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Abstract

Proportional ranking rules aggregate approval-style preferences of agents into a collective
ranking such that groups of agents with similar preferences are adequately represented. Moti-
vated by the application of live Q&A platforms, where submitted questions need to be ranked
based on the interests of the audience, we study a dynamic extension of the proportional rank-
ings setting. In our setting, the goal is to maintain the proportionality of a ranking when
alternatives (i.e., questions)—not necessarily from the top of the ranking—get selected se-
quentially. We propose generalizations of well-known aggregation rules to this setting and
study their monotonicity and proportionality properties. We also evaluate the performance of
these rules experimentally, using realistic probabilistic assumptions on the selection procedure.

1 Introduction
From “ask-me-anything” sessions to panel discussions and town hall meetings, an increasing num-
ber of both virtual and in-person discussion formats are enhanced by digital tools that aim to
make the event more interactive and responsive to the audience. Using live Q&A platforms
such as slido (https://www.sli.do), Mentimeter (https://www.mentimeter.com) or Pigeonhole Live
(https://pigeonholelive.com), participants in the audience can submit questions and upvote ques-
tions submitted by others; a moderator then selects the most popular questions for the discussion.
By reducing barriers to participation (e.g., by allowing anonymous submissions), these tools aim to
better represent the diversity in the audience.

The moderator of the discussion is presented with an aggregated list, in which audience questions
are ranked by popularity (i.e., number of upvotes). Based on this ranking, the moderator then picks
the next question. When selecting a question, it is usually not required to follow the ranking strictly;
rather, the choice is at the moderator’s discretion, allowing him or her to take into account other
factors such as discussion flow, etc. That being said, it is generally expected that questions at the top
of the ranking are more likely to be selected than questions further down in the list. After a question
has been selected, it is removed from the ranking.

Ranking questions solely by popularity, though intuitively appealing, has a major downside: mi-
nority opinions might go completely unrepresented, even when the minority makes up a substantial
proportion of the audience. To illustrate this phenomenon, which is often referred to as “tyranny
of the majority,” consider a situation in which the audience is composed of two groups. One group
makes up 60% of the entire audience and is only interested in questions related to topic A; the re-
maining 40% of participants are only interested in questions on a different topic B. Now, assuming
that sufficiently many questions on topic A have been submitted, and that participants only upvote
questions related to their own interest, questions on topicB are unlikely to appear anywhere near the
top of the ranking, which is populated exclusively by questions on topic A. As a consequence, ques-
tions on topic B are very unlikely to be selected, despite the fact that these questions are supported
by 40% of the audience.

In this paper, we propose an approach to avoid the problem of underrepresenting minority opin-
ions. Specifically, we model the scenario described above as a proportional representation problem
and employ ranking algorithms based on (approval-based) proportional voting rules (Aziz et al.,
2017; Brill et al., 2017). The algorithms we consider aggregate the upvotes of the participants into
a proportional ranking over questions, such that each minority (i.e., group of participants with sim-
ilar preferences) is represented in the ranking to an extent that is proportional to the group’s size.

∗A short version of this paper appears in the proceedings of IJCAI-2021 (Israel and Brill, 2021).
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Whenever a question is selected by the moderator, our methods dynamically recompute the ranking,
pushing questions supported by underrepresented groups closer to the top.

At a technical level, our point of departure is the theory of proportional rankings (Skowron et al.,
2017), which studies how a collective ranking over a set of alternatives can be constructed in such a
way that majority and minority opinions are represented adequately. The question we are interested
in is how proportional ranking algorithms can be adapted to the dynamic setting. More specifically,
we ask:

How can the proportional representativeness of a collective ranking be maintained in a
dynamic setting, where alternatives get selected sequentially?

To answer this question, we consider two well-known aggregation rules dating back to the late 19th
century: sequential Phragmén (1894) and sequential PAV (Thiele, 1895). These two rules, together
with a few variants of the latter, performed best in the analysis conducted by Skowron et al. (2017).
For both rules, we propose two distinct generalizations to the sequential selection setting: a dynamic
variant and a myopic variant (see Section 3 for details). As a benchmark, we also consider the rule
that simply orders questions by the number of received upvotes.

Our Contribution. In this paper, (i) we formalize the setting of dynamic ranking rules and gen-
eralize the rules of Phragmén and Thiele to this setting (Section 3); (ii) we define a notion of satis-
faction monotonicity and analyze to what extent the considered rules satisfy it (Section 4); (iii) we
provide theoretical bounds regarding two different proportionality notions (Section 5); and (iv) we
experimentally evaluate our dynamic ranking rules (Section 6). Omitted proofs and further details
can be found in the appendix.

Related Work. Proportional representation is a fundamental desideratum in multiwinner elections
(Monroe, 1995; Faliszewski et al., 2017; Lackner and Skowron, 2020). For approval preferences in
particular, a wide variety of proportionality axioms have been studied (Aziz et al., 2017; Sánchez-
Fernández et al., 2017; Janson, 2018; Peters and Skowron, 2020). Proportionality in the context of
rankings has been considered in the aforementioned paper by Skowron et al. (2017) and (for linear
preferences) by Schulze (2011).

Notions of fairness over multiple elections among a fixed set of voters have received consid-
erable attention in previous years. This line of work includes, e.g., the study of long-term fairness
over different decisions (Freeman et al., 2017; Lackner, 2020), single decisions under changing pref-
erences (Tennenholtz, 2004; Boutilier and Procaccia, 2012; Parkes and Procaccia, 2013; Oren and
Lucier, 2014; Hemaspaandra et al., 2017), and storable votes (Casella, 2005, 2012).

In a practical attempt to avoid the underrepresentation of minorities, the live Q&A app SpeakUp
(https://speakup.digital/) allows audience members to add attributes (relating to, e.g., gender or edu-
cation) to submitted questions. The moderator can then manually filter questions with attributes that
have been underrepresented in the discussion. Requiring organizers to identify relevant attributes
poses the risk of overlooking important subgroups or introducing unwanted biases; it also presumes
the willingness of participants to reveal potentially sensitive information. In contrast, the ranking
algorithms considered in this paper do not require attributes in order to ensure the representation of
minority opinions.

2 Preliminaries
We briefly introduce some basic concepts from the theory of approval-based preference aggregation;
for details, see the survey by Lackner and Skowron (2020). Let C be a finite set of candidates and
N = {1, . . . , n} a finite set of voters. An (approval) profileA = (A1, . . . , An) is a list that contains,
for each i ∈ N , the approval set Ai ⊆ C of voter i. Given an approval profile A and a candidate
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c ∈ C, we let Nc = {i ∈ N : c ∈ Ai} denote the supporters of c. The approval score of c is given
by |Nc|. In the motivating application, C consists of all submitted questions and Ai contains the
questions that have been upvoted by participant i.

To measure satisfaction of a group of voters V ⊆ N with a set S ⊆ C of candidates, we often
use the average satisfaction of V with S, i.e.,

avgV (S) =
1

|V |
·
∑
i∈V
|Ai ∩ S|.

For a finite set S, we let L(S) denote the set of all linear orders, or rankings, over S. We often
write a ranking r ∈ L(S) as a sequence r = (r1, r2, . . . , r|S|), and for j ≤ |S|, we let r≤j denote
the set {r1, r2, ..., rj} of the first j elements in r.

An approval-based ranking rule maps an approval profile A to a ranking r ∈ L(C) of all candi-
dates. We will make use of the following three (non-dynamic) ranking rules.1

Approval Voting (AV). AV ranks the candidates according to their approval score. This rule is not
proportional and we use it mainly as a benchmark.

Sequential PAV (seqPAV). This rule ranks candidates iteratively, in each iteration choosing an
unranked candidate maximizing the marginal contribution in terms of weighted voter satisfaction.
Formally, for a subset S ⊆ C of candidates, define

sc(S) =
∑
i∈N

|Ai∩S|∑
j=1

1

j
.

If k candidates have already been ranked, the marginal contribution of an unranked candidate c is
given by mc(c) = sc(r≤k ∪ {c})− sc(r≤k).

Sequential Phragmén. This rule can be described in terms of voters buying candidates.2 Every
candidate costs 1 credit. All voters start without any credits but earn them continuously over time
(at a constant and identical rate). As soon as a group of voters who all approve the same candidate c
together own 1 credit, they immediately buy that candidate; at this point, their balance is reset to 0
and candidate c is added in the next position of the ranking. This is done until all candidates are
ranked.

3 Dynamic Ranking Rules
In this section, we formally introduce the setting of dynamic ranking rules and we adapt existing
(non-dynamic) ranking rules to this setting. The input of a dynamic ranking rule consists of two
parts: an approval profile and a (potentially empty) sequence of candidates that have already been
“implemented” or “executed”; the output is a ranking of all not-yet-implemented candidates. To
formalize this notion, we let X = (x1, x2, . . . , xj) denote the sequence of implemented candidates
(where j ∈ {0, . . . , |C|}); whenever the order of elements in X does not matter, we slightly abuse
notation and treat X as the set X = {x1, x2, . . . , xj}.

Definition 1. An (approval-based) dynamic ranking rule R maps a profile A and a sequence X =
(x1, x2, . . . , xj) of candidates to a rankingR(A,X) ∈ L(C \X).

1All rules may encounter ties; we assume that a priority ordering over candidates is used as a tiebreaker. In the motivating
example, the submission time of a question yields a natural priority ordering.

2An equivalent formulation of this method is in terms of a load balancing procedure (Janson, 2016; Brill et al., 2017).



Applying a dynamic ranking rule to a sequential selection process (as outlined in the intro-
duction) is now straightforward: At the beginning, when no candidate has yet been implemented,
X = () and the ranking R(A, ()) ranks all candidates in C. Given this ranking, a decision maker
(DM) selects an alternative x1 ∈ C to be implemented. The updated ranking of the remaining can-
didates is then given by R(A, (x1)), and the process is repeated. At iteration t ∈ N, when t − 1
candidates have been implemented and thus X = (x1, x2, . . . , xt−1), we let rt denote the ranking
R(A,X) ∈ L(C \X) from which the DM can make a choice.

We will sometimes make the assumption that the DM only ever implements alternatives that
appear near the top of the ranking. In this depth-restricted setting, we are given a natural number h
and we assume that xt ∈ rt≤h for all time steps t. This setting models situations in which the DM
does not have the resources (or the ability) to consider the whole ranking.

The straightforward ranking rule AV trivially translates to the dynamic setting: When a candidate
is implemented, it is simply removed from the ranking; the order between the remaining candidates
does not change. AV is used in all of the live Q&A platforms mentioned in Section 1.

In the following, we propose dynamic variants of other ranking rules. For a more detailed
description of these rules, including pseudocode and asymptotic runtime analysis, we refer to Ap-
pendix A.

Dynamic seqPAV. For this straightforward dynamization of seqPAV, we modify the notion of
marginal contribution to also take into account the satisfaction derived from previously implemented
candidates:

mcdyn(c) = sc(X ∪ r≤k ∪ {c})− sc(X ∪ r≤k).

Dynamic seqPAV ranks candidates iteratively, adding in each round a candidate c maximizing
mcdyn(c). Note that X is treated as a set here, as the order of elements in X does not matter.

Dynamic Phragmén. Our first dynamization of sequential Phragmén works in two phases. As
before, voters buy candidates and every candidate has a cost of 1 credit. Voters do not start with 0
credits, however; they may have an initial debt due to previously implemented candidates they ap-
prove. The debts of voters are determined in the first phase, which iterates through the sequence X
(starting with x1) and, for each implemented candidate xj ∈ X , divides the cost of 1 among the
voters in Nxj

. More precisely, this assignment of debts is done in such a way that, in each itera-
tion j, the maximum total debt across all voters in Nxj

is as small as possible. (The assignment
of debts, therefore, mimics the assignment of loads in the load balancing formulation of sequential
Phragmén.) We let di ≥ 0 denote the total debt of voter i ∈ N resulting from this first phase. In the
second phase, we run sequential Phragmén to obtain the desired ranking of candidates in C \X . At
the beginning of this phase, each voter i has a credit balance of−di ≤ 0. As in sequential Phragmén,
voters continuously earn credits, and voters starting with debts can only participate in the purchase
of a candidate once they have a positive balance.

These dynamic rules rank candidates in the same fashion as their non-dynamic counterparts,
while taking the sequence X of previously implemented candidates into account. (Note that the
implementation order matters for dynamic Phragmén, but not for dynamic seqPAV.) In particular,
both dynamic rules coincide with their non-dynamic counterpart when X = (). Moreover, the
ranking among the remaining candidates does not change whenever the top-ranked candidate is
implemented: if rt = (r1, r2, r3, . . .) and xt = r1, then rt+1 = (r2, r3, . . .).

We also consider two “myopic” dynamic ranking rules.

Myopic seqPAV. In this myopic dynamization of seqPAV, we compute the marginal contribution
of each candidate c ∈ C \X only with respect to the set X of previously implemented candidates,
i.e., mcmyopic(c) = sc(X ∪ {c}) − sc(X). Then, we simply rank those candidates according to
decreasing mcmyopic(c)-value.
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Figure 1: Rankings discussed in Example 1. Candidates approved by the three voter groups are marked in blue,
red, and green, respectively. The rankings produced by the dynamic ranking rules are depicted on the left, the
ones produced by the myopic rules on the right. The candidate that is chosen by the DM is marked with “X”
and appears in the sequence of implemented candidates X in the next iteration. In each iteration t, the thick
line separates the sequenceXt of implemented candidates (above the line) from the ranking over the remaining
candidates in C \Xt (below the line).

Myopic Phragmén. In this myopic dynamization of sequential Phragmén, we first run the first
phase of dynamic Phragmén in order to determine the debts {di}i∈N of voters. Then, for each
candidate c ∈ C \ X , we compute the voter debts that would result from adding candidate c to X
(and running the first phase for one more iteration). Let the debts induced by candidate c be {dci}i∈N .
Myopic Phragmén ranks the candidates in C \X according to increasing maxi∈Nc

dci , breaking ties
according to the second highest debt and so on.

Intuitively, myopic seqPAV and myopic Phragmén rank candidates according to their suitability
of being the next implemented candidate. In contrast to dynamic seqPAV and dynamic Phragmén,
this way of comparing candidates does not lead to rankings that are representative by themselves. In
particular, both myopic rules coincide with AV when X = ().

We illustrate these rules with a simple example. The rankings discussed in this example are
depicted in Figure 1.

Example 1. Let C = {a, b, c, d, e} and assume alphabetic tiebreaking. Consider a set of 9 voters
with the following approval sets:

5× {a, b}, 3× {c, d}, 1× {e}.

Let V denote the group consisting of the 5 {a, b}-voters and V ′ the group consisting of the 3 {c, d}-
voters. First, consider dynamic seqPAV and dynamic Phragmén. In the first iteration, both rules
output r1 = (a, c, b, d, e), effectively alternating between candidates supported by voter groups V
and V ′. Let us assume that the DM first implements candidate x1 = b, i.e., X2 = (b). Then, the two
rules output r2 = (c, a, d, e). If the DM implements candidate x2 = d next (and thus X3 = (b, d)),
both rules output r2 = (a, c, e).

Next, consider myopic seqPAV and myopic Phragmén. In the first iteration, both rules (and AV)
rank the candidates according to their approval scores: r1 = (a, b, c, d, e). After the implementation
of b, both rules output r2 = (c, d, a, e), which differs from the AV ranking r2 = (a, c, d, e). If the
DM then implements candidate x2 = d, the two rules output r2 = (a, c, e).

In this example, all of our ranking rules demote candidate a in r2 because voter group V is
already (partially) satisfied with X2 = (b). The myopic rules even rank both c and d higher than
a in r2, since implementing either c or d would yield a more proportional sequence X than imple-
menting a would.

All presented ranking rules can be computed in polynomial time; see Appendix A for details.



4 Monotonicity of Voter Satisfaction
We start our analysis of dynamic ranking rules by considering the satisfaction of voters during the
sequential selection process. In doing so, we assume that voters derive satisfaction not only from
implemented candidates they approve, but also—possibly to a lesser extent—from approved can-
didates appearing near the top of the ranking: high positions in the ranking come with increased
attention (and, presumably, high selection probabilities in future iterations) for the respective candi-
dates. In particular, improved ranking positions of supported candidates can be viewed as a kind of
compensation for (groups of) voters who are not (yet) well-represented by the implemented alterna-
tives. To make this concrete, consider an iteration t, where the DM is confronted with ranking rt and
chooses to implement candidate xt. Following the logic outlined above, it might be natural to expect
that voters not approving xt (or, more precisely, the candidates approved by these voters) should get
a “boost” in the ranking. At the very least, it seems reasonable to expect that the satisfaction of
such voters with the new ranking rt+1 is at least as high as with the old ranking rt. AV trivially
satisfies this property, which we informally refer to as satisfaction monotonicity. Somewhat surpris-
ingly, however, the following simple example demonstrates that this intuitive monotonicity notion
is not achievable for dynamic ranking rules that satisfy a minimal degree of representativeness. The
rankings discussed in this example are depicted in Figure 2.3

Example 2. Consider the following profile with 7 voters:

1× {a}, 3× {b}, 3× {a, c}.

All rules considered in this paper rank the approval winner a first in r1. If the DM chooses to
implement candidate x1 = c, all of our rules—except AV—output r2 = (b, a) in the second iteration.
Intuitively, the rules give more voting power to the 3 supporters of b (all of which are unrepresented
by c) than to the 4 supporters of a (3 of which are already partially represented). Observe that the
satisfaction of the voter approving a decreases when going from r1 to r2, despite the fact that this
voter does not approve the candidate being implemented.

The following definition is motivated by the question whether monotonicity failures can be pre-
vented by moving to the depth-restricted setting and putting lower bounds on the size of voter groups
for which monotonicity should hold.

Definition 2. For h ≥ 1 and α ∈ (0, 1], a dynamic ranking rule satisfies (h, α)-monotonicity if,
for all profiles and all groups of voters V ⊆ N of size |V | ≥ α · |N |, the following holds for every
iteration t:

If xt /∈
⋃
i∈V

Ai, then avgV (rt+1
≤h ) ≥ avgV (rt≤h).

That is, (h, α)-monotonicity requires that satisfaction monotonicity holds for groups that make
up at least an α-fraction of the electorate, and when measuring satisfaction with respect to the first h
positions in a ranking.

AV trivially satisfies (h, α)-monotonicity for all h and all α. On the other hand, all other con-
sidered rules violate this notion unless we consider rather large groups of voters.

Proposition 3. Consider the depth-restricted setting for some h ≥ 3. Then, dynamic seqPAV and
dynamic Phragmén fail to satisfy (h, α)-monotonicity for all α < 6

2h+5 . Furthermore, myopic
seqPAV and myopic Phragmén fail to satisfy (h, α)-monotonicity for all α < 1

h .
3Example 2 can be turned into an impossibility result: Every dynamic ranking rule that (i) ranks the approval winner at

the top in the first iteration and (ii) gives priority to less satisfied voter groups fails satisfaction monotonicity.
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Figure 2: Rankings discussed in Example 2. All rules considered here either output r1 = (a, b, c) or r1 =
(a, c, b). If the DM chooses to implement candidate x1 = c, all of the rules—except AV—output r2 = (b, a)
in the second iteration. This violates an intuitive understanding of monotonicity for the voter with ballot {a}.

Proof sketch. We first consider dynamic seqPAV and then extend the argument to the other rules.
Let h = 3 and j = 6 · y for some y ∈ N and consider the profile given by

2× {a}, 15× {a, b},
(
j

2
+ 6

)
× {b}, 10× {c},

10× {d}, (j + 6)× {a, c, d},
(
j

3
+ 12

)
× {e}.

Initially, dynamic seqPAV outputs r1 = (a, b, c, d, e). After the DM implements x1 = b, dynamic
seqPAV outputs r2 = (c, d, e, a) (where the ordering of c and dmight depend on tie-breaking). Now
consider the voter group V consisting of all the voters with approval sets {a} or {a, c, d}. In the
first iteration, the average satisfaction of this group is avgV (r1≤3) = 1

8+j · (14 + 2j); in the second
iteration, it is only avgV (r2≤3) = 1

8+j · (12 + 2j). For j →∞, this group of voters makes up nearly
6/11 of the electorate (and the rankings remain unchanged). To extend this example to the case of
h > 3, we can clone alternative e and all its supporters.

The dynamic version of Phragmén’s rule violates monotonicity on the same examples (see Ap-
pendix B for details). After replacing the two terms j/3 and j/2 in the above profile each with j,
and for each copy of e adding 4 voters approving that candidate only, the same holds for myopic
seqPAV and myopic Phragmén.

The monotonicity requirement can be weakened further by only requiring satisfaction mono-
tonicity in cases in which the implemented candidate is never co-approved with any candidate that
is approved by a member of the group under consideration (i.e., there is no c ∈

⋃
k∈V Ak with

{c, xt} ⊆ Ai for some i ∈ N ). Both myopic rules satisfy this weak implementation monotonic-
ity, whereas the two dynamic versions fail it. For a thorough discussion of this weaker version of
monotonicity, we refer to Appendix B.

Despite the negative results in this section, we rarely found monotonicity violations of any kind
in our experiments (see Section 6).

5 Proportional Representation
We now turn to analyzing the proportional representativeness that is provided by our dynamic rank-
ing rules. The following two sections capture different perspectives on representation, focusing on
the representativeness of the ranking rt at any given iteration t (Section 5.1) and on the representa-
tiveness of the set X of implemented candidates (Section 5.2).

5.1 Proportionality of Rankings
In certain applications of dynamic ranking rules, such as the live Q&A platforms mentioned in the
introduction, it is desirable for the ranking rt to provide a representative overview of the opinions
of the voters at any given iteration t. In this section, we prove proportionality guarantees that are
satisfied by ranking rt for any fixed iteration t.



Measures for the proportionality of a ranking have been proposed by Skowron et al. (2017). In
particular, κ-group representation measures, informally speaking, how far down in the ranking a
group of voters needs to go in order to obtain a given amount of satisfaction. In order to adapt the
notion of κ-group representation to the dynamic ranking setting, we need the following notation.
For iteration t, let Xt = {x1, . . . , xt−1} denote the set of candidates implemented in the first t− 1
rounds and, for a group V ⊆ N of voters, let λt(V ) = |

⋂
i∈V Ai \ Xt| denote the cohesiveness

of V with respect to the remaining candidates C \Xt.

Definition 4 (Group representation). Let κ(α, λ) be a function from ((0, 1]∩Q)×N) to N. A dynamic
ranking rule satisfies κ-group representation if the following holds for all profilesA, groups of voters
V ⊆ N , rational numbers α ∈ (0, 1], and integers λ, t ≤ |C|:

If |V | ≥ α · n and λt(V ) ≥ λ, then avgV (rt≤κ(α,λ)) ≥ λ.

In words: If a group V of voters makes up an α-fraction of the electorate and has at least λ com-
monly approved candidates remaining at iteration t, then this group derives an average satisfaction
of at least λ from the candidates ranked in the top κ(α, λ) positions of ranking rt.4

Our first result in this section is for dynamic Phragmén. We recall that di denotes the initial debt
of voter i at the end of the first phase of the method, and let dVavg = 1

|V |
∑
i∈V di denote the average

debt of voters in V .

Theorem 5. Dynamic Phragmén satisfies κ-group representation for

κ(α, λ) =

⌈
2(λ+m+ 1) + s · |V |

α

⌉
,

where m = |
⋃
i∈V Ai ∩X| and s =

∑
i∈V (di − dVavg)2.

Observe that this function is increasing both in the numberm of already implemented candidates
that are approved by some voter in V and in the variance s of debts of voters in V . For the special
case X = (), Theorem 5 implies a group representation of

⌈
2λ+2
α

⌉
for (non-dynamic) sequential

Phragmén. For λ ≥ 2, this is an improvement over the κ-group representation bound of
⌈
5λ
α2 + 1

α

⌉
proved by Skowron et al. (2017).

The proof of Theorem 5 employs the notion of proportionality degree (Skowron, 2018). In par-
ticular, we first prove a bound on the proportionality degree of dynamic Phragmén, using a potential
function approach that is similar to the one used by Skowron (2018) for the non-dynamic setting.
Then, we establish a relationship between the proportionality degree and group representation, and
use it to translate the bound on the former into a bound on the latter. For details, see Appendix C.

For dynamic seqPAV we prove the following generalisation of Theorem 3 by Skowron et al.
(2017); the latter theorem corresponds to the special case X = ().

Theorem 6. Dynamic seqPAV satisfies κ-group representation for

κ(α, λ) =

⌈
2(λ+ 1 + avgV (X))2

α2

⌉
.

AV does not perform any different in the dynamic ranking setting compared to the non-dynamic
one. Thus, it satisfies the same bounds on group representation as those stated in Theorem 2 by
Skowron et al. (2017). Since myopic seqPAV and myopic Phragmén both agree with AV in the case
X = (), the same bounds hold for these two rules.

4A natural lower bound for κ(α, λ) is given by dλ/αe. Note that the κ functions used in this section not only depend
on α and λ, but also on the set V and on the sequence X of previously implemented candidates. In an attempt to simplify
notation, we decided to not make this dependencies explicit in Definition 4.



Proposition 7. Myopic seqPAV and myopic Phragmén fail κ-group representation for

κ(α, λ) ≤
⌈
λ · α

2α− 1

⌉
− 1

and for all functions κ(α, λ) if α ≤ m+1
m+2 , where m = |

⋃
i∈V Ai ∩X|.

5.2 Proportionality of Implemented Candidates
In this section, we study worst-case bounds on the representativeness of the set X of implemented
candidates. Clearly, no non-trivial bounds are obtainable without restricting the selection behavior of
an adversarial DM. Therefore, we will make the following two assumptions throughout this section:

(A1) The DM is depth-restricted and always implements a candidate from the top h positions of the
ranking.

(A2) Every candidate c ∈ C has sufficiently5 many “clones,” i.e., candidates c′ with identical
supporter set Nc′ = Nc.

Assumptions (A1) and (A2) together ensure that the DM can be forced to implement a candidate
approved by a voter, by populating the top h positions exclusively with such candidates. Arguably
the most natural way to ensure (A2) is to assume that we are in the party-approval setting (Brill
et al., 2020), where candidates are interpreted as parties and can be selected arbitrarily often. In the
motivating example of live Q&A platforms, party-approval preferences could result from assigning
attributes to questions and eliciting participants’ approval preferences over attributes.

Recall that Xt+1 denotes the set containing the implemented candidates from the first t rounds.
The following property is a natural adaption of the well-studied proportionality axiom proportional
justified representation (PJR) (Sánchez-Fernández et al., 2017).

Definition 8. A dynamic ranking rule satisfies proportional justified selection (PJS) if the following
holds for all t, ` ∈ N and for all groups V ⊆ N of voters: If |V | ≥ `

t · |N | and |
⋂
i∈V Ai| ≥ `, then

|Xt+1 ∩
⋃
i∈V Ai| ≥ `.

A weaker version of this axiom is obtained by fixing ` = 1; in analogy to a well-known notion
due to Aziz et al. (2017), we refer to the resulting property as justified selection (JS).

We prove the following theorem by interpreting the set Xt+1 of implemented alternatives as a
committee.

Theorem 9. Under assumptions (A1) and (A2), myopic Phragmén satisfies PJS.

Proof. First observe that myopic Phragmén always ranks clones consecutively. Due to (A2), there
are always at least h clones of each candidate, so that the first h position of each ranking rt

′
(where

t′ ≤ t) will be occupied by a set of candidates that are all clones of each other. Due to (A1),
the DM selects a candidate from this top-ranked clone set in each iteration. Now consider the set
Xt+1 = {x1, . . . , xt} of implemented candidates. Since the assignment of debts under myopic
Phragmén mimics the distribution of loads under sequential Phragmén, this set consists precisely
of the first t candidates that sequential Phragmén selects on the same instance. Since sequential
Phragmén satisfies PJR (Brill et al., 2017), it follows that myopic Phragmén satisfies PJS.

Analogously, we can translate a representation guarantee for sequential PAV (Sánchez-
Fernández et al., 2017) into a guarantee for myopic seqPAV.

Proposition 10. Under assumptions (A1) and (A2), myopic seqPAV satisfies JS for t ≤ 5.
5Given an upper bound T on the number of iterations, h+ T − 1 clones suffice (as at least h clones will always remain

in the ranking).
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Figure 3: Rankings discussed in Example 3.

Similar positive results are not possible for the other rules. To see this, consider the following ex-
ample, which is consistent with assumptions (A1) and (A2). The rankings discussed in this example
are depicted in Figure 3.

Example 3. Let N = V ∪ G be the electorate consisting of two disjoint groups of voters of equal
size, i.e., V ∩G = ∅ and |V | = |G|. Now assume that each voter in V approves of all candidates in
{a1, a2, . . .} and each voter inG approves of all candidates in {b1, b2, . . .}. If we assume alphabetic
tie-breaking between the parties then both dynamic rules will in the first iteration output the ranking
r1 = (a1, b1, a2, b2, . . .). If we set h = 4 then it is possible for an adversarial DM to implement
3 candidates supported by G before in the fourth iteration we have r4≤4 = {a1, a2, a3, a4}. In
particular we have X3 = (b1, b2) and X4 = (b1, b2, b3).

Proposition 11. Dynamic seqPAV and dynamic Phragmén fail to satisfy JS, even under assumptions
(A1) and (A2) and for t = 2.

6 Experimental Evaluation
In order to better understand the behavior of the dynamic ranking rules considered in this paper, we
conducted computational experiments using randomly generated approval profiles. Since we were
mainly interested in the proportional representation of groups of voters with similar preferences,
we generated profiles according to two probabilistic models that lead to polarized electorates with
easily identifiable groups. We measured (1) how the satisfaction of a voter group with the set of
implemented candidates varies with the size of the group, and (2) how the satisfaction of a voter
group with the current ranking varies over time.

Setup. All of our profiles consist of 60 voters and 20 candidates, and the approval sets are gener-
ated according to two different models. In the blurred parties model, we assign each voter and each
candidate to one of two parties. The size of the voter group V associated with the first party varies
over the experiments; the candidates are always divided equally. Each voter approves a candidate
from their own party with 95% probability and a candidate of the other party with 5% probability.
The spatial model is an adaption of the 4-Gaussian model used by Elkind et al. (2017) for linear
preferences. Voters and candidates correspond to points in the Euclidean plane and voters approve
nearby candidates. There are three parties with equidistant center locations, and candidates as well
as voters get sampled as points around the party centers according to a normal distribution. We let
the size of the voter group V associated with the first party grow, and divide the remaining voters
equally among the two remaining parties. There are 7 candidates associated with the first party.
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Figure 4: Experimental results for the blurred parties model (left) and the spatial model (right). The graphs in
the first row show the average satisfaction of V with the first k implemented candidates, for relative group size
α ∈ [0, 1]. The graphs in the second row show the average satisfaction of V with rt≤5, for 1 ≤ t ≤ 11.

The selection behavior of the DM is modeled via Google click-through rates. In particular, the
probability of selection decreases when going down the ranking. In Figure 4 we plot the averages of
100 generated elections. More details about the setup can be found in Appendix D.

Satisfaction with implemented candidates. We measure the average satisfaction of voter group
V ⊆ N with Xk+1, where k is the number of candidates associated with that group (i.e., k = 10 for
the blurred parties model and k = 7 for the spatial model). We plot this value against the relative
size α = |V |/|N | of the group V . The graphs in the first row of Figure 4 show that for both models,
AV is not proportional: avgV (Xk+1) starts out very low and only jumps up as soon as V becomes
the biggest group (which happens at α = 1/2 and α = 1/3, respectively). In other words, AV
underrepresents minorities and overrepresents majorities. The performance of the other four rules
are indistinguishable, as all yield proportionally increasing satisfaction values.

Satisfaction with rankings. The graphs in the second row of Figure 4 depict the average satis-
faction of a group V of size α = 1/4 with the first 5 candidates of the ranking over the first 11
(respectively 8) iterations. Again, AV behaves poorly, as it gives satisfaction to V only once the
larger groups have been satisfied. The satisfaction values under the two myopic rules jump heav-



ily from one iteration to the next, as these rules tend to mainly represent one group of voters per
iteration. On the other hand, the two dynamic rules keep the satisfaction of V relatively constant at
around one fourth of the maximum possible satisfaction. These rules provide proportional represen-
tation in each single iteration, which is in line with the theoretical results in Section 5.1.

7 Conclusion
Motivated by the problem of how submitted questions in a live Q&A session can be ranked in a
more representative way, we have introduced dynamic ranking rules. We proposed two paradigms
of dynamizing existing ranking rules: under the dynamic paradigm, we target proportional repre-
sentation of voter interests at each individual time step; under the myopic paradigm, we try to make
the set of implemented candidates as representative as possible. While the former approach lends
more flexibility for the decision maker and guarantees a proportional exposure of candidates in each
ranking, the latter approach is computationally more efficient and yields stronger selection guaran-
tees. Our experimental results illustrate the difference between the two approaches, and verify that
both approaches lead to proportional results.

The application of live Q&A platforms gives rise to some interesting extensions of our model.
In realistic scenarios, neither the electorate nor the set of candidates is static, as people enter or
leave the audience and new questions come up continuously. Moreover, participants can change
their approval preferences throughout the event. Our approach can take these dynamic aspects into
account in a straighforward manner: After each implementation, we can apply our ranking rules to
the current set of not-yet-implemented candidates and to the current approval preferences—the only
necessary information from previous iterations is the sequence of implemented candidates.

The dynamic ranking rules proposed in this paper are applicable to a wide variety of sequential
selection procedures in which proportional representation is desired and, at the same time, some
flexibility on the part of the decision maker is necessary (e.g., think of human-in-the-loop decision
support systems for hiring or budgeting decisions). Other applications of dynamic ranking rules
include committee election scenarios in which some part of the committee is fixed (e.g., due to
external constraints) and the remaining seats need to be filled in such a way that the committee as a
whole is representative.
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A Additional Details on Section 3
This section contains more details on Here we study the introduced dynamic ranking rules algorith-
mically. For each of the rules we provide a pseudocode formulation and give bounds on its running
time. We start with the two rules based on sequential PAV and then consider the two Phragmén
variants.

All four rules take as input an approval profile A and a sequence of already implemented candi-
datesX . We denote the voters given implicitly by the profile byN(A) and the respective candidates
by C(A). The rules output a ranking of all candidates that have not been implemented yet.

In the pseudocode we make use of the following conventions. We set n := |N(A)| as the
number of voters and m := |C(A)| as the number of candidates. Further, we use set-syntax also
for sequences of objects. For example, (i ∈ Z | sorted non-decreasingly) denotes the (ordered)
sequence of all positive natural numbers in non-decreasing order, i.e., the sequence (1, 2, 3, . . .).6

Additionally, we abbreviate sorted non-decreasingly to sorted ↗ and sorted non-increasingly to
sorted↘. We are then able to denote (1, 2, 3, . . .) by (i ∈ Z | sorted↗).

A.1 Algorithmic Aspects of Dynamic and Myopic seqPAV
We begin with the two rules based on sequential PAV. They both use the notion of marginal contri-
bution to rank candidates. For a set S ⊆ C of candidates define

sc(S) =
∑
i∈N

|Ai∩S|∑
j=1

1

j
.

This score basically models a voter’s satisfaction with S using the concept of diminishing returns.
A voter i ∈ N contributes 1 to the score for the first candidate in Ai ∩ S. For the second candidate
in Ai ∩S that voter contributes only 1/2 of additional score and so on. Using this score the marginal
contribution of a candidate c /∈ S can then be computed by

mc(c) = sc(S ∪ {c})− sc(S).

Dynamic seqPAV mimics the non-dynamic variant closely by computing the marginal contribu-
tion of a candidate according to all already ranked and already implemented candidates. The rule
ranks candidates greedily one by one. In every round it selects a candidate with maximal marginal
contribution and appends that candidate to the end of the ranking.

Proposition 12. Given an approval profile A and a sequence of implemented candidates X , dy-
namic seqPAV outputs a ranking of all not-yet-implemented candidates in time O(m3n).

Proof. Termination of the algorithm is straightforward. Concerning running time, first note that
mcdyn(c) can be computed in time m · n. The loops starting in Lines 3 and 4 of Algorithm 1 each
have length of at most m. Choosing a candidate with maximum marginal contribution (Line 6) can
be done in an additional time of m. This however gets dominated by the running time of the loop in
Line 4. Appending and deleting candidates in Lines 7 and 8 is possible in constant time. Thus, the
overall running time is in O(m3n).

The myopic version of this rule computes the marginal contribution of the candidates once up
front—only with respect to the already implemented candidates—and then simply ranks all candi-
dates according to this score.

6If there are ties in the orderings, this notation does not uniquely define a single sequence. Since our results do not rely
on a specific tie-breaking rule, we sidestep this ambiguity by assuming a given tie-breaking order.



Algorithm 1: Dynamic sequential PAV
Input : approval profile A, sequence of implemented candidates X
Output: ranking r ∈ L(C(A) \X)

1 C := C(A) \X // unranked candidates

2 r := () // ranking of candidates

3 while C 6= ∅ do
4 forall c ∈ C do
5 mcdyn(c) = sc(X ∪ r ∪ c)− sc(X ∪ r) // compute marginal contribution

6 choose c ∈ arg maxc∈C mcdyn(c) // choose candidate with max. mc

7 append c to r // add that candidate to r

8 C := C \ {c}
9 return r

Algorithm 2: Myopic sequential PAV
Input : approval profile A, sequence of implemented candidates X
Output: ranking r ∈ L(C(A) \X)

1 C := C(A) \X // unranked candidates

2 forall c ∈ C do
3 mcmyopic(c) = sc(X ∪ c)− sc(X) // compute marginal contribution

4 r := (c ∈ C | sorted↘ by mcmyopic(c)) // rank candidates by mcmyopic

in non-increasing order
5 return r

Proposition 13. Given an approval profileA and a sequence of implemented candidatesX , myopic
seqPAV outputs a ranking of all not-yet-implemented candidates in time O(m2n).

Proof. Termination of the algorithm is straightforward. Concerning running time, first note that
mcmyopic(c) can be computed in time m · n. The loop starting in Line 2 of Algorithm 2 has length
of at most m. Ranking (i.e., sorting) all candidates takes an additional time of m log(m) which
is however dominated by the running time of the above loop. Thus, the overall running time is
in O(m2n).

A.2 Algorithmic Aspects of Dynamic and Myopic Phragmén
The two Phragmén variants defined in Section 3 are based on similar ideas. We assume that a
candidate costs 1 credit and voters approving a candidate can buy this candidate with the credits
they own. The first version, dynamic Phragmén, closely resembles the original, non-dynamic rule
sequential Phragmén. In the original rule, voters start out with a balance of 0 and earn money
continuously and at the same rate. At the moment a set of voters who approve the same candidate
together have 1 credit, they spend this money immediately to buy this candidate. The newly bought
candidate gets appended to the ranking. The main difference in the dynamic adaption is that voters
do not start out with 0 credits in the beginning but might have a negative balance to start with. This
enables us to model that certain voters are already satisfied through the implemented candidates
in X . Once the initial debts are assigned voters again earn money continuously. As soon as a set
of voters together have a (positive) amount of 1 credit they can spend this on a commonly approved
candidate. Voters with initial debts have to wait until they earned enough credits to cover their
debts—and thus have a positive balance—until they can participate in buying candidates. It is not
possible to go into debt to buy a candidate. For a voter i ∈ N(A) we denote i’s credits with ¢i.

In the following we present a pseudocode formulation of dynamic Phragmén as Algorithm 3.



Algorithm 3 uses two subroutines that we will describe in more detail afterwards. First, to com-
pute the initial debts for dynamic Phragmén (and myopic Phragmén, which we discuss later in this
section), we use a subroutine called compute debts (see Algorithm 4). This algorithm takes an
approval profile A and a sequence of implemented candidates X as input and outputs the amount
of debt each voter i ∈ N(A) receives to accommodate the costs of the already implemented can-
didates in X . Dynamic Phragmén then interprets these debts as negative credits, setting ¢i = −di.
Dynamic Phragmén constructs the output ranking iteratively. In order to find the next candidate to
rank, the algorithm searches for the candidate that can be bought by (a subset of) its supporters at
the earliest point in time. To analyse the running time of dynamic Phragmén, it is easier to not think
of giving credits to voters continuously to find the next candidate. Rather, in each iteration of the
ranking process, we calculate for each unranked candidate c the minimal time we have to wait until
the supporters of c can buy c. Then we rank the candidate with the smallest such time next and let the
corresponding supporters pay for c. The calculation of this minimal time is done by the subroutine
compute buying time.

Algorithm 3: Dynamic Phragmén
Input : approval profile A, sequence of implemented candidates X
Output: ranking r ∈ L(C(A) \X)

1 C := C(A) \X // unranked candidates

2 N := N(A) // voters

3 r := () // ranking of candidates

4 (di)i∈N := compute debts(A,X) // compute initial debts

5 forall i ∈ N do
6 ¢i := −di // starting credits

7 while C 6= ∅ do
8 forall c ∈ C do
9 (tc, Vc) := compute buying time(A, c, (¢i)i∈N )

10 choose c ∈ arg minc∈C tc // choose candidate with min. tc
11 forall i ∈ Vc do
12 ¢i = 0 // voters in Vc pay for candidate c

13 append c to r // add that candidate to r

14 C := C \ {c}
15 return r

Subroutine compute debts. This algorithm computes the initial debts for both Phragmén vari-
ants (see Algorithm 4). The input of the algorithm is an approval profile A and a sequence of im-
plemented candidates X and it outputs for each voter i ∈ N(A) a non-negative real number di
which is the amount of debt voter i received to accommodate the costs of the already implemented
candidates in X . Thus it holds

∑
i∈N(A) di = |X|. The algorithm iterates over X and for each

candidate distributes the cost of 1 among all voters that approve of that candidate. More formally,
let x ∈ X be an already implemented candidate and let Nx be the supporters of x. We divide the
cost of 1 for x among Nx in a way that minimises the total debt across all voters in Nx. This is the
same approach that is used in the load-balancing version of sequential Phragmén. New in our case is
that the difference between debt (or load) of two voters assigned in previous steps of the algorithm
can be arbitrarily high. (For example, if the first k implemented candidates in X are only supported
by a single voter, this voter gets assigned a debt of k before any other voter gets assigned any debt.)
This may lead to a situation where, in order to minimise the maximal total debt across voters in Nx,
we distribute the cost only over a subset of Nx. Thus, for each x ∈ X we first have to determine the
correct subset of Nx to distribute the debt to. We do this by ordering voters in Nx non-decreasingly



by di and inspect any prefix of voters in this order. For every such prefix N ′x ⊆ Nx we compute the
debt voters in N ′x have after distributing the additional debt of 1 by

dnew :=
1 +

∑
i∈N ′

x
di

|N ′x|
.

Let v+1 ∈ Nx \ N ′x be that supporter of x not in N ′x with the next lowest debt dv+1
. It is possible

to lower dnew by adding v+1 to N ′x if and only if dv+1
< dnew. The algorithm compute debts

does this computation for each x ∈ X in the order given by the sequence X itself and then outputs
the debts computed this way.

Algorithm 4: compute debts

Input : approval profile A, sequence of implemented candidates X
Output: (di)i∈N(A), debts for all i ∈ N(A)

1 N := N(A) // voters

2 forall i ∈ N do
3 di := 0 // initial debt

4 for x ∈ X do
5 Nx := (i ∈ N | x ∈ Ai, sorted↗ by di) // supporters of x sorted non-

decreasingly by initial debt
6 for j ≤ |Nx| do
7 N ′x := (Nx)≤j // first j voters in Nx

8 dnew :=
1+

∑
i∈N′

x
di

j // distribute debt among first j supporters

9 if j < |Nx| and dnew ≤ dj+1 then // check next supporter’s debt

10 forall i ≤ j do
11 di = dnew // assign new debt

12 break // break inner for-loop

13 if j = |Nx| then // all supporters share debt

14 forall i ∈ Nx do
15 di = dnew // assign new debt

16 return (di)i∈N(A)

Proposition 14. Given an approval profile A and a sequence of implemented candidates X , Algo-
rithm 4 computes the debts for all voters in N(A) according to X in time O(mn2).

Proof. Concerning termination of Algorithm 4, consider a candidate x ∈ X and the sequence of
corresponding supporters Nx ⊆ N(A). The sequence Nx gets sorted non-increasingly in Line 5.
In the loop starting in Line 6 each prefix of voters approving x is considered. For each such prefix
N ′x the algorithm calculates the debt that each voter in N ′x would get if they together had to pay 1
credit for candidate x (Line 8). As described above, the algorithm then checks whether this debt can
be decreased by adding the next candidate in Nx \N ′x to N ′x (Line 9). If not, the debt is distributed
among voters in N ′x. Otherwise, the loop continues. The if-statement in Line 13 guarantees that in
the end, if no proper subset of candidates N ′x ⊂ Nx was singled out, all supporters of x share the
debt.

Concerning running time, the loop starting in Line 4 has length of at most m. Sorting candidates
intoNx can be done in time n log(n). On the other hand, the loop in Line 6 has length at most n and
the calculation in Line 8 can be performed in O(n) operations. The assignment of debts in Lines
11 or 15 would contribute another n operations, which are however dominated by the calculation
in Line 8. Since the running time of the loop starting in Line 6 dominates the running time of the
operation in Line 5, the overall running time of the algorithm is in O(mn2).



Subroutine compute buying time. As stated above, it is easier to not think of giving credits
to voters continuously when analysing the running time of dynamic Phragmén. Instead in each
iteration of the ranking process, we calculate for each unranked candidate c the minimal time we
have to wait until the supporters of c can buy c. Then we rank the candidate with the smallest such
time next and let the corresponding supporters pay for c. Note that not necessarily all supporters
of c have to pay, as it might be the case that some of them have to much debt and the rest of the
supporters are able to raise 1 credit before those with a lot of debt can participate in the buying
process. To compute that minimal time and the corresponding set of supporters of a candidate c, we
use the subroutine compute buying time. This algorithm takes as input the approval profile A,
a candidate c ∈ C(A) and the current credit balance of all voters (¢i)i∈N . The function outputs the
minimal additional time until a subset of supporters of candidate c will have accumulated a positive
budget of 1 credit. Formally, the function finds the minimal tc ∈ [0, 1] such that there is a set of
voters V ⊆ Nc with ∑

i∈V
(¢i + tc) ≥ 1.

Because of the minimality of tc we have ¢i + tc ≥ 0 for all i ∈ V . Practically, tc and the corre-
sponding set of supporters can be computed as follows. Set V = {i ∈ Nc | ¢i ≥ 0} and sort all
remaining supporters i ∈ Nc \ V by non-increasing budget (i.e., voters with less debt are sorted to
the top). For each k = 0, 1, . . . , |Nc \ V | consider the set Vk containing voters in V and the first k
voters in Nc \ V . That means V0 = V and for k = 1, 2, 3, . . . the set Vk will additionally contain
the k voters in Nc \ V with the fewest debt. For each of these Vk compute

tkc :=

0, if
∑
i∈Vk

¢i ≥ 1
1−

∑
i∈Vk

¢i

|Vk| , else.

The function compute buying time then outputs the lowest tkc and the corresponding set of
voters Vk, breaking ties by smaller k. We now consider the running time of this algorithm. Setting
up the sets V and sorting Nc \ V can be done in O(n log(n)). This gets dominated by the running
time of the loop over all k ≤ |Nc \V |. This loop has length at most n and for each k the calculation
of tkc is possible in O(n). Thus compute buying time runs in time O(n2). We have therefore
proven the following result.

Proposition 15. Given an approval profile A, a candidate c ∈ C(A) and the credit balance of all
voters (¢i)i∈N , compute buying time outputs tc and Vc in timeO(n2), where tc is the minimal
additional time until a subset of voters Vc ⊆ Nc have a joint budget of 1 credit.

With this, we can prove the following result concerning the running time of dynamic Phragmén.

Proposition 16. Given an approval profile A and a sequence of implemented candidates X , Algo-
rithm 3 computes a ranking of all not-yet-implemented candidates in time O(m2n2).

Proof. Termination of the algorithm is straightforward. Regarding running time we begin with the
loops starting in Lines 7 and 8 of Algorithm 3. Both loops have length at mostm. By Proposition 15
we know that computing the buying time in Line 9 can be done in O(n2). This (in conjunction with
the loop in Line 8) dominates the running time of choosing a candidate with minimum tc (Line 10)
and the loop in Line 11. Further, also the running time of the subroutine compute debts of
O(mn2) is dominated by this. Thus, the overall running time is in O(m2n2).

Myopic Phragmén also uses the debts from compute debts, but in a greedy way. Here, we
first iterate over all candidates that are to be ranked and for each c ∈ C(A)\X do the following. We
append c to the sequence X , obtaining the sequence Xc, and then compute the debts for all voters
according to Xc. We then rank those candidates highest for which the maximal voter debt is lowest.



This, in a way, checks which candidate is most suited to be implemented next. Formally, for each
c ∈ C(A)\X we first sort the debts (dci )i ∈ N of all voters according toXc non-increasingly. Then
we rank the candidates c ∈ C(A) \ X by comparing the sorted vectors (dci )i∈N lexicographically,
ranking lexicographically smaller candidates (i.e., candidates that induce a lower maximum debt)
higher.

Algorithm 5: Myopic Phragmén
Input : approval profile A, sequence of implemented candidates X
Output: ranking r ∈ L(C(A) \X)

1 C := C(A) \X // unranked candidates

2 N := N(A) // voters

3 forall c ∈ C do
4 Xc := X.append(c) // append c to X

5 (dci )i∈N := compute debts(A,Xc) // compute debts w.r.t. Xc

6 (d̂ci )i∈N := sorted↘ (dci )i∈N // sort debts non-increasingly

7 r := (c ∈ C | sorted↗ lexicographically by (d̂ci )i∈N ) // rank candidates w.r.t.
max. incurred debt

8 return r

Proposition 17. Given an approval profileA and a sequence of implemented candidatesX , myopic
Phragmén outputs a ranking of all not-yet-implemented candidates c ∈ C(A)\X in timeO(m2n2).

Proof. Termination of the algorithm is straightforward. Regarding running time we start with the
loop in Line 3 of Algorithm 5 which has length at most m. Line 4 takes constant time and Line
5 can be performed in O(mn2) operations, as shown in Proposition 14. Sorting the debts w.r.t.
Xc (Line 6) needs additional n log(n) operations, which is dominated by the computation of the
debts. Lastly, ranking all candidates lexicographically w.r.t. (dci )i∈N can be done in O(nm log(m))
operations. This is however dominated by the loop starting in Line 3. Thus the overall running time
is in O(m2n2).

We note that the (asymptotic) running time for computing myopic Phragmén can be improved
based on the following observation. For two distinct candidates c, c′ ∈ C(A), the sequences of
candidates Xc and Xc′ only differ in the last entry. This is because c and c′ both get appended to the
same sequence X . When computing the debts w.r.t. Xc in Line 5 of Algorithm 5, the computation
of the debts for all candidates in X ⊆ Xc is the same, independent of the choice of candidate c.
Thus, it is possible to compute the debts for all voters according to X first, before entering the loop
in Line 3, by calling compute debts(A,X) once, and reuse these debts for each candidate c ∈ C
in the loop. To compute the debts w.r.t. Xc in Line 5, only one more iteration of the calculations of
compute debts is needed (i.e., Lines 5 to 15 in Algorithm 4). This is possible in time O(n2),
bringing the overall running time of myopic Phragmén down into O(mn2).



B Additional Details on Section 4
Here we study notions of monotonicity in the context of dynamic ranking rules more in-depth.

B.1 Both Phragmén variants fail monotonicity
We first consider myopic Phragmén. Recall the adapted example from the proof of Proposition 3 for
myopic seqPAV.

2× {a}, 15× {a, b}, j + 6× {b}, 10× {c},
10× {d}, j + 6× {a, c, d}, j + 16× {e}.

We will now argue that myopic Phragmén also fails to satisfy (h, α)-monotonicity on this example
for all j ∈ N. This rule computes for each candidate c ∈ C \X the debt of voters that is induced by
buying the candidates in X of the current iteration (in the order of implementation) and afterwards
buying candidate c. All candidates then get ranked by comparing the so computed debts of the voters
lexicographically. In the first iteration X = () holds and thus myopic Phragmén is equivalent to AV.
The ensuing ranking is r1 = (a, b, c, d, e), independent of j. Now assume that the DM implements
candidate x1 = b. In the second iteration thus each supporter of b has a debt of 1

21+j , since there are
21 + j voters who approve b and they all share the price of 1 credit for buying b into the ranking.
Note that in this example it is always favorable to balance the debt induced by a candidate equally
among its supporters (this might not be the case if a candidate that is only supported by very few
voters got implemented before). Thus for every candidate c ∈ C \ X we can compute the debt
each of its supporters would have if c would be bought next by s(2)c = 1

|Nc| (1 +
∑
i∈Nc

di), where
di is voter i’s debt induced by X . Myopic Phragmén now ranks the candidates in non-increasing
order of s(2)c since this is the relevant part in comparing the debts of all voters by their maximum
as described in the definition of myopic Phragmén. We can compute s(2)a = 36+j

(23+j)(21+j) and

s
(2)
c = s

(2)
d = s

(2)
e = 1

16+j . To prove that for all j ∈ N myopic Phragmén fails to satisfy group
implementation monotonicity in this example we have to validate that s2a > s2e holds independent
of j, which can be done by basic calculus.

We can show the claim regarding dynamic Phragmén in a similar manner. For that we use the
example as presented in the proof of Proposition 3. Here the computation gets far more technical
as the debts that get compared during the ranking process of the candidates change in each step of
the ranking and not just once per iteration as was the case for the myopic variant of the rule. Nev-
ertheless, we obtain a system of inequalities that ensures that the candidates get ranked by dynamic
Phragmén in a similar way as by dynamic sequential PAV (and thus dynamic Phragmén also violates
the monotonicity axiom). We can then again check that these inequalities hold for all j.

B.2 Weaker Version of Monotonicity
Here we want to consider a weaker form of (h, α)-monotinicity. Recall that in Section 4 the group
we considered for checking monotonicity did not approve of the implemented candidate but that
there was always a (sizable) part of the electorate that approved of the implemented candidate and at
least one of the candidates that the group we considered approved of. We will now show that we can
not recover (h, α)-monotonicity if we only consider election where there is no voter that approves
of the implemented candidate and any of the candidates the group we consider approves of for the
dynamic rules. On the other hand the myopic counterparts satisfy this weaker version of the axiom.
Formally we define weak (h, α)-monotonicity as follows.

Definition 18. For h ≥ 1 and α ∈ (0, 1], a dynamic ranking rule satisfies weak (h, α)-monotonicity
if, for all profiles and all groups of voters V ⊆ N of size |V | ≥ α · |N |, the following holds. For



every iteration t where there is no c ∈
⋃
k∈V Ak with {c, xt} ⊆ Ai for some i ∈ N we have

avgV (rt+1
≤h ) ≥ avgV (rt≤h).

We will now show that both dynamic rules fail to satisfy even this weaker axiom but then argue
that the myopic rules satisfy it.

Dynamic sequential PAV. For dynamic seqPAV consider the following profile of 177 voters and
5 candidates.

4× {a}, 27× {a, b}, 27× {b}, 30× {c},
9× {c, d}, 9× {d}, 36× {a, d}, 35× {e}.

The rule outputs the ranking r1 = (a, b, c, e, d) in the first iteration. If we now assume that the
DM implements candidate x1 = b again then dynamic sequential PAV outputs r2 = (d, a, e, c).
Now consider the group of voters V that consists of the 39 supporters of c (i.e., the 30 voters that
approve only of c and the 9 voters that approve of c and d). For h = 3 we have avgV (r1≤h) = 1

but avgV (r2≤h) = 9
39 which is a violation of the above axiom. We can see that this again holds for

larger h by introducing clones of candidate e and its 35 supporters.
Similar to what we did in the proof of Proposition 3 we can increase the relative size of V

without changing the rankings dynamic seqPAV outputs. For that consider the following adapted
profile, where j = 2 · y for some y ∈ N.

4× {a}, (2x+ 27)× {a, b}, 27× {b}, 30× {c},

(x+ 9)× {c, d}, 9× {d}, 36× {a, d},
(x

2
+ 35

)
× {e}.

For j → ∞ we see that |V ||N | →
2
7 . Combining this with the cloning of candidate e and its x

2 + 35

supporters we obtain an example where weak (h, α)-monotonicity is violated for every h ≥ 3 by a
group of size nearly 2

4+h .

Dynamic Phragmén. We use a similar example as above where we only add an additional clone
of candidate e and its 35 supporters.

4× {a}, 27× {a, b}, 27× {b}, 30× {c},
9× {c, d}, 9× {d}, 36× {a, d},

35× {e1}, 35× {e2}.

In the first iteration dynamic Phragmén outputs the ranking r1 = (a, c, b, e1, e2, d). If we again as-
sume that the DM implements candidate x1 = b then it outputs r2 = (d, e1, e2, c, a). We again con-
sider the group of voters V that consists of the 39 supporters of c. For h = 3 we have avgV (r1≤h) = 1

but avgV (r2≤h) = 9
39 which is a violation of the above axiom. This again holds for larger h via an

introduction of clones of candidate e1 and its 35 supporters. To increase the relative size of the voter
group V consider the following adaption of the instance for an even natural number j = 2 · y with
y ∈ N.

4× {a}, (2x+ 27)× {a, b}, 27× {b}, 30× {c},
(x+ 9)× {c, d}, 9× {d}, 36× {a, d},(x
2

+ 35
)
× {e1},

(x
2

+ 35
)
× {e2}.



By checking the inequalities arising from this example in the same manner as described earlier for
the stronger axiom we can verify that this example works out for all j →∞. Again combining this
with the idea of cloning candidate e1 and its x

2 + 35 supporters we obtain an example where weak
(h, α)-monotonicity is violated by dynamic Phragmén for every h ≥ 3 by a group of size nearly
2

5+h .

Myopic Rules. Note that the two myopic rules satisfy weak monotonicity. To see this, consider a
group of voters V and any candidate c that a voter in V approves. If c is not supported by any voter
(not necessarily in V ) that also supports the candidate that gets implemented next then the voting
power or the debt (depending on the rule we are interested in) of c’s supporters does not change from
this iteration to the next. Since the voting power (or debt) of the supporters of other candidates can
only decrease (or increase, respectively), c’s position in the ranking can not drop when going from
one iteration to the next.

C Additional Details on Section 5.1
We first introduce the proportionality degree as defined by Skowron (2018).

Definition 19. Let a depth restriction h ≤ |C| and a profile A be given and let g : N × N → R.
We say set of voters V ⊆ N is `-large w.r.t. h if |V | ≥ ` · nh . A dynamic ranking rule R satisfies
h-proportionality degree of g if for all `-large sets of voters V and all iterations t ∈ N the ranking
rt+1 = R(A,Xt) satisfies

λt(V ) ≥ g(`, h)⇒ avgV (r≤h) ≥ g(`, h).

Let Gh be the set of all such h-proportionality degrees of R then we say R satisfies proportionality
degree of

dR(`) := min
h

sup
g∈Gh

g(`, h).

This means that the proportionality degree ofR is the best guarantee on the above objective that
holds for all depth restrictions h ≤ |C|.

Note that as was the case with the κ functions used for group representation that did not only
depend on α and λ, but also on the set V and on the sequence X of previously implemented candi-
dates, we will simplify notation for the proportionality degree in a similar manner. While κ-group
representation as defined in the main text describes how far down a ranking a group of voters V has
to go to be guaranteed a certain happiness, the proportionality degree lower bounds the happiness of
V given a certain depth restriction (or more precisely the ensuing `-value of the voter group).

C.1 Proportionality of Rankings for Dynamic Phragmén
In this section we will prove bounds on the two measures of proportionality for dynamic Phragmén.
We start with the proportionality degree. As before, let di be the debt agent i starts with in dynamic
Phragmén and let davg = 1

|V |
∑
i∈V di be the average starting debt of agents in V .

Theorem 20. Given integer h, dynamic Phragmén satisfies proportionality degree of

d(`) ≥ `− 1

2
− m

2
− s · |V |

4
,

where m = |
⋃
i∈V Ai ∩X| and s =

∑
i∈V (di − davg)2.



If X = () then m = s = 0 and we have the proportionality degree that was also proved in
(Skowron, 2018) for the non-dynamic setting. We prove the results by a similar potential function
approach as provided for the respective non-dynamic result given by Skowron (2018) while taking
into account the added complexity of the dynamic setting.

Proof. Let the depth restriction h ∈ N and an iteration t ∈ N be given. We set g(`, h) = `−1
2 −

m
2 −

s·|V |
4 . To make the prove more consistent with (Skowron, 2018), assume w.l.o.g. that a candidate

costs n instead of 1 credit. Towards a contradiction we assume that there is a set of candidates rt≤h
that is ranked in the first h positions of the ranking put out by dynamic Phragmén at iteration t and
a group of voters V such that λt ≥ g(`, h) but avgV (rt≤h) < g(`, h). We will now investigate the
ranking process of dynamic Phragmén more closely. In order to do that we imagine the process of
buying candidates and waiting for credits for the voters as a time-dependent process. (Note that this
process reflects the ranking of rt for a fixed iteration t ∈ N, we denote the time elapsing during this
process by θ.) For each point in time θ > 0 of the ranking process at iteration t we define pi(θ) to
be the amount of credits voter i ∈ V possesses at that moment and pavg(θ) = 1

|V |
∑
i∈V pi(θ). With

that we can define the potential function

φ(θ) =
∑
i∈V

(pi(θ)− pavg(θ))2.

In contrast to the proof given by Skowron (2018), the voters in our setting might start with negative
money, that is the debt assigned to them by the dynamic Phragmén rule because of implemented
candidates in X . This means that at time θ = 0 we might have pi(θ) < 0 for some voters and thus
the potential function at time θ = 0 is not 0 but might be some positive real number s̄ = φ(0) =∑
i∈V (pi(0)− pavg(0))2 = n2 · s. (Here, s̄ corresponds to s =

∑
i∈V (di − davg)2 scaled according

to the new costs of n credits per candidate.)
The proof now proceeds as the proof by Skowron (2018) for Theorem 2. After h time units in

the ranking process at most h ·n credits can be amassed by all voters and the procedure can not stop
before that point in time. Until then, the voters in V have at most |V | · h credits. Now fix a point in
time θ at which a candidate supported by some voters in V is bought and a voter j ∈ V that pays
for this candidate. That means that the average pavg(θ) decreases by pj(θ)

|V | . The calculation of ∆φ

can be done in the same way as in (Skowron, 2018), as it does not depend on the starting value of φ.
That gives us for a point in time θ in which a candidate is bought the following.

∆φ =
∑

i∈V,j 6=i

(
pi(θ)−

(
pavg(θ)

pj(θ)

|V |

))2

+

(
0−

(
pavg(θ)

pj(θ)

|V |

))2

−
∑
i∈V

(pi(θ)− pavg(θ))2

=
∑
i∈V

(
pi(θ)−

(
pavg −

pj(θ)

|V |

))2

+

(
pavg −

pj(θ)

|V |

)2

−
(
pj(θ)−

(
pavg −

pj(θ)

|V |

))2

−
∑
i∈V

(pi(θ)− pavg(θ))2

=
∑
i∈V

pj(θ)

|V |

(
2 · pi(θ)− 2 · pavg(θ) +

pj(θ)

|V |

)2

− pj(θ)2 + 2 · pj(θ) ·
(
pavg(θ)− pj(θ)

|V |

)
,



where in the last step we used the binomial formulas. By definition we have∑
i∈V

(2 · pi(θ)− 2 · pavg(θ)) = 0

which lets us conclude

∆φ =
pj(θ)

2

|V |
+ pj(θ) ·

(
2 · pavg(θ)− pj(θ)

|V |
− pj(θ)

)
= pj(θ) ·

(
2 · pavg(θ)− pj(θ)(|V |+ 1)

|V |

)
.

Accordingly with Skowron (2018), we can observe that at each time θ we have pavg(θ) ≤ n
|V | ≤

h
` . This is because otherwise voters in V would have more than n units of credits left and would
have been able to buy a candidate they approve of at an earlier time of the ranking process. Using
that fact and setting yθ,j = pj(θ)− 2|V |

|V |+1 ·
h
` we obtain

∆φ ≤ pj(θ) ·
(

2h

`
− yθ,j(|V |+ 1)

|V |
− 2h

`

)
= −y2θ,j

|V |+ 1

|V |
− 2yθ,j

h

`

≤ −2yθ,j
h

`
.

Following Skowron (2018) again, if xθ,j > 0, then φ decreases by at least 2|yθ,j | · h` and if yθ,j ≤ 0,
then φ increases by at most 2|yθ,j | · h` . Since the potential value is always non-negative and starts at
s, the net-change

∑
∆φ has to be greater or equal to −s̄, i.e.,

−s̄ ≤
∑

∆φ ≤
∑

(θ,j)∈R×V :j pays at time θ

−2yθ,j ·
h

`
.

Let

z := |{(θ, j) ∈ N× V : j pays at time θ}|

≤
∑
i∈V
|r≤h ∩Ai|

be the number of single payments the voters in V issued during the whole procedure (which is less
than or equal to the total satisfaction of the group V ). Rearranging the terms of the bound on s̄ above
and plugging in the definitions of yθ,j and z yields

s̄

2
· `
h
≥
∑
(θ,j)

pj(θ)−
2|V |
|V |+ 1

· h
`

=
∑
(θ,j)

pj(θ)− z ·
2|V |
|V |+ 1

· h
`
,

where
∑

(θ,j) pj(θ) is the total amount of credits voters in V spend for candidates they approved.
Our goal now is to lower bound z and with that to lower bound the average satisfaction of voters in
V .



For this, first note that we know that
∑

(θ,j) pj(θ) ≥ |V | · (h+ |X|)− n−
∑
i∈V di. Plugging

this in the above equation and rearranging terms we obtain

z ≥ |V |+ 1

2|V |
· `
h
·

(
|V |(h+ |X|)− n− s̄ · `

2h
−
∑
i∈V

di

)

≥ 1

2
· `
h
·

(
|V |(h+ |X|)− n− s̄ · `

2h
−
∑
i∈V

di

)

≥ 1

2

(
|V |(`− 1) +

|V | · |X| · `
h

− s̄ · `2

2h2
− `

h
·
∑
i∈V

di

)
,

where in the last step we used the fact that n · `h ≤ |V |. We can now use this to get the desired lower
bound on the average satisfaction of the voter group V .

1

|V |
∑
i∈V
|r≤h ∩Ai| ≥

1

|V |
· y

≥ `− 1

2
+
|X| · `

2h
− 1

2n
·
∑
i∈V

di −
s̄ · `

4n · h

≥ `− 1

2
− m

2
− s̄ · |V |

4n2

=
`− 1

2
− m

2
− s · |V |

4
,

where we again used n · `h ≤ |V | and the fact that m = |
⋃
i∈V Ai ∩ X| ≥

1
n

∑
i∈V di. This

contradicts our assumption that avgV (rt≤h) < g(`, h) and concludes the proof.

This result is independent of the iteration t which makes it rather strong. On the other hand the
definition of proportionality degree (and thus this result) rely on a fixed h to determine `-large groups
of voters. But it is possible to translate the proportionality degree defined by Skowron (2018) into κ-
group representation as defined by Skowron et al. (2017). Skowron (2018) mentions this connection
but to the best of our knowledge this is the first explicit translation from one of the proportionality
measures to the other.

Lemma 21. Let R be a (dynamic) ranking rule which satisfies proportionality degree of dR(`) for
all ` ∈ Q. ThenR satisfies κ-group representation for

κ(α, λ) =

⌈
d−1R (λ)

α

⌉
.

Note that normally the proportionality degree is defined for ` ∈ N. For technical reasons we
need the function to hold for all rational ` which is however covered by our proof of Theorem 20.

Proof. Given a group of voters V with proportion α = |V |
|N | and adapted cohesiveness λt =

|
⋂
i∈V Ai \X|. Let h =

⌈
1/α · d−1R (λt)

⌉
then by construction V is d−1R (λt)-large w.r.t. h since

|V | = α · |N | =
|N | · d−1R (λt)

(1/α) · d−1R (λt)
≥ |N |

h
· d−1R (λt).

Thus we can apply the proportionality degree with ` = d−1R (λt) and obtain an average satisfaction
for V of

avgV (r≤h) ≥ dR(d−1R (λt)) = λt.

ThusR satisfies κ-group representation for κ(α, λt) = h =
⌈
1/α · d−1R (λt)

⌉
.



Plugging the proportionality degree from Theorem 20 into this lemma we obtain the desired
bound on the group representation as mentioned in Theorem 5.

C.2 Proportionality of Rankings for Dynamic seqPAV
We now consider dynamic seqPAV. We first prove the before mentioned bound on the group repre-
sentation and afterwards consider the proportionality degree. The proof of Theorem 6 follows the
proof presented by Skowron et al. (2017) for the according result in the non-dynamic setting.

Proof of Theorem 6. Fix some α ∈ (0, 1], λ ∈ N and profile such that in some iteration t ∈ N
there exists a group of voters V ⊆ N with |V | ≥ α · n and λt(V ) ≥ λ. Let r be the ranking
dynamic seqPAV outputs in iteration t given the already implemented candidates X . Set h :=⌈
2(λ+avgV (X)+1)2

α2

⌉
. Towards a contradiction assume that avgV (r≤h) < λ. Now set

z := |V | · (avgV (r≤h) + avgV (X))

< |V | · (λ+ avgV (X)).

In every step k ∈ [h] of the ranking procedure of dynamic seqPAV (in iteration t) there exists at least
one candidate c ∈

⋂
i∈V Ai \ (X ∪ r≤h), i.e., a candidate that is neither ranked nor implemented

but approved by all voters in V . We now consider a step k ∈ [h] of the ranking process of dynamic
seqPAV. Let

ai(k) := |Ai ∩ r≤h|+ |Ai ∩X| and T (k) :=
∑
i∈N

1

ai(k) + 1
.

Then ai(k) ≤ ai(k + 1) and T (k) ≥ T (k + 1) for all k ∈ [h] with n ≥ T (1) ≥ T (2) ≥ ... ≥
T (h+ 1) ≥ 0. Further, for each k ∈ [h] it holds∑

i∈V
ai(k) =

∑
i∈V
|Ai ∩ r≤k|+ |Ai ∩X|

≤
∑
i∈V
|Ai ∩ r≤h|+ |Ai ∩X| = z

and thus it holds that

z + |V |
|V |

≥
∑
i∈V ai(k) + |V |

|V |

=

∑
i∈V (ai(k) + 1)

|V |

≥ |V |∑
i∈V

1
ai(k)+1

,

where in the last step we used the arithmetic mean-harmonic mean inequality. Taking the inverse of
this yields ∑

i∈V

1

ai(k) + 1
≥ |V |2

|V |+ z

>
|V |2

|V |+ |V | · (λ+ avgV (X)

=
|V |

λ+ avgV (X) + 1
.



Now let V ′ be the group of voters supporting candidate c′ that got ranked in round k instead of c.
Since dynamic seqPAV favored c′ over c we know that∑

i∈V ′

1

ai(k) + 1
≥
∑
i∈V

1

ai(k) + 1
>

|V |
λ+ avgV (X) + 1

. (1)

We can now obtain

T (k)− T (k + 1) =
∑
i∈V ′

(
1

ai(k) + 1
− 1

ai(k) + 2

)
=
∑
i∈V ′

(
1

(ai(k) + 1)(ai(k) + 2)

)
≥
∑
i∈V ′

(
1

2(ai(k) + 1)2

)
.

Using the Cauchy-Schwarz inequality here we can bound this in the following way.

∑
i∈V ′

(
1

2(ai(k) + 1)2

)
≥ 1

2|V ′|

(∑
i∈V ′

1

ai(k) + 1

)2

>
1

2n

(
|V |

λ+ avgV (X) + 1

)2

≥ α2 · n
2(λ+ avgV (X) + 1)2

,

where in the second step we used Equation (1). This holds for each k ∈ [h+ 1] and thus we have

T (1)− T (h+ 1) =
∑
k∈[h]

T (k)− T (k + 1)

> h · α2 · n
2(λ+ avgV (X) + 1)2

≥ n.

This yields T (k + 1) < T (1)− n ≤ 0 which is a contradiction.

Note that it is not immediately clear how to convert a bound on the group representation into
a result on the proportionality degree (i.e. whether the inverse version of Lemma 21 is possible).
Still, using the same approach as in the proof above we are able to also prove a bound on the
proportionality degree of dynamic seqPAV.

Theorem 22. Dynamic seqPAV satisfies an h-proportionality degree of

g(`, h) = ` ·
√

1

2h
− avgV (X)− 1.

Proof. Fix some h ≤ |C| and let r be the ranking dynamic seqPAV outputs for a given profile and

set of already implemented candidates X . Further let V be a group of voters and z := ` ·
√

1
2h −

avgV (X) − 1. Towards a contradiction assume that V is `-large w.r.t. h and has cohesiveness
|
⋂
i∈V Ai \X| ≥ z but the average satisfaction of voters in V is only avgV (r≤h) < z. Thus there

exists at least one candidate c ∈
⋂
i∈V Ai \ (X ∪ r≤h), i.e., a candidate that is neither ranked nor



implemented but approved by all voters in V . We now consider the steps k ∈ [h] of the ranking
process of dynamic seqPAV. We again use

ai(k) := |Ai ∩ r≤h|+ |Ai ∩X| and T (k) :=
∑
i∈N

1

ai(k) + 1
.

Then ai(k) ≤ ai(k + 1) and T (k) ≥ T (k + 1) for all k ∈ [h] with n ≥ T (1) ≥ T (2) ≥ ... ≥
T (h + 1) ≥ 0. Further, for each k ∈ [h + 1] it holds using the arithmetic mean-harmonic mean
inequality ∑

i∈V

1

ai(k) + 1
≥ |V |2 1∑

i∈V (ai(k) + 1)

and
1

|V |2
∑
i∈V

ai(k) + 1

=
1

|V |2
∑
i∈V

(|Ai ∩ r≤h|+ |Ai ∩X|+ 1)

=
1

|V |2
∑
i∈V

(|Ai ∩X|+ 1) +
1

|V |
avgV (r≤h)

<
1

|V |2
∑
i∈V

(|Ai ∩X|+ 1)

+
1

|V |

(
` ·
√

1

2h
− 1

|V |
·
∑
i∈V

(|Ai ∩X|+ 1)

)

=
1

|V |
· `
h
·
√
h

2
=

1

n
·
√
h

2
.

Plugging the second inequality into the first we obtain∑
i∈V

1

ai(k) + 1
> n ·

√
2

h
.

Again, let V ′ be the group of voters supporting candidate c′ that got ranked in round k instead of c.
Since dynamic seqPAV favored c′ over c we know that∑

i∈V ′

1

ai(k) + 1
≥
∑
i∈V

1

ai(k) + 1
> n ·

√
2

h
. (2)

As in the previous proof we obtain using the Cauchy-Schwarz inequality

T (k)− T (k + 1) ≥ 1

2|V ′|

(∑
i∈V ′

1

ai(k) + 1

)2

>
1

2n
· n ·

√
2

h
=
n

h
,

where in the second step we used Equation (2). This holds for each k ∈ [h+ 1] and thus we have

T (1)− T (h+ 1) =
∑
k∈[h]

T (k)− T (k + 1) > h · n
h

= n.

This yields T (k + 1) < T (1)− n ≤ 0 which is a contradiction.



Note that this is the first known such bound in closed form for a seqPAV-variant. There are
explicit bounds for small h for the non-dynamic version provided by Skowron (2018). The added
generality of our closed form comes at the price of less accuracy when compared to those bounds.
While Skowron (2018) shows that for h = 20 the proportionality degree of (non-dynamic) seqPAV is
greater or equal to 0.7503 ·` our bound only gives 0.1581 ·`−1 (when considering the non-dynamic
case where X = ()).

C.3 Proportionality of Rankings for Myopic Rules
We first provide a proof of Proposition 7 which uses the same counterexample as is provided by
Skowron et al. (2017) for their Theorem 2.

Proof of Proposition 7. The first negative result follows simply by noting that both myopic rules are
equal to AV if X = () and referring to the negative result for AV provided by Skowron et al. (2017).
We prove the second negative result by means of a counterexample which is again an adapted version
of the one given by Skowron et al. (2017) for AV. Assume λt,m and a function κ(α, λ) are given,
set α ≤ m+1

m+2 and h = κ(α, λt). Let A = AX ∪̇ AV ∪̇ AG with |AX | = m and |AV | = |AG| = h

be a set of candidates and N = V ∪̇G an electorate composed of the disjoint union of voter groups
V and G with |V | < α|N |. Let the profile be such that all voters in V approve of all candidates in
AX and AV and all voters in G approve of all AG and set X = AX . Then both myopic rules rank
all a ∈ AG higher than each candidate in AV and thus avgV (r≤h) = 0.

Since AV and both myopic rules do not allow for any bound on κ-group representation for groups
of voters that are not already a majority of the electorate it follows directly from Lemma 21 that they
do not allow any bound on the proportionality degree for those groups either.

Corollary 23. AV does not satisfy any bound on the proportionality degree for groups of size α ≤ 1
2 .

Myopic seqPAV and myopic Phragmén do not satisfy any bound on the proportionality degree for
groups of size α ≤ m+1

m+2 , where m := |
⋃
i∈V Ai ∩X|.

D Additional Details on Section 6
We describe the models and experiments introduced in Section 6 in more detail here. We start with
the two models used to generate the approval profiles and then describe the selection procedure of
the DM. Throughout our experiments we always used instances with 60 voters and 20 candidates.

D.1 Generating Approval Profiles
We first describe how we generate the approval profiles randomly. Since we want to study satisfac-
tion of groups of voters with roughly similar approval preferences we somehow want to generate
profiles with such voter groups. We used two different approaches.

Blurred Parties. Here we assign each of the 60 voters to one of two parties. The size of the
parties will vary over the experiments and we will concentrate on the satisfaction of one of the
parties. Additionally, we will also associate half of the candidates to one of the parties and the other
half to the other, such that each party has 10 candidates associated with them. Here, a party is a
group of voters that have the same probability of approving a candidate. Now, for a voter we go over
all candidates and say that the voter approves that candidate with probability 0.95, if it is a candidate
of the voters party, and with probability 0.05, otherwise. This process is done independently for each
voter and for each candidate. Thus, each voter in expectation approves of 95% of the candidates in
their party.



Spatial. This is an adaption of the 4-Gaussian model that was described by Elkind et al. (2017) for
the setting of linear preferences. We again group voters and candidates into parties, using 3 parties
this time. Thus two parties get associated 7 candidates and one party gets associated 6 candidates.
The number of voters in the parties again varies but we are always concerned with the satisfaction
of the first party, V ⊆ N , of size |V | and set the sizes of the other two parties to

⌈
60− |V |2

⌉
and⌊

60− |V |2
⌋

, respectively. In this model we now take a spatial approach using the Euclidean plane.
Each of the three parties gets assigned a point—their center—that lies on the unit circle. To make
the three points equidistant from each other we place them at 0, 120 and 240 degrees. Now the
voters and candidates from each party get sampled as points on the Euclidean plane according to
a 2-dimensional Gaussian (i.e., normal distribution) with standard deviation 0.4 around their party-
center. We say a voter approves of a candidate if that candidate is at Euclidean distance at most 0.8.
Note that if we assume that a voter gets assigned their party’s center as point in the Euclidean plane,
then by construction of the Gaussian distribution with standard distribution 0.4, this voter approves
of roughly 95% of the voters of their party in expectation.

D.2 Selecting Candidates
To decide which candidates the DM selects for implementation we also use a probabilistic approach.
Since the ranking that is provided to the DM should somehow factor into the decision which candi-
date to select we try to mimic a realistic behavior. To this end we use an approximation of Google’s
so called click-through rates (CTRs). These rates describe how likely it is for a user to click on the
first, second, and so on entry in a Google search. These rates get approximated experimentally by
various companies. The specific values for the first 15 positions we use for our experiments are as
follows.7

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CTR 32.5 17.6 11.4 8.1 6.1 4.4 3.5 3.1 2.6 2.4 1.0 0.8 0.7 0.6 0.4

7These values are taken from www.wikiweb.com/google-ctr/, accessed January 20th, 2021.

www.wikiweb.com/google-ctr/
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