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Abstract

We study a model where a group of representatives is elected to make a series of
decisions on behalf of voters. The quality of such a representative committee is
judged based on the extent to which the decisions it makes are consistent with the
voters’ preferences. We assume the set of issues on which the committee will make
the decisions is unknown—a committee is elected based on the preferences of the
voters over the candidates, which only reflect how similar are the preferences of
the voters and candidates regarding the issues. In this model we theoretically and
experimentally assess qualities of various multiwinner election rules.

1 Introduction

One of the fundamental goals that the (computational) social choice theory sets to itself is
to evolve a set of tools that could help societies to improve the processes of making collective
decisions. This includes developing frameworks that allow to formally reason about and to
meaningfully compare election rules. Typically, such a comparison is done in a context-
free manner—the criteria used for comparing rules are generic, not tailored to a specific
scenario where the election rule is to be used (cf., the axiomatic approach Arrow et al.
[2002]). While such an approach has a natural appeal of generality, various applications differ
substantially, and a rule which is considered perfect in one situation may be inappropriate
in another one. This motivates comparing rules based on context-specific assumptions. In
this paper we focus on indirect democracies—we study a framework for comparing rules
for selecting committees (e.g., parliaments, representative boards, etc.), assuming that the
elected committee will make a series of decisions on behalf of the society.
Our model can be informally described as follows (the formal definitions are provided in

Sections 2 and 3). There are three types of objects: voters, candidates, and issues—an issue
is an alternative with two possible outcomes: “yes” or “no”. Each voter and each candidate
has her preferred outcome for each issue—these preferred outcomes induce the preferences
of the voters over the candidates—a voter examines how similar is her opinion on the issues
to the opinions of the candidates, and ranks them accordingly1. Further, the preferred
outcomes can be used to measure and to compare the qualities of committees: for a given
committee W we can check what kind of decisions would be made by W if elected (we
assume that the elected committee uses the majority rule to decide about each issue) and
compare these decision with the voters’ preferred outcomes. A committee whose decisions
coincides with most preferred outcomes is called optimal.
Finding an optimal committee would be possible if we knew all the elements of the model.

Yet, often the preferred outcomes of the voters (or even the issue space itself) remain
unknown during elections, and winning committees are elected based on the preferences
of the voters over the candidates. Since the voters’ preference rankings only reflect the

1The candidates’ preferences are usually publicly known—e.g., politicians talk about their preferences
over various issues during election campaigns. The voters know their own preferences and so they are able
to construct their preferences over the candidates.



similarities between theirs and the candidates’ preferred outcomes for the issues, it is not
surprising that an election rule might not be able to choose an optimal committee since it
has only access to partial information. In this paper we quantify this effect and we ask what
is the loss of utility that a committee election rule can cause due to not knowing the issue
space.

Our methodology and contribution are the following:

1. In Section 4 we assess the worst-case loss of utility of multiwinner rules—by an analogy to
the literature Procaccia and Rosenschein [2006] we call this worst-case loss of utility the
distortion. We prove that the distortion of any ordinal voting rule R equals to infinity.
Thus, in the most general case, it is inevitable that an error made when selecting a
committee based on the preferences of the voters over the candidates, can be arbitrarily
bad.

2. Due to the aforementioned negative result, we further focus our theoretical analysis
on a specific domain restriction inspired by works from political science on polarized
division of ideologies. Under this domain restriction we assume that the societies are
centered around two poles, i.e., that there are only two types of preferred outcomes
that the voters and the candidates can have. It is quite surprising that already under
this seemingly strong assumption the distortion of many known rules, such as SNTV, k-
Borda, the Chamberlin-Courant rule, and the Monroe rule can be arbitrary bad once the
parameters, such as the number of voters or candidates, are large. On the other hand,
in this case the distortion of STV and k-Copeland are constant. In fact, the k-Copeland
rule always selects an optimal committee when the societies are polarized.

3. Our negative results show certain limitations of the worst-case analysis when applied to
the voting committee model. Consequently, the major (and the main) part of our study
aims at understanding the average behavior of voting rules. To this end, we performed
extensive computer simulations for several natural distribution of individuals’ preferred
outcomes. In particular, our distributions generalize and extend the polarized model, as
described above.

If we judge the rules from the majoritarian perspective (a view that focuses solely on maxi-
mizing the total voters’ satisfaction), our results show a dichotomy. In the two most extreme
cases: (i) when a society is strongly polarized, or (ii) when the opinions with respect to vari-
ous issues are uniformly and independently distributed in a society, multiwinner rules based
on the Condorcet criterion, such as k-Copeland, are the best: this is confirmed both by our
experiments and by the theoretical results. On the other hand, when the number of pre-
dominant views in a society is larger than two, then proportional rules such as STV select
committees whose majoritarian decisions particularly well reflect the opinions of the voters
(this is somehow unexpected, given the majoritarian approach to judging the rules). If we
use a more proportional metric to assess qualities of voting rules (a metric that puts more
emphasis on reducing the societal inequality), then the proportional rules such as STV are
always superior.

Related Work

There is a vast literature that considers committees making series of decisions Young [1995];
Feddersen and Pesendorfer [1997, 1998]; Magdon-Ismail and Xia [2018]—this literature dates
back to the 18th century, when Condorcet formulated his famous Jury Theorem. However,
all these aforementioned works use the assumption that there exists a ground truth, and so,
that each decision made by a committee is either objectively correct or wrong. Our model is



different—here, the quality of a committee can be judged only with respect to the voters—a
good committee is the one that well-represents (subjective) preferences of the society.
Scenarios where a committee makes a sequence of binary decisions were also considered

in the context of Colonel Blotto games Laslier and Picard [2002], storable votes Casella
[2005, 2011], and voting in multi-attribute domains Brams et al. [1998]; Lacy and Niou
[2000]; Xia et al. [2008, 2010]. None of these works, however, considers an indirect process
of decision-making.
The voting committee model that we use in this paper was first introduced by

Skowron Skowron [2015]; there, the author argued for the optimality of certain commit-
tee election rules, but under strong assumptions on the form of the voters’ utility functions.
The definition of the concept of the distortion in the voting committee model and its analysis
is new to this paper.
Our model is closely related to the one by Koriyama et al. Koriyama et al. [2013]. The

difference is that Koriyama et al. consider the apportionment problem, i.e., a scenario,
where the task is to divide a fixed number of parliamentary seats among political parties
according to how the population votes—in our model, on the other hand, the voters vote
for individual candidates rather than for political parties.
Recently, the ideas behind proxy voting Miller [1969]; Green-Armytage [2015]; Cohensius

et al. [2017] and liquid democracy Behrens et al. [2014]; Brill and Talmon [2018]; Kahng
et al. [2018] have attained a considerable attention in the literature. These works consider
scenarios where a sequence of decisions on certain issues is to be made through a referendum,
but the voters are allowed to transfer their voting rights regarding selected issues to others;
thus, for each issue an implicit committee is elected that (for this particular issue) votes on
behalf of the whole population of the voters.
Our results allow to formulate conclusions saying how suitable are certain voting rules for

electing representative committees. Thus, our research contributes to the vast literature that
aims at comparing multi-winner election rules. For an overview of this literature we refer
the reader to the paper by Elkind et al. [2017], and to the recent book chapter by Faliszewski
et al. [2017].
The main measure that we use to compare voting rules in this paper is inspired by the

popular concept of distortion (see, e.g., Procaccia and Rosenschein [2006]; Caragiannis and
Procaccia [2011]; Boutilier et al. [2015]; Caragiannis et al. [2017]; Anshelevich et al. [2018];
Goel et al. [2017]; Pierczynski and Skowron [2019]). In these works, however, the unknown
primitives are the utilities of the voters over the candidates, and the goal is to compare
voting rules that do not have access to the utilities but only to the rankings or approval
ballots that are consistent with these utilities. We study a more complex model where the
utilities of the voters from the committees are inferred from the decisions made by these
committees.

2 Preliminaries

For each n ∈ N by [n] we denote the set {1, . . . , n}. For a set X we use Sk(X) to denote
the set of all k-element subsets of X; by S(X) we denote the set of nonempty subsets of X,
i.e., S(X) =

⋃
k∈[|X|] Sk(X). For a logical expression P the term 1P means 1 if P is true

and 0 otherwise.

2.1 Elections, Preferences

Given a set of candidates C we call the elements of Sk(C) size-k committees (or simply
committees, when k is clear).



A multiwinner election (or, in short, an election) is a triplet E = (C, V, k), where C =
{c1, . . . , cm} is a set of candidates, V = {v1, . . . , vn} is a set of voters and k is an integer
representing the intended size of the committee to be elected. We will typically use n and
m to represent the numbers of voters and candidates, respectively. We call the elements of
C ∪ V (the voters and the candidates) individuals. For a voter vi ∈ V by �i we denote the
preference relation of vi, which is a linear order over C; for example, if vi prefers a over b,
then we write a �i b. By posi(c) we denote the position of candidate c in the vi’s preference
ranking; for instance, posi(c) = 1 if c is vi’s most favorite candidate and posi(c) = m when
c is the least preferred candidate for vi.
A voting rule R is a function that for each election E = (C, V, k) returns a nonempty set

of size-k committees, i.e., R(E) ∈ S(Sk(C)). Throughout the paper we use the parallel-
universes tie-breaking mechanism that allows us to obtain all committees that could possibly
be built by means of the selected voting rules (see Conitzer et al. [2009]).

2.2 Overview of Selected Voting Rules

Below we provide formal definitions of the voting rules that we study in this paper. First,
though, let us recall the definitions of the Plurality and Borda scores. The Plurality score
that a voter vi assigns to a candidate c, denoted by scP (vi, c), equals 1 if posi(c) = 1 and
0, otherwise. The Borda score that c gets from vi is scB(vi, c) = m − posi(c). Given an
election E = (C, V, k), the Plurality score of a candidate c is the sum of the Plurality scores
that c garners from all the voters, scP (c) =

∑
vi∈V scP (vi, c). Analogously we define the

Borda score: scB(c) =
∑

vi∈V scB(vi, c).

Single nontransferable vote (SNTV). The SNTV rule returns k candidates with the
highest Plurality scores, i.e., candidates that are ranked first by the most voters.

k-Borda. It picks k candidates with highest Borda scores.

k-Copeland. The Copeland score of a candidate c is the number of candidates c′ 6= c such
that c is preferred to c′ by a majority of voters. The k-Copeland rule selects k candidates
with the highest Copeland scores.

Single transferable vote (STV). Let q =
⌊
n
k

⌋
. STV is an iterative procedure that

works as follows. In each iteration we check if there is a candidate with the Plurality score
of at least q. If such a candidate exists, call it c, then we:

a) add c to the committee;

b) delete some q voters that rank c first, and

c) delete c from the rankings of the voters, i.e., the candidates that are ranked below c
move one position up.

On the other hand, if all the candidates have their Plurality scores lower than q, then we
delete the candidate with the lowest Plurality score from each voter’s ranking.
The procedure repeats until k candidates are selected.



Chamberlin–Courant (CC). We call a function φ : V → C k-assignment if |φ(V )| =
|{φ(v) | v ∈ V }| ≤ k. CC computes the assignment φ that maximizes

∑
vi∈V scB(vi, φ(vi))

and returns φ(V ) as the winning committee. If |φ(V )| < k, then CC picks k − |φ(V )|
arbitrary candidates to fill the missing slots in the committee.
Intuitively, a k-assignment specifies for each voter vi, who is vi’s representative in the

elected committee; CC finds the committee and the corresponding assignment so that the
sum of the voters’ happiness from their representatives (measured through Borda scores) is
maximized.

Monroe. It works as CC, but puts an additional constraint on assignment functions—
each candidate from the set φ(V ) must represent roughly the same number of voters, i.e.,
|φ−1(c)| ∈

{⌊
n
k

⌋
,
⌈
n
k

⌉}
for each c ∈ φ(V ). As for CC, Monroe first computes the (bal-

anced) assignment Φ that maximizes
∑

vi∈V scB(vi, φ(vi)), and then returns the committee
implicitly induced by φ.

Greedy–Monroe. This is an iterative procedure. It starts with two empty sets V0 and
W0. In the i-th iteration it chooses a pair—a candidate ci ∈ C \ Wi−1 and subset of
voters V ′ ⊆ V \Vi−1 with |V ′| ∈

{⌊
n
k

⌋
,
⌈
n
k

⌉}
—that maximizes

∑
vj∈V ′ scB(vj , ci). The rule

updates the two sets, Wi = Wi−1 ∪ {ci} and Vi = Vi−1 ∪ V ′. It stops after k iterations and
returns Wk as the winning committee.

3 The Voting Committee Model

An indirect election is a quadruple (C, V, I, k), where C and V are sets of candidates and
voters, respectively, k is a size of a committee to be elected, and I = (I1, . . . , Ip) is a vector of
p issues. Each individual i ∈ V ∪C is represented as a p-dimensional binary vector (i[j])j∈[p],
indicating her preferences over the issues—for each j ∈ [p] we set i[j] = 1 if individual i is
for issue Ij and i[j] = 0 if i is against issue Ij .
In indirect elections, similarly as in elections, the voters have preferences over the candi-

dates. These preferences are consistent with the preferences of individuals over the issues—a
voter v ranks the candidates according to the number of issues for which their preferences
coincide. Formally, for each vi ∈ V and c, c′ ∈ C we have that c �i c

′ only if:

|{j ∈ [p] | vi[j] = c[j]}| ≥ |{j ∈ [p] | vi[j] = c′[j]}|.

(if for a given voter v there are multiple candidates with the same numbers of issues on
which they agree with v, the voter ranks them in an arbitrary order; intuitively, the voter
breaks ties between these candidates according to the preferences over issues of secondary
importance, which are not part of the model, according to her personal taste, or simply
randomly). Consequently, each instance of indirect elections can be interpreted as a simple
election, and so the voting rules from Section 2.2 naturally apply to indirect elections.
To assess the quality of a committee W , we assume that W uses the majority voting to

make the decisions regarding the issues. Formally, we define the decision vector of W as
a binary vector (W [j])j∈[p], where W [j] = 1 if |{c ∈ W | c[j] = 1}| > k

2 and W [j] = 0 if

|{c ∈ W | c[j] = 0}| > k
2 . In order to avoid tie-breaking issues, hereinafter we assume that

the size of the committee k is odd. Naturally, since the voters have preferences over the
issues, the decision made by the committee W has an influence on voters’ satisfaction. Here,
we use perhaps the simplest measure, and define the utility of the voter vi from a committee
W as the number of issues for which the committee’s decision coincide with vi’s preferences:
ui(W ) =

∑p
j=1 1W [j]=vi[j]. The notion of the utility of an individual voter gives us a basis

to define the utility of the whole set of voters; we use the following measures:



1. In the utilitarian approach we define the voters’ utility from a committee W simply as:
u(W ) =

∑n
i=1 ui(W ).

2. In the proportional approach, we use an aggregation based on Nash Welfare: u(W ) =∑n
i=1 log(1 + ui(W )). Using the logarithm in the aggregation function is grounded in

the broad literature on fair allocation (see, e.g. Conitzer et al. [2017]; Caragiannis et al.
[2016]); intuitively, this metric puts less weight to the total satisfaction of the voters,
and more to how the satisfaction is distributed among the voters (promoting reducing
the societal inequality).

We will also use the concept of disutility of the voter, dui(W )—it is defined as the number
of issues on which the voter disagree with the decisions of the committee. Analogously, for
each committee W we define the utilitarian disutility of W as du(W ) =

∑n
i=1 dui(W ). We

will not be using proportional aggregations of the disutilities.2

4 The Distortion: the Worst-Case Approach

In this section we employ the worst-case approach, formalized through the concept of dis-
tortion. Informally speaking, the distortion of a rule quantifies the worst-case loss of the
utility being the effect of the rule not having access to all the information—here, our rules
do not have access to information about issues, but rather choose the winning committees
based on the preferences of the voters over the candidates.
This section focuses on the utilitarian distortion; even for this simple aggregation our

results are mainly negative. Their primary purpose is to illustrate the limitations of the
worst-case analysis when applied to the voting committee model.

Definition 1 (Distortion). The satisfaction-based distortion of a voting rule R wrt. a set
of indirect elections E is:

distsat{R,E} = sup
E∈E

max
W∈R(E)

u(OPT(E))

u(W )
,

where OPT(E) is a committee with the maximal utility in E, i.e., OPT(E) ∈
argmaxW∈Sk(C)u(W ). Analogously, we define the dissatisfaction-based distortion of R as:

distdis{R,E} = sup
E∈E

max
W∈R(E)

du(W )

du(OPT(E))
,

In the above definition we take the convention that 0/0 = 1.
In Definition 1 the distortion is parameterized with a set of instances; this allows us, e.g.,

to explain how the distortion depends on certain structural properties of voters’ preferences.
Usually, the considered set of instances will be clear from the context—in such cases we will
write distsatR (resp., distdisR ) as an abbreviation for distsat{R,E} (resp., distdis{R,E}).
For k = 1 the dissatisfaction-based distortion boils down to the well-known concept of the

metric distortion Anshelevich et al. [2018] in pseudo-metric spaces where the voters and
candidates are represented as vertices of hypercubes.

2We are not aware of any formula for aggregating disutilities that would share strong fairness properties
of the Nash Welfare.



4.1 Universal Hardness of Distortion

We start our analysis by providing a negative result which says that in general, the distortion
of any voting rule is arbitrarily bad. On the one hand, this result illustrates the possible
inefficiency of the process of making decisions through a representative body, specifically
if the committee is elected based on the voters’ preferences over the candidates. On the
other hand, it justifies introducing additional assumptions to the model—in the subsequent
sections we will consider certain restricted (but realistic) structures of voters’ preferences.

Theorem 1 (Universal Hardness Theorem). For each voting rule R and for each committee
size k ≥ 3:

1. the satisfaction-based distortion of R equals to ∞.

2. the dissatisfaction-based distortion of R equals to ∞.

3. there exists an instance E where du(W )/du(OPT(E)) =∞, and u(OPT(E))/u(W ) ≥ (k+1)/2−ε,
for each ε > 0.

Proof. We first provide the proof of (3).
Fix a rule R, a committee size k, and m = k + k+1

2 . Assume that for a single voter, with
the preference ranking c1 � c2, . . . , cm, the rule picks the committee W = {ci1 , . . . , cik}.
Fix a constant L and an instance E with p = L · k+1

2 issues. We have one voter represented
as the vector of p ones, and the following three classes of candidates:

1. C1: in this class we have k−1
2 candidates, each represented as the vector of p ones;

2. C2: this class contains k+1
2 candidates. The i-th candidate is represented as a vector of

(i− 1)L zeros, followed by L ones, followed by (k+1
2 − i)L zeros.

3. C3: here we have k+1
2 candidates, each represented by L ones followed by (k+1

2 − 1)L
zeros.

Each candidate in C2 ∪ C3 is equally liked by the voter (their preferences coincide for L
issues). Now, we slightly perturb the instance, to enforce that the voter will use a particular
tie-breaking for the candidates in C2∪C3. For that, for each candidate in C2∪C3, we change
at most k+ 1 zeros to ones. We do that in a way that the candidates from C3 will be put in
the voter’s preference ranking in the positions from {i1, . . . , ik}. We give the names to the
candidates so that the candidates ranked in the positions from {i1, . . . , ik} are ci1 , . . . , cik ,
and the remaining candidates have names from {c1, . . . , cm} \W .
For this instance, the rule picks a committee containing C3. This committee will make the

decision “one” for at most L + k + 1 issues. On the other hand, the committee C1 ∪ C2

would make the decision “one” for all p issues. Thus, we have that:

du(W )

du(OPT(E))
=∞ and

u(OPT(E))

u(W )
≥ p

L+ k + 1
.

For large L, we have that u(OPT(E))/u(W ) ≥ (k+1)/2− ε.
We now move to the case of (1). Statement (2) follows from (3).
Consider a set of the instances E such that for each E ∈ E we have three issues I =

(I1, I2, I3), a single voter v, represented by a vector v = (1, 1, 1), and five candidates C =
{c1, c2, c3, c4, c5}, where c1 = (1, 0, 0), c2 = (0, 1, 0), c3 = (0, 0, 1), c4 = (0, 0, 1), c5 =
(0, 0, 1); the size of the committee is k = 3. For each candidate c ∈ C there is exactly
one issue for which c has the same preferred outcome as v. Hence, we can arrange the
candidates in the v’s preference ranking in any possible way, i.e., we can consider all the



permutations of the candidates in the ranking—each such a permutation corresponds to one
instance from E . One can observe that in our case the highest possible satisfaction of the
voter v equals to one and it is the result of the decision (0, 0, 1), which, for example, is made
by W = {c3, c4, c5}.
Let R be a voting rule. Assume that for an instance with a single voter and five candidates,
R returns a committee that consists of the candidates that are ranked at the i-th, j-th and
k-th positions in the v’s preference ranking. Consider an instance E such that candidates
c1, c2, c3 are ranked at the i-th,j-th and k-th place by v. Hence, one of the committees
chosen by R would be W̃ = {c1, c2, c3}—this committee makes the decision (0, 0, 0) and so

u(W ) = 0. Hence, we have maxW∈R(E)
u(OPT(E))

u(W ) =∞; and therefore, distR =∞.

4.2 Distortion for Polarized Society

We next study a model where the society is centered around two points in the issue space.
Formally, we say that an indirect election (C, V, I, k) is centered around two poles if there
exists two binary p-dimensional vectors, p1 and p2, such that each individual from V ∪C is
represented as either p1 or p2. When determining the distortion of a rule R for two poles,
we assume that the set of instances E from Definition 1 consists of all elections that are
centered around two poles.
Throughout this section, without loss of generality, we assume that the two poles are the

vectors of zeros and ones, i.e. p1 = (0, . . . , 0) and p2 = (1, . . . , 1)—hereinafter, we refer to p1
and p2 as the first pole and the second pole, respectively. By V1 and V2 we denote the sets of
voters that are associated with, respectively, the first pole and second pole. Similarly, by C1

and C2 we will refer to the sets of candidates coming from the first and second pole. There
are two types of decisions that can be made by a committee: decision zeros ((0, . . . , 0)) and
decision ones ((1, . . . , 1)). Without loss of generality, we assume that |C1|, |C2| ≥ k+1

2 as
we want to make both decisions possible; otherwise the satisfaction-based distortion equals
to 1. Further, we can also assume that |V2| > |V1| > 0.
Due to space constraints, here we only present our results very briefly. We summarize them

in the following theorem:

Theorem 2. For societies centered around two poles, the satisfaction-based distortion:

1. of the k-Copeland rule equals to 1.

2. of STV is 3, but for large n/k and k it approaches 1.

3. of SNTV and CC is Θ(n), of k-Borda is Θ(m/k), of Monroe is Ω(n) even if k = 3, and
of greedy-Monroe is Ω(k).

Proof. We include the proof for k-Copeland. The proofs for other rules are given in the
appendix. Let us start with k-Copeland.
Let us consider an arbitrary instance where the societies are centered around two poles such

that |V1| < |V2| and |C1|, |C2| ≥ k+1
2 . One can observe that due to the block preferences

of voters, i.e. voters from V1 prefer each candidates from C1 over each candidate from C2

(analogous observation occurs in case of voters from V2), each candidate from C2 wins a
pairwise election against all of the candidates from C1. Therefore, the worst candidate from
C2 wins at least |C1| pairwise elections. On the other hand, the best candidate from C1

can win only against all of the remaining candidates from C1. Hence, the score of the best
candidate from C1 equals to |C1| − 1. As we consider the instance where |C2| ≥ k+1

2 , in the

winning committee W we include at least k+1
2 candidates from C2 and the decision would

be in favor of the voters from V2 and as a results the satisfaction-based distortion is 1.



5 Beyond the Worst-Case Analysis

Our theoretical results illuminate particular limitations of the worst-case analysis when
applied to the voting committee model. Already Theorem 1 provides a certain barrier
to deriving meaningful conclusions that would allow to reason about voting rules and that
would apply more broadly. Further, even under a seemingly strong assumption of the society
being completely polarized the distortion of some known voting rules is arbitrarily bad in
limit. This motivates us to extend our analysis beyond the worst-case and to assess the
average qualities of the studied rules for certain natural distributions.
In this section we consider a probabilistic model—we assume that the preferences of the

individuals are drawn randomly from a given distribution. For each voting rule R we run
a series of experiments in order to assess the qualities of the outcomes produced by R for
elections drawn from several different distributions. In our experiments we focussed on
instances with n = 500 voters, m = 100 candidates, and where the total number of issues is
p = 100. We consider the following distributions of individuals’ preferences:

Impartial Culture. For each individual i and issue Ij the i’s preferred outcome on Ij is
drawn uniformly at random.

(ξ1, ξ2)-Polarized Balanced Society ((ξ1, ξ2)-PBS). Here we assume that the individ-
uals come from two equal-size groups—each containing 250 voters and 50 candidates. For
each group we choose a vector of preferred outcomes, which we call the center of the group.
Specifically, the center of the first group is the vector with all ‘ones’; for the second group
this is the vector of all ‘zeros’. For each individual i from group t ∈ {1, 2} we sample a
value ξ(i) uniformly at random from [ξt, 1]. Intuitively, ξ(i) describes how close is i (with
respect to her preferences) to the center of his or her group. Formally, for each issue Ij
the probability that i’s preferred outcome for Ij is consistent with the center of her group
equals to ξ(i).

(ξ1, ξ2)-Polarized Imbalanced Society ((ξ1, ξ2)-PIS). This model is similar to (ξ1, ξ2)-
PBS; the difference is that the two groups do not have equal sizes. There are 150 voters and
50 candidates in the first group; the second group contains 350 voters and 50 candidates.

(t, ξ)-Poles. In the (t, ξ)-Poles distribution the society is divided into t groups, the sizes
of which are derived as follows: We first sample t integers, x1, x2, . . . , xt, i.i.d., uniformly at
random from [0, 1]. Next, for each i ∈ [t] we set the size of the i-th group—both the number
of candidates and the number of voters—to be proportional to xi. The total number of
voters and candidates must be equal to 500 and 100, respectively; we round up or down the
number of individuals within each group when necessary. Second, we sample t central points
for the groups—each central point is a p-dimensional binary vector whose coordinates were
sampled independently, uniformly at random from {0, 1}. Finally, for each group z ∈ [t]
and each individual i from the z-th group we derive the preferred outcomes of i as follows.
First, we sampled ξ(i) uniformly at random from [ξ, 1]. For each issue Ij the individual i
will have a preferred outcome consistent with the central point of its group (i.e., equal to
the j-th coordinate of the central point) with probability equal to ξ(i).
In our simulations we covered a wide range of possible values of the parameters of the

distributions (we give details below). For each distribution with a fixed set of parameters
we ran 500 experiments; each experiment was performed as follows. We drew an indirect
election and computed the winning committees according to different voting rules. For each
such a committee W we computed the vector of decisions made by W , compared these
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Figure 1: Comparison of voting rules for elections drawn from the (ξ1, ξ2)-PBS for ξ1 = ξ2 and
k = 31. The plots depict the average (normalized) utility of committees returned by different
voting rules.

decisions to the preferred outcomes of the voters, and calculated the utility value u(W ).
We normalized these values, dividing them by n · p—for the utilitarian aggregation, or by
n · log(1 + p)—for the proportional aggregation (the best possible utility that would be
obtained if each voter were perfectly satisfied with every decision made by the committee;
an alternative approach would be to divide u(W ) by the utility of the optimal committee—
cf., Definition 1—but finding such a committee is NP-hard), and we computed the average
of these normalized utilities over the 500 runs.
For the sake of clarity, in all the figures in this section we plot only the results for STV,
k-Copeland, and SNTV. The plots for greedy Monroe are almost indistinguishable from
the plots for STV; similarly, the plots for k-Borda are almost the same as the plots for
k-Copeland.
The results of our simulations for (ξ1, ξ2)-PBS for ξ1 = ξ2 and k = 31 (recall that we

use an odd size of the committee to avoid tie-breaking in the decision-making process) are
depicted in Figure 1. The results for (ξ1, ξ2)-PBS with fixed ξ2 = 0.85 and ξ1 ranging from
0.5 to 1, and for (ξ1, ξ2)-PIS with ξ1 = ξ2 lead to the same conclusion, so we do not present
the corresponding plots. Further, for all these distributions we also run the experiments for
k = 11, and obtained results consistent with the ones presented in Figure 1. We also do not
include plots for the Impartial Culture model since the results obtained in this model were
similar to those obtained for (ξ1, ξ2)-PBS when values of ξ1 and ξ2 were close to 1/2.
The results of our experiments performed for the (t, ξ)-Poles distribution are summarized

in Figure 2. Due to space constraints, we only present the results for t ∈ {3, 5} and k = 31,
but we also performed experiments for t = 10 and k = 11; the results are consistent with
those presented.
Our interpretations of the results are as follows: For the utilitarian aggregation we observe

a dichotomy. In the two most extreme cases: (i) when the society is strongly polarized,
or (ii) when the opinions in the society are uniformly distributed with no correlations (the
Impartial Culture model), k-Copeland is the best, and performs better than the proportional
rules; this conclusion is consistent with our theoretical results (see Theorem 2). SNTV is
the worst out of the considered rules. For the proportional aggregation of the utilities
the proportional rules, specifically STV, perform better, even when the society is strongly
polarized. On the other hand, for societies with more than two predominant opinions, or
when the predominant opinions are less extreme, the proportional rules perform better, even
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Figure 2: Average utilities of voting rules for elections drawn from the (t, ξ)-Poles distribution. The
committee size is k = 31.
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Figure 3: Average qualities of voting rules for elections drawn from (ξ1, ξ2)-PBS (ξ2 = 0.85) for the
binary distribution of weights.

for the utilitarian aggregation of the voters’ satisfactions; this effect is yet magnified when
we look at the proportional aggregation of the utilities.
Finally, since in real-life it is often the case that the voters consider some issues more



important than the others, we extended our experimental setting in order to capture this
intuition. For each voter i and each issue Ij we assume that there is a weight wi,j that
measures how important voter i perceives issue Ij . The definition of the utility that a voter
i assigns to a committee W changes accordingly (cf., Section 3):

ui(W ) =
∑p

j=1 wi,j · 1W [j]=vi[j].

We consider three different distributions of weights:

Uniform. For each voter and each issue the weight is sampled uniformly at random from
[0, 1].

Exponential. We sample the weight a voter assigns to an issue from the exponential
distribution with λ = 1.

Binary. For each voter we randomly pick 10% of issues that she considers important, and
for these issues we set the weight to 1. The weights for the remaining issues are 0.
The results of our simulations for (ξ1, ξ2)-PBS for the binary distribution of weights for
k = 31 are depicted in Figure 3—we do not include plots for the remaining distributions,
as the results are very similar. Our main conclusion is that adding weights does not change
the overall picture—the rules that performed well (resp., badly) in settings without weights
still perform well (resp., badly) in the same settings with weights (independently of the
distribution from which the weights are drawn).

6 Conclusion

We studied a model, where the voters and the candidates have preferences over a certain set
of issues. The preferences of the voters over the candidates are inducted by the individuals’
preferred outcomes for the issues. We assumed that the issue space is unknown and the
selection of the winning committee is purely based on the preferences of the voters over the
candidates. We measured the quality of committees by looking at the majoritarian decisions
made by them and by comparing those decisions with the voters’ preferred outcomes.
In the most general case, the distortion of any voting rule can be arbitrarily bad. This

motivated us to look at special cases inspired by works from political science, where the
voters’ preferences have certain structure. If the society is extremely polarized or when
there is no predominant view in the society, then k-Copeland is the best according to the
majoritarian perspective. If we look at the proportional aggregation of voters’ utilities, or in
the intermediate cases (when there are more predominant views in the society, or when the
predominant views are not extreme)—both for the proportional and for the majoritarian
aggregation—STV performs much better.
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A Proof of Theorem 3 Omitted From the Main Text

We here give the full proof of the Theorem 3 that is omitted from the main part of the
paper due to space constraints.
The proof of the Theorem 2 is based on the following lemmas.

Lemma 1. For each n ≥ 3, the satisfaction-based distortion of SNTV and CC rules for the
case when the societies are centered around two poles equals to 1

n−1 .

Proof. Consider an instance with |V1| = 1 and |V2| = n−1, where there are two candidates,
c1 ∈ C1 and c2 ∈ C2, such that the voters from V1 rank c1 first, and the voters from V2
rank c2 first. The way in which the voters rank the remaining candidates is arbitrary. Both
SNTV and CC, among the winning committees, will pick the one than contains at least k+1

2
candidates from C1—for this committee the decision will be zeros and the total utility of
the voters will be p (the single voter from V1 will be fully satisfied). On the other hand, in
order to maximize the total utility, the voters should choose the winning committee with at
least k+1

2 candidates from C2—this would result in decision ones, which would fully satisfy

all the voters from V2. Hence, it holds that distsatSNTV = distsatCC = p(n−1)
p = n− 1.

In order to show that the distortion cannot be higher than n− 1 it is sufficient to observe
that since |V2|, |V1| > 0, at least one voter will be always fully satisfied with the decision
made by the committee.

Lemma 2. The satisfaction-based distortion of k-Copeland1 and NED rule for the case
when the societies are centered around two poles equals to 1.

Proof. Let us consider an arbitrary instance where the societies are centered around two
poles such that |V1| < |V2| and |C1|, |C2| ≥ k+1

2 . One can observe that due to the block
preferences of voters, i.e. voters from V1 prefer each candidates from C1 over each candidate
from C2 (analogous observation occurs in case of voters from V2), each candidate from C2

wins a pairwise election against all of the candidates from C1. Therefore, the worst candidate
from C2 wins at least |C1| pairwise elections. On the other hand, the best candidate from
C1 can win only against all of the remaining candidates from C2. Hence, the score of the
best candidate from C1 equals to |C1| − 1. As we consider the instance where |C2| ≥ k+1

2 ,

in the winning committee W we include at least k+1
2 candidates from C2 and the decision

would be in favor of the voters from V2 and as a results the satisfaction-based distortion is
1.
Now we move to the proof of the distortion for the NED rule. We again observe an arbitrary

instance with |V1| < |V2| and |C1|, |C2| ≥ k+1
2 , where the societies are centered around two

poles and as a result we observe block preferences. We show that once we have a committee
with l1 candidates from C1 and l2 candidates from C2, then it is always profitable to delete
candidate from C1 and add candidate from C2 to the winning committee. Indeed, let us
delete the candidate from C1. It results with the loss of at most |C1| − l1 and as each
candidate from C2 wins the pairwise election with deleted candidate, then we gain l2. On
the other hand, once we add candidate from C2, then we can loose at most l2 (the case
where all of the candidates from C2 that are already in the committee win pairwise election
with added candidate) and gain at least |C1| − l1 + 1 (since we have block preferences).
Summing up, from the above described operation we have the gain that equals at least to:
−(|C1| − l1) + l2 − l2 + (|C1| − l1 + 1) = 1. Hence, the selected committee will make the
decision in favour of the voters from V2 and therefore the satisfaction-based distortion is
1.



Lemma 3. The satisfaction-based distortion of STV for the case when the societies are
centered around two poles and |V2| < q k+1

2 equals to:

distsatSTV =


q(k−1)+2q−2

q(k−1)+2 for q ≤ k+3
2

q(k−1)+2d q(k+1)
k+3 e

(k+1)d q(k+1)
k+3 e

for q > k+3
2 , 1 ≡ q (mod k+3

2 )

q(k−1)+2b q(k+1)
k+3 c

q(k+1)−2b q(k+1)
k+3 c

in other cases.

If |V2| ≥ q k+1
2 , then the satisfaction-based distortion equals to

distsatSTV =

{
(q+2)(k−1)

q(k+1) for q ≤ k − 1

1 for q > k − 1.

Proof. We start by analyzing the case where |V2| < q k+1
2 and q ≤ k+3

2 . Let n1 and n2 be

such that |V1| = q k−1
2 + n1 and |V2| = q k−1

2 + n2. Observe that

q =

⌊
|V1|+ |V2|

k

⌋
=

⌊
q(k − 1) + n1 + n2

k

⌋
= q +

⌊
−q + n1 + n2

k

⌋
.

Thus, n1 + n2 ∈ [q, q + k − 1]. As we want to keep quota q at the selected level and we
assumed that |V2| < q k+1

2 , then the ratio of the satisfactions is bounded from below by

|V2|
|V1|

=
q k−1

2 + n2

q k−1
2 + n1

≤
q k−1

2 + q − 1

q k−1
2 + 1

=
q(k − 1) + 2q − 2

q(k − 1) + 2
.

In order to show that the upper bound is achievable, we construct an instance with |C1| =
|C2| = k+1

2 , |V1| = q k−1
2 + 1 and |V2| = q k−1

2 + q− 1. Assume that k−1
2 candidates from C2

have the plurality score q, one candidate has (q−1); and (q−1) candidates from C1 have the
plurality score (q−1) and (k+1

2 −(q−1)) candidates have the plurality score q. Observe that

the number of voters V1 is as we stated. Indeed, we have (q− 1)(q− 1) + (k+1
2 − (q− 1))q =

q k−1
2 +1. Now, we show that STV selects k+1

2 candidates from C1 to the winning committee

W . First, STV chooses k−1
2 candidates from C2 and (k+1

2 −(q−1)) candidates from C1 with
the plurality score q. At this point, we are left with the candidates that have the plurality
scores (q − 1). Hence, one candidate has to be deleted—we consider the case such that the
candidate from C2 is deleted. As a result, k+1

2 remaining places in W will be filled with
the candidates from C1 and the decision zeros will be made by the winning committee W .

Hence, the satisfaction-based distortion is q(k−1)+2q−2
q(k−1)+2 .

Now, we move to the case where |V2| < q k+1
2 , q > k+3

2 and 1 ≡ q (mod k+3
2 ). Let

|V2| = q k−1
2 + n2, where n2 = d q(k+1)

k+3 e + `, ` ∈ Z. We show that the highest value of the
ratio of the satisfactions is achieved for ` = 0. At first, let us assume that ` ≤ −1. As we
want to keep a quota q at the selected level, we need n2+ |V1| ∈ [q k+1

2 , q k+1
2 +k−1]. Indeed,

observe that

q =

⌊
|V1|+ |V2|

k

⌋
=

⌊
q k−1

2 + n2 + |V1|
k

⌋

= q +

⌊
−q k+1

2 + n1 + |V2|
k

⌋
.



According to our assumptions, we can write quota as q = z k+3
2 + 1, where z ∈ N and

therefore ⌈q(k + 1)

k + 3

⌉
=
⌈
z
k + 1

2
+
k + 1

k + 3

⌉
= z

k + 1

2
+ 1

Considering the above observations we have

|V2|
|V1|
≤
q k−1

2 + n2

q k+1
2 − n2

=
q k−1

2 + d q(k+1)
k+3 e+ `

q k+1
2 − d

q(k+1)
k+3 e − `

≤
q k−1

2 + d q(k+1)
k+3 e − 1

q k+1
2 − d

q(k+1)
k+3 e+ 1

=
z k+3

2
k−1
2 + k−1

2 + z k+1
2

z k+3
2

k+1
2 + k+1

2 − z
k+1
2

=
z(k+1

2 )2 + z k−1
2 + k−1

2

z(k+1
2 )2 + k+1

2

.

Let us now consider ` ≥ 0. As we assumed that |V1| < |V2| < q k+1
2 and in the winning

committee W we need to have k+1
2 candidates from C1, in order to make the decision zeros

possible, we have to delete (|C2|− k−1
2 ) candidates from C2. Hence, at least k+1

2 candidates

from C1 need to have the plurality score at least n2. Therefore, |V1| ≥ k+1
2 n2—we have the

following inequalities for the ratio of satisfactions

|V2|
|V1|
≤
q k−1

2 + n2
k+1
2 n2

=
q k−1

2 + d q(k+1)
k+3 e+ `

k+1
2 d

q(k+1)
k+3 e+ k+1

2 `

≤
q k−1

2 + d q(k+1)
k+3 e

k+1
2 d

q(k+1)
k+3 e

=
z k+3

2
k−1
2 + k−1

2 + z k+1
2 + 1

z(k+1
2 )2 + k+1

2

=
z(k+1

2 )2 + z k−1
2 + k−1

2 + 1

z(k+1
2 )2 + k+1

2

.

Hence, we get the highest bound for ` = 0. Now, we show that above bound is achievable.

We consider the following instance. Let |C1| = |C2| = k+1
2 , |V1| = k+1

2 d
q(k+1)
k+3 e and |V2| =

q k−1
2 + d q(k+1)

k+3 e, where q = z k+3
2 + 1, z ∈ N—quota q is indeed satisfied, we have

|V1|+ |V2| =
k + 1

2

⌈q(k + 1)

k + 3

⌉
+ q

k − 1

2
+
⌈q(k + 1)

k + 3

⌉
= q

k − 1

2
+
k + 3

2

(
z
k + 1

2
+ 1
)

= q
k − 1

2
+
k + 1

2

(
z
k + 3

2
+ 1
)

+ 1 = qk + 1.

Hence, q = b |V1|+|V2|
k c = b qk+1

k c. What is more, let us assume that k−1
2 candidates from C2

have the plurality score q; the remaining one candidate has the plurality score d q(k+1)
k+3 e and

all of the candidates from C1 have the plurality score d q(k+1)
k+3 e. In the procedure of selecting

candidates to W , at first, we select k−1
2 candidates from C2, then, as all of the remaining

candidates have the same plurality below a quota q, we decide to delete the candidate from
C2. Naturally, next, we fill k+1

2 the missing spots in W with the candidates from C1 and
the decision zeros will be made by the winning committee W . Hence, the satisfaction-based

distortion in the considered case equals to
q(k−1)+2d q(k+1)

k+3 e
(k+1)d q(k+1)

k+3 e
.



Next, we consider the case of a quota q such that 1 6= q (mod k+3
2 ) and |V2| < q k+1

2 . Let

|V2| = q k−1
2 + n2, where n2 = b q(k+1)

k+3 c+ `, ` ∈ Z. Again, we show that the highest value of

the quotient of the satisfactions is for l = 0. We start with the assumption that q = z k+3
2 ,

where z ∈ N, which implies that n2 = z k+1
2 + `. Similarly to the above reasoning, we have

to fulfill two inequalities at the same time, namely we need

|V1| ≥ q
k + 1

2
− n2 = z(

k + 1

2
)2 − l

|V1| ≥
k + 1

2
n2 = z(

k + 1

2
)2 +

k + 1

2
l.

One can observe that, as both of the above inequalities have to be satisfied, than the highest
bound for |V1| is achieved once ` = 0—it gives us the following inequality for the ratio of
the satisfactions

|V2|
|V1|
≤
q k−1

2 + b q(k+1)
k+3 c

q k+1
2 − b

q(k+1)
k+3 c

.

Before we show that above bound is achievable, we consider the case when q = z k+3
2 + s,

where z ∈ N and s ∈ [k+1
2 ]\{0, 1}, which implies that bq k+1

k+3c = z k+1
2 + s − 1. We start,

slightly different then in the previous case, with the assumption that ` ≤ 0. Obviously, the
value of the quota q has to be satisfied and therefore we obtain

|V2|
|V1|
≤
q k−1

2 + n2

q k+1
2 − n2

=
q k−1

2 + b q(k+1)
k+3 c+ `

q k+1
2 − b

q(k+1)
k+3 c − `

≤
q k−1

2 + b q(k+1)
k+3 c

q k+1
2 − b

q(k+1)
k+3 c

=
z k+3

2
k−1
2 + sk−12 + z k+1

2 + s− 1

z k+3
2

k+1
2 + sk+1

2 − z
k+1
2 − s+ 1

=
z(k+1

2 )2 + z k−1
2 + sk+1

2 − 1

z(k+1
2 )2 + sk−12 + 1

.

For ` ≥ 1 we use the inequality |V1| ≥ k+1
2 n2—recall that this condition is necessary to

make it possible to delete (|C2| − k−1
2 ) candidates from C2, which is essential for selecting

k+1
2 candidates from C1 to the winning committee W . We have

|V2|
|V1|
≤
q k−1

2 + n2
k+1
2 n2

=
q k−1

2 + b q(k+1)
k+3 c+ `

k+1
2 b

q(k+1)
k+3 c+ k+1

2 `

≤
q k−1

2 + b q(k+1)
k+3 c+ 1

k+1
2 b

q(k+1)
k+3 c+ k+1

2

=
z k+3

2
k−1
2 + sk−12 + z k+1

2 + s

z(k+1
2 )2 + sk+1

2

=
z(k+1

2 )2 + z k−1
2 + sk+1

2

z(k+1
2 )2 + sk+1

2

=
z(k+1

2 )2 + z k−1
2 + sk+1

2 − 1 + 1

z(k+1
2 )2 + sk−12 + 1 + s− 1

.



Hence, we get the highest bound for ` = 0. Let us now construct instances such that the
lower bound is achievable. Let |C1| = |C2| = k+1

2 , |V2| = q k−1
2 +n2, |V1| = q k+1

2 −n2, where

n2 = b q(k+1)
k+3 c and q = z k+3

2 + s, where z ∈ N and s ∈ [k+3
2 ]\{0, 1}—observe that we also

allow s = k+3
2 , which coincides with s = 0. Assume that k−1

2 candidates from C2 have the

plurality score q and one candidate has plurality n2. What is more, (k+3
2 − s) candidates

from C1 have plurality score n2 + 1 and remaining candidates have n2. Let us check that
the number of voters from V1 is as we stated. Indeed, we have

|V1| =
(k + 3

2
− s
)(
n2 + 1

)
+
(k + 1

2
− k + 3

2
+ s
)
n2

=
k + 3

2
− s+ n2

k + 1

2

=
k + 3

2
− s+

(
z
k + 1

2
+ s− 1

)k + 3

2
− n2

=
(
z
k + 3

2
+ s
)k + 1

2
− n2 = q

k + 1

2
− n2.

In the procedure of selecting the candidates to the winning committee W , at first, we select
k−1
2 candidates from C2, then we are left with one candidate from C2 and k+1

2 candidates
from C1. The remaining candidate from C2 has the plurality score that is at most the
plurality score of each candidate from C1—we decide to delete candidate from C2 and
obviously k+1

2 missing places in the winning committee will be filled with the candidates

from C1. Summing up, the satisfaction-based distortion equals to
q(k−1)+2b q(k+1)

k+3 c
q(k+1)−2b q(k+1)

k+3 c
.

Next, we consider the case of |V2| ≥ q k+1
2 . First, we show that if |V2| ≥ q k+1

2 and the

decision zeros is possible, then |V1| ≥ q k+1
2 . For the sake of contradiction assume that

|V2| ≥ q k+1
2 , the decision zeros is possible and |V1| < q k+1

2 . As we need at least k+1
2

candidates from C1 in the winning committee W and |V1| < q k+1
2 , then it implies that we

have to seek for the plurality score of the part of the candidates from C1 among the voters
from V2 and due to the assumptions concerning the vectors of voters’ preferences, in the
procedure of selecting candidates, we need to delete at least (|C2|− k−1

2 ) candidates from C2.
Observe that in each step if there are at least ql voters from V2 left, then we have at least l
candidates from C2. Indeed, due to pigeonhole principle once we are left with l candidates
and at least ql voters, then there exists a candidate with plurality score higher than q and
this candidate might be chosen to the winning committee while removing q voters from V2.
Since we start with more than q k+1

2 voters from V2, then we can delete at most (|C2|−q k+1
2 )

candidates from C2 and at least k+1
2 will be included in W . Hence, the decision zeros is

not possible. From now on we assume that |V1| = q k+1
2 + n1, where n1 ≥ 0—obviously the

decision zeros is now possible. Let us consider the case of q ≤ k − 1, one may observe that
the following equalities hold

q =
⌊ |V1|+ |V2|

k

⌋
=
⌊q k+1

2 + n1 + |V2|
k

⌋
.

Since we would like to assess the distortion, we have to consider the highest possible value
of |V2|. Hence,

q =
⌊q k+1

2 + n1 + |V2|
k

⌋
=
q k+1

2 + n1 + |V2|
k

− k − 1

k
.

Above equalities imply that |V2| = q(k− k+1
2 ) + k− 1− n1. The quotient of satisfactions is



as follows

|V2|
|V1|

=
q(k − k+1

2 ) + k − 1− n1
q k+1

2 + n1
≤
q(k − k+1

2 ) + k − 1

q k+1
2

=
(q + 2)(k − 1)

q(k + 1)
,

where higher bound is achievable—the construction of the instance is obvious, we set the
vectors of preferences of q k+1

2 voters from V1 in the way that each of the k+1
2 candidates

from C1 have the plurality score q and in the procedure we select at first candidates from

C1 to W . Therefore, the satisfaction-based distortion is q(k+1)
(q+2)(k−1) . Now, we move into the

last case of q > k− 1. We have |V1|+ |V2| = qk + q + n2 > qk+ k− 1, as we need to keep a
quota q at the selected level it holds that n2 < 0 and therefore, |V2| < q k+1

2 , which implies
that only the decision zeros is possible. Hence, the satisfaction-based distortion of STV in
the considered case is 1.

Lemma 4. For each n ≥ 3, the satisfaction-based distortion of SNTV and CC for the case
when the societies are centered around two poles equals to n− 1.

Proof. Consider an instance with |V1| = 1 and |V2| = n−1, where there are two candidates,
c1 ∈ C1 and c2 ∈ C2, such that the voters from V1 rank c1 first, and the voters from V2
rank c2 first. The way in which the voters rank the remaining candidates is arbitrary. Both
SNTV and CC, among the winning committees, will pick the one than contains at least k+1

2
candidates from C1—for this committee the decision will be zeros and the total utility of
the voters will be p (the single voter from V1 will be fully satisfied). On the other hand, in
order to maximize the total utility, the voters should choose the winning committee with at
least k+1

2 candidates from C2—this would result in decision ones, which would fully satisfy

all the voters from V2. Hence, it holds that distsatSNTV = distsatCC = p(n−1)
p = n− 1.

In order to show that the distortion cannot be higher than n− 1 it is sufficient to observe
that since |V2|, |V1| > 0, at least one voter will be always fully satisfied with the decision
made by the committee.

Lemma 5. For each n ≥ 3, the satisfaction-based distortion of k-Borda rule for the case
when the societies are centered around two poles equals to 4m−k−3

k+3 .

Proof. First, we observe that in order to maximize the utility we should choose to the
winning committee at least k+1

2 candidates from the set C2—this would result in decision
ones and would fully satisfy the voters from V2.
On the other hand, if we apply k-Borda to select the winning committee, it may happen

that the decision of the elected committee will be zeros, satisfying the voters from V1,
inducing the satisfaction-based distortion of |V2|/|V1|. This may happen only if the Borda
score of the k+1

2 -th best candidate from C1—call this candidate a—is higher than the Borda

score of the k+1
2 -th best candidate from C2—call this candidate b. One can observe that

the highest possible value of the Borda score of candidate a is when it equals to the average
Borda score of the k+1

2 best candidates from C1. On the other hand, the lowest possible
value of the Borda score of candidate b is when it is equal to the average Borda score of the
worst (|C2| − k−1

2 ) candidates from C2. Thus, for candidate a being selected to the winning



committee the necessary condition is:

|V2|
[∑ k+1

2
i=1 (|C1| − i)

]
k+1
2

+
|V1|

[∑ k+1
2

i=1 (|C1|+ |C2| − i)
]

k+1
2

≥
|V2|

[∑|C2|
i= k+1

2

(|C1|+ |C2| − i)
]

|C2| − k−1
2

+
|V1|

[∑|C2|
i= k+1

2

(|C2| − i)
]

|C2| − k−1
2

.

(1)

And conversely, if Equation (1), it is always possible to construct an instance where a is
selected. We make the following transformation of Equation (1):

|V2|
[
|C1|−1+|C1|− k+1

2

2 · k+1
2

]
k+1
2

+
|V1|

[
|C1|+|C2|−1+|C1|+|C2|− k+1

2

2 · k+1
2

]
k+1
2

≥
|V2|

[
|C1|+|C2|− k+1

2 +|C1|
2 ·

(
|C2| − k−1

2

) ]
|C2| − k−1

2

+
|V1|

[
|C2|− k+1

2

2 ·
(
|C2| − k−1

2

) ]
|C2| − k−1

2

.

This implies that:

|V1|
[
|C1|+

|C2|
2
− 1

2

]
≥ |V2|

[ |C2|
2

+
1

2

]
,and so:

2|C1|+ |C2| − 1

|C2|+ 1
≥ |V2|
|V1|

.

Recall, that |V2|/|V1| is exactly the value of the satisfaction-based distortion when a is selected.
Further, since |C2| ≥ k+1

2 , we have that the satisfaction-based distortion is:

distsatk-Borda =
2(m− k+1

2 ) + k+1
2 − 1

k+1
2 + 1

=
4m− k − 3

k + 3
.

Lemma 6. If k = 3, bn3 c = n
3 = q > 3, then the satisfaction-based distortion of Monroe’s

rule for the case when societies are centered around two poles is at least 3q−2
2 .

Proof. In the proof we construct the following example of an instance that gives us lower
bound for the distortion. Let k = 3 denotes the size of the winning committee W and
assume that k divides n = |V1| + |V2|, which implies that quota q = n

3 —because of the
technical reasons we also assume that q > 3 and m ≥ 3q + 4, where m denotes the number



of candidates. What is more, assume that C2 = B = {b1, b2}, |V1| = 2 and C1 = A ∪ Ad,
where A = {a1, a2} and Ad is a set of dummy candidates, i.e. candidates that are used only
to spoil the Borda score of the candidates from B. Each voter vi ∈ V1 has the following
preferences (we use the notation of the set to denote the block of candidates in the ranking,
in which order is arbitrary or will be specified later)

ai � Ad � A\{ai} � b1 � b2

and there are two classes of voters from V2 such that i-th class, denoted by Ṽi, consists of
(q − 1) voters with preferences

b1 � b2 � ai � Ad � A\{ai}.

What is more, in addition there are q voters left from V2 with preferences

b2 � b1 � C1.

One can observe that if in W there are all candidates from A and candidate b2, then Borda
score will equal to 2m+ 2(q−1)(m−2) + qm = 3qm−4q+ 4. On the other hand, if set B is
included in W , then Borda score is at most 2qm+ f(q,m), where f(q,m) is a Borda score
of the best candidate from the set C1—obviously it depends on the parameters q and m.
Since, we would like the winning committee to make decision zeros, we need the following
inequality for f(q,m).

2qm+ f(q,m) < 3qm− 4q + 4 ⇐⇒
f(q,m) < qm− 4q + 4.

Now, we have to show that such f(q,m) exists. Beside two candidates from B we can either
choose candidate from A or from Ad to the winning committee. In the first case, the best
possible score of the candidate from A equals to f(q,m) = m+ 3 + (q − 2) ∗ (m− 2)—one
first position; one (m− 2) position, ahead of two candidates from B; (q− 2) third positions
among left voters from V2 behind candidates from B. Let us see, if there exist q and m such
that above inequality for f(q,m) holds. We have

f(q,m) < qm− 4q + 4 ⇐⇒
m+ 3 + (q − 2)(m− 2) < qm− 4q + 4 ⇐⇒

m+ 3− 2m− 2q < −4q ⇐⇒
3 + 2q < m.

Above inequality is always true, as we assumed that m ≥ 3q + 4. Now, we consider the
second case, in which a candidate from Ad is chosen. Assume that we have an instance such
that |Ad| = 3q + l, where l ∈ N. Hence, number of all candidates equals to m = 3q + 4 + l
and each voter vi has the preferences over candidates from Ad as follows

adi
� . . . � ad3q+l

� ad1
� . . . � adi−1

.

The highest possible Borda score from the candidate chosen to the winning committee in
the considered instance equals to

f(q, 3q + 4 + l)

=
3q + 1 + l + 2q + 4 + l

2
(q − 2)

+ (2q + 5 + l) + (2q + 4 + l)



=
5q + 5 + 2l

2
(q − 2) + 4q + 9 + 2l,

where first part is the aggregated satisfaction among (q − 2) voters from V2—recall that
2q voters are represented by the candidates from B and the second part is the satisfaction
among three voters from V1. Now, we have to check, if there exists q such that the inequality
for f(q,m) = f(q, 3q + 4 + l) holds. We have

f(q, 3q + 4 + l) < q(3q + 4 + l)− 4q + 4 ⇐⇒
5q + 5 + 2l

2
(q − 2) + 4q + 9 + 2l < 3q2 + ql + 4c ⇐⇒

5q2 − 10q + 5q − 10 + 2ql − 4l + 8q + 18 + 4l

< 6q2 + 2ql + 8 ⇐⇒
0 < q2 − 3q = q(q − 3).

Since we assumed that q > 3, above inequality holds for all q > 3.
Summing up, if q > 3 and m ≥ 3q+ 4, then there exists an instance such that the winning

committee W that consists of two candidates from A has higher Borda score than each
possible committee that consists of candidates from B and the other arbitrary candidate
from C1. Once we consider the quotient of satisfactions in this example we have

|V2|
|V1|

=
n− 2

2
=

3q − 2

2
.

Hence, the satisfaction-based distortion for the considered case is bounded from below by
3q−2

2 .

Lemma 7. The satisfaction-based distortion of greedy-Monroe rule for the case when soci-
eties are centered around two poles is at least k − 1.

Proof. Let n = k(k+1)
2 , where n and k denote the number of voters and the size of the winning

committeeW, respectively. Hence, the quota is q = k+1
2 .We construct the following instance.

Let C2 = B = {b1, . . . , b k+1
2
}, |V1| = k+1

2 , and C1 = A ∪ Ad, where A = {a1, a2, . . . , a k+1
2
}

and Ad, |Ad| = 2q, is a set of dummy candidates. Each voter vi ∈ V1 has the following
preference order (a set in a preference ranking denotes the block of candidates ordered in a
fixed arbitrary way, or whose ranking will be specified later on):

ai � Ad � A\{ai} � B.

The voters from V2 are divided into k classes. The first k−1
2 classes are constructed as

follows. The i-th class, i ∈
[
k−1
2

]
, denoted by Ṽi, consists of q voters with the following

preference rankings:

bi � B\
{
bi, b k+1

2

}
� b k+1

2
� A � Ad.

For the union of the k−1
2 above mentioned classes we write Ṽ :=

⋃
i Ṽi. The remaining k+1

2

classes of the voters from V2 are constructed as follows: the i-th class, i ∈
[
k+1
2

]
, denoted

by V i, consists of (q − 1) voters with the following preference rankings:

bi � B\
{
bi, b k+1

2

}
� b k+1

2
� ai � A\{ai} � Ad.

Again, we denote the union of these classes as V :=
⋃

i V i.



Consider the process of building a winning committee by the greedy Monroe rule. Recall
that Wi denotes the set of candidates selected by the rule in the first i iterations, and Vi—
the set of voters assigned a representative from Wi. In the first k−1

2 steps, due to the highest

possible Borda score, we select k−1
2 candidates from B that are ranked at the first places

among all the voters from Ṽ—formally, we have W k−1
2

= B\
{
b k+1

2

}
and V k−1

2
= Ṽ . For

selecting (k+1
2 )-th candidate to the winning committee we have the following possibilities:

1. Take b k+1
2

, who will represent q voters from V2—the Borda score of this candidate is

(m− (q − 1))q.

2. Take ai, who will represent one voter from V1 and (q − 1) voters from V i—the Borda
score of this candidate is

m+ (m− q)(q − 1).

3. Take the best candidate from Ad and she will represent q voters from V1 (in our case,
all the voters from V1)—in order to compute the Borda score, we have to fix the way in
which the voters from V1 rank the candidates from Ad. We assume that the preferences
of each two consecutive voters from V1 are shifted by two in the right direction, i.e.
preferences of voter vi ∈ V1 over the candidates from Ad are as follows:

ad2q−(2i−2)
� . . . � ad2q

� ad1
� . . . � ad2q−(2i−3)

.

Hence, the Borda score of the best candidate, without loss of generality ad2q , equals to

m− 1 +m− 3 + . . .+m− (2q − 1)

=
m− 1 +m− (2q − 1)

2
q = (m− q)q.

Now, we will argue that candidate ai will be selected to the winning committee. First,
observe that the Borda score of ai is equal to the Borda score of the candidate b k+1

2
. Indeed:

m+ (m− q)(q − 1) = (m− (q − 1))q ⇐⇒
mq + q − q2 = mq − q2 + q.

Second, observe that the Borda score of ai is at least as high as the Borda score of ad2q
. We

have:

m+ (m− q)(q − 1) ≥ (m− q)q ⇐⇒
mq + q − q2 ≥ mq − q2.

Consequently, in the (k+1
2 )-th step the rule can select a candidate ai ∈ A. As a result

W k+1
2

= W k−1
2
∪ {ai}, and we add to the set of the select voters V k−1

2
the voter vi from V1

who ranks candidate ai first, and all of the voters from V i. Observe that after the (k+1
2 )-th

step all of the remaining candidates from A have the same Borda score as candidate ai had.
Hence, in each next step, we extend the set of the candidates with a candidate aj from A
and she will represent one voter from V1, that ranks her first, and (q − 1) voters from V j .

Recall that we have |V1| = k+1
2 = q, (q − 1) classes with q voters (Ṽ ), and q classes with

(q − 1) voters (V ). Hence,

|V2|
|V1|

=
2q(q − 1)

q
= 2(q − 1) = k − 1.

and in general the satisfaction-based distortion in the considered case is at most k − 1.



We can now prove Theorem 2, which is formulated as follows:

Theorem 2. For societies centered around two poles, the satisfaction-based distortion:

1. of the k-Copeland rule equals to 1.

2. of STV is 3, but for large n/k and k it approaches 1.

3. of SNTV and CC is Θ(n), of k-Borda is Θ(m/k), of Monroe is Ω(n) even if k = 3, and
of greedy-Monroe is Ω(k).

Proof. We prove the theorem in the above fixed order—let us start with the first point.

(1) Let us consider an arbitrary instance where the societies are centered around two poles
such that |V1| < |V2| and |C1|, |C2| ≥ k+1

2 . One can observe that due to the block pref-
erences of voters, i.e. voters from V1 prefer each candidates from C1 over each candidate
from C2 (analogous observation occurs in case of voters from V2), each candidate from
C2 wins a pairwise election against all of the candidates from C1. Therefore, the worst
candidate from C2 wins at least |C1| pairwise elections. On the other hand, the best
candidate from C1 can win only against all of the remaining candidates from C2. Hence,
the score of the best candidate from C1 equals to |C1| − 1. As we consider the instance
where |C2| ≥ k+1

2 , in the winning committee W we include at least k+1
2 candidates

from C2 and the decision would be in favor of the voters from V2 and as a results the
satisfaction-based distortion is 1.

(2) In order to prove the statements in the present point we use Lemma 3. We are going
to limit from above each of the quotient presented in Lemma 3 given the restrictions
concerning parameters. We have:

a)

q(k − 1) + 2q − 2

q(k − 1) + 2
≤ 2q + 2q

2q
= 2;

b) we are going to use the fact that in the second case we can write quota as q =
z k+3

2 + 1, where z ∈ N

q(k − 1) + 2d q(k+1)
k+3 e

(k + 1)d q(k+1)
k+3 e

=
(z k+3

2 + 1)(k − 1) + 2dz k+1
2 + k+1

k+3e
(k + 1)dz k+1

2 + k+1
k+3e

=
(z k+3

2 + 1)(k − 1) + 2(z k+1
2 + 1)

(k + 1)(z k+1
2 + 1)

=
(k + 1)(z k+1

2 + 1) + z(k − 1)

(k + 1)(z k+1
2 + 1)

=
z k+1

2 + 1 + z k−1
k+1

z k+1
2 + 1

≤
z k+1

2 + 1 + z

z k+1
2 + 1

≤
z k+1

2 + z

z k+1
2

≤ 2z + z

2z
=

3

2
;



c)

q(k − 1) + 2b q(k+1)
k+3 c

q(k + 1)− 2b q(k+1)
k+3 c

≤ q(k − 1) + 2q

q(k + 1)− 2q
=
q(k + 1)

q(k − 1)
≤ 2;

d)

(q + 2)(k − 1)

q(k + 1)
≤ 3(k − 1)

(k + 1)
< 3.

Hence, once q = 1 and size of the committee k → +∞, then the satisfaction-based
distortion converges to 3. What is more, one can easily observe that for large k and n/k
the satisfaction-based distortion approaches 1, as each quotient presented in Lemma 3
converges to 1 if k →∞ and n/k→∞ (i.e. q →∞).

(3) From Lemma 5 we know that the satisfaction-based distortion of k-Borda equals to
4m−k−3

k+3 . As the number of candidates m has to be at least k (the size of the committee),
then for m ≥ 3 and k ≥ 3 we have

4m− k − 3

k + 3
≥ 4m− 2m

k + k
=
m

k
.

On the other hand,

4m− k − 3

k + 3
≤ 4

m

k
.

Hence, the satisfaction-based distortion for k-Borda is Θ(m/k). The rest of the results in
the present point follow directly from Lemma 4, Lemma 6 and Lemma 7.
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