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Abstract

We consider the problem of locating a facility to serve a set of agents located along a line.
The Nash welfare objective function, defined as the product of the agents’ utilities, is known
to provide a compromise between fairness and efficiency in resource allocation problems. We
apply this welfare notion to the facility location problem, converting individual costs to utilities
and analyzing the facility placement that maximizes the Nash welfare. We give a polynomial-
time approximation algorithm to compute this facility location, and prove results suggesting
that it achieves a good balance of fairness and efficiency. Finally, we take a mechanism design
perspective and propose a strategy-proof mechanism with a bounded approximation ratio for
Nash welfare.

1 Introduction
In the facility location problem, we are tasked with placing a facility in an optimal location along a
line to serve a set of agents. Each agent incurs a cost proportional to their distance from the facility,
and we can also interpret this as a case of single-peaked preferences. The facility location problem
generalizes to many real-life problems. Some geographical examples include the placement of a
public facility along a long street [Miyagawa, 2001], or the placement of a wastewater plant along
a river. Another example could have an agent’s location along the line indicating their position on
the political spectrum, and the facility placement could be the choice of representative that most
optimally reflects the opinions of the agents [Feldman et al., 2016]. This problem can also be
extended to graphs, and applied to finding an optimal router placement on a network [Gao, 2012].

In our approach to this problem, we convert the individual costs to utilities, and analyse the
facility location placement which maximizes the product of these utilities, also known as the Nash
welfare. We remark that the use of utilities allows us to quantify how little or how much each agent
benefits from the facility placement. Denoting the mechanism that outputs the facility location
maximizing Nash welfare as NASHFL, we aim to address questions relating to its computation and
its approximation of fairness and efficiency objectives. We also investigate the trade-off between
strategy-proofness and maximizing Nash welfare.

We first approach this idea from a computational perspective. We find that the NASHFL output
can take an irrational form and hence cannot be represented by the rationals. Hence we explore the
approximation of the optimal Nash solution.

In many areas of social choice, the solution maximizing fairness often sacrifices efficiency, and
vice versa. Consequently, researchers have turned to the solution maximizing the Nash welfare,
often considered to be an intermediary objective function providing a compromise between fairness
and efficiency measures. By analyzing how well the optimal Nash solution approximates egalitarian
and utilitarian objectives in the worst case, we determine whether the fairness-efficiency tradeoff is
retained in the facility location problem. We also investigate which fairness axioms are met by the
Nash solution.

Finally, we look at the strategic aspects of the problem, considering the context where the agents’
locations are private information, and that they may strategically misreport their location to attain
a higher utility. Strategy-proof mechanisms, which make it optimal for agents to report truthfully,
are used to discourage such strategic behaviour. We investigate how well the Nash welfare can be
approximated by a strategy-proof mechanism, and examine the properties of one such mechanism
with a bounded approximation ratio.



Contributions In this work, we are the first to provide an analysis of the facility location maxi-
mizing the Nash welfare. By proving that the exact facility location cannot always be represented
by the rationals, we show that it suffices to use an approximation algorithm, and subsequently give a
polynomial-time algorithm that computes this facility location within a specified additive error. We
then show that unlike the Midpoint or the Median solution, the Nash solution satisfies Unanimous
Fair Share, a fairness property that guarantees a proportional amount of utility for each coalition of
agents at the same location. We also prove approximation ratio guarantees of egalitarian, utilitarian
and Nash objectives by certain facility location mechanisms; Table 1 summarizes these findings.
Lastly, we restrict to strategy-proof mechanisms and prove a somewhat negative result: no strategy-
proof mechanism can provide a constant factor approximation of the optimal Nash welfare. Nev-
ertheless, we also give a strategy-proof mechanism with a bounded approximation ratio for Nash
welfare. Due to space restrictions, theorems and lemmas lacking proofs are proved in the appendix.

OptEgal OptUtil OptNash

Midpoint 1 2− 2
n O(2n)

Median∗ ∞ 1 ∞
NashFL n

2 [1.2,2] 1
MidOrNearest∗ 3

2 2− 2
n 2n−2

Table 1: Worst-case approximation ratio guarantees of social welfare properties by specific solu-
tions. ∗ indicates that the mechanism is strategy-proof. All approximation ratio bounds are tight
except those in bold.

2 Related Work
The facility location problem has been widely researched in mathematics for centuries, appearing
as early as 1643 as the Fermat-Torricelli problem [de Fermat, 1891]. In recent decades, it has
been applied to operations research from an optimization perspective, with a focus on minimizing
transport costs. An overview of approaches and results can be found in [Hekmatfar, 2009] and
[Melo et al., 2009]. Many variations of the problem have been studied in the literature, such as
the analysis of capacity-constrained facilities [Wu et al., 2006] and the consideration of distant
agents [Charikar et al., 2001]. A review of research surrounding facility location models when
there is uncertainty is given by Snyder [2006]. When dealing with agents that arrive in an online
fashion, randomized algorithms can be used to maintain a set of facilities [Meyerson, 2001]. Many
variants of the facility location problem are known to be NP-Hard, and hence there has been much
research on approximation algorithms, such as those proposed in [Shmoys et al., 1997]. These
approximations have gradually improved over the years, and been approached in differing angles
[Chudak and Williamson, 1999; Guha and Khuller, 1999; Charikar and Guha, 2005].

In recent years, there has been much research on facility location mechanisms satisfying
strategy-proofness, building off the analyses of single-peaked preferences by papers such as Moulin
[1980]; Border and Jordan [1983]. Research specific to strategy-proof facility location mechanisms
has been initiated by Procaccia and Tennenholtz [2013], where they give approximation ratio bounds
for deterministic and randomized mechanisms, under the key objectives of social cost and maximum
cost. Many variations of this area of study have been considered, such as the algorithmic and mech-
anism design approaches to capacitated facilities [Aziz et al., 2020b,a], the inclusion of externalities
[Li et al., 2019] and the analysis of weighted agents [Zhang and Li, 2014]. The facility location game
has also been applied to activity scheduling [Xu et al., 2020], in which the activities are denoted by



facilities taking up a bounded interval on a timeline.
The idea of converting costs to utilities in the facility location problem was proposed by Moulin

[2003], and it has since been used in various forms. While Moulin defines agent utilities as 1− cost,
which has also been used in [Aziz et al., 2020b], [Mei et al., 2019] scale an agent’s ‘satisfaction’ to 0
when the facility is as far as possible from the agent, and 1 when the facility is at the agent’s location.
While both settings restrict the interval to [0, 1], an agent at location 1

2 with the facility placed at 0
has 1

2 utility under our definition yet 0 satisfaction. Their paper also discusses the obnoxious facility
location game, introduced by Cheng et al. [2011], in which agents desire to be as far away from the
facility as possible. The authors later extended their analysis from paths to networks, and formally
defined utility in this setting as an agent’s distance from the nearest facility [Cheng et al., 2013].

Our work is not the first to examine objectives differing from social cost and maximum cost: the
least squares objective in both line and tree networks is discussed in [Feldman and Wilf, 2013]. Con-
trasting with this convex objective function, [Fotakis and Tzamos, 2016] presents a group strategy-
proof, randomized mechanism for multiple facilities which achieves a bounded approximation ratio
for any concave cost function. The Nash welfare objective differs from these cases as it is neither
concave nor convex.

The idea of maximizing the product of utilities originates in the analysis of the bargaining prob-
lem in [Nash, 1950]. The Nash welfare objective function has since been used in several areas of the
social choice literature to find a reasonable compromise between fairness and efficiency. In the fair
allocation of divisible goods, the allocations maximizing Nash social welfare coincide with those
resulting from the competitive equilibrium from equal incomes (CEEI) solution, and therefore sat-
isfy envy-freeness and Pareto optimality [Arrow and Intriligator, 1993]. When allocating indivisible
goods, the Nash solution retains its Pareto optimality and achieves envy freeness up to one good
[Caragiannis et al., 2016]. In [Aziz et al., 2019], a variation of the participatory budgeting model
is discussed, and it is found that the optimal Nash solution is not only ex-ante efficient, but also
satisfies certain fairness guarantees. The Nash welfare has also been proposed as an objective for
the facility location model of ambulance placement [Jagtenberg and Mason, 2020], though in this
work, the Nash welfare is a function of ambulance durations in certain configurations rather than
distances.

3 Preliminaries
In our setting, we have a setN = {1, . . . , n} of n agents. Each agent i ∈ N is at location xi ∈ [0, 1].
We define the agent location profile as the vector x = (x1, . . . , xn), and we assume the locations
are ordered such that x1 ≤ · · · ≤ xn. The agents are served by a single facility. This facility is
placed by a deterministic mechanism, which is a function f : [0, 1]n → [0, 1] that takes the location
profile x and outputs a location for the facility. Under facility location y, agent i ∈ N incurs cost
c(y, xi) = |y − xi| and has utility u(y, xi) := 1− c(y, xi).

Given an agent location profile x and facility location y, the utilitarian social welfare of a mech-
anism is the sum of the agents’ utilities: USW (y,x) :=

∑
i u(y, xi), and the egalitarian social

welfare of a mechanism is the minimum utility achieved by an agent: ESW (y,x) := mini u(y, xi).
Finally, we define the Nash welfare of a mechanism as the product of the agent utilities:

Nash(y,x) :=
∏
i u(y, xi). In this paper, we are primarily interested the mechanism which

places the facility such that Nash welfare is maximized. We will define this mechanism as
NASHFL(x) := arg maxy∈[0,1]

∏
i u(y, xi).

4 The Nash Solution: Structural Properties and Computation
In [Moulin, 2003], Moulin discusses locating a facility along a line so as to maximize Nash welfare.
He observes that “this optimum is neither easy to compute nor to interpret.” We demonstrate that



the optimum can take an irrational form.
For 2 agents, the facility location optimizing Nash welfare is simply the midpoint of the two

agents, so rational agent locations imply a rational facility location. However, for 3 agents, the Nash
welfare becomes a cubic polynomial. The derivative is therefore a quadratic polynomial, so it is
intuitive that an irrational facility location can arise from rational agent locations. Below, we find an
exact, analytical solution for the OPTNASH output when there are exactly 3 agents.

Lemma 1. Suppose there are 3 agents at locations x1, x2 and x3. Let c = 1− x22 + x1x2 + x2x3−
x1x3. If 2x1 − 2x2 + c ≥ 0 and 2x2 − 2x3 + c ≥ 0, then NASHFL places the facility at agent x2.
If 2x1 − 2x2 + c ≥ 0 and 2x2 − 2x3 + c < 0, then NASHFL places the facility at location

(1 + α)−
√

(1 + α)2 − 3(2x3 − β)

3
,

whilst if 2x1 − 2x2 + c < 0 and 2x2 − 2x3 + c ≥ 0, then NASHFL places the facility at location

(−1 + α) +
√

(−1 + α)2 + 3(2x1 + β)

3
,

where α = x1 + x2 + x3 and β = 1− x1x2 − x2x3 − x1x3.

Theorem 1. There exists a profile of rational agent locations such that NASHFL places a facility at
an irrational location.

Proof. Suppose we have 3 agents at locations x1 = 1
7 , x2 = 2

7 and x3 = 6
7 . By substituting

these values into Lemma 1, we find that the optimal facility location maximizing Nash welfare is at
16−
√
91

21 , which is irrational.

A consequence of this result is that the exact solution cannot always be represented by the ra-
tionals, so when computing the NASHFL solution, it can suffice to use an approximation algorithm.
Next, we give an algorithm that computes an approximate solution in polynomial time.

Theorem 2. The solution with the maximum Nash welfare can be computed within additive error
of ε > 0 in time that is polynomial in the input and 1/ε.

Proof. We consider at most n− 1 different cases corresponding to the segments [xj , xj+1] between
two reported consecutive agent locations. Within this interval, we can approximately compute the
point that maximizes the Nash social welfare as follows. The utility of each agent i is ui = 1 −
(xi−y) or 1−(y−xi) depending on whether xi is right of xj+1 or left of xj . Therefore, each agent
utility can be captured by linear inequalities. The objective is max

∏
i∈N ui = min−

∑
i∈N log ui.

If we restrict the facility’s location to the interval [xj , xj+1], the optimal location in the interval
is the solution to the following program.

min−
∑
i∈N

log ui

ui = 1− (xi − y) if xi ≥ xj+1

ui = 1− (y − xi) if xi ≤ xj
y ≥ xj
y ≤ xj+1

We need to solve the above program for each of at most n− 1 intervals:

[x1, x2], . . . , [xn−1, xn].



Next, we show that for one interval, the optimization can be done almost optimally in time that is
polynomial in the input and 1/ε where ε > 0 is the additive error.

In page 899 of [Vazirani, 2012] a program (1) is defined which by substituting functions fi’s we
get the program we need to solve for a particular segment. The program can be approximately solved
if there exists a separation oracle and if the program is indeed feasible. The program is feasible for
every interval we consider as the interval does not consist of one point so there exists a point in the
interval in which the utility of each agent is strictly positive. Also note that the separation oracle in
our case is simply testing the linear constraint in the program which can be easily checked. Hence,
the theorem follows.

Next, we give some general results regarding the Nash welfare as a function of the facility loca-
tion. We first note that the Nash welfare is neither a concave nor a convex function, distinguishing it
from previous work on concave/convex objective functions. Despite this, the Nash welfare is single-
peaked as a function of the facility location. In other words, there is a unique facility placement that
maximizes the Nash welfare, and the Nash welfare decreases as the facility location moves away
from this optimum.

Theorem 3. The Nash welfare as a function of the facility location is single-peaked.

We now show that this Nash welfare optimum is location-invariant, meaning that if each agent’s
location shifts by the same distance in a certain direction, the NASHFL output also shifts by that
distance in the same direction.

Lemma 2. NASHFL is location-invariant.

This result allows us to simplify our proofs by setting x1 = 0 without loss of generality. Our
next result in this section shows that if an agent’s location is shifted in one direction, the NASHFL
output does not shift in the other direction: it either remains in the same location or shifts in the
same direction as the agent.

Lemma 3. Suppose we have an agent location profile x = (x1, . . . , xn). If an agent’s location xi
is shifted left by some c ∈ (0, xi], then under the new agent location profile x′ = (x1, . . . , xi −
c, . . . , xn), NASHFL(x′) ≤ NASHFL(x).

We also note that by symmetry, if an agent’s location is shifted to the right, the optimal Nash
facility location does not shift to the left. Using this result, we can prove that if a subset of the agents
change locations, the facility location does not shift more than the agent with the greatest change in
location.

Lemma 4. Suppose we have two different agent location profiles x = (x1, . . . , xn) and x′ =
(x′1, . . . , x

′
n). The following inequality holds:

|NASHFL(x)− NASHFL(x′)| ≤ max
i∈N
|xi − x′i|.

Lastly, we find the exact analytical solution for NASHFL in the restricted case where agents can
only take two distinct locations.

Lemma 5. Let there be k agents at location x (where 0 < x ≤ 1) and n− k agents at location 0. If
k
n ≥

1
2−x , then NASHFL places the facility at x. If kn ≤

1−x
2−x , then NASHFL places the facility at 0.

If neither of these inequalities hold, then NASHFL places the facility at x− 1 + 2k−kx
n .

Corollary 1. For all x ∈ (0, 1), there exists some n and k ∈ {1, . . . , n − 1} such that NASHFL
places the facility at location 0 or location x.



5 Approximation of Welfare Measures
In this section, we primarily examine the worst case ratio between the optimal welfare value and the
welfare value resulting from the NASHFL facility placement. We then make a further comparison by
examining how well other mechanisms approximate the Nash welfare. We first define the following
mechanisms:

• MID is the midpoint mechanism which maximizes egalitarian social welfare,

• MED is the median mechanism which maximizes utilitarian social welfare.

Specifically, MID(x) = x1+xn

2 . If there are an even number of agents, MED places the facility at
the leftmost point of the optimal interval.

Definition 1. For egalitarian, utilitarian and Nash social welfare, we define the approximation ratio
as the maximum ratio between the optimal welfare and the welfare from the facility location, over
all possible agent location profiles.

max
x∈[0,1]n

ESW (MID(x),x)

ESW (f(x),x)
, max
x∈[0,1]n

USW (MED(x),x)

USW (f(x),x)
,

max
x∈[0,1]n

Nash(NASHFL(x),x)

Nash(f(x),x)
.

5.1 Egalitarian Social Welfare
The egalitarian social welfare, or minimum utility attained by an agent, is a leximin measure of
fairness analogous to the agents’ maximum cost which is commonly used in the literature. We prove
that NASHFL achieves a linear approximation ratio for egalitarian social welfare, and then make a
comparison with the MED mechanism.

Theorem 4. NASHFL n
2 -approximates the egalitarian social welfare.

Proof. Due to the location invariance of both NASHFL and MID, it suffices to only consider agent
location profiles where x1 is at location 0 and xn is at some x ∈ (0, 1]. Under these location profiles,
MID always places the facility at x2 , so the location profile satisfying

max
x∈[0,1]n

ESW (MID(x),x)

ESW (NASHFL(x),x)

maximizes the distance between the optimal Nash facility location and x
2 . From Lemma 3, this is

achieved by having n − 1 agents at 0 and 1 agent at x, or vice versa. Due to symmetry, we simply
consider the former location profile.

We now upper bound the approximation ratio for two cases of x.
Case 1 (x ≤ n−2

n−1 ):
From Lemma 5, if 1

n ≤
1−x
2−x , then the optimal Nash facility location is at 0. Rearranging this, we

have x ≤ n−2
n−1 . An optimal Nash facility location of 0 corresponds to an egalitarian social welfare of

1− x, whilst a facility location of x2 corresponds to the egalitarian social welfare of 2−x
2 . Dividing

these terms, we have the approximation ratio of 2−x
2(1−x) . This ratio increases as x increases, so under

the constraint of x ≤ n−2
n−1 , we substitute x = n−2

n−1 to attain the maximum ratio of n2 .
Case 2 (x > n−2

n−1 ):
From Lemma 5, the optimal Nash facility location in this case is x − 1 + 2−x

n . This corresponds
to an egalitarian social welfare of 1 − [x − (x − 1 + 2−x

n )] = 2−x
n , whilst the optimal egalitarian



social welfare is 2−x
2 . Dividing these terms, we have the ratio of n2 . By exhaustion of cases, we have

shown that no agent location profile can lead to an approximation ratio greater than n
2 .

The case analysis has also shown that there exists an agent location profile that leads to a ratio of
n
2 , implying that the approximation ratio is at least n2 . The approximation ratio is therefore exactly
n
2 .

In contrast, the MED mechanism has an unbounded approximation ratio for egalitarian social
welfare, as it permits a case where at least one agent has 0 utility (2 agents at 0, 1 agent at 1).

5.2 Utilitarian Social Welfare
The utilitarian social welfare, or total utility achieved by the agents, is a commonly-used measure
of efficiency. We prove that NASHFL achieves a constant approximation ratio for utilitarian social
welfare, and then make a comparison with the MID mechanism.

Lemma 6. NASHFL has an approximation ratio of at least
√
2+1
2 ≈ 1.2 for utilitarian social welfare.

Proof. Suppose we have n − k agents at 0 and k agents at 1, and without loss of generality that
n − k ≥ k. The optimal median mechanism places the facility at 0, resulting in a utilitarian social
welfare of n − k. From Lemma 5, NASHFL places the facility at kn , resulting in a utilitarian social

welfare of k2+(n−k)2
n . The ratio between the utilitarian social welfare of the optimal solution and

the NASHFL solution in this restricted domain is

USW (MED(x),x)

USW (NASHFL(x),x)
=

n(n− k)

k2 + (n− k)2

=
n2 − kn

2k2 + n2 − 2kn

=
1− r

2r2 − 2r + 1
,

where r = k
n . By taking derivatives, we note that this ratio is maximized when r = 2−

√
2

2 , taking a
value of

√
2+1
2 .

Lemma 7. NASHFL guarantees a utilitarian social welfare of at least n2 .

Proof. To prove this lemma, we show that a series of transformations, each with a non-positive net
gain to total utility, can be applied to any arbitrary location profile to construct the location profile
(0, . . . , 0︸ ︷︷ ︸
bn2 c

, 1, . . . , 1︸ ︷︷ ︸
dn2 e

), which has at least n2 total utility under the NASHFL mechanism.

We first start with location profile x0 = (x1, . . . , xn). Let k be the number of agents to the left
of the facility1, and let n − k be the number of agents to the right of the facility. Without loss of
generality, suppose that n − k ≥ k. The first transformation shifts the k agents to the left of the
facility to location 0, resulting in location profile x1 = (0, . . . , 0︸ ︷︷ ︸

k

, xk+1, . . . , xn). Let ∆y be the

change in facility location as a result of this transformation. By Lemma 3, we have ∆y ≤ 0. The
net change in total utility is −

∑k
i=1 xi + ∆y((n − k) − k) ≤ 0, the first term representing the

change in utility of agents x1, . . . , xk from their movements, and the second term representing the
change in utility of all the agents from the facility movement. Therefore this transformation results
in non-positive net change in total utility.

1If an agent is at the same location as the facility, we will say it is to the left of the facility.



In this step, we start with location profile x1 = (0, . . . , 0︸ ︷︷ ︸
k

, xk+1, . . . , xn). If k = bn2 c, this

step can be skipped. Suppose that k < bn2 c. We first prove that NASHFL(x1) ≥ xk+1

2 . It is
easy to deduce that under a location profile with n

2 agents at 0 and n
2 agents at xk+1 ∈ (0, 1],

NASHFL places the facility at xk+1

2 . Now since k < bn2 c, we can transform this location profile
to x1 without shifting any agents to the left. By Lemma 3, we have NASHFL(x1) ≥ xk+1

2 . We
now transform x1 by shifting the agent at xk+1 to 0. Let y = NASHFL(x1) and ∆y ≤ 0 be
the change in facility location as a result of this transformation. The net change in total utility is
[(xk+1 − y) − (y − 0)] + ∆y((n − k − 1) − (k + 1)) ≤ 0. The first term is non-positive as
y ≥ xk+1

2 , and the second term is non-positive as k + 1 ≤ bn2 c. We continue to iteratively shift the
left-most agent locations of xk+1, . . . , xn to location 0 until there are bn2 c agents at 0, forming the
agent location profile x2 = (0, . . . , 0︸ ︷︷ ︸

bn2 c

, xdn2 e, . . . , xn). The same argument can be applied to show

that each of these transformations have non-positive change in total utility.
Finally, we transform agent location profile x2 = (0, . . . , 0︸ ︷︷ ︸

bn2 c

, xdn2 e, . . . , xn) to the profile

(0, . . . , 0︸ ︷︷ ︸
bn2 c

, 1, . . . , 1︸ ︷︷ ︸
dn2 e

) by shifting the agents at xdn2 e, . . . , xn to location 1. Again, let ∆y be the change

in facility location. By Lemma 4, we have ∆y ≤ maxi∈{dn2 e,...,n} |xi− 1|. Hence the net change in
total utility is

∑n
i=dn2 e

(xi − 1) + ∆y(dn2 e − b
n
2 c) ≤ 0.

Now if n is even, NASHFL(0, . . . , 0︸ ︷︷ ︸
n
2

, 1, . . . , 1︸ ︷︷ ︸
n
2

) = 1
2 , resulting in n

2 total utility. If n is odd,

NASHFL(0, . . . , 0︸ ︷︷ ︸
n−1
2

, 1, . . . , 1︸ ︷︷ ︸
n+1
2

) = n+1
2n , resulting in n2+1

2n total utility. We have shown that a sequence

of transformations with non-positive change in total utility can be applied to any agent location
profile to construct a location profile with at least n2 total utility. Therefore the NASHFL solution
guarantees a total utility of at least n2 .

Theorem 5. NASHFL has an approximation ratio of at most 2 for utilitarian social welfare.

Proof. Let y be the solution of the NASHFL mechanism, and yMED be the solution of the median
mechanism. Also suppose that x1 = 0 and xn = x, where x ∈ (0, 1]. The approximation ratio for
utilitarian social welfare is

max
x∈[0,1]n

USW (MED(x),x)

USW (NASHFL(x),x)
= max

x∈[0,1]n
n−

∑n
i=1 |xi − yMED|

n−
∑n
i=1 |xi − y|

.

The utilitarian welfare corresponding to yMED is at most n, and from Lemma 7, we have n −∑n
i=1 |xi − y| ≥

n
2 . Therefore, the approximation ratio is at most 2.

We now turn to the MID mechanism, showing that it also attains a constant approximation ratio.

Theorem 6. MID has an approximation ratio for utilitarian social welfare of 2− 2
n .

This approximation ratio asymptotically matches the NASHFL mechanism’s upper bound proven
in Theorem 5, meaning that in the asymptotic case, NASHFL approximates the utilitarian social
welfare at least as well as MID.

It may seem intuitive to prove Theorem 5 by first showing that the NASHFL output lies between
MID and MED. However, this is not always the case.

Example 1. The NASHFL facility location does not always lie between the midpoint and the median
locations. Consider the location profile with k agents at 0, k agents at 0.5 and 1 agent at 1. For
k = 1, 2 the NASHFL output is 0.5, but for k = 3 the NASHFL output is approximately 0.446. In
comparison, the midpoint and median facility location is 0.5.



5.3 Nash Welfare
In the previous subsections, we have examined the approximation ratios of utilitarian and egalitarian
objective functions for the NASHFL mechanism. To attain a better insight as to how these objectives
affect the Nash welfare, we find the approximation ratios that MED and MID have for the Nash
welfare. It is immediately clear that MED has an unbounded approximation ratio for optimal Nash
welfare, as it permits a case where at least one agent has 0 utility. We now show that the MID
mechanism has an exponential approximation ratio for optimal Nash welfare.

Lemma 8. MID has an approximation ratio for Nash welfare of at least 2n

n

(
n−1
n

)n−1
.

Proof. Suppose there are n − 1 agents at 0 and 1 agent at 1. NASHFL places a facility at 1
n ,

resulting in a Nash welfare of (n−1)n−1

nn . MID places a facility at 1
2 , resulting in a Nash welfare of

1
2n . Dividing these terms, we obtain the ratio 2n

n

(
n−1
n

)n−1
.

Theorem 7. MID has an approximation ratio for Nash welfare of O(2n).

Proof. Let yMID be the facility location resulting from MID and y be the NASHFL facility location.
Since each agent can have at most 1 utility, we have Nash(y;x) ≤ 1. Under MID, each agent is
guaranteed at least 1

2 utility, so we have Nash(yMID;x) ≥ 1
2n . Dividing these terms gives the

approximation ratio upper bound of 2n. Combining this with Lemma 8, we have the approximation
ratio of O(2n).

6 Fairness of the Nash Solution
In this section, we examine some fairness properties. It would be unfair if a mechanism provided lit-
tle or no utility to a subset of agents, so we may want to ensure that the facility placement guarantees
a reasonable amount of utility to each agent. As a pathological example, if we have k + 1 agents at
0 and k agents at 1, then the MED mechanism places the facility at 0, resulting in nearly half of the
agents having 0 utility and not benefiting from the facility at all. We therefore introduce Individual
Fair Share, a fairness measure discussed in participatory budgeting problems [Aziz et al., 2019].

Definition 2. A facility location mechanism satisfies Individual Fair Share if each agent is guaran-
teed at least 1

n utility.

Now consider the edge example where we have n − 1 agents at 0 and 1 agent at 1. If we
apply the MID mechanism and place the facility at 1

2 , then the agents at 0 may be upset that their
potential utility has been significantly affected by a single agent at a distant location. We may
therefore want to use a mechanism that provides a proportional level of utility for each coalition of
agents at the same location. We hence define Unanimous Fair Share, a fairness property used in
the context of participatory budgeting [Aziz et al., 2019]. In that context, if k agents have identical
preferences, they should be guaranteed at least kn of the total utility. It is therefore a stronger notion
than Individual Fair Share. We define the property similarly below.

Definition 3. A facility location mechanism f satisfies Unanimous Fair Share if for each location
profile x and each subset of agents S at the same location, u(f(x), xi) ≥ |S|n for all i ∈ S.

Since the median rule allows cases where an agent can have 0 utility, it does not satisfy Unani-
mous Fair Share, let alone Individual Fair Share.

In [Aziz et al., 2019], it is proven that the Max Nash Product rule satisfies Unanimous Fair Share
in the context of participatory budgeting. Below, we show that in the facility location problem, the
NASHFL mechanism satisfies Unanimous Fair Share.

Theorem 8. NASHFL satisfies Unanimous Fair Share.



Proof. The case where all n agents are at the same location is trivial, as NASHFL places the facility
at this location, resulting in each agent receiving a utility of 1.

Suppose there are n agents, and that k ∈ {1, . . . , n−1} agents are at the same location x ∈ [0, 1].
Let S be the set of these k agents. From Lemma 3, we know that NASHFL is monotonic with
respect to the agent locations. Therefore to minimize the utility of the agents at x, we maximize
their distance from the facility by placing the remaining n − k agents at either 0 or 1, whichever is
furthest from x. Without loss of generality we consider the former case. Lemma 5 gives the three
subcases.

If k
n ≥

1
2−x , then NASHFL places the facility at x, which gives 1 utility to all agents in S.

If k
n ≤

1−x
2−x , then NASHFL places the facility at 0, resulting in each agent in S receiving 1 − x

utility. By rearranging the equality, we have 1− x ≥ (2− x) kn and hence UFS holds.
If neither of those inequalities hold, NASHFL places the facility at x − 1 + 2k−kx

n , resulting in
each agent in S receiving 1− [x− (x− 1 + k

n (2− x))] = (2− x)( kn ) utility. Therefore UFS holds
for all subcases.

As previously explained, although the midpoint rule surpasses NASHFL in terms of maximizing
the minimum utility, we find that it fails to satisfy the notion of Unanimous Fair Share. We write the
proof formally below.

Proposition 1. The midpoint rule does not satisfy Unanimous Fair Share.

Proof. Let S be the set of n − 1 agents at location 0, and let there be 1 agent at 1. The midpoint
rule places the facility at 1

2 , resulting in 1
|S|US = 1

2 . The inequality 1
|S|US ≥

|S|
n is therefore not

satisfied for n ≥ 3, as |S|n = n−1
n .

7 Strategic Aspects
Most of our current results revolve around the NASHFL mechanism which places a facility at the lo-
cation maximizing Nash welfare. Although this mechanism achieves certain fairness and efficiency
guarantees, it is not strategy-proof. A mechanism is strategy-proof if no agent can increase their
own utility by misreporting their location. Take the basic example where x1 = 0 and x2 = 0.5.
Since NASHFL(x1, x2) = 1

2 (x1 + x2), agent 2 can misreport x′2 = 1 to have the facility placed at
her location.

Strategy-proof mechanisms are often employed in contexts where strategic behaviour can be
problematic. For example, the MED mechanism is strategy-proof and optimal for utilitarian social
welfare. However, as previously explained, it also has an unbounded approximation ratio for Nash
Welfare. In fact, we find that the Nash welfare cannot be approximated up to a constant factor by
any strategy-proof mechanism.

Theorem 9. No deterministic strategy-proof mechanism provides a constant factor approximation
of the Nash welfare.

Proof. Suppose there exists a strategy-proof mechanism which provides a constant factor approxi-
mation of ρ of the optimal Nash welfare for some ρ ≥ 1, Consider k agents at 0 and k at 1

4 . The
optimal Nash welfare has the facility located at 1

8 and is ( 7
8 )2k. As the facility moves from 1

8 towards
1
4 , the Nash welfare drops reaching ( 3

4 )k when the facility is at 1
4 . This compares to the optimal Nash

welfare of ( 7
8 )2k or ( 49

64 )k, Note that 49
64 is strictly larger than 3

4 so 49
64 is strictly larger than ( 3

4 )k.
With the facility at 1

4 , the approximation ratio of the optimal Nash welfare is ( 7
8 )2k/( 3

4 )k or ( 196
192 )k.

For large enough k, this exceeds ρ. That is, there exists k′ such that for k > k′ we have ( 196
192 )k > ρ

and the facility must be located strictly to the left of 1
4 .



We now consider what happens when the k agents at 1
4 misreport their location as x which

varies smoothly from x = 1
4 to x = 1, The facility must remain to the left of 1

4 as the mechanism is
partially group strategy-proof and a group of agents jointly misreporting their location cannot result
in a better outcome. A mechanism is partially group strategy-proof iff no group of agents at the same
location can individually benefit if they misreport simultaneously. Any strategy proof mechanism
(such as the one we have here by assumption) is also partially group strategy proof (Lemma 2.4 in
[Fotakis and Tzamos, 2014]). When k agents are at 0 and k at 1, the optimal Nash welfare is 1

22k

with the facility located at 1
2 . However, we have argued that with k agents reporting location 0 and k

reporting 1, the facility must be located to the left of 1
4 . This gives a Nash welfare less than 3k

42k
. The

approximation ratio in this situation is then at least 1
22k

. This is, at least ( 4
3 )k. Since 4

3 >
196
192 > 1,

we have ( 4
3 )k > ( 196

192 )k > ρ. That is, the mechanism fails to meet the approximation ratio of ρ.

We can, however, obtain a bounded approximation ratio for Nash welfare by a strategy-proof,
Pareto Optimal and anonymous mechanism as shown below.

The MIDORNEAREST mechanism places the facility at 1
2 if x1 ≤ 1

2 ≤ xn, else it places the
facility at the agent closest to 1

2 . This is also known as the MODERATE mechanism as defined in
[Dragu and Laver, 2019].

Theorem 10. MIDORNEAREST is strategyproof, Pareto optimal, anonymous and has an approxi-
mation ratio of 2n−2 for Nash welfare (n ≥ 3).

Proof. Note that MIDORNEAREST is equivalent to the phantom median mechanism which places
the facility at Median{x1, . . . , xn, p1, . . . , pn−1}, where p1 = · · · = pn−1 = 1

2 . Corollary 2 of
[Massó and De Barreda, 2011] states that phantom median mechanisms satisfy strategyproofness,
Pareto optimality and anonymity. Hence, MIDORNEAREST is strategyproof, Pareto optimal and
anonymous.

To determine the approximation ratio, there are four extreme cases to consider. For each mode
of the mechanism, there is one extreme case (and its symmetry). In the first extreme case, n − 1
agents are at 0 and one is at 1

2 . Suppose the facility is located at x with 0 ≤ x ≤ 1
2 . Then the Nash

welfare is ( 1
2 + x)(1− x)n−1. For n ≥ 3, the optimal Nash welfare of 1

2 is with the facility located
at x = 0. On the other hand, the MIDORNEAREST mechanism locates the facility at x = 1

2 , giving
a Nash welfare of 1

2n . The approximation ratio is therefore 2
n ( 2(n−1)

n )n−1. This equals 2n−2 when
n = 2 and is smaller than 2n−2 when n > 2. There is a symmetric extreme case with n− 1 agents
at 1 and one at 0. The worst case for the approximation ratio is then 2n−2.

Although this mechanism has an exponential approximation ratio for optimal Nash welfare, it
has constant approximation ratio guarantees for both utilitarian and egalitarian social welfares. This
may suggest that the optimal Nash welfare approximation ratio is more sensitive than our other
measures.

Theorem 11. MIDORNEAREST is a (2− 2
n )−approximation of the utilitarian social welfare.

Theorem 12. MIDORNEAREST is a 3
2−approximation of the egalitarian social welfare. No

strategy-proof mechanism has a smaller approximation ratio.

8 Discussion and Future Work
In this paper, we have studied the Nash welfare objective in the facility location problem. When
agent strategic behaviour is not a concern, the NASHFL mechanism is a reasonably balanced option.
It can be approximated up to a specified additive error in polynomial time, and it attains reasonable
bounds and properties of fairness and efficiency. The Nash solution surpasses the median solution
in terms of fairness, and is asymptotically at least as efficient as the midpoint solution in terms of



its utilitarian social welfare approximation ratio. It also satisfies Unanimous Fair Share, a fairness
property that even the midpoint solution does not satisfy. The results are more negative when we
restrict to a strategy-proof mechanism domain: no strategy-proof mechanism can approximate the
Nash welfare up to a constant factor. However, we propose the MIDORNEAREST mechanism, which
is Pareto Optimal, anonymous and has a bounded approximation ratio for optimal Nash welfare. We
also prove that this mechanism meets a linear approximation bound for utilitarian social welfare and
a constant bound for egalitarian social welfare.

There are many extensions for this work. Some natural variations of the problem discussed
by Procaccia and Tennenholtz [2013] are the scenarios with 2 facilities and/or randomized mech-
anisms. The 2-dimensional facility location problem with both Euclidean and Manhattan metrics
could also be considered, such as by Walsh [2020] and Goel and Hann-Caruthers [2020]. We could
also introduce capacity constraints for the setting with multiple facilities, in which each facility has
a maximum number of agents it can serve. We note that for an unbounded number of capacitated
facilities, computing a Nash welfare maximizing solution is NP-hard. This follows directly from the
reduction by Aziz et al. [2020a], where it is shown that it is NP-complete to check whether these
exists a solution in which each agent gets zero cost even when there is no spare capacity in the
capacity-constrained facility location problem. It follows that computing a Nash welfare maximiz-
ing solution is NP-hard. Although NASHFL is not strategy-proof, it may meet a weaker notion of
strategy-proofness, and may be less manipulable than other non-strategy-proof mechanisms, such as
the midpoint mechanism. The question remains whether a strategy-proof mechanism can provide a
linear approximation of the optimal Nash welfare. Finally, we would like to tighten the bound on
the NASHFL mechanism’s approximation ratio for utilitarian social welfare.
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A Proof of Lemma 1
Lemma 1. Suppose there are 3 agents at locations x1, x2 and x3. Let c = 1− x22 + x1x2 + x2x3−
x1x3. If 2x1 − 2x2 + c ≥ 0 and 2x2 − 2x3 + c ≥ 0, then NASHFL places the facility at agent x2.
If 2x1 − 2x2 + c ≥ 0 and 2x2 − 2x3 + c < 0, then NASHFL places the facility at location

(1 + α)−
√

(1 + α)2 − 3(2x3 − β)

3
,

whilst if 2x1 − 2x2 + c < 0 and 2x2 − 2x3 + c ≥ 0, then NASHFL places the facility at location

(−1 + α) +
√

(−1 + α)2 + 3(2x1 + β)

3
,

where α = x1 + x2 + x3 and β = 1− x1x2 − x2x3 − x1x3.

Proof. Let x = (x1, x2, x3) and y = NASHFL(x). Due to Pareto optimality, we must have x1 ≤
y ≤ x3. At facility location y, the Nash welfare is

Nash(y;x) = (1− (y − x1))(1− (x3 − y))(1− |y − x2|).

To find an expression for y in terms of the agent locations such that the Nash welfare is maximized,
we observe the derivative of the Nash welfare with respect to y. We now consider the cases y ≥ x2
and y ≤ x2.
Case 1: (y ≥ x2)
To simplify our expression, we let α = 1 + x1 + x2 + x3 and β = 2x3 − 1 + x1x2 + x2x3 + x1x3.
Expanding the Nash Welfare expression, we have

Nash(y;x) = (1− (y − x1))(1− (x3 − y))(1− (y − x2))

= y3 − αy2 + βy + (1 + x1)(1 + x2)(1− x3).

The derivative of the Nash welfare with respect to y is

dNash(y;x)

dy
= 3y2 − 2αy + β,

and it is equal to zero at

y =
α±

√
α2 − 3β

3
.

Since the y3 coefficient in the Nash cubic polynomial is positive, the local minimum point must lie
to the right of the local maximum point. Therefore the Nash welfare attains its local maximum at

ymax =
α−

√
α2 − 3β

3
.

Recall that we assume that y ≥ x2, so if ymax < x2, then the Nash welfare is maximized at y = x2,
as it is strictly decreasing for x2 < y ≤ 1.

Now

ymax < x2

⇐⇒ α2 − 3β > (1 + x1 − 2x2 + x3)

⇐⇒ 2x2 − 2x3 + 1− x22 + x1x2 + x2x3 − x1x3 > 0,



so if this inequality is satisfied, then the optimum Nash welfare in this case is at y = x2. We
construct a similar argument for the other case:
Case 2: (y ≤ x2)

Again to simplify our expression, we let δ = −1 + x1 + x2 + x3 and γ = 2x1 + 1 − x1x2 −
x2x3 − x1x3. The Nash welfare becomes

Nash(y;x) = (1− (y − x1))(1− (x3 − y))(1− (x2 − y))

= −y3 + δy2 + γy + (1 + x1)(1− x2)(1− x3).

The derivative of the Nash welfare with respect to y is

dNash(y;x)

dy
= −3y2 + 2δy + γ,

and it is equal to zero at

y =
δ ±

√
δ2 + 3γ

3
.

Since the y3 coefficient in the Nash cubic polynomial is negative, the local minimum point must lie
left of the local maximum point. Therefore the Nash welfare attains its local maximum at

ymax =
δ +

√
δ2 + 3γ

3
.

Recall that we assume that y ≤ x2, so if ymax > x2, then the Nash welfare is maximized at y = x2,
as it is strictly increasing for 0 ≤ y < x2.

Now

ymax > x2

⇐⇒ δ2 + 3γ > (1− x1 + 2x2 − x3)

⇐⇒ 2x1 − 2x2 + 1− x22 + x1x2 + x2x3 − x1x3 > 0,

so if this inequality is satisfied, then the optimum Nash welfare in this case is at y = x2. The
theorem statement follows.

B Proof of Theorem 3
Theorem 3. The Nash welfare as a function of the facility location is single-peaked.

Proof. By the Extreme Value Theorem, the Nash welfare must have a local maximum point on [0, 1].
Denote this point as yOPT . Since the Nash welfare is a piecewise non-constant polynomial, there are
no neighbourhoods of points on [0, 1] such that dNash(y;x)dy = 0 for all points in the neighbourhood.
Therefore, yOPT must be a strict local maximum point. Note that we must have x1 ≤ yOPT ≤ xn
due to the Pareto Optimality of NASHFL.

Without loss of generality, suppose that xk ≤ yOPT < xk+1 for some fixed k ∈ {1, . . . , n− 1},
or yOPT = xk for k = n. We now proceed to prove that the Nash welfare is single-peaked by
showing that Nash(y;x) is strictly increasing in [0, yOPT ) and strictly decreasing in (yOPT , 1].
Specifically, we show that dNash(y;x)dy > 0 for y ∈ [0, yOPT )\{x1, . . . , xk} and dNash(y;x)

dy < 0 for
y ∈ (yOPT , 1]\{xk+1, . . . , xn}2.

2The derivative may not exist at points x1, . . . , xn, but Nash(y;x) is continuous and there are countably many points
where the derivative does not exist.



When y ∈ (xk, xk+1), our Nash welfare expression becomes

Nash(y;x) = (1− |y − x1|) . . . (1− |y − xn|)

=

k∏
i=1

(1− y + xi)

n∏
i=k+1

(1 + y − xi).

Since d
dx [
∏n
i=1 fi(x)] = (

∏n
i=1 fi(x))

(∑n
i=1

f ′i(x)
fi(x)

)
, the derivative of this function with re-

spect to y is

dNash(y;x)

dy
= Nash(y;x)

(
−

k∑
i=1

1

1− y + xi
+

n∑
i=k+1

1

1 + y − xi

)
. (1)

Since yOPT is a strict local maximum, there exists ε > 0 such that dNash(y;x)
dy < 0 for

y ∈ (yOPT , yOPT + ε]. The Nash welfare is non-negative, so in the region (yOPT , yOPT + ε],
the sum of fractions is negative. If y1 > y2, 1

1−y1+xi
> 1

1−y2+xi
for i ∈ {1, . . . , k} and

1
1+y1−xi

< 1
1+y2−xi

for i ∈ {k + 1, . . . , n}. We therefore extend the previous interval to
dNash(y;x)

dy < 0 for y ∈ (yOPT , xk+1).
Now consider y ∈ (xk+1, xk+2). The Nash welfare expression changes to

Nash(y;x) =

k+1∏
i=1

(1− y + xi)

n∏
i=k+2

(1 + y − xi),

so the derivative becomes

dNash(y;x)

dy
= Nash(y;x)

(
−
k+1∑
i=1

1

1− y + xi
+

n∑
i=k+2

1

1 + y − xi

)
.

This derivative is negative, as the 1
1+y−xk+1

term has changed to − 1
1−y+xk+1

, and each in-
dividual fraction decreases as y increases. By applying the same argument to the regions
(xk+2, xk+3), . . . , (xn−1, xn), we see that dNash(y;x)dy < 0 for y ∈ (yOPT , xn)\{xk+1, . . . , xn−1}.
Furthermore, dNash(y;x)dy < 0 for y ∈ (xn, 1] as all of the fraction terms in the derivative become
negative.

We now similarly show that dNash(y;x)dy > 0 for y ∈ [0, yOPT )\{x1, . . . , xk}. If yOPT > xk,

we first show that dNash(y;x)dy > 0 for y ∈ (xk, yOPT ) (this is not necessary if yOPT = xk). yOPT
is a strict local maximum, so there exists ε > 0 such that dNash(y;x)dy > 0 for y ∈ [yOPT − ε, yOPT ).
The non-negativity of the Nash welfare implies that the sum of fractions in 1 is positive in this
interval. Note that decreasing y causes the sum of fractions to increase, so we have dNash(y;x)

dy > 0

for y ∈ (xk, yOPT ).
Now when we decrease y to the interval (xk−1, xk), the derivative becomes

dNash(y;x)

dy
= Nash(y;x)

(
−
k−1∑
i=1

1

1− y + xi
+

n∑
i=k

1

1 + y − xi

)
,

which is positive as the − 1
1−y+xk

term changes to 1
1+y−xk

, and the individual fractions increase as
y decreases. The same argument can be applied to regions (xk−2, xk−1), . . . , (x1, x2) to show that
dNash(y;x)

dy > 0 for y ∈ (x1, yOPT )\{x1, . . . , xk}. The derivative is also positive for y ∈ [0, x1)



as all of the fraction terms become positive. Since dNash(y;x)
dy > 0 for y ∈ [0, yOPT )\{x1, . . . , xk}

and dNash(y;x)
dy < 0 for y ∈ (yOPT , 1]\{xk+1, . . . , xn}, the Nash welfare is strictly increasing

for all y ∈ [0, yOPT ) and strictly decreasing for all y ∈ (yOPT , 1]. We conclude that it is single-
peaked.

C Proof of Lemma 2
Lemma 2. NASHFL is location-invariant.

Proof. Suppose we have location profile x = (x1, . . . , xn). The Nash welfare expression for facility
placement y is

Nash(y;x) = (1− |y − x1|)(1− |y − x2|) . . . (1− |y − xn|).

Let x′ = (x1 + c, . . . , xn + c) be the location profile where a constant c ∈ [−x1, 1− xn] has been
added to each agent’s location. The Nash welfare for this location profile is

Nash(y;x′) =

n∏
i=1

(1− |y − xi − c|).

Denote ymax = NASHFL(x). The Nash welfare at facility location ymax + c and agent location
profile x′ is the same as that of facility location ymax in agent location profile x:

Nash(ymax + c;x′) =

n∏
i=1

(1− |ymax + c− xi − c|)

= Nash(ymax;x).

We now prove by contradiction that no other facility location leads to a higher Nash welfare. Sup-
pose that there exists some facility location y′ + c 6= ymax + c such that Nash(y′ + c;x′) >
Nash(ymax + c;x′). We have the following inequality:

Nash(y′;x) =

n∏
i=1

(1− |y′ + c− xi − c|)

= Nash(y′ + c;x′)

> Nash(ymax + c;x′)

= Nash(ymax;x).

This contradicts the assumption that ymax maximizes the Nash welfare for x. Therefore, ymax + c
is the optimal facility location for location profile (x1 + c, . . . , xn + c).

D Proof of Lemma 3
Lemma 3. Suppose we have an agent location profile x = (x1, . . . , xn). If an agent’s loca-
tion xi is shifted left to x′i where x′i < xi, then under the new agent location profile x′ =
(x′1, . . . , x

′
i, . . . , x

′
n) = (x1, . . . , x

′
i, . . . , xn), NASHFL(x′) ≤ NASHFL(x).

Proof. Suppose that xk ≤ NASHFL(x) < xk+1 for some fixed k ∈ {1, . . . , n} (we denote xn+1 =
1)3. To prove this result, we show that the function Nash(y;x′) is strictly decreasing w.r.t. y

3We assume that NASHFL(x) < 1 and ignore the case where NASHFL(x) = 1, as this facility location cannot be shifted
to the right.



in the interval (NASHFL(x), 1]. Specifically, we prove that the derivative dNash(y;x′)
dy < 0 for

y ∈ (NASHFL(x), 1]\{x′k+1, . . . , x
′
n}. This implies that any facility location in that interval cannot

maximize the Nash welfare for agent location profile x′, meaning that NASHFL(x′) ≤ NASHFL(x).
Due to the single-peaked nature of the Nash welfare (as proven in Theorem 3), we have

dNash(y;x)

dy
= Nash(y;x)

(
−

k∑
j=1

1

1− y + xj
+

n∑
j=k+1

1

1 + y − xj

)
< 0

for y ∈ (NASHFL(x), xk+1). Since the Nash welfare must be positive when y ∈ [0, 1], we deduce
that the sum of fractions is negative for y ∈ (NASHFL(x), xk+1).

Now consider the agent location profile x′ = (x′1, . . . , x
′
n) where x′j = xj for j 6= i and x′i < xi.

By taking cases, we show that the derivative of the Nash welfare corresponding to this new location
profile dNash(y;x′)

dy is also negative for y ∈ (NASHFL(x), 1]\{x′k+1, . . . , x
′
n}.

Case 1:
Suppose that after the shift, there are still k agents left of NASHFL(x)4. If xi ≤ NASHFL(x),

we have the following derivative expression

dNash(y;x′)

dy
=Nash(y;x′)

(
− 1

1− y + x′i
−

k∑
j=1
j 6=i

1

1− y + xj
+

n∑
j=k+1

1

1 + y − xj

)
,

and if xi > NASHFL(x), we have

dNash(y;x′)

dy
=Nash(y;x′)

(
−

k∑
j=1

1

1− y + xj
+

n∑
j=k+1
j 6=i

1

1 + y − xj
+

1

1 + y − x′i

)

for y ∈ (NASHFL(x), x′k+1). Recalling that −
∑k
j=1

1
1−y+xj

+
∑n
j=k+1

1
1+y−xj

< 0 for
y ∈ (NASHFL(x), xk+1) and noting that − 1

1−y+x′i
< − 1

1−y+xi
and 1

1+y−x′i
< 1

1+y−xi
, we

deduce that for both cases of xi ≤ NASHFL(x) and xi > NASHFL(x), dNash(y;x′)
dy < 0 for

y ∈ (NASHFL(x), x′k+1)5. Now if we move y to interval (x′k+1, x
′
k+2), the derivative remains

negative as each individual fraction decreases, and the 1
1+y−xk+1

term changes to − 1
1−y+xk+1

.

Applying this argument to regions (x′k+2, x
′
k+3), . . . , (x′n, 1], we see that dNash(y;x′)

dy < 0 for
y ∈ (NASHFL(x), 1]\{x′k+1, . . . , x

′
n}.

Case 2:
Suppose that after the shift there are k+ 1 agents left of NASHFL(x) (as xi > NASHFL(x) and

x′i ≤ NASHFL(x)). As a result, the fractional term corresponding to xi has changed from 1
1+y−xi

to − 1
1−y+x′i

. We therefore have

( n∑
j=k+1
j 6=i

1

1 + y − xj
− 1

1− y + x′i
−

k∑
j=1

1

1− y + xj

)
<

(
−

k∑
j=1

1

1− y + xj
+

n∑
j=k+1

1

1 + y − xj

)

< 0,

4Note NASHFL(x) is defined for x = (x1, . . . , xn) and does not change after the shift.
5Note the length of the interval does not increase as we transition from (NASHFL(x), xk+1) to (NASHFL(x), x′

k+1).



implying that in this case, dNash(y;x′)
dy < 0 for y ∈ (NASHFL(x), x′k+2). Applying

the same argument as in the previous case, we deduce that dNash(y;x′)
dy < 0 for y ∈

(NASHFL(x), 1]\{x′k+2, . . . , x
′
n}.

By exhaustion of cases, we have shown that Nash(y;x′) is strictly decreasing w.r.t y in the
interval (NASHFL(x), 1], implying that NASHFL(x′) /∈ (NASHFL(x), 1].

E Proof of Lemma 4
Lemma 4. Suppose we have two different agent location profiles x = (x1, . . . , xn) and x′ =
(x′1, . . . , x

′
n). The following inequality holds:

|NASHFL(x)− NASHFL(x′)| ≤ max
i∈N
|xi − x′i|.

Proof. Let c = maxi∈N |xi−x′i| and construct the agent location profiles x+c = (x1+c, . . . , xn+c)
and x−c = (x1− c, . . . , xn− c). From Lemma 2, we know that NASHFL(x+c) = NASHFL(x) + c
and NASHFL(x−c) = NASHFL(x)− c. Now for all i ∈ N , xi + c− x′i ≥ 0, so by Theorem 3, we
have

NASHFL(x′) ≤ NASHFL(x+c).

In other words, if we construct location profile x′ from x+c by shifting agents, none of the agents
would be shifted to the right, so by Theorem 3, NASHFL(x′) cannot be right of NASHFL(x+c). By
making a similar argument with x−c, we have

NASHFL(x′) ≥ NASHFL(x−c).

Combining our inequalities, we have

NASHFL(x)− c ≤ NASHFL(x′) ≤ NASHFL(x) + c

=⇒ −c ≤ NASHFL(x′)− NASHFL(x) ≤ c

=⇒ |NASHFL(x)− NASHFL(x′)| ≤ max
i∈N
|xi − x′i|.

F Proof of Lemma 5
Lemma 5. Let there be k agents at location x (where 0 < x ≤ 1) and n− k agents at location 0. If
k
n ≥

1
2−x , then NASHFL places the facility at x. If kn ≤

1−x
2−x , then NASHFL places the facility at 0.

If neither of these inequalities hold, then NASHFL places the facility at x− 1 + 2k−kx
n .

Proof. Let x = (0, . . . , 0︸ ︷︷ ︸
n−k

, x, . . . , x︸ ︷︷ ︸
k

). The Nash welfare is

Nash(y;x) = (1− y)n−k(1− x+ y)k,

so its derivative with respect to facility location y is

dNash(y;x)

dy
= k(1− y)n−k(1− x+ y)k−1 − (n− k)(1− y)n−k−1(1− x+ y)k

= (1− x+ y)k−1(1− y)n−k−1(k(1− y)− (n− k)(1− x+ y)).



We assume that y < 1, as y = 1 leads to a Nash welfare of 0. Now (1−x+y)k−1(1−y)n−k−1 > 0
for all x ∈ (0, 1] and y ∈ [0, 1]. Therefore if k(1− y)− (n− k)(1− x+ y) ≥ 0 for all y ∈ [0, x],
then the Nash welfare is non-decreasing with respect to y, so it attains its maximum at y = x.
We minimize this expression with respect to y by substituting y = x, giving us the inequality
2k − kx− n ≥ 0. This is rearranged to form k

n ≥
1

2−x .
Similarly, if k(1 − y) − (n − k)(1 − x + y) ≤ 0 for all y ∈ [0, x], then the Nash welfare is

non-increasing with respect to y and attains its maximum at y = 0. We maximize this expression
with respect to y by substituting y = 0 to attain the inequality (2k − n) + x(n − k) ≤ 0. This is
rearranged to form k

n ≤
1−x
2−x .

If neither of these inequalities hold, then there exists y in (0, x) such that dNash(y;x)dy = 0. By
rearranging terms in k(1−y)−(n−k)(1−x+y), we see that this occurs when y = x−1+ 2k−kx

n .

G Proof of Theorem 6
Theorem 6. MID has an approximation ratio for utilitarian social welfare of 2− 2

n .

Proof. Suppose that x1 = 0 and xn = x, where x ∈ (0, 1]. From the proof of Theorem 5, we have
the following upper bound on the median solution utilitarian social welfare

n−
n∑
i=1

|yMED − xi| ≤ n− x.

Since xi ∈ [0, x], we also have the following lower bound on the midpoint solution utilitarian social
welfare

n−
n∑
i=1

|x
2
− xi| ≥ n−

nx

2
.

We therefore have
n−

∑n
i=1 |xi − yMED|

n−
∑n
i=1 |xi − y|

≤ 2(n− x)

2n− nx
,

with equality when we have n−1 agents at 0 and 1 agent at x. This fraction also attains a maximum
of 2− 2

n when x = 1. The theorem statement follows.

H Proof of Theorem 11
Theorem 11. MIDORNEAREST is a (2− 2

n )−approximation of the utilitarian social welfare.

Proof. For simplicity, let f denote the MIDORNEAREST mechanism. We first show that any agent
location profile x where all agent locations are strictly above (resp. below) 1

2 can be modified to
form a location profile x′ where x′1 ≤ 1

2 ≤ x′n, without decreasing the (utilitarian) welfare ratio.
Let x be a location profile where all agents are strictly above 1

2 (i.e. x1 > 1
2 ), and let x′ be such

that x′1 = 1
2 and x′i = xi for i ∈ {2, . . . , n}. The optimal welfare decreases by (x1 − 1

2 ), and the
welfare corresponding to f decreases by (n− 1)(x1 − 1

2 ) as the facility under f moves to x′1 = 1
2 .

We therefore have

USW (MED(x′),x′)

USW (f(x′),x′)
=

USW (MED(x),x)− (x1 − 1
2 )

USW (f(x),x)− (n− 1)(x1 − 1
2 )
≥ USW (MED(x),x)

USW (f(x),x)
.

Due to symmetry, this expression also holds when x has all agents strictly below 1
2 .

Now let x′ be an arbitrary location profile where x′1 ≤ 1
2 ≤ x′n. Note that f places the facility

at 1
2 . We show that it can be transformed into a profile where all agents are located at an endpoint,



without decreasing the welfare ratio. Let x′med := x′bn2 c
denote the median agent, and suppose

without loss of generality that x′med ≥ 1
2 . Define x′′ as the location profile where x′′i = 1 for all

i ∈ {i : i > med} and x′′i = x′i for all i ∈ {i : i ≤ med}. Both the optimal welfare and the welfare
under f decrease by

∑
i>med(1− x′i). We therefore have

USW (MED(x′′),x′′)

USW (f(x′′),x′′)
=
USW (MED(x′),x′)−

∑
i>med(1− x′i)

USW (f(x′),x′)−
∑
i>med(1− x′i)

≥ USW (MED(x′),x′)

USW (f(x′),x′)
.

Now define x′′′ as the location profile where x′′′med = 1 and x′′′i = x′′i for all i 6= med. The
optimal welfare decreases by (1 − x′′med) if n is even, and it does not change if n is odd. Also, the
welfare under f decreases by (1− x′′med). We therefore have

USW (MED(x′′′),x′′′)

USW (f(x′′′),x′′′)
=
USW (MED(x′′),x′′)− (1− x′′med)In even

USW (f(x′′),x′′)− (1− x′′med)
≥ USW (MED(x′′),x′′)

USW (f(x′′),x′′)
.

Finally, define x′′′′ as the location profile where x′′′′i = 0 for i ∈ S := {i : xi ≤ 1
2} and x′′′′i = 1

for i ∈ N\S. The optimal welfare decreases by
∑
i∈S x

′′′
i from the agents in S moving to 0, and

it also increases by
∑
i∈N\S(1 − x′′′i ) from the agents in N\S moving towards the median agent

at 1. The welfare corresponding to f decreases by
∑
i∈S x

′′′
i +

∑
i∈N\S(1 − x′′′i ) from the agents

moving away from the facility at 1
2 . We finally have

USW (MED(x′′′′),x′′′′)

USW (f(x′′′′),x′′′′)
=
USW (MED(x′′′),x′′′)−

∑
i∈S x

′′′
i +

∑
i∈N\S(1− x′′′i )

USW (f(x′′′),x′′′)−
∑
i∈S x

′′′
i −

∑
i∈N\S(1− x′′′i )

≥ USW (MED(x′′′),x′′′)

USW (f(x′′′),x′′′)

≥ USW (MED(x′),x′)

USW (f(x′),x′)
.

We have shown that any location profile can be transformed into one where all agents are located at
endpoints without decreasing the welfare ratio, meaning that the welfare ratio is maximized at such
a profile. This implies that

max
x∈[0,1]n

USW (MED(x),x)

USW (f(x),x)
= max

x∈{0,1}n
USW (MED(x),x)

USW (f(x),x)
.

Now among the location profiles where agents are restricted to endpoints, the profile maximizing the
welfare ratio has n−1 agents at one endpoint and 1 agent at the other endpoint. This can be seen by
taking an endpoint profile where there are at least 2 agents at an endpoint, and moving agents from
the endpoint with less agents to the endpoint with more agents, increasing the optimal welfare while
keeping the welfare corresponding to f constant. The approximation ratio of 2 − 2

n corresponds
to the profile with n − 1 agents at one endpoint and 1 agent at the other endpoint, which has been
proven to maximize the welfare ratio.

I Proof of Theorem 12
Theorem 12. MIDORNEAREST is a 3

2−approximation of the egalitarian social welfare. No
strategy-proof mechanism has a smaller approximation ratio.

Proof. There are three cases. In the first case, x1 ≤ 1
2 ≤ xn and the MIDORNEAREST mechanism

locates the facility at 1
2 . The worst case for the approximation ratio occurs when x1 = 1

2 and xn = 1.
This gives an egalitarian social welfare of 1

2 compared to an optimum of 3
4 . The approximation ratio



is therefore 3
2 at best. In the second case, xn ≤ 1

2 . The egalitarian social welfare is 1 − (xn − x1)

units. The optimal egalitarian social welfare is 1 − (xn−x1)
2 units. Define f(z) = 1−z

1−2z where
z = xn−xi

2 . For z ∈ [0, 14 ], f(z) takes a maximum of 3
2 at z = 1

4 , corresponding to xn = 1
2 and

x1 = 0. The approximation ratio is therefore 3
2 at best. The third case, with x1 > 1

2 is symmetric to
the second case.

To show that no strategy-proof mechanism can have a smaller approximation ratio, suppose the
opposite and that a mechanism exists with a smaller ratio. Consider two agents, x1 = 0 and x2 = 1.
Suppose that the facility is located at 1

2 + ε for ε ≥ 0. The case where the facility is located at
1
2 − ε is dual. Suppose the second agent reports x2 = 1

2 + ε. The optimal egalitarian social welfare
is 3

4 −
ε
2 . If the mechanism is to achieve an approximation ratio of less than 3

2 then the minimum
utility must be less than 1

2 −
ε
3 . The facility must therefore be in [0, 12 + ε

3 ). Therefore if there are
two agents at x1 = 0 and x2 = 1

2 + ε, the second agent has an incentive to misreport their location
as x2 = 1. This contradicts the assumption that there is a strategy-proof mechanism with a smaller
approximation ratio.


