with any ~ci′ , there must exist a
pair of i′1, i

′
2 ∈ [p] \ {i} such that ai′1 6= 0 and ai′2 6= 0. Let ~ci(`1, `2,~0) to be the coordinate of ~ci

corresponds to ωi′1 = `1, ωi′2 = `2 and all other premises are 0. Because ~ci has the same value in all
components that ωi = 0. We should have ~ci(0, 0,~0) = ~ci(1, 0,~0) = ~ci(1, 1,~0), which is contradict
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with the observation that

~ci(0, 0,~0) = ai′1 · qi′1 + ai′2 · qi′2 +
∑

i′ /∈{i′1.i′2}

ai′ · qi′

~ci(1, 0,~0) = ai′1(qi′1 − 1) + ai′2 · qi′2 +
∑

i′ /∈{i′1.i′2}

ai′ · qi′

~ci(1, 1,~0) = ai′1(qi′1 − 1) + ai′2(qi′2 − 1) +
∑

i′ /∈{i′1.i′2}

ai′ · qi′ and thus

~ci(0, 0,~0)− ~ci(1, 0,~0) = ai′1 6= 0

~ci(1, 0,~0)− ~ci(1, 1,~0) = ai′2 6= 0.

Step 1.2: the dimension of H~α when κ4 is true. When κ4 is true, the logical connection can
be denoted as either φ ↔ ωi or φ ↔ ¬ωi. For both cases, we have sign0→−1(αp+1) · ~cp+1 =
−sign0→−1(αi) · ~ci. When κ4 is true, we will have , the following equation must hold inH~α,≤0.

~xT ·
(
sign0→−1(αp+1) · ~cp+1

)
= ~xT ·

(
sign0→−1(αi) · ~ci

)
= 0.

Thus, when κ4 is not true, we draw the conclusion that

∀H ∈ C, dim(H≤0) = m− 1 when κ4 is true.

Step 1.3: the dimension of H~α when κ4 is not true. We first show the linear independence
between ~cp+1 and {~c1, · · · ,~cp} when κ4 is false. We assume that ~cp+1 =

∑
i′∈[p] ai′ ·~ci′ , where ai′

are real valued coefficients. Because ~cp+1 is not a zero vector and different with any ~ci′ when κ4 is
not true, there must exist a pair of i′1, i

′
2 ∈ [p]\{i} such that ai′1 6= 0 and ai′2 6= 0. Let ~cp+1(`1, `2,~0)

to be the coordinate of ~cp+1 corresponds to ωi′1 = `1, ωi′2 = `2 and all other premises are 0. Thus,
we have the following observations:

~cp+1(0, 0,~0) = ai′1 · qi′1 + ai′2 · qi′2 +
∑

i′ /∈{i′1.i′2}

ai′ · qi′

~cp+1(1, 0,~0) = ai′1(qi′1 − 1) + ai′2 · qi′2 +
∑

i′ /∈{i′1.i′2}

ai′ · qi′

~cp+1(1, 1,~0) = ai′1(qi′1 − 1) + ai′2(qi′2 − 1) +
∑

i′ /∈{i′1.i′2}

ai′ · qi′ and thus

~cp+1(0, 0,~0)− ~cp+1(1, 0,~0) = ai′1 6= 0

~cp+1(1, 0,~0)− ~cp+1(1, 1,~0) = ai′2 6= 0.

(3)

Case 1.3.1: ~cp+1(0, 0,~0) − ~cp+1(1, 1,~0) = ai′1 + ai′2 6= 0. For this case, there must exist at least
three different values in ~ci, which contradict with the fact that ~cp+1 ∈ {qp+1 − 1, qp+1}m.
Case 1.3.2: ~cp+1(0, 0,~0) − ~cp+1(1, 1,~0) = ai′1 + ai′2 = 0. we note that any nonzero value of
ai′1 + ai′2 already results in contradiction according to Case 1.1.1. Then, the above relationship of
ai′1 + ai′2 = 0 must holds for all nonzero ai′s, which implies that there cannot exists more than
three non-zero values for ai′ . Now, the only case left is ~ci = a(~ci′1 − ~ci′2), where a is a nonzero real
number. According to the observations in Inequalities 3, we know that

~cp+1(0, 0,~0) = a(qi′1 − qi′2)

~cp+1(1, 0,~0) = a(qi′1 − qi′2 − 1)

~cp+1(0, 1,~0) = a(qi′1 − qi′2 + 1),
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which says that ~cp+1 has at least three different values and contradict with the fact that ~cp+1 ∈
{qp+1 − 1, qp+1}m.

Thus, when κ4 is not true, we draw the conclusion that

∀H ∈ C, dim(H≤0) = m when κ4 is false.

Step 2: determine whether the polyhedra is active.
Given the first part of Lemma 3, we know that H~α ∩ Vn 6= ∅ is equivalent to the statement of
“∃P ∈ Vn such that r~q,~d(P ) = ~α”. Given the first part of Lemma 3, we know that π ∈ H~α,≤0 is
equivalent to the statement of “~α is a refinement of π”. Combining the above two statements. We
know that polyhedraH~α is active if and only if ~α is an effective refinement of π. Then, we know that
all polyhedra in C is not active if and only if π has no effective refinements of doctrinal paradoxes.
Thus, we know that C2 (and C3) in Lemma 5 is equivalent to κ2 (and κ3) in Theorem 1.

C Additional Numerical Results
In Table 6 - Table 10, we present the expressions of the asymptotic curves under different settings.
Root mean square error (RMSE) and coefficient of determination r2 shows the fitness between the
asymptotic curves and the data points (simulated smoothed probability of doctrinal paradox).

Smoothed Probability Expressions of the asymptotic curves RMSE r2

D̃P
max

Π,r,f (n) 1− 0.82227 · exp(−0.05941 · n) 9.850× 10−3 0.99883398

D̃P
min

Π,r,f (n) 0.25− 0.27476 · exp(−0.18796 · n) 8.337× 10−4 0.99977090

Table 6: The asymptotic curves in Figure 2a for Example 4

Smoothed Probability Expressions of the asymptotic curves RMSE r2

D̃P
max

Π,r,f (n) 0.13362 · exp(−0.08309 · n) 5.639× 10−3 0.93938840

D̃P
min

Π,r,f (n) 0.02376 · exp(−0.20700 · n) 1.106× 10−4 0.99934099

Table 7: The asymptotic curves in Figure 2b for Example 5

Smoothed Probability Expressions of the asymptotic curves RMSE r2

D̃P
max

Π,r,f (n) when n is even 0.96124 · (n+ 0.12519)
−1/2

3.501× 10−3 0.99949065

D̃P
min

Π,r,f (n) when n is even 0.65588 · exp(−0.64539 · n) 7.508× 10−4 0.99989252

Table 8: The asymptotic curves in Figure 2c for Example 6
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Smoothed Probability Expressions of the asymptotic curves RMSE r2

DPmax
Π (n,Q, f) 0.43009 · exp(−0.02498 · n) 9.830× 10−3 0.99884028

DPmin
Π (n,Q, f) 0.49672 · exp(−0.06166 · n) 9.060× 10−3 0.99567084

Table 9: The asymptotic curves in Figure 3a for the majority setting of three premises

Smoothed Probability Expressions of the asymptotic curves RMSE r2

DPmax
Π (n,Q, f) 1− 0.49443 · exp(−0.0758 · n) 5.677× 10−3 0.99480574

DPmin
Π (n,Q, f) 0.29644 · exp(−0.13092 · n) 4.528× 10−4 0.99970318

Table 10: The asymptotic curves in Figure 3b for the quota setting of three premises
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