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Abstract

Cake-cutting is a playful name for the fair division of a heterogeneous, divisible good
among agents, a well-studied problem at the intersection of mathematics, economics,
and artificial intelligence. The cake-cutting literature is rich and edifying. However,
different model assumptions are made in its many papers, in particular regarding
the set of allowed pieces of cake that are to be distributed among the agents and
regarding the agents’ valuation functions by which they measure these pieces. We
survey the commonly used definitions in the cake-cutting literature, highlight their
strengths and weaknesses, and make some recommendations on what definitions
could be most reasonably used when looking through the lens of measure theory.

1 Introduction
Across the research field of cake-cutting (see, e.g., the books by Brams and Taylor [16] and
Robertson and Webb [39] and the chapters by Procaccia [36] and Lindner and Rothe [32])
there exist several different assumptions about the underlying model used. Our goal is to
review thoroughly and comprehensively all the different models currently applied in the
literature. Furthermore, we study the relationships between these models and formulate
some results about them. It turns out that some of these models are problematic and should
not be used as they are formulated. We highlight these models’ problems and provide specific
examples showing why they are problematic. Our overall goal is to determine a model as
general as possible, yet which fixes these problems and is compatible with as many as possible
of the currently used models.

To motivate our study, consider first the following fun example. If you enter a pastry
shop and ask the confectioner whether he is able to cut a continuous piece of cake for you out
of a chocolate cake, the confectioner probably agrees. However, if you ask the confectioner
whether he might cut a Cantor-like piece of cake for you, you most likely must explain
yourself. To obtain a Cantor-like piece of cake, one proceeds as follows, depicted in Figure 1.
We start with the complete cake as a piece, i.e., A0 = X = [0, 1]. Now, cut out the middle
third of A0 to obtain the intermediate piece A1 = A0 \ (1/3, 2/3). Next, cut out the middle
third of both remaining pieces in A1 to obtain A2 = [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1].
Repeat this procedure of cutting out the middle third of each piece infinitely often. The
intersection of all these pieces, i.e., C =

⋂∞
i=1Ai, then is a Cantor-like piece of cake (in

technical terms, it is the Cantor set, a.k.a. Cantor dust). Cutting out the middle third of a
cake in a first step is no problem. But, continuing this procedure with the remaining pieces
infinitely often will let the confectioner fail (perhaps not immediately, but as time goes on).
Now, let us consider another example a bit more formally.

Example 1.1 (Vitali [49]; see also Appendix G, Theorem G.4 in the monograph [42] and
§ 7.22 in [43]). As usual, we denote the cake by X = [0, 1]. Commonly, in cake-cutting theory
a valuation function v : P(X) → [0, 1] is represented as shown in Figure 2: The cake X is
split horizontally into multiple pieces and the number of vertically stacked boxes per piece
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Figure 1: Step-wise pieces to be cut for a Cantor-like piece of cake.

describe the piece’s valuation from some agent’s perspective. For example, the valuation
function v in Figure 2 evaluates the piece X ′ = [0, 2/6] with v(X ′) = 3/17.
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Figure 2: Common representation for a valuation function in cake-cutting.

As previously defined and common in cake-cutting, the valuation function’s domain is
defined as P(X) = {X ′ | X ′ ⊆ X}, i.e., the power set of X. Consequently, v must be able
to evaluate every piece of cake in P(X).

Let us define the relation ∗ as follows. We say that two real numbers x, y ∈ R satisfy
the relation ∗ if and only if x − y ∈ Q. One can show that ∗ is an equivalence relation
and hence, we can define the equivalence classes [x] = {y ∈ R | x ∗ y} ⊆ R, partitioning
R disjointly. Using the axiom of choice, we can construct the set V ⊂ X, which contains
exactly one representative in X = [0, 1] of every equivalence class [x]. A set like V is called
a Vitali set. Since V ∈ P(X) holds, it follows from the definition of our valuation function
that we must be able to calculate v(V ). Obviously, this is not possible and hence, v is not a
valid valuation function in a strictly formal sense.

To sum up, both the Cantor-like pieces of cake and the Vitali sets show that there
are many possible pieces of cake contained in P(X) which we cannot evaluate with our
common valuation functions: either the valuation function’s domain P(X) is too large or
our valuation functions are too simplistic. Sure enough, authors proposing cake-cutting
protocols often abstain from making formal assumptions or from formalizing their model in
detail. For example, Brams et al. [17, p. 553] write:

“Many feel that the informality adds to the subject’s simplicity and charm, and
we would concur. But charm and simplicity are not the only factors determining
the direction in which mathematics moves or should move. Our analysis in this
paper raises several issues that may only admit a resolution via some negative
results. While such results may not require complete formalization of what is



permissible, they do appear to require partial versions. We will refer to such
partial limitations as theses.”

It would thus be desirable to have some common consensus on which models are useful for
which purpose and which are not. Therefore, we will have a closer look at the cake-cutting
foundations through the lens of measure theory.

2 Preliminaries
LetX = [0, 1] denote a cake and define X ⊆ P(X) to be the set of all possible pieces ofX that
(a) can be allocated to some players via a cake-cutting protocol, and (b) can be evaluated
by the players using their valuation functions. We start by formulating requirements for
X regarding the possible pieces of cake. Obviously, we want to be able to allocate the
complete cake X as well as an empty piece ∅ to a player and therefore, X ∈ X and ∅ ∈ X
must hold. If A ⊆ X is already allocated to some player, i.e., A ∈ X , then we want to
be able to give the remainder of the cake to another player; so for all A ∈ X , we demand
A = X \A ∈ X . Furthermore, we want to be able to cut and combine pieces of cake; so for
all A,B ∈ X , we require A ∩B ∈ X . Note that A ∪B = A ∩B and A \B = A ∩B, so our
previously formulated requirements also allow us to join a finite number of pieces of cake
and to calculate the difference of two pieces of cake.

Definition 2.1. Let S be a set. A set A ⊆ P(S) is called an algebra over S if ∅ ∈ A,
S ∈ A, and for all A,B ∈ A, it holds that A \B ∈ A and A ∪B ∈ A.

It is worth noting that only by the formulation of intuitive requirements with respect
to the set of all possible pieces of cake, we ended up with a well-studied, structured set
from math: an algebra. It is easy to check that, for instance, {∅, X} ⊆ P(X) is an algebra.
However, it is also obvious that this algebra is useless for our purpose, as then only two
possible pieces can be allocated, the complete cake and an empty piece. At the other
extreme, we might also take P(X) as our set for the possible pieces of X, which is an
algebra, too. However, when choosing X , we must also ensure that meaningful valuation
functions can exist for this set. Therefore, we now list requirements with respect to the
players’ valuation functions.

A valuation function v shall evaluate an arbitrary piece of cake Z ∈ X with a nonnegative
real number, i.e., v : X → [0,∞]. However, in order to normalize the players’ valuations and
keep them comparable, we demand that v(∅) = 0 and v(X) = 1 hold. Hence, we can further
limit the valuation function’s image to [0, 1], i.e., we can even write v : X → [0, 1]. The next
definition lists further requirements for a valuation function.

Definition 2.2. Let X be a cake. We denote a player’s valuation function by v : X → [0, 1]
and demand it to satisfy the following axioms:

(N) Normalization: v(∅) = 0 and v(X) = 1 must hold.

(A) Additivity: For all A,B ∈ X , it must hold that v(A ∪B) = v(A) + v(B)− v(A ∩B).

(D) Divisibility: For every A ∈ X and for every λ, 0 ≤ λ ≤ 1, there must exist some
A′ ∈ X with A′ ⊆ A such that v(A′) = λv(A).

Since we want X to be an algebra, (N) and (A) imply that a valuation function v shall
be a finite content on X .



Definition 2.3. Let S be a set and A ⊆ P(S) an algebra over S. A function µ : A → [0,∞]
is called a content if µ(∅) = 0 and

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai)

holds for any choice of finitely many pairwise disjoint A1, . . . , An ∈ A.

Requirement (D) demands even more from v than just to be a content on X . Specifically,
(D) requires every valuation function to be atom-free, i.e., for every x ∈ X it must hold that
v({x}) = 0 is true.

Lemma 2.4. Every valuation function v : X → [0, 1] which satisfies (D) is also atom-free.

Proof. Since there is no proper nonempty subset of a singleton {x}, it is clear that the
requirement of assumption (D), v(B) = λv({x}), can only hold for λ = 0 (and v(B) = 0) or
λ = 1 and B = {x}.

Besides, we require valuation functions to satisfy continuity, a property that is crucial
for so-called moving-knife cake-cutting protocols to work.

Definition 2.5. Let v : X → [0, 1] be a valuation function. We say that v is continuous
if for all a and b with 0 ≤ a < b ≤ 1 satisfying v([0, a]) = α and v([0, b]) = β and for every
γ ∈ [α, β], there exists some c ∈ [a, b] such that v([0, c]) = γ.

In other words, a valuation function v is continuous if its distribution function F : [0, 1]→
[0, 1], given by F (t) = v([0, t]), is a continuous function. Note that a continuous valuation
function on an algebra cannot have atoms as v({x}) = v([0, x]\ [0, x)) = F (x)−F (x−) = 0,
with the left-hand limit F (x−) = limy↑x F (y).

2.1 Banach Limits
We will need a nonconstructive way to extend linear maps. The key result is the standard
Hahn–Banach theorem, which is well-known from functional analysis (see, e.g., Rudin [40,
Theorem 3.2]).

Theorem 2.6. Assume that (X, ‖ · ‖) is a normed vector space and L : M → R a linear
functional, which is defined on a linear subspace M ⊂ X satisfying |Lx| ≤ κ‖x‖ for all
x ∈ M with a universal constant κ = κL ∈ (0,∞). Then there is an extension L̂ : X → R
such that L̂ is again linear and satisfies |L̂x| ≤ κ‖x‖ for all x ∈ X with the same constant
κ = κL as before.

With a little more effort, but essentially the same proof, we can replace the norm ‖x‖,
resp. κ‖x‖, by a general sublinear map p : X → R. Sublinear means that p(λx) = λp(x)
and p(x + y) ≤ p(x) + p(y) for all x, y ∈ X and λ ≥ 0. In this case, the extension of
Lx ≤ p(x) satisfies −p(−x) ≤ L̂x ≤ p(x). Note that p is only positively homogeneous, i.e.,
−p(−x) 6= p(x).

The proof is nonconstructive and, at least for nonseparable spaces X, relies on the axiom
of choice.

We will use the Hahn–Banach theorem for the space of bounded sequences `∞([0,∞)) =
{x = (xn)n∈N ⊂ [0,∞) | ‖x‖∞ <∞}, where ‖x‖∞ = supn∈N xn is the uniform norm.

A prime example of a bounded linear functional is the limit: Consider those x =
(xn)n∈N ∈ `∞([0,∞)) where L(x) := limn→∞ xn = x exists in the usual sense. It is com-
mon to write c([0,∞)) = {x ∈ `∞([0,∞)) | limn→∞ xn exists}. Clearly, limn→∞ xn =



lim supn→∞ xn ≤ supn∈N xn, so that L is a bounded linear functional on M = c([0,∞)) ⊂
X = `∞([0,∞)), and we can extend it to all of X as the Banach limit, i.e.,

LIM
n→∞

xn :=

{
limn→∞ xn if x ∈ c([0,∞)),

L̂(x) if x ∈ `∞([0,∞)) \ c([0,∞)).

Using the addition to the Hahn–Banach theorem with p(x) := lim supn→∞ xn and the
observation that limn→∞ xn exists if, and only if, lim infn→∞ xn = lim supn→∞ xn ∈ [0,∞),
we can choose the extension L̂ in such a way that

lim inf
n→∞

xn ≤ LIM
n→∞

xn ≤ lim sup
n→∞

xn.

2.2 Measure Theory
We now introduce some basics from measure theory, which we need in the subsequent
discussion of the cake-cutting literature. For more background of measure theory, in much
more detail and greater depth, we refer to the monographs [42] and [43].

First of all, let S ⊆ R be an interval in the real numbers. Then we denote by

• C(S) = {[a, b] | a, b ∈ S, a ≤ b} the set of all closed intervals over S,

• O(S) = {(a, b) | a, b ∈ S, a ≤ b} the set of all open intervals over S,

• LO(S) = {(a, b] | a, b ∈ S, a < b} the set of all left-open intervals over S,

• RO(S) = {[a, b) | a, b ∈ S, a < b} the set of all right-open intervals over S, and

• I(S) = C(S) ∪ O(S) ∪ LO(S) ∪RO(S) the set of all intervals over S.

In Definition 2.1 we defined the notion of algebra. However, in measure theory one is
typically working with the notion of a σ-algebra instead of an algebra.

Definition 2.7. Let S be a set. A subset A ⊆ P(S) is called a σ-algebra over S if A is an
algebra over S and for all sequences (An)n∈N with An ∈ A,

⋃
n∈NAn is in A, too.

We now explain what we mean by a σ-operator on some set. Given S ⊆ R, we write σ(S)
to denote the smallest σ-algebra containing S; clearly, S ⊂ σ(S). Note that σ(S) is well-
defined since P(X) is a σ-algebra and the intersection of an arbitrary number of σ-algebras
is again a σ-algebra.

The next lemma is a standard result from set theory (see, e.g., [42]).

Lemma 2.8. For some set S ⊆ R, it holds that

σ(O(S)) = σ(C(S)) = σ(LO(S)) = σ(RO(S)) = σ(I(S)).

This set, σ(O(S)), is the smallest σ-algebra containing all open intervals from S and thus
has some special name.

Definition 2.9. For a set S ⊆ R, we denote by B(S) = σ(O(S)) the smallest σ-algebra on
S containing all open intervals from S and call it the Borel σ-algebra over S.

The following definition is taken (and slightly adjusted) from [42, Definition 4.1].

Definition 2.10. Let S be some set and A a σ-algebra on S. A (positive) measure µ on
S is a map µ : A → [0,∞] satisfying



(i) µ(∅) = 0 and

(ii) for every pairwise disjoint sequence of elements (An)n∈N in A, it holds that

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

Property (ii) is called σ-additivity.

The idea behind Lebesgue measure is to have a set-function A 7→ λ(A) in Rn with all
properties of the familiar “volume” from geometry; in particular, we want a volume that
is invariant under shifts and rotations. This motivates and explains the additivity require-
ment (A). Having in mind triangulations of more complicated shapes, it also makes sense
to require countable σ-additivity, i.e., the property that for countably many disjoint sets
(An)n∈N with A =

⋃
n∈NAn, we have λ(A) =

∑
n∈N λ(An). The restriction to countable

unions is natural, as we exhaust a given shape by nontrivial sets An, having nonempty inte-
rior: Each of them contains a rational point q ∈ Qn, hence there are at most countably many
non-overlapping An. In order to construct Lebesgue measure, we prescribe an elementary
volume on “easy” shapes, say n-dimensional rectangles, by

λ(R) =

n∏
i=1

(bi − ai) if R = (a1, b1]× · · · × (an, bn]

in the hope that we can exhaust all possible sets B ⊂ Rn by (necessarily at most countable
many) non-overlapping rectangles. At this point we encounter a problem: General sets
A ⊂ Rn are way too complicated to get a well-defined and unique extension of λ from the
rectangles to P(Rn). The way out is the notion of measurable sets and Carathéodory’s
extension theorem (see further down).

This works as follows: In view of the σ-additivity property of λ, it makes sense to
consider a family A ⊂ P(Rn) which contains the rectangles and is closed under the formation
of countable unions of its members and the formation of complements (this allows us to
consider differences and intersections of sets). Thus, we naturally arrive at the notion of
the (Borel) σ-algebra as the natural domain of Lebesgue measure. Unfortunately, there are
so many Borel sets that we cannot build them constructively from rectangles – we would
need transfinite induction for this – and this is one of the reasons why cutting a cake is not
always a piece of cake.

The question of whether every set A ⊂ Rn has a unique “geometric” volume (in the
above sense) is dimension-dependent. If n = 1 or n = 2, we can extend the notion of length
and area to all sets, but not in a unique way. In dimension 3 and higher, we’ll end up with
contradictory statements (“Banach–Tarski paradox”) if we try to have an additive content
for all sets. This conundrum can be resolved by looking at the Borel sets or the Lebesgue
sets – these are the Borel sets enriched by all subsets of Borel sets with Lebesgue measure
zero.

A good reference and introduction to measure theory are the monographs [42] and [43].

3 Five Possible Definitions from the Literature
In the cake-cutting literature, a wide variety of different definitions have been used for the
set X of possible pieces of cake. We first collect the most commonly used definitions used
for X , along with the corresponding references and discuss them in detail. Then we show



several relations among these definitions and discuss what this implies for a most reasonable
choice of X .

The set X containing all possible pieces over a cake X can be defined as

1. all finite unions of intervals from X, i.e., I(X)n = {
⋃n
i=1 Ii | Ii ∈ I(X), n ∈ N},

2. all countable unions of intervals from X, i.e., I(X)N =
{⋃

i∈N Ii | Ii ∈ I(X)
}
,

3. the Borel σ-algebra over X, i.e., B(X),

4. the set of all Lebesgue-measurable sets over X, i.e., L(X), or

5. the power set P(X) of X.

Assuming X = I(X)n is common among papers that consider only finite cake-cutting
protocols. Such protocols can only make a finite number of cuts, thus producing a finite set
of contiguous pieces, i.e., intervals, to be evaluated by the players. Authors that make this
assumption and use X = I(X)n include Woeginger and Sgall [52], Stromquist [47], Lindner
and Rothe [31], Procaccia [35], Walsh [50], Cohler et al. [27], Bei et al. [9], Cechlárová
and Pillárová [24], Brams et al. [10], Cechlárová et al. [22], Chen et al. [25], Brânzei and
Miltersen [19], Aziz and Mackenzie [6], Edmonds and Pruhs [30], and Aziz and Mackenzie [5].

As a special case, valuation functions may even be restricted to single intervals, which is
done by Cechlárová and Pillárová [23] and Aumann and Dombb [2]. Even though the restric-
tion to finite unions of intervals is sensible from a practical perspective, it may artificially
constrain results that could hold also in a more general setting.

Brânzei et al. [20] extend X to contain countably infinite unions of intervals, i.e., I(X)N.
Authors assuming X = B(X) include Stromquist and Woodall [48], Deng et al. [28], and

Segal-Halevi et al. [45].
Works using X = L(X) include Reijnierse and Potters [37], Arzi et al. [1], and Robertson

and Webb [38]. Additionally, several authors do not explicitly make the assumption X =
L(X), but they define valuation functions based on (Lebesgue-)measurable sets only, most
prominently, a valuation function is often defined as the integral of a given probability
density function on X. This or a similar assumption is made by Brams et al. [11, 14, 12, 13],
Robertson and Webb [39], Webb [51], Aumann et al. [3], Brânzei et al. [18], and Caragiannis
et al. [21].

Papers that assume X = P(X) include those by Maccheroni and Marinacci [33], Sgall
and Woeginger [46], Saberi and Wang [41], Manabe and Okamoto [34], and Aumann et
al. [4].

Finally, several works, including Dubins and Spanier [29], Barbanel [8], Zeng [53], Brams
and Taylor [15], and Barbanel [7], define the set of pieces of cake to be any (σ-)algebra (not
necessarily Borel) over X.

Note that each of the sets I(X)n, B(X), L(X), and P(X) is an algebra over X, and all,
except I(X)n, are also σ-algebras over X. That I(X)n is an algebra is shown in Lemma 4.4
below. However, I(X)N is not an algebra, as the proof of the following theorem shows.

Having introduced all the different approaches currently used in the literature, we will
now prove the strict inclusions among these sets stated in the following theorem.

Theorem 3.1. I(X)n
(a)
( I(X)N

(b)
( B(X)

(c)
( L(X)

(d)
( P(X).

Proof. We start with proving (a): I(X)n ( I(X)N. Obviously, I(X)n ⊆ I(X)N is true,
as every finite union of intervals is a countable union of intervals. To see that the two sets
are not equal, look at I =

⋃∞
i=0[3/2i+2, 1/2i]. It is clear that I ∈ I(X)N is true, as I is

a countable union of intervals. However, it holds that I = [3/4, 1] ∪ [3/8, 1/2] ∪ · · · , i.e., I



cannot be written as a finite union of intervals, as all these subintervals are pairwise distinct.
Hence, I /∈ I(X)n, so I(X)n ( I(X)N.

In Section 2 we defined B(X) = σ(O(X)) and stated as Lemma 2.8 the result that
σ(O(X)) = σ(C(X)) = σ(LO(X)) = σ(RO(X)) = σ(I(X)) holds. Consequently, as E ⊆
σ(E) holds by definition for any set E , we immediately obtain I(X) ⊆ B(X). Furthermore,
as B(X) is a σ-algebra, it is closed under countable unions and we thus obtain I(X)N ⊆
B(X). However, since Q ∩ X ∈ B(X) is true, as Q ∩ X can be written as a countable
union of intervals, each containing one element, it must hold that Q ∩X ∈ B(X) by the
definition of a σ-algebra. However, the irrational numbers Q ∩X in X cannot be written
as a countable union of intervals, since every interval containing more than one element
immediately contains a rational number. Therefore, I(X)N is not an algebra and I(X)N 6=
B(X) holds, proving (b).

The inclusion B(X) ⊆ L(X) holds by definition, as all Borel sets are Lebesgue-
measurable. However, there are Lebesgue-measurable sets that are not Borel-measurable.
This follows from the observation that the cardinality of L(X) is the cardinality of P(X)
(which is 2c > c), whereas there are only continuum-many (i.e., c, the cardinality of X)
Borel sets, see [42, Appendix G, Corollary G.7]. This proves (c).

Finally, the power set P(X) trivially contains all other families of sets considered earlier.
Nevertheless, there are sets in P(X) that are not Lebesgue-measurable, for example the
Vitali set that we introduced in Section 1, so L(X) 6= P(X) and we have (d).

4 Discussion
Taking X = I(X)N is problematic, as I(X)N is not even an algebra and thus does not even
satisfy the minimum requirements for X as described in the first paragraph of Section 2.
By contrast, taking X = I(X)n is, of course, fine; this choice provides a sufficient range of
sets to be used with common finite cake-cutting protocols.

From a theoretical point of view, however, this choice may be unnecessarily restrictive,
especially in light of the fact that we also want to use infinite cake-cutting protocols. There-
fore, a larger set X may be desirable, perhaps even larger than I(X)N, which (as we have
seen) has disqualified itself.

We start our discussion by explicating why X = P(X) is a bad choice and we then
provide arguments for a better option, namely X = B(X).

4.1 Taming P(X) with Exotic Contents via Banach Limits
If one boldly desires to define valuation functions on the set P(X) of all subsets of the
cake, it remains to be shown that this indeed is possible. We have seen that the commonly
used valuation functions represented via blocks, as depicted in Figure 2, are not capable
of evaluating every piece of cake in P(X). Hence, in this subsection we aim to define a
valuation function capable of evaluating every possible piece of cake in P(X).

In other words, we formally define a finitely additive content µ on P(X) satisfying all
requirements from Definition 2.2. To do so, in a first step, we must choose an arbitrary
sequence (xi)i∈N of pairwise distinct elements from X. For every A ⊆ X, we define a
mapping fA : N→ [0, 1] with

n 7→ |A ∩ {x1, . . . , xn}|
n

,

(|B| denotes the cardinality of the set B), i.e., fA(n) describes the relative frequency of the
first n elements of (xi)i∈N being in A. For some sets A the limit limn→∞ fA(n) does exist.



We can, however, use the Banach limits introduced in Section 2.1 to define

µ : P(X)→ [0, 1], A 7→ LIM
n→∞

fA(n).

It is clear that µ(A) is additive since both the limit and the Banach limit are additive,
so (A) is satisfied. In the following lemma we show why µ satisfies (D).

Lemma 4.1. For every A ∈ P(X) with µ(A) > 0 and every λ ∈ [0, 1], there exists a subset
B ⊆ A in P(X) such that µ(B) = λµ(A).

Proof. If µ(A) > 0 then A must contain an infinite number of points of the underlying
sequence, say A∩ {x1, x2, . . . } = {xi(1), xi(2), . . . } for some increasing sequence (i(k))k∈N of
integers. In order to keep notation simple, we write xi(k) = x′k. By assumption, µ(A) =
limn→∞ |{x′1, . . . , x′n}|/n. We have to construct a set B ∈ P(A) such that limn→∞ fB(n) =
λµ(A) for fixed λ ∈ [0, 1].

The key observation in this proof is the fact that for any nonnegative rational number
k/n with k < n, we have

k

n+ 1
<
k

n
<
k + 1

n+ 1
,

i.e., the quantity fB(n) = |B ∩ {x′1, . . . , x′n}|/n decreases if we jack up n → n + 1 and
x′n+1 6∈ B, and increases if we jack up n→ n+ 1 and x′n+1 ∈ B.

Fix λ ∈ [0, 1] and observe that we can assume 0 < λ < 1: If λ = 0, we take B = ∅, and
for λ = 1, we use B = {x′n | n ∈ N}. For λ ∈ (0, 1), we use a recursive approach.

Define B1 = {x′1} with fB1
(1) = 1 and assume that we have already found a set Bn

such that fBn
(n) ≥ λµ(A). Because of the observation at the beginning of the proof, the

numbers

`n+1 := min {k > n | fBn
(k) ≤ λµ(A)} and

un+1 := min
{
k > `n+1 | fAk

(k) ≥ λµ(A) for Ak = Bn ∪ {x′`n+1
, x′`n+1+1, . . . , x

′
k}
}

are well-defined and satisfy `n < un < `n+1 < un+1 and `n+1 →∞. Setting

Bn+1 = A ∪ {x′`n+1
, x′`n+1+1, . . . , x

′
un+1
}

finishes the recursion, and we can define B =
⋃
n∈NBn.

By construction, |fB(n)− λµ(A)| ≤ `−1n+1 holds, completing this proof.

We now provide a counterexample that shows that µ is not σ-additive. We do this to
emphasize that µ, as earlier defined, indeed is a finite content on P(X), which only satisfies
all requirements defined earlier but not more. To do so, we define A0 = X \ {xi | i ∈ N}
and Ai = {xi} for i ∈ N. Obviously, for all j ∈ N ∪ {0}, it holds that µ(Aj) = 0, while at
the same time we have

µ

 ⋃
j∈N∪{0}

Aj

 = µ(X) = 1,

which means that µ is not σ-additive.
Having this content, it seems to be an attractive valuation function for cake-cutting. We

can interpret the sequence (xi)i∈N as countably many points, which are used to evaluate
arbitrary pieces of the cake. However, multiple drawbacks exist. First of all, the existence
of a Banach limit is only guaranteed if one is willing to accept the validity of the axiom of



choice, as already mentioned in Section 2.1. Furthermore, until now no explicit nontrivial
example of a Banach limit is known. Hence, we cannot calculate µ(A) for A ∈ P(X) if the
ordinary limit of fA(n) does not exist, as we do not know what the Banach limit looks like.

Thus, although µ is theoretically capable of evaluating all pieces of cake in X = P(X), it
is actually not useful for us. Besides the previously listed mathematical problems, there are
also practical problems related to cake-cutting itself. If we would use µ as a valid valuation
function in cake-cutting, all players would be obliged to precisely define a countable sequence
(xi)i∈N of pairwise distinct elements in X and some Banach limit they are using for their
valuation functions. When we think of common approaches and results in the cake-cutting
literature, this approach seems simply impractical and not feasible to use.

Hence, finding practically usable valuation functions defined on P(X) seems to remain
an open problem. Nevertheless, this section showed that defining more complex valuation
functions (compared to the valuation functions represented via boxes) does not solve our
initial problem. Therefore, in the next section we discuss an alternative solution, namely,
reducing X in size from P(X) to a smaller subfamily contained in P(X).

4.2 Borel σ-Algebra
We suggest to use X = B(X) as set of all possible pieces of cake. As shown in Theorem 3.1,
the Borel σ-algebra B(X) (strictly) contains I(X)n as well as I(X)N but is strictly smaller
than P(X).

In general, the Borel σ-algebra can become quite large and complicated if the base set
is not countable, as is the case for X = [0, 1] ⊂ R. This means that in general we cannot
explicitly assign a value µ(A) to every element A of a σ-algebra for a measure µ, as the
σ-algebra is simply too large. Instead, one can use Carathéodory’s extension theorem as a
solution.

Recall that a set function µ : Σ → [0, 1] is called σ-additive relative to Σ if for any
sequence of pairwise disjoint elements (An)n∈N ⊂ Σ such that

⋃
n∈NAn ∈ Σ, we have

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

For a σ-algebra, the condition “
⋃
n∈NAn ∈ Σ” is trivially satisfied.

Theorem 4.2 (Carathéodory’s extension theorem, cf. [42, Remark following Theorem 5.7,
Theorem 6.1]). Let Σ be an algebra over some set S and consider a finitely additive content
µ : Σ→ [0, 1]. If µ is σ-additive relative on Σ, then µ can be extended to a measure µ̂ defined
on σ(Σ) such that for all A ∈ Σ, we have µ(A) = µ̂(A). If µ is finite or σ-finite, then the
extension to µ̂ is unique.

Let us show here that the block-based valuation functions are σ-additive contents on
I(X)n and that I(X)n is an algebra. In this case, we can use the previous theorem to
extend the valuation functions to measures on σ(I(X)n) = B(X). Since the valuation
functions are σ-finite, it follows that this extension is unique. Hence, by providing a block-
based valuation function, we obtain a unique measure on B(X). Thus X = B(X) is a good
solution to our problem.

Let us formalize the box-based valuation functions. A box-based valuation function µ
partitions the complete cake X into a finite number of pairwise disjoint subintervals, where
each subinterval is allocated a finite number of boxes of equal height. We denote the set of
all subintervals which µ uses by

Iµ = {I1 = [a1, b1), . . . , In−1 = [an−1, bn−1), In = [an, bn]},



where
⋃n
i=1 Ii = X and we have Ii ∩ Ij = ∅ for all i and j, 1 ≤ i < j ≤ n. Furthermore,

denote by ψi ∈ N, for 1 ≤ i ≤ n, the number of boxes allocated to an interval Ii by µ and
denote by ψµ =

∑n
i=1 ψi the total number of boxes.

As previously shown, µ cannot be defined on P(X). Hence, we define µ only on I(X)n,
i.e., on finite unions of intervals from X, that is, we can write µ : I(X)n → [0, 1]. Now, for
a piece of cake X ′ ∈ I(X)n, which is a finite union of pairwise disjoint intervals in X, we
can write

X ′ ∩ Ii =

ni
X′⋃
j=1

[cij , d
i
j ]

for 1 ≤ i ≤ n. Consequently, we can formulate

µ(X ′) =
1

ψµ

n∑
i=1

 ψi
bi − ai

ni
X′∑
j=1

(dij − cij)


and thus, compute the valuation of a piece X ′ by µ.

Example 4.3. Referring back to the box-based valuation function ν from Figure 2, we obtain

Iν = {I1 = [0, 1/6), I2 = [1/6, 2/6), . . . , I6 = [5/6, 1]}.

Also, we have ψ1 = 2, ψ2 = 1, ψ3 = 5, ψ4 = 2, ψ5 = 4, ψ6 = 3, and ψν = 17. For
X ′ = [0, 2/6], we obtain

ν(X ′) =
1

ψν

6∑
i=1

 ψi
bi − ai

ni
X′∑
j=1

(dij − cij)


=

1

17

(
2

1/6
· (1/6− 0) +

1

1/6
· (2/6− 1/6) +

5

1/6
· 0 +

2

1/6
· 0 +

4

1/6
· 0 +

3

1/6
· 0
)

=
3

17
.

Now, let us prove that I(X)n is an algebra over X.

Lemma 4.4. I(X)n is an algebra over X.

Proof. Since I(X)n = {
⋃n
i=1 Ii | Ii ∈ I(X), n ∈ N}, obviously, it holds that ∅, X ∈ I(X)n.

Now, let A,B ∈ I(X)n. Then we can write A =
⋃n
i=1 Ii and B =

⋃m
j=1 Ij . Furthermore,

we have

A ∪B =

(
n⋃
i=1

Ii

)
∪

 m⋃
j=1

Ij

 =

k⋃
i=1

Ji ∈ I(X)n

for appropriate Ji ∈ I(X), 1 ≤ i ≤ k, as the union of finitely many intervals can again be
written as finite union of pairwise distinct intervals. Lastly, A \ B ∈ I(X)n holds by the
same argument as before. Therefore, I(X)n is an algebra over X.

What is left is to show that a box-based valuation function µ is σ-finite and σ-additive.
If that is the case, it follows by the automatic extension theorem of Carathéodory that µ
can be uniquely extended to a measure on B(X).



By the normalization axiom (N), µ(X) = 1 <∞ always holds for a valuation function µ.
Thus it immediately follows that µ is σ-finite. Furthermore, σ-additivity follows directly
from the construction. In fact, the normalized box-based valuation function can be inter-
preted as a piecewise constant probability density with respect to the Lebesgue measure,
which directly gives Carathéodory’s extension.

To conclude, B(X) is recommended as a very good choice for X , since this choice enables
us to use box-based valuation functions and their extensions as measures.

5 Conclusion and Some Further Technical Remarks
Among the questions we have tried to answer are:

1. Which subsets of [0, 1] should be considered as pieces of cake? Only finite unions of
intervals or more general sets?

2. If valuation functions are considered as set-functions as studied in measure theory,
should they be σ-additive measures or finitely additive contents?

A related interesting question that may be tackled in future work is:

3. Which continuity property should be used? Either divisibility (D) or absolute conti-
nuity1 with respect to Lebesgue measure? (There should be a relation between both,
i.e., if we decide to go with Borel sets then absolute continuity implies divisibility.)
First steps to answer this question were taken by Schilling and Stoyan [44].

While we can define the Dirac and counting measures for all sets in P(X), there is no
way to define a geometrically sensible notion of “volume” for all sets – if we accept the
validity of the axiom of choice. (One can even show that the axiom of choice is equivalent
to the existence of nonmeasurable sets, cf. Ciesielski [26, p. 55].)

For a measure we have that divisibility (D) is equivalent to atom-freeness. However, for
a content this does not necessarily hold, i.e., there are contents that satisfy atom-freeness
but not divisibility. And there are divisible contents that are not continuous in the above
sense.

To conclude, we have surveyed the existing rich literature on cake-cutting algorithms
and have identified the most commonly used choices of sets consisting of what is allowed
as pieces of cake. After showing that these five most commonly used sets are distinct from
each other, we have discussed them in comparison. In particular, we have argued that P(X)
is too general to define a (practically or theoretically) useful measure on it. And finally, we
have reasoned why we recommend the Borel σ-algebra B(X) as a very good choice.
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