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Abstract

We consider coalition formation games where agents have to form partitions based on
their preferences. In the subclass of hedonic (coalition formation) games, we assume
that the agents’ preferences over different partitions only depend on the coalitions
they are part of. While these games have been broadly studied in the literature, most
models assume that agents are always selfish. By contrast, we consider altruistic
hedonic and coalition formation games which model how agents behave altruistically
to their friends based on an underlying network of friends. Doing so, we present
three further variations of the original model due to Nguyen et al. [17] by varying to
which of their friends players behave altruistically and how these friends’ opinions
are evaluated. We study these four models with respect to desirable axiomatic
properties. Overall, we show that the extended altruistic models that include all
friends into the altruistic behavior of an agent fulfill more of these properties than the
hedonic models. In particular, the extended models fulfill unanimity while most of
the altruistic hedonic models fail to satisfy this property. Furthermore, the extended
models provide stronger properties in terms of monotonicity.

1 Introduction

In coalition formation games, agents form a partition into coalitions (subsets of agents)
based on their preferences. In the subclass of hedonic games [12, 7, 5], players’ preferences
are required to only depend on the coalitions they are part of.

Many approaches of how to represent those hedonic preferences efficiently have been
studied in the literature (see, e.g., Aziz and Savani [4]). One of these representations is
the friend-and-enemy encoding by Dimitrov et al. [11] which allows to compactly represent
hedonic games. In their model, each player divides the set of other players into friends
and enemies which then leads to a so-called network of friends that represents the mutual
friendship relations among the players. Based on this encoding, they introduce friend-
oriented hedonic games, where players preferences over coalitions are determined by the
number of friends in the coalitions and, only in the case of a tie, also by the number of
enemies. Based on friend-oriented hedonic games, Nguyen et al. [17] introduced altruistic
hedonic games where agents assign values to coalitions based on the friend-oriented encoding
but do not decide their preferences solely based on their own valuations. Instead, they also
consider the valuations of their friends that are in the same coalitions. Depending on the
order in which players look at their own or their friends’ valuations, Nguyen et al. distinguish
three degrees of altruism: selfish first, equal treatment, and altruistic treatment.

We study three variants of altruistic hedonic games. First, we vary the way in which
players aggregate their friends’ valuations by taking the minimum instead of the average.
This change can be seen as taking an egalitarian instead of an utilitarian approach. Second,
we vary the scope of friends that are included into an agent’s altruistic behavior. While, in
altruistic hedonic games, an agent only considers the friends that are in the same coalition
as she is, we extend the altruistic behavior of the agents to all their friends, independent of
the current coalition structure. By doing so, we release the restriction to hedonic games and
consider more general coalition formation games. Third, we combine these two approaches
and consider minimum-based altruism over the set of all friends. We compare the four
approaches, with respect to some desirable axiomatic properties.



Related work. Hedonic games were introduced by Drèze and Greenberg [12] and for-
mally modeled by Banerjee et al. [5] and Bogomolnaia and Jackson [7]. They have been
broadly studied in the literature, addressing the issue of compactly representing preferences,
conducting axiomatic analyses, dealing with different notions of stability, and investigating
the computational complexity of the associated problems (see, e.g., Aziz and Savani [4]).

This work considers altruistic hedonic games due to Nguyen et al. [17] and studies three
variants of these games with respect to desirable axiomatic properties. With respect to
various stability notions, minimum-based altruistic hedonic games and altruistic coalition
formation games have already been studied by Wiechers and Rothe [21] and Kerkmann
and Rothe [15], respectively. Other related work is due to Schlueter and Goldsmith [20].
They introduced super altruistic hedonic games where players in the same coalition have a
different impact on a player’s preference based on their distances in the underlying network
of friends. This model is related to social distance games by Brânzei and Larson [9].

In noncooperative game theory, altruism has been considered, e.g., by Ashlagi et al. [3]
who introduced social context games where a strategic game is embedded in a social context
that is modeled by a graph of neighborhood. Examples include ranking games [8] and
coalitional congestion games [13, 16]. In particular, in the social context that Ashlagi et al.
call “surplus collaboration,” players seek to maximize the average payoff of themselves and
their friends. Other work studying altruism in noncooperative games is due to Hoefer and
Skopalik [14], Chen et al. [10], Apt and Schäfer [2], and Rahn and Schäfer [18]. A survey of
altruism in (cooperative and noncooperative) game theory is due to Rothe [19].

2 Preliminaries

Let N = {1, . . . , n} be a set of players. For any i ∈ N , N i = {C ⊆ N | i ∈ C} denotes the
set of coalitions containing i. A coalition structure is a partition Γ = {C1, . . . , Ck} of the

players into k coalitions C1, . . . , Ck ⊆ N (i.e.,
⋃k
r=1 Cr = N and Cr ∩Cs = ∅ for all distinct

r, s ∈ {1, . . . , k}). The unique coalition in Γ containing player i ∈ N is denoted by Γ(i).
The set of all coalition structures for a set of agents N is denoted by CN .

A coalition formation game is a pair (N,�), where N = {1, . . . , n} is a set of agents,
� = (�1, . . . ,�n) is a profile of preferences, and every preference �i ⊆ CN×CN is a complete
weak order over all coalition structures. For two coalition structures Γ,∆ ∈ CN , we say that
agent i weakly prefers Γ to ∆ if Γ �i ∆, that i prefers Γ to ∆ (Γ �i ∆) if Γ �i ∆ but not
∆ �i Γ, and that i is indifferent between Γ and ∆ (Γ ∼i ∆) if Γ �i ∆ and ∆ �i Γ.

A hedonic game is a coalition formation game (N,�) where the preference �i of any
i ∈ N only depends on the coalitions that she is part of. This means that i is indifferent
between any two coalition structures Γ,∆ ∈ CN as long as her coalition is the same, i.e.,
Γ(i) = ∆(i) =⇒ Γ ∼i ∆. i’s preference can then be represented by a complete weak order
over the set N i of coalitions containing i. For coalitions A,B ∈ N i, we say that player i
weakly prefers A to B if A �i B (and analogously for (strict) preference and indifference).

Friend-Oriented Preferences. As a compact representation of hedonic games, Dimitrov
et al. [11] proposed friend-oriented hedonic games where the players’ preferences are repre-
sented by a network of friends. Each player i ∈ N has a set of friends Fi ⊆ N \{i} and a set
of enemies Ei = N \ (Fi ∪ {i}). This encoding can be represented by a graph G = (N,H),
where two players are connected by an edge if and only if they are friends of each other.1

It then holds that Fi = {j | {i, j} ∈ H}. In the friend-oriented preference extension [11],
more friends are preferred to fewer friends, and in case of an equal number of friends, fewer
enemies are preferred. These preferences can be represented additively, by assigning a value

1Note that we only consider mutual friendship relations.



of n = |N | to each friend and a value of −1 to each enemy: For any player i ∈ N and any
coalition A ∈ N i, define the value of a coalition by

vi(A) = n|A ∩ Fi| − |A ∩ Ei|. (1)

For A,B ∈ N i, we then have

A �Fi B ⇐⇒ vi(A) ≥ vi(B). (2)

Slightly abusing notation, we will write vi(Γ) instead of vi(Γ(i)) for i’s valuation of Γ(i).

Altruistic Hedonic Games. To introduce altruism to a player’s (hedonic) preference,
Nguyen et al. [17] consider the friends of this agent that are in the same coalition as she
is. As they consider all friends to be equally important, they consider the average of their
valuations. To denote the average friend-oriented valuation of i’s friends in coalition A ∈ N i,
they use

avgFi (A) =
∑

a∈A∩Fi

va(A)

|A ∩ Fi|
. (3)

We further define the average friend-oriented valuation of i and her friends in A by

avgF+
i (A) =

∑
a∈(A∩Fi)∪{i}

va(A)

|(A ∩ Fi) ∪ {i}|
. (4)

Nguyen et al. [17] distinguish three degrees of altruism that differ in the order in which
an agent considers her own and her friends’ valuations. We define these three degrees of
altruism using a player i’s utility for a coalition as a measure of comparison. These utilities
combine i’s valuation vi and her friends’ average valuation avgFi (A). A constant M ≥ n4

is used as a weight to ensure that an agents preference is first determined by her own
valuation in the selfish-first model and first determined by her friends’ valuations in the
altruistic-treatment model. For equal-treatment preferences, no weight is needed since the
agent treats herself and her friends the same.

Selfish First (SF): Using the utility function uSFi (A) = M · vi(A) + avgFi (A), we define
the selfish-first preferences of agent i by

A �SF
i B ⇐⇒ uSFi (A) ≥ uSFi (B) (5)

Hence, under SF the agent first looks at her own valuation and, only in the case of a
tie, considers the average valuation of her friends that are in the same coalition.

Equal Treatment (EQ): Using the utility function uEQ
i (A) = avgF+

i (A), we define the
equal-treatment preferences of agent i by

A �EQ
i B ⇐⇒ uEQ

i (A) ≥ uEQ
i (B). (6)

Hence, under EQ the agent treats her own valuation and the valuation of each of her
friends that are in the same coalition equally.

Altruistic Treatment (AL): Using the utility function uAL
i (A) = vi(A) + M · avgFi (A),

we define the altruistic-treatment preferences of agent i by

A �AL
i B ⇐⇒ uAL

i (A) ≥ uAL
i (B). (7)

Under AL the agent first considers the average valuation of her friends and, only in
the case of a tie, decides according to her own valuation.



Indeed, the definitions of the selfish-first preferences and altruistic-treatment preferences
indeed capture the intuitive ideas behind them: For M ≥ n5, i ∈ N , and A,B ∈ N i,
vi(A) > vi(B) implies A �SF

i B and avgFi (A)> avgFi (B) implies A�AL
i B [17, Thm. 1 & 2].

We will sometimes abuse notation and just write ui for player i’s utility (or �i for i’s
preference) when the degree of altruism is clear from the context or when we talk about all
three degrees. We will now give an example of an altruistic hedonic game.

Example 1. Consider an altruistic hedonic game with n = 4 agents whose network of
friends is given by a path: 1 — 2 — 3 — 4. We consider the coalitions A = {1, 2, 3},
B = {1, 2, 4}, and C = {1, 2}. It then holds that v1(A) = n − 1 = 3, v2(A) = 2n = 8,
v3(A) = n− 1 = 3, v1(B) = v2(B) = n− 1 = 3, v4(B) = −2, and v1(C) = v2(C) = n = 4.

Under friend-oriented preferences agent 1 is indifferent between A and B (A ∼Fi B)
because v1(A) = v1(B). Under selfish-first altruistic preferences, however, agent 1 resolves
this tie by looking a her friend 2’s valuations. Since avgF1 (A) = v2(A) = 8 > 3 = v2(B) =
avgF1 (B), 1 prefers A to B (A �SF

1 B) under selfish-first altruistic hedonic preferences.
Comparing A and C, 1 prefers C to A (C �SF

1 A) under selfish-first preferences because
v1(C) = 4 > 3 = v1(A) but prefers A to C (A �AL

1 C) under altruistic treatment because of
her friend 2’s valuation: avgF1 (A) = v2(A) = 8 > 4 = v2(C) = avgF1 (C).

3 Three Variants of Altruistic Games

When agents behave altruistically in altruistic hedonic games [17], they consider the average
valuation of their friends that are in the same coalition. This can be seen as an utilitarian
approach since valuations are added up and then divided by the size of the coalition to pre-
vent a “tyranny of the many” (larger coalitions dominating just because of their size). The
egalitarian analogue can be achieved by considering the minimum of the friends’ valuations
instead. Furthermore, altruistic hedonic preferences incorporate the hedonic restriction by
only considering the friends of an agent that are in the same coalition as she is. Dropping
the restriction to hedonic games, we consider preferences of extended altruism where all
friends of an agent are considered, also if they are part of other coalitions.

For any agent i ∈ N and any coalition A ∈ N i, we define the minimum of the valuations
of i’s friends that are in the same coalition as i (and of the valuation of i) by

minFi (A) = min
a∈A∩Fi

va(A) and minF+
i (A) = min

a∈(A∩Fi)∪{i}
va(A). (8)

For readability, we let minFi (Γ) = minFi (Γ(i)) and minF+
i (Γ) = minF+

i (Γ(i)).
For any coalition structure Γ ∈ CN , we denote the sum of the valuations of i’s friends

for their coalitions in Γ (plus the valuation of i) by

sumextF
i (Γ) =

∑
a∈Fi

va(Γ) and sumextF+
i (Γ) =

∑
a∈Fi∪{i}

va(Γ). (9)

Analogously, we define the minimum of the valuations by

minextFi (Γ) = min
a∈Fi

va(Γ) and minextF+
i (Γ) = min

a∈Fi∪{i}
va(Γ). (10)

In these definitions, we define the minimum of the empty set as zero.
Still distinguishing the same three degrees of altruism as Nguyen et al. [17], we define the

different altruistic preferences by the following utilities. For each player i ∈ N , any coalition
structures Γ,∆ ∈ CN , a constant M ≥ n3, and α ∈ {min, sumext,minext}, we define



• the α selfish-first preferences by uαSFi (Γ) = M · vi(Γ) + αFi (Γ) and

Γ �αSFi ∆ ⇐⇒ uαSFi (Γ) ≥ uαSFi (∆). (11)

• the α equal-treatment preferences by uαEQ
i (Γ) = αF+

i (Γ) and

Γ �αEQ
i ∆ ⇐⇒ uαEQ

i (Γ) ≥ uαEQ
i (∆). (12)

• the α altruistic-treatment preferences by uαAL
i (Γ) = vi(Γ) +M · αFi (Γ) and

Γ �αAL
i ∆ ⇐⇒ uαAL

i (Γ) ≥ uαAL
i (∆). (13)

The factor M , which is used for the selfish-first model and for altruistic treatment, again
ensures that an agent’s utility is first determined by the agent’s own valuation in the selfish-
first model and by the friends’ valuations in the altruistic model. Similarly as before, we
can show that for M ≥ n3, vi(Γ) > vi(∆) implies Γ �αSFi ∆, and αFi (Γ) > αFi (∆) implies
Γ �αAL

i ∆. We omit the (straightforward) proofs here.
A pair (N,�α) where �α is a profile of preferences defined by one of the degrees of

altruism in (11)–(13) and with

• α = min is said to be a min-based altruistic hedonic game (MBAHG, for short) with
min-based altruistic (hedonic) preferences �min.

• α = sumext is said to be an altruistic coalition formation game (ACFG, for short)

with extended altruistic preferences �sumext

(or just �ext).

• α = minext is said to be a min-based altruistic coalition formation game (MBACFG,

for short) with extended min-based altruistic preferences �minext

.

Note that min-based altruistic preferences fulfill the hedonic requirement, since the utility
umin
i (Γ) of an agent i for a coalition structure Γ only depends on Γ(i). Hence, we can also

use these preferences to compare coalitions: Γ(i) �min
i ∆(i) ⇐⇒ Γ �min

i ∆.

Example 2. Again, consider a game with four agents whose network of friends is given
by a path: 1 — 2 — 3 — 4. Further consider the coalition structures Γ = {{1}, {2, 3}, {4}}
and ∆ = {{1}, {2, 4}, {3}}.

Under any hedonic preferences, like (min-based) altruistic hedonic preferences, it is clear
that agent 1 is indifferent between Γ and ∆ because any hedonic preference only depends on
Γ(1) = {1} = ∆(1). Under extended (min-based) altruistic preferences, however, agent 1
acts altruistically to all her friends. We have sumextF

1 (Γ) = v2(Γ) = 4 and sumextF
1 (∆) =

v2(∆) = −1. Hence, 1 prefers Γ to ∆ (Γ �extAL
1 ∆) under extended altruistic treatment.

Actually, 1 prefers Γ to ∆ under all degrees of extended (min-based) altruistic preferences.

4 Properties of Altruistic Hedonic Games

We now list some desirable properties of preference extensions that are inspired by various
related topics such as voting theory and resource allocation. Let G = (N,H) be a given
network of friends. We say that player i’s hedonic preference �i on N i is reflexive if
A �i A for each coalition A ∈ N i; �i is transitive if for any three coalitions A,B,C ∈ N i,
A �i B and B �i C implies A �i C; �i is polynomial-time computable if for two given
coalitions A,B ∈ N i, it can be decided in polynomial time whether or not A �i B; and
�i is anonymous if renaming the players in N \ {i} does not change �i. Clearly, the first
three properties are necessary to have efficiently computable and rational preferences, and
anonymity means that only the structure of the friendship network is important.



Weak Friend-Orientedness: If coalition A is acceptable for i (i.e., A �i {i}), then A∪{f}
is also acceptable for i, where f ∈ Fi \A.

Favoring Friends: If x ∈ Fi and y ∈ Ei then {x, i} �i {y, i}.

Indifference between Friends: If x, y ∈ Fi then {x, i} ∼i {y, i}.

Indifference between Enemies: If x, y ∈ Ei then {x, i} ∼i {y, i}.

Note that these four properties hold for friend-oriented preferences, see the work of Al-
cantud and Arlegi [1].2 The next property is inspired by the property “citizens’ sovereignty”
from voting theory which says that only the voters shall decide on who has won an election,
so for a voting rule to satisfy this property it is required that every candidate can be made
a winner for suitably chosen voter preferences (see, e.g., [6]). Similarly, we require that only
the players shall decide on which coalitions turn out to be their most preferred ones, under
a suitably chosen network of friends.

Sovereignty of Players: For a fixed player i and each C ∈ N i, there exists a network of
friends such that C ends up as i’s most preferred coalition.

We now introduce monotonicity which says that an agent’s preference of one coalition
over another should not become worse if an enemy of that agent is turned into a friend.

Monotonicity: Let j 6= i be a player with j ∈ Ei and let A,B ∈ N i. Let further �′i be
the preference relation resulting from �i when j turns from being i’s enemy to being
i’s friend (all else remaining equal). We call �i

• type-I-monotonic if it holds that (1) if A �i B, j ∈ A ∩ B, and vj(A) ≥ vj(B),
then A �′i B, and (2) if A ∼i B, j ∈ A ∩B, and vj(A) ≥ vj(B), then A �′i B;

• type-II-monotonic if it holds that (1) if A �i B and j ∈ A \B, then A �′i B, and
(2) if A ∼i B and j ∈ A \B, then A �′i B.

Another important property is symmetry. It says that, if two agents j and k have the
same friends, then adding either j or k to a coalition should have the same impact on the
utilities of the players in that coalition.

Symmetry: Let j and k be two distinct players with j 6= i 6= k. We say that�i is symmetric
if it holds that if swapping the positions of j and k in G is an automorphism then(
∀ C ∈ N i \ (N j ∪N k)

)
[C ∪ {j} ∼i C ∪ {k}].

The next property is local friend dependence. It says that an agent’s preference over
some coalitions can change if the sets of friends’ friends change. These friends also have to
be members of the coalition that is under consideration. Thus local friend dependence is a
crucial property that tries to capture the essence of the proposed approach to altruism in
hedonic games.

Local Friend Dependence: The preference order �i can depend on the sets of friends
F1, . . . , Fn of some agents. Let A,B ∈ N i. We say that comparison (A,B) is

• friend-dependent in �i if A �i B is true (or false) and can be made false (or true)
by changing the set of friends of some players in N \ {i} (while not changing any
relation to i);

2Alcantud and Arlegi [1] define so-called weighted GNB rankings (where objects are classified into three
categories: good, neutral, and bad), which are a generalization of friend-oriented preferences in hedonic
games.



Table 1: Properties satisfied (3) or not satisfied (7) by (min-based) altruistic hedonic
games, and (min-based) altruistic coalition formation games as defined in Sections 2 and 3.
A dash (—) indicates that the property is not defined for the model.

Model AHG MBAHG ACFG MBACFG
Degree of Altruism SF EQ AL SF EQ AL SF EQ AL SF EQ AL

Reflexivity 3 3 3 3 3 3 3 3 3 3 3 3
Transitivity 3 3 3 3 3 3 3 3 3 3 3 3
Pol.-time comp. 3 3 3 3 3 3 3 3 3 3 3 3
Anonymity 3 3 3 3 3 3 3 3 3 3 3 3
Weak Friend-Orient. 3 3 3 3 3 3 — — — — — —
Favoring Friends 3 3 3 3 3 3 — — — — — —
Indiff. bw. Friends 3 3 3 3 3 3 — — — — — —
Indiff. bw. Enemies 3 3 3 3 3 3 — — — — — —
Sovereignty of Players 3 3 3 3 3 3 3 3 3 3 3 3
Type-I-Monotonicity 3 7 7 7 7 7 3 3 3 7 7 7
Type-II-Monotonicity 3 7 7 3 7 7 3 3 3 3 3 3
Symmetry 3 3 3 3 3 3 3 3 3 3 3 3
Friend Dependence 31 31 31 31 32 31 31 31 31 31 31 31

Local Friend Dep. 31 31 31 31 32 31 7 7 7 7 7 7
Unanimity 3 7 7 3 7 7 3 3 3 3 3 3
Local Unanimity 3 3 3 3 3 3 — — — — — —

1 If there are at least four agents and the considered agent’s set of friends is nonempty.
2 If the considered agent has at least two friends.

• locally friend-dependent in �i if A �i B is true (or false), can be made false (or
true) by changing the set of friends of some players in (A ∪ B) ∩ Fi (while not
changing any relation to i), and changing the set of friends of any of the other
players in N \({i}∪(Fi∩(A∪B))) (while not changing any relation to any player
in {i} ∪ (Fi ∩ (A ∪B))) does not affect the status of the comparison.

We say �i is friend-dependent if there are A,B ∈ N i such that (A,B) is friend-
dependent in �i.
We say �i is locally friend-dependent if �i is friend-dependent and every (A,B) that
is friend-dependent in �i is locally friend-dependent in �i.

Finally, we turn to unanimity. We first define local unanimity which is suited for the
restricted scope of hedonic games: If two coalitions A and B contain the same friends of a
player i, and if i and all these friends value A higher than B, then we want i to prefer A
over B. We further define unanimity which is a broader notion.

Local Unanimity: Let A,B ∈ N i and A∩Fi = B∩Fi. We say that �i is locally unanimous
if va(A) > va(B) for each a ∈ (Fi ∪ {i}) ∩A implies that A �i B.

Let Γ,∆ ∈ CN . We say that �i is unanimous if va(Γ(a)) > va(∆(a)) for each a ∈
Fi ∪ {i} implies Γ(i) �i ∆(i).

We now study which of these desirable properties are satisfied by the (min-based) altru-
istic hedonic games. In Section 5, we will further consider which of the properties hold for
(min-based) altruistic coalition formation games. Table 1 summarizes our results.

We start with some basic properties that hold for altruistic hedonic preferences as well
as for min-based altruistic hedonic preferences. We omit the straightforward proof.



Proposition 3. Under all three degrees of altruism, any (min-based) altruistic hedonic
preference satisfies reflexivity, transitivity, polynomial-time computability, and anonymity.

Nguyen et al. [17] already showed that weak friend-orientedness, favoring friends, in-
difference between friends, indifference between enemies, sovereignty of players, symmetry,
and local unanimity are satisfied for all three degrees of hedonic altruism (5)–(7). All these
properties also hold for the three degrees of min-based altruistic hedonic preferences. We
omit the proof, which works quite similar to the corresponding proof by Nguyen et al. [17].

Nguyen et al. [17] further state that all hedonic altruistic preferences are locally friend-
dependent. We substantiate their statement with the following theorem that says that local
friend dependence holds under all three degrees of hedonic altruism except for some edge
cases where there are not enough agents or no friends to consider. In particular, if i has no
friends, her preference coincides with her friend-oriented preference (as defined in (2)).

Theorem 4. The preference �?i of agent i ∈ N is (locally) friend-dependent if and only if
i has at least one friend and

1. in case ? = SF , there are at least four players in N ;
2. in case ? = EQ, there are at least four players in N or there are exactly three players

while i has exactly one friend;
3. in case ? = AL, there are at least three players in N .

Proof. First, any preference �i obtained under any of the three degrees of altruism (5)–
(7) is locally friend-dependent if and only if it is friend-dependent: Agent i’s utilities for
two coalitions A and B can only be changed by changing the set of i’s friends or the sets of
friends of i’s friends in A and B, respectively.

Second, we show that there exists a pair (A,B) of coalitions that is friend-dependent
under �i if and only if i has at least one friend and N is sufficiently large.

Only if: If i has no friends or if n ≤ 2, there are no friends whose sets of friends could
be changed. So, there is obviously no pair of coalitions that is friend-dependent under any
degree of altruism. For n = 3, it is easy check whether there exist friend-dependent pairs of
coalitions. Omitting the details, the results are as stated in the theorem.

If: We show that there is a pair (A,B) that is friend-dependent (under any degree of
altruism) if n ≥ 4 and |Fi| > 0. Case 1: There are at least two agents e1, e2 ∈ N \ {i} that
are i’s enemies (and one f ∈ Fi due to |Fi| > 0). It holds that vi({i, f, e1}) = vi({i, f, e2}).
Hence, i’s utility depends on avgFi ({i, f, e1}) and avgFi ({i, f, e2}). If avgFi ({i, f, e1}) =
avgFi ({i, f, e2}), we change Ff such that avgFi ({i, f, e1}) 6= avgFi ({i, f, e2}), and vice versa.
(This is possible by adding e1 to Ff or deleting e1 from Ff .) This changes i’s preference
over {i, f, e1} and {i, f, e2} under all three degrees of altruism. Hence, ({i, f, e1}, {i, f, e2})
is friend-dependent. Case 2: i is friends with all but one agent e1 ∈ N \{i} and thus has at
least two friends f1, f2 ∈ Fi (due to n ≥ 4). Then ({i, f1, e}, {i, f2, e}) is friend-dependent
(by adding e to Ff1 or deleting e from Ff1). Case 3: If i is friends with all (at least
n− 1 ≥ 3) agents f1, . . . fn−1 ∈ N \ {i}, then ({i, f1, f2}, {i, f1, f3}) is friend-dependent (by
adding f2 to Ff1 or deleting f2 from Ff1). q

Similarly as for average-based AHGs, we can show that local friend dependence holds
under all three degrees of min-based hedonic altruism except for some edge cases. Here,
�minEQ
i additionally coincides with i’s friend-oriented preference if i has only one friend.

Theorem 5. The preference �?i of agent i ∈ N is (locally) friend-dependent if and only if
1. in case ? = minSF , i has at least one friend and there are at least four players in N ;
2. in case ? = minEQ, i has at least two friends (thus there are at least three players);
3. in case ? = minAL, i has at least one friend and there are at least three players in N .
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Figure 1: Networks of friends in the proofs of Theorems 7 and 8

Theorem 5 can be shown similarly to Theorem 4; we defer its proof to the appendix.
We now turn to monotonicity. Interestingly, both types of monotonicity hold for selfish-

first preferences but for none of the other two degrees of altruism.

Theorem 6 (Nguyen et al. [17]). SF preferences (5) are type-I-monotonic and type-II-
monotonic. EQ preferences (6) and AL preferences (7) are not type-II-monotonic.

Theorem 7. EQ preferences (6) and AL preferences (7) are not type-I-monotonic.

Proof. Let G1 be a game with the network of friends shown in Figure 1a. We consider
players i = 1, j = 2 /∈ F1 and coalitions A = {1, 2, 3, 4, 5} and B = {1, 2, 6, 7, 8}. Then
v1(A) = 3n − 1, v1(B) = n − 3, vf (A) = n − 3 for all f ∈ A ∩ F1, and vf (B) = 2n − 2

for all f ∈ B ∩ F1. Calculating 1’s equal-treatment utilities, we get uEQ
1 (A) = 6n−10

4 and

uEQ
1 (B) = 3n−5

2 . Hence, A ∼EQ
1 B. We further have 2 ∈ A∩B, and v2(A) ≥ v2(B). Let G′1

be the game that results from G1 when making 2 a friend of 1’s. In G′1 we have B �EQ
1 A,

violating type-I-monotonicity for equal-treatment preferences.
Analogously, for the game G2 (illustrated in Figure 1b), players 1 and 2 /∈ F1, and the

coalitions A = {1, 2, 7, 8, 9, 10} and B = {1, 2, 3, 4, 5, 6}, AL preferences are not type-I-
monotonic because A �AL

1 B, 2 ∈ A∩B, and v2(A) ≥ v2(B) in G2 but B �AL
1 A in G′2. q

Theorems 6 and 7 are conform with the intuition behind the definitions of equal treat-
ment and altruistic treatment: If a player i gets an additional friend who is unsatisfied in
i’s coalition then this should diminish player i’s utility under equal-treatment and altruistic-
treatment preferences. For min-based altruistic hedonic preferences, we get similar results.

Theorem 8. Min-based SF preferences are type-II-monotonic, but not type-I-monotonic.
Min-based EQ and AL preferences are neither type-I- nor type-II-monotonic.

Proof. We omit the proof that min-based SF preferences are type-II-monotonic since it
is very similar to the proof of Theorem 6 saying that SF preferences are type-II-monotonic.

To see that none of the three degrees of min-based altruistic preferences is type-I-
monotonic, consider the game G3 with the network of friends in Figure 1c, players i = 1
and j = 2, and coalitions A = {1, 2, 3, 4} and B = {1, 2, 5, 6}. Then v1(A) = v1(B) = 11,
v2(A) = v2(B) = −3, v3(A) = v4(A) = 11, and v5(B) = v6(B) = 4. Hence, minFi (A) = 11

and minF1 (B) = 4. It follows that A �minSF
1 B, A �minEQ

1 B, and A �minAL
1 B.

Consider the game G′3 that results from G3 by making 2 a friend of 1’s. For this game,
v1(A) = v1(B) = 18, v2(A) = v2(B) = 4, v3(A) = v4(A) = 11, and v5(B) = v6(B) = 4.

Then minF1 (A) = 4 = minF1 (B), so A ∼minSF
1 B, A ∼minEQ

1 B, and A ∼minAL
1 B, which

contradicts type-I-monotonicity for the three degrees of min-based altruistic hedonic games.
To see that�minEQ1 and�minAL1 violate type-II-monotonicity, consider the same game G3

from Figure 1c, players i = 1 and j = 2, and coalitions A = {1, 2, 3, 4} and B = {1, 5, 6}.
Then A �minEQ

i B and A �minAL
i B. However, considering G′3, we get B �minEQ

i A and
B �minAL

i A, violating type-II-monotonicity for min-based EQ and AL preferences. q



Intuitively, the results of Theorem 8 do make sense because in min-based altruistic
hedonic games a player’s preference is determined by the friend that is worst off. Only in
the case of min-based SF preferences, agent i still first looks at her own valuation. Hence, an
additional friend will always increase her utility. Under the two other degrees of min-based
altruism, however, an additional friend might decrease her utility because this friend might
have a lower valuation for the coalition than i and all other friends of i’s in this coalition.

Finally, it is easy to see that unanimity holds for (min-based) SF preferences. Unanimity
will be discussed in more detail in the next section on altruistic coalition formation games and
we will see that (min-based) EQ and AL preferences are not unanimous (see Example 13).

5 Properties of Altruistic Coalition Formation Games

We now study the properties from Section 4 for extended (min-based) altruistic preferences

(�ext and�minext

). We redefine some of the properties for hedonic preferences from Section 4
for the more general setting of coalition formation games. Reflexivity, transitivity, poly-
nomial-time computability, and anonymity are defined as before with the only difference
that we now compare coalition structures instead of coalitions. It is easy to see that our
extended models still satisfy these four properties under all three degrees of altruism.

Sovereignty of Players: For a fixed player i ∈ N and each Γ ∈ CN , there exists a network
of friends such that Γ ends up as i’s most preferred coalition structure.

Sovereignty of players still holds for all degrees of altruism of our extended models.
This can be shown with an analogous construction as in the proof of Nguyen et al. [17,
Theorem 5]: For a given player i ∈ N and a coalition structure Γ ∈ CN , we construct a
network of friends where all players in Γ(i) are friends of each other while there are no other
friendship relations. Then Γ is i’s (nonunique) most preferred coalition structure.

Monotonicity: Let j 6= i be a player with j ∈ Ei and let Γ,∆ ∈ CN . For α ∈
{sumext,minext}, let further �α′i be the preference relation resulting from �αi when j
turns from being i’s enemy to being i’s friend (all else remaining equal). We call �αi

• type-I-monotonic if it holds that (1) if Γ �αi ∆, j ∈ Γ(i)∩∆(i), and vj(Γ) ≥ vj(∆),
then Γ �α′i ∆, and (2) if Γ ∼αi ∆, j ∈ Γ(i) ∩ ∆(i), and vj(Γ) ≥ vj(∆), then
Γ �α′i ∆;

• type-II-monotonic if it holds that (1) if Γ �αi ∆, j ∈ Γ(i) \ ∆(i), and vj(Γ) ≥
vj(∆), then Γ �α′i ∆, and (2) if Γ ∼αi ∆, j ∈ Γ(i) \ ∆(i), and vj(Γ) ≥ vj(∆),
then Γ �α′i ∆.

Type-I-monotonicity and type-II-monotonicity as defined here hold for all three de-
grees of extended altruism.3 All degrees of extended min-based altruism satisfy type-II-
monotonicity. The proofs of Theorems 9 and 10 can be found in the appendix.

Theorem 9. Under all three degrees of altruism, extended altruistic preferences �ext are
type-I-monotonic and type-II-monotonic.

Theorem 10. Under all three degrees of altruism, extended min-based altruistic preferences
�minext

are type-II-monotonic but not type-I-monotonic.

3It is quite remarkable that all three degrees of our extended model of altruism satisfy both type-I- and
type-II-monotonicity, unlike in the hedonic models of altruism which fail to satisfy either of them for equal
and altruistic treatment (and min-based altruistic selfish-first preferences even violate type-I-monotonicity).



Next, symmetry requires that if two agents j and k have the same friends, then for any
coalition structure, where j and k are together with the same set of friends, moving j or k
to another coalition should have the same impact on an agent i in that coalition.

Symmetry: Let j and k be two distinct players with j 6= i 6= k. For α ∈ {sumext,minext},
we say that �αi is symmetric if it holds that if swapping the positions of j and k in G
is an automorphism then

(
∀ Γ ∈ CN ,Γ(j)\{j, k} = Γ(k)\{j, k}

)
[Γj→Γ(i) ∼αi Γk→Γ(i)].

Theorem 11. Under all three degrees of altruism, extended (min-based) altruistic prefer-
ences �αi , α ∈ {sumext,minext}, are symmetric.

The proof of Theorem 11 is omitted. We now turn to friend dependence.

Local Friend Dependence: Let α ∈ {sumext,minext} and Γ,∆ ∈ CN . We say that com-
parison (Γ,∆) is

• friend-dependent in �αi if Γ �αi ∆ is true (or false) and can be made false (or
true) by changing the set of friends of some players in N \{i} (while not changing
any relation to i);

• locally friend-dependent in �αi if Γ �αi ∆ is true (or false), can be made false (or
true) by changing the set of friends of some players in Fi∩(Γ(i)∪∆(i)) (while not
changing any relation to i), and changing the set of friends of any of the other
players in N \ ({i}∪ (Fi ∩ (Γ(i)∪∆(i)))) (while not changing any relation to any
player in {i} ∪ (Fi ∩ (Γ(i) ∪∆(i)))) does not affect the status of the comparison.

We say �αi is friend-dependent if there are Γ,∆ ∈ CN such that (Γ,∆) is friend-
dependent in �αi .

We say �αi is locally friend-dependent if �αi is friend-dependent and every (Γ,∆) that
is friend-dependent in �αi is locally friend-dependent in �αi .

As under extended (min-based) altruistic preferences the agents behave altruistically to
all their friends, even if these friends are not in the same coalition, it intuitively makes sense
that the extended models fulfill friend dependence but not local friend dependence.

Theorem 12. Under all three degrees of altruism, extended (min-based) altruistic prefer-
ences are not locally friend-dependent. But they are friend-dependent if and only if there
are at least three agents and the considered agent has at least one friend.

Proof. It is easy to see that there is no friend-dependent comparison if there are at most
two agents or if the considered agent i has no friends. For the case of n ≥ 3 agents where i has
at least one friend, there exists a comparison (Γ,∆) that is friend-dependent but not locally
friend-dependent. Consider three players i, f, x ∈ N with f ∈ Fi and two coalition structures
Γ = {{i}, {f}, {x}, . . .} (singleton coalitions only) and ∆ = {{i}, {f, x}, . . .} (singleton
coalitions except for {f, x}). Then, by adding x to Ff or deleting x from Ff , i’s preference
over Γ and ∆ changes under all three degrees of extended (min-based) altruism. q

Unanimity: Let Γ,∆ ∈ CN . We say that �ext
i is unanimous if va(Γ) > va(∆) for each

a ∈ Fi ∪ {i} implies Γ �ext
i ∆.

It is easy to see that, for all three degrees of altruism, the extended (min-based) altruistic
preferences fulfill unanimity. This crucially distinguishes our models for altruism in coalition
formation games from the models for altruism in hedonic games. As the following example
shows, unanimity is not satisfied by hedonic (min-based) EQ and AL preferences.
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Figure 2: Network of friends for the game in Example 13

Table 2: Relevant values for the game in Example 13 with the network of friends in Figure 2

vi 1 2 5 6

Γ1 10 10 0 0

Γ2 16 20 5 5

sumextF
1 sumextF+

1 minextF1 minextF+
1

Γ1 10 20 0 0

Γ2 30 46 5 5

avgF1 avgF+
1 minF1 minF+

1

Γ1
10
1 = 10 10+10

2 = 10 10 10

Γ2
5+5

2 = 5 16+5+5
3 = 8, 6 5 5

Example 13. Consider the game given by the network of friends in Figure 2 and the
coalition structures Γ1 = {{1, 2}, {3}, {4}, . . . , {10}} and Γ2 = {{1, 5, . . . , 10}, {2, 3, 4}}.
Table 2 shows all relevant values that are needed to compute the utilities of agent 1 under
extended (min-based) altruistic preferences and (min-based) altruistic hedonic preferences.

One can observe that agent 1 and all her friends assign a higher value to Γ2 than to Γ1.
Hence, it seems reasonable if 1 would prefer Γ2 to Γ1 under all degrees of altruism. This is
actually the case for our extended (min-based) altruistic preferences which are unanimous.

However, the hedonic models are blind to the fact that agent 1 and all her friends are
better off in Γ2 than in Γ1. Under the (min-based) altruistic hedonic preferences, only the
friends in the current coalition are considered which leads to 1 preferring Γ1(1) = {1, 2} to
Γ2(1) = {1, 5, . . . , 10} under (min-based) hedonic equal-treatment and altruistic-treatment
preferences. This shows that all these preferences are not unanimous.

6 Discussion

We have studied the four models of altruism in (hedonic) coalition formation games and
have seen that all four models satisfy some basic properties, namely reflexivity, transitivity,
polynomial-time computability, anonymity, sovereignty of players, and symmetry.

Out of the altruistic hedonic models, the average-based model is the only one that fulfills
all the properties considered here at least under SF preferences (but not under EQ or AL).

The extended sum-based altruistic model is the strongest concerning its properties. It is
the only model that fulfills both types of monotonicity for all degrees of altruism. In contrast
to that, both min-based models naturally fail to satisfy type-I-monotonicity: An additional
friend might lead to a decrease in utility when taking the minimum over the friends. Both
hedonic models further fail to satisfy type-II-monotonicity under EQ and AL.

The extended altruistic models also fulfill a stronger notion of unanimity than the hedonic
models do. We consider unanimity to be very important since it is a very natural property:
If all considered agents have a unanimous opinion about two coalition structures, it seems
very counterintuitive to decide contrary to this opinion. Unfortunately, as we have seen
in Example 13, such a situation can occur under altruistic hedonic preferences. Arguably,
whenever we are not restricted to hedonic games, it would be reasonable to rather consider
the extended altruistic model and seek to increase all friends’ valuations.
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Appendix

Omitted Proofs

Below we give some proofs that were previously omitted.

Proposition 3. Under all three degrees of altruism, any (min-based) altruistic hedonic pref-
erence satisfies reflexivity, transitivity, polynomial-time computability, and anonymity.

Proof. Reflexivity follows immediately from the definition.
Transitivity follows from the fact that the relation ≥ is transitive for rational numbers.
Furthermore, each valuation (1) of an agent for a coalition can obviously be computed

in polynomial time. Hence, each summand in (3) and (4) (or each value over which the
minimum is taken in (8)) can be computed in polynomial time. The number of summands
(or values over which the minimum is taken) is bounded by n, which implies that both sums
(or minimums) can be computed in polynomial time, which in turn allows to determine the
utilities for any two coalitions in polynomial time.

Finally, by renaming the players, the numbers of friends and enemies of the players do
not change. Therefore, the calculations of the utilities do not change either, leading to no
change in the relation between two coalitions. q

Theorem 5. The preference �?i of agent i ∈ N is (locally) friend-dependent if and only if
1. in case ? = minSF , i has at least one friend and there are at least four players in N ;
2. in case ? = minEQ, i has at least two friends (thus there are at least three players);
3. in case ? = minAL, i has at least one friend and there are at least three players in N .

Proof. First, similarly as for average-based AHGs (see the proof of Theorem 4), it is not
hard to see that every min-based hedonic altruistic preference that is friend-dependent is
also locally friend-dependent.

Second, we again show that �i∈ {�minSF
i ,�minEQ

i ,�minAL
i } is friend-dependent, i.e.,

there exists a pair of coalitions that is friend-dependent under �i, if and only if i has
enough friends and N is sufficiently large.

Again, the results for n ≤ 3 players are not stated in detail as they can easily be verified.
Only if: It is obvious that |Fi| = 0 implies that all min-based altruistic preferences are

not friend-dependent. Moreover, we consider �minEQ
i for the case that |Fi| = 1. Then vi(C)

is the minimum valuation in uminEQ
i (C) for any coalition C because i has at most one friend

in C while this friend might have more friends in C. Hence, �minEQ
i coincides with �Fi and

is not friend-dependent.
If: The argumentation for showing that �minSF

i and �minAL
i are friend-dependent if

n ≥ 4 and |Fi| > 0 is very similar to the argumentation in the proof of Theorem 4 and is
therefore omitted.

We now show that �minEQ
i is friend-dependent if |Fi| ≥ 2. Assuming |Fi| ≥ 2, there are

f1, f2 ∈ Fi. If f1 and f2 are friends of each other, then {i, f1, f2} �minEQ
i {i, f1}. Otherwise,

{i, f1} �minEQ
i {i, f1, f2}. Hence, we can change �minEQ

i by changing the friendship relation

between f1 and f2, which means that �minEQ
i is friend-dependent. q

Theorem 9. Under all three degrees of altruism, extended altruistic preferences �ext are
type-I-monotonic and type-II-monotonic.

Proof. Let G = (N,H) be a network of friends and let i ∈ N , Γ,∆ ∈ CN , and j ∈ Ei.
We denote with G′ = (N,H ∪{(i, j)}) the network of friends resulting from G when j turns



from being i’s enemy to being i’s friend (all else being equal). Then, for any player a ∈ N
and coalition Γ ∈ N a, we denote a’s value for Γ in G′ with v′a(Γ), her preference in G′ with
�ext′a and her new friend and enemy sets with F ′a and E′a. Hence, we have F ′i = Fi ∪ {j},
E′i = Ei \ {j}, F ′j = Fj ∪{i}, and E′j = Ej \ {i}. Further, v′i, v

′
j , and �ext′i might differ from

vi, vj , and �exti , while the friends, enemies, and values of all other players stay the same,
i.e., F ′a = Fa, E′a = Ea, and v′a = va for all a ∈ N \ {i, j}.

Type-I-Monotonicity: Let j ∈ Γ(i) ∩ ∆(i) and vj(Γ) ≥ vj(∆). It then holds that
v′i(Γ) = n|Γ(i) ∩ F ′i | − |Γ(i) ∩ E′i| = n|Γ(i) ∩ Fi| + n − |Γ(i) ∩ Ei| + 1 = vi(Γ) + n + 1.
Equivalently, v′i(∆) = vi(∆) + n + 1, v′j(Γ) = vj(Γ) + n + 1, and v′j(∆) = vj(∆) + n + 1.
Furthermore,

sumextF ′
i (Γ) =

∑
a∈F ′

i

v′a(Γ) =
∑

a∈Fi∪{j}

v′a(Γ) =
∑
a∈Fi

va(Γ) + v′j(Γ)

= sumextF
i (Γ) + vj(Γ) + n+ 1 and (14)

sumextF ′
i (∆) = sumextF

i (∆) + vj(∆) + n+ 1. (15)

(1) Selfish First: If Γ �extSF
i ∆ then either (i) vi(Γ) = vi(∆) and sumextF

i (Γ) >
sumextF

i (∆), or (ii) vi(Γ) > vi(∆). In case (i), vi(Γ) = vi(∆) implies v′i(Γ) = v′i(∆).
Applying sumextF

i (Γ) > sumextF
i (∆) and vj(Γ) ≥ vj(∆) to (14) and (15), we get

sumextF ′
i (Γ) > sumextF ′

i (∆). This together with v′i(Γ) = v′i(∆) implies Γ �extSF ′
i ∆. In

case (ii), vi(Γ) > vi(∆) implies v′i(Γ) > v′i(∆). Hence, Γ �extSF ′
i ∆.

If Γ ∼extSF
i ∆ then vi(Γ) = vi(∆) and sumextF

i (Γ) = sumextF
i (∆). vi(Γ) = vi(∆) implies

v′i(Γ) = v′i(∆). Applying sumextF
i (Γ) = sumextF

i (∆) and vj(Γ) ≥ vj(∆) to (14) and (15),
we get sumextF ′

i (Γ) ≥ sumextF ′
i (∆). This together with v′i(Γ) = v′i(∆) implies Γ �extSF ′

i ∆.

(2) Equal Treatment: If Γ �extEQ
i ∆ then sumextF

i (Γ) + vi(Γ) > sumextF
i (∆) + vi(∆).

Using (14), (15), v′i(Γ) = vi(Γ) + n + 1, v′i(∆) = vi(∆) + n + 1, and vj(Γ) ≥ vj(∆), this

implies sumextF ′
i (Γ) + v′i(Γ) > sumextF ′

i (∆) + v′i(∆). Hence, Γ �extEQ′
i ∆.

If Γ ∼extSF
i ∆, using the same equations, Γ �extEQ′

i ∆ is implied.
(3) Altruistic Treatment: If Γ �extAL

i ∆ then either (i) sumextF
i (Γ) = sumextF

i (∆)
and vi(Γ) > vi(∆), or (ii) sumextF

i (Γ) > sumextF
i (∆). In case (i), sumextF

i (Γ) = sumextF
i (∆)

together with (14), (15), and vj(Γ) ≥ vj(∆), implies sumextF ′
i (Γ) ≥ sumextF ′

i (∆). Further,
vi(Γ) > vi(∆) together with v′i(Γ) = vi(Γ)+n+1 and v′i(∆) = vi(∆)+n+1 implies v′i(Γ) >
v′i(∆). Altogether, this implies Γ �extAL′

i ∆. In case (ii), sumextF ′
i (Γ) > sumextF ′

i (∆) is
implied and Γ �extAL′

i ∆ follows.
If Γ ∼extAL

i ∆ then sumextF
i (Γ) = sumextF

i (∆) and vi(Γ) = vi(∆). Using the same
equations as before, Γ �extAL′

i ∆ is implied.

Type-II-Monotonicity: Let j ∈ Γ(i) \∆(i) and vj(Γ) ≥ vj(∆). It follows that v′i(Γ) =
vi(Γ) + n+ 1, v′i(∆) = vi(∆), v′j(Γ) = vj(Γ) + n+ 1, and v′j(∆) = vj(∆). Furthermore,

sumextF ′
i (Γ) = sumextF

i (Γ) + vj(Γ) + n+ 1 and (16)

sumextF ′
i (∆) = sumextF

i (∆) + vj(∆). (17)

(1) Selfish First: If Γ �extSF
i ∆ then vi(Γ) ≥ vi(∆). Hence, v′i(Γ) = vi(Γ) + n + 1 ≥

vi(∆) + n+ 1 > vi(∆) = v′i(∆), implying Γ �extSF ′
i ∆.

(2) Equal Treatment: If Γ �extEQ
i ∆ then sumextF

i (Γ) + vi(Γ) ≥ sumextF
i (∆) +

vi(∆). Together with (16), (17), and vj(Γ) ≥ vj(∆) this implies sumextF ′
i (Γ) + v′j(Γ) >

sumextF ′
i (∆) + v′j(∆). Hence, Γ �extEQ′

i ∆.



(3) Altruistic Treatment: If Γ �extAL
i ∆ then sumextF

i (Γ) ≥ sumextF
i (∆). Together

with (16), (17), and vj(Γ) ≥ vj(∆) this implies sumextF ′
i (Γ) > sumextF ′

i (∆), so Γ �extAL′
i ∆.

This completes the proof. q

Theorem 10. Under all three degrees of altruism, extended min-based altruistic preferences
�minext

are type-II-monotonic but not type-I-monotonic.

Proof. We use the same notation as in the proof of Theorem 9 and begin with showing that
extended min-based preferences are type-II-monotonic under all three degrees of altruism.

Type-II-Monotonicity: Let j ∈ Γ(i) \ ∆(i) and vj(Γ) ≥ vj(∆). It then holds that
v′i(Γ) = vi(Γ)+n+1, v′i(∆) = vi(∆), v′j(Γ) = vj(Γ)+n+1, and v′j(∆) = vj(∆). Furthermore,

minextF ′i (Γ) = min
a∈Fi∪{j}

v′a(Γ)

= min
(
minextFi (Γ), v′j(Γ)

)
= min

(
minextFi (Γ), vj(Γ) + n+ 1

)
,

minextF ′i (∆) = min
a∈Fi∪{j}

v′a(∆)

= min
(
minextFi (∆), v′j(∆)

)
= min

(
minextFi (∆), vj(∆)

)
,

minextF+′
i (Γ) = min

(
minextF ′i (Γ), v′i(Γ)

)
= min

(
minextFi (Γ), vj(Γ) + n+ 1, vi(Γ) + n+ 1

)
, and

minextF+′
i (∆) = min

(
minextF ′i (∆), v′i(∆)

)
= min

(
minextFi (∆), vj(∆), vi(∆)

)
.

(1) SF: Assume that Γ �minextSF
i ∆. Then vi(Γ) ≥ vi(∆). Hence, v′i(Γ) = vi(Γ)+n+1 ≥

vi(∆) + n+ 1 > vi(∆) = v′i(∆), which implies Γ �minextSF ′
i ∆.

(2) EQ: First, assume that Γ �minextEQ
i ∆. Then

min
(
minextFi (Γ), vi(Γ)

)
> min

(
minextFi (∆), vi(∆)

)
.

It follows that

minextF+′
i (Γ) = min

(
minextFi (Γ), vj(Γ) + n+ 1, vi(Γ) + n+ 1

)
(18)

≥ min
(
minextFi (Γ), vj(Γ) + n+ 1, vi(Γ)

)
> min

(
minextFi (∆), vj(Γ), vi(∆)

)
≥ min

(
minextFi (∆), vj(∆), vi(∆)

)
= minextF+′

i (∆).

Hence, Γ �minextEQ′
i ∆.

Second, assume that Γ ∼minextEQ
i ∆. Then

min
(
minextFi (Γ), vi(Γ)

)
= min

(
minextFi (∆), vi(∆)

)
.

Similarly as in (18), it follows that

minextF+′
i (Γ) ≥ minextF+′

i (∆).



Hence, Γ �minextEQ′
i ∆.

(3) AL: First, assume that Γ �minextAL
i ∆. Then (i) minextFi (Γ) > minextFi (∆) or

(ii) minextFi (Γ) = minextFi (∆) and vi(Γ) > vi(∆).
In case of (i), we get

minextF ′i (Γ) = min
(
minextFi (Γ), vj(Γ) + n+ 1

)
(19)

≥ min
(
minextFi (Γ), vj(∆) + n+ 1

)
> min

(
minextFi (∆), vj(∆)

)
= minextF ′i (∆).

Hence, Γ �minextAL′
i ∆.

In case of (ii), similarly as in (19), we get

minextF ′i (Γ) ≥ minextF ′i (∆).

Furthermore, vi(Γ) > vi(∆) implies v′i(Γ) > v′i(∆). Hence, Γ �minextAL′
i ∆.

Second, we assume that Γ ∼minextAL
i ∆. Then minextFi (Γ) = minextFi (∆) and vi(Γ) =

vi(∆). Similarly as in (19), we get minextF ′i (Γ) ≥ minextF ′i (∆). Furthermore, vi(Γ) = vi(∆)
implies v′i(Γ) > v′i(∆). Hence, Γ �minextAL′

i ∆.
This completes the proof for type-II-monotonicity.

Type-I-Monotonicity: To see that �minextSF is not type-I-monotone, consider the game
G4 with the network of friends in Figure 3a.
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Figure 3: Networks of friends in the proof of Theorem 10

Furthermore, consider the coalition structures Γ = {{1, 2}, {3, 4, 5}, {6}} and ∆ =
{{1, 2}, {3, 4, 5, 6}} and players i = 1 and j = 2 with 2 ∈ Γ(1) ∩ ∆(1), and v2(Γ) = −1 =
v2(∆). It holds that v1(Γ) = v1(∆) = −1, minextF1 (Γ) = 2n, and minextF1 (∆) = 2n − 1.
Hence, Γ �minextSF

1 ∆.
Now, making 2 a friend of 1’s leads to game G′4 with the network of friends in Figure 3b.

For this game, we have v1(Γ) = v1(∆) = n and minextF1 (Γ) = minextF1 (∆) = n. This implies
Γ ∼minextSF

1 ∆ which contradicts type-I-monotonicity.
To see that�minextEQ and�minextAL are not type-I-monotone, consider the game G5 with

the network of friends in Figure 3c. Consider the coalition structures Γ = {{1, 2, 3, 4}, {5}}
and ∆ = {{1, 2, 3, 4, 5}} and players i = 1 and j = 2 with 2 ∈ Γ(1) ∩ ∆(1), and v2(Γ) =
−3 > −4 = v2(∆). It holds that minextF+

1 (Γ) = minextF1 (Γ) = 2n− 1, and minextF+
1 (∆) =

minextF1 (∆) = 2n− 2. Hence, Γ �minextEQ
1 ∆ and Γ �minextAL

1 ∆.
Now, making 2 a friend of 1’s leads to game G′5 with the network of friends in Figure 3d.

For this game, we have minextF+
1 (Γ) = minextF1 (Γ) = n and minextF+

1 (∆) = minextF1 (∆) =

n. This implies Γ ∼minextEQ
1 ∆ and Γ ∼minextAL

1 ∆ which contradict type-I-monotonicity.
This completes the proof for type-I-monotonicity. q

Theorem 11. Under all three degrees of altruism, extended (min-based) altruistic prefer-
ences �αi , α ∈ {sumext,minext}, are symmetric.



Proof. Let i, j, k ∈ N be three distinct players and Γ ∈ CN ,Γ(j) \ {j, k} = Γ(k) \ {j, k}.
Suppose that swapping the positions of j and k in G is an automorphism. Then j is a friend
of a player a ∈ N \ {j, k} if and only if k is. Therefore, all players a ∈ Γ(j) \ {j, k} value
Γ(j) \ {j} and Γ(j) \ {k} the same and all players a ∈ Γ(i) \ {j, k} value Γ(i) ∪ {j} and
Γ(i)∪{k} the same. Further, j values Γ(i)∪{j} the same as k values Γ(i)∪{k} and j values
Γ(j) \ {k} the same as k values Γ(j) \ {j} because j and k have the same friends in Γ(i)
and Γ(j), respectively. Hence, va(Γj→Γ(i)) = va(Γk→Γ(i)) for all a ∈ Fi ∪ {i}. This implies

Γj→Γ(i) ∼αSFi Γk→Γ(i), Γj→Γ(i) ∼αEQ
i Γk→Γ(i), and Γj→Γ(i) ∼αAL

i Γk→Γ(i). q
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