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Abstract

In two-sided markets, Myerson and Satterthwaite’s impossibility theorem states that one can
not maximize the gain-from-trade while also satisfying truthfulness, individual-rationality
and no deficit. Attempts have been made to circumvent Myerson and Satterthwaite’s result
by attaining approximately-maximum gain-from-trade: the double-sided auctions of McAfee
(1992) is truthful and has no deficit, and the one by Segal-Halevi et al. (2016) additionally has
no surplus — it is strongly-budget-balanced. They consider two categories of agents — buyers
and sellers, where each trade set is composed of a single buyer and a single seller.
The practical complexity of applications such as supply chain require one to look beyond two-
sided markets. Common requirements are for: buyers trading with multiple sellers of different
or identical items, buyers trading with sellers through transporters and mediators, and sellers
trading with multiple buyers. We attempt to address these settings.
We generalize Segal-Halevi et al. (2016)’s strongly-budget-balanced double-sided auction set-
ting to a multilateral market where each trade set is composed of any number of agent cate-
gories. Our generalization refines the notion of competition in multi-sided auctions by intro-
ducing the concepts of external competition and trade reduction. We also show an obviously-
truthful implementation of our auction using multiple ascending prices.
Full version, including omitted proofs and simulation experiments, is available at https:
//arxiv.org/abs/1911.08094.

1 Introduction
Mechanism design for one-sided markets has been investigated for several decades in economics
and in computer science. It aims to find an efficient (high social welfare) allocation of a set of
items to a set of agents, while ensuring that truthfully reporting the input data is the best strategy
for the agents. The Vickrey-Clarke-Groves (VCG) auction Vickrey (1961); Clarke (1971); Groves
(1973) is a pillar of mechanism design. VCG auctions maximize the social welfare of the agents.
They are dominant-strategy truthful (DST) — each agent’s dominant strategy is to truthfully report
its preferences to the auction, regardless of what the other agents report. They can also be made
individually rational (IR) — no agent loses from participating in the auction.

More recently, there has been increased attention on auctions for two-sided markets, in which
the set of agents is partitioned into buyers and sellers. As opposed to the one-sided setting, where
the auctioneer initially holds the items, in the two-sided setting the items are initially held by the set
of sellers. The sellers express valuations for the items they hold, and are assumed to act rationally
and strategically. Thus, the auctioneer is tasked with deciding which buyers and sellers should trade
and with what prices.

The growing interest in two-sided markets can be attributed to various important applications.
Examples range from selling display-advertising on ad exchange platforms, the US FCC spectrum
license reallocation, and stock exchanges. However, little work has been done so far on the next
level of generalization, i.e., multi-sided markets.

In two-sided markets, a further important requirement is strong budget-balance (SBB), which
states that monetary transfers happen only among the agents in the market. This means that buyers
and sellers are allowed to trade without leaving the auctioneer any share of their gains and without
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the auctioneer adding money into the market. A weaker version of SBB, often considered in the
literature, is weak budget-balance (WBB). WBB only requires the auctioneer not to add money
to the market. The problem with weak budget-balance is that the surplus of the auctioneer might
consume most of the gain-from-trade, leaving little gain for the actual traders. This might drive
traders away from the market.2 Note that, in bilateral trade settings, VCG is usually not even WBB
except in special cases Guo et al. (2013).

For double-sided auctions, the impossibility theorem of Myerson and Satterthwaite (1983) states
that one can not maximize gain from trade (GFT, the difference between the total value of the sold
items for the buyers and the total value of these items for the sellers) while also satisfying IR, DST,
and no deficit.

The seminal double-auction mechanism of McAfee (1992) is DST, IR and WBB. It circumvents
Myerson and Satterthwaite’s result by compromising on GFT: it may remove up to one deal from the
optimal trade. In case a deal is removed, it is the one with the smallest GFT among the deals in the
optimal trade; hence it attains at least 1− 1/k of the optimal GFT, where k is the number of optimal
deals. Thus, it is asymptotically optimal — its GFT approaches the optimum when k →∞.

Recently, Segal-Halevi et al. (2016) presented a SBB variant of McAfee’s mechanism, with
similar GFT guarantees. Their mechanism may remove up to one buyer from the optimal trade,
and it is the buyer with the lowest value among the buyers in the optimal trade. In case a buyer is
removed, the remaining k − 1 buyers trade with k − 1 sellers selected at random from the k sellers
in the optimal trade.

The complexity of practical requirements in areas such as supply chain require one to look
beyond double-sided markets. As an example (Babaioff and Walsh, 2005), a market for lemonade
may contain two kinds of sellers (lemon pickers and sugar producers), two kinds of buyers (juice
drinkers and lemonade drinkers), and some intermediary agents (lemon squeezers, lemonade mixers,
etc.) Our goal is to address such settings while keeping the strong budget balance requirement.

1.1 Our Contribution
Our contribution is twofold: First we generalize Segal-Halevi et al. (2016)’s SBB double auction to
a multi-sided market where the trade set is composed of any number of agent types and any number
of copies of any agent’s type. Our generalization refines the notion of competition in multi-sided
auctions by introducing the concept of external competition — competition over who will act as a
given participant’s trade partner(s) (complementarity).

The expanded notion of competition allows us to provide a simple well-performing procedure
that generalizes McAfee (1992)’s trade reduction. The shift to thinking in terms of competition
allows us to broadly address situations common to multi-sided auctions. These settings include
trading entities that may be individuals or entire markets, transactions facilitated by zero or more
intermediaries, and goods that can be exchanged individually or in bundles.

These settings also encompass many common commercial mechanisms including supply chains,
distributed markets, security exchanges, and business to consumer auctions. Historically each of
these settings has been considered unique and each presented the complex research problem of
finding a suitable mechanism (see section 5 for details).

Second, in addition to the direct-revelation multi-sided auction, our result presents a multi-sided
ascending-prices auction that implements the same outcome. In the theory of one-sided auctions,
it is well-known that a second-price direct-revelation auction and an ascending-prices auction are
strategically equivalent. In both auctions, the agent with the highest value wins and pays the second-

2The following “trick” can be used to convert any WBB auction to an SBB auction: before the auction starts, remove a
random trader from the market; after the auction ends, give that trader all the surplus (if any). We do not support this trick
since it might induce agents who have nothing to do with the auction (e.g. “sellers” with nothing to sell or “buyers” with
no money) to come to the market, only because of the chance to win all the surplus. Like Colini-Baldeschi et al. (2017), we
focus on direct-trade auctions — auctions that give/take money only to/from agents who actually participate in the trade.



highest value. However, an ascending-prices auction has the advantage that it is obviously truthful
(see Li (2017) for formal definitions and proofs). The practical advantage of an obviously-truthful
auction is that it is easier for people to understand that playing truthfully is best for them, even if
they are not experts in game theory. This is particularly important when one deals with complex
multi-sided markets with many entities.

1.2 Paper layout
Section 2 presents the formal definitions. Section 3 presents a special case of our extended multi-
lateral auctions in which each trade requires exactly one agent of each category. Section 4 presents
a more general case of our extended multilateral auctions in which each trade requires a fixed num-
ber of agents of each category, but this fixed number may be larger than 1. Section 5 compares
our work to related work. The full version presents some simulation experiments evaluating the
performance of our auctions. Section 6 concludes with some future work directions. An open-
source implementation of our auctions, including example runs and experiments, is available at
https://github.com/erelsgl/auctions.

2 Preliminaries

2.1 Agents and categories
A market is defined by a set of agents grouped into different categories. N is the set of agents, G
is the set of agent categories, and Ng is the set of agents in category g ∈ G. The categories are
pairwise-disjoint, so N = tg∈GNg .

Each deal in the market requires a certain combination of agents. We call a subset of agents that
can accomplish a single deal a procurement-set (PS). The PS recipe of the market is a vector of size
|G|, denoted by r := (rg)g∈G, where rg ∈ Z+ for all g ∈ G. It describes the number of agents of
each category that should be in each PS: each PS should contain r1 agents of category 1, r2 agents
of category 2, and so on. As an example, the PS recipe of a standard two-sided market is (1, 1),
since there are two agent categories — buyers and sellers — and each PS should contain one buyer
and one seller.

As another example, consider a market with three categories of agents — buyers, sellers and
transporters, and PS recipe (1, 2, 2). In such a market, each deal requires a buyer, two sellers and
two transporters.

In general, one could think of markets with multiple PS recipes; however, in the present paper
we restrict our attention to markets with a single PS recipe, denoted by r.

Each agent i ∈ N has a value vi ∈ R, which represents the monetary gain of an agent from
participating in the trade. The value of an agent is the agent’s private information. It may be positive
or negative. For example, in a two-sided market, the value of a buyer is typically positive while the
value of a seller is typically negative. The agents are quasi-linear in money: the utility of agent i
participating in some PS and paying pi is ui := vi − pi.

2.2 Trades and Gains
The gain-from-trade of a procurement-set S, denoted GFT (S), is the sum of values of all agents in
S:

GFT(S) :=
∑
i∈S

vi.

In a standard two-sided market, the GFT of a PS with a buyer b and a seller s is vb − vs, since the
seller’s value is −vs.



Given a market (N,G, r), a trade is a collection of pairwise-disjoint procurement-sets. I.e, it is
a collection of agent subsets, S1, . . . , Sk ⊆ N , such that for each j ∈ [k], the composition of agents
in Sj corresponds to the recipe r. The total GFT is the sum of the GFT of all procurement-sets
participating in the trade:

GFT(S1, . . . , Sk) :=

k∑
j=1

GFT(Sj)

A trade is called optimal if its GFT is maximum over all possible trades.

2.3 Competition
Our direct-revelation auctions are based on the concept of competition between agents. Given a
trade (S1, . . . , Sk), let Nrm := N \ (S1 ∪ · · · ∪ Sk) be the subset of agents who do not participate
in the trade (the “remaining market”).

Consider a single PS Sj , and an agent i ∈ Sj who belongs to category g, i.e, i ∈ Ng . Then,
a subset of agents T ⊆ Nrm is called an external competition for i if adding i to T yields a PS
consistent with the recipe r, with a positive GFT:

GFT (T ∪ {i}) ≥ 0

In a simple two-sided market, the external competition of a trading buyer is a non-trading seller
whose value is sufficiently high such that, combining the trading buyer with the non-trading seller
yields a pair with a GFT above 0.

In a three-sided market with buyers, sellers and mediators, with r = (1, 1, 1), an external com-
petition of a trading buyer is a pair of a non-trading seller and a non-trading mediator, such that the
GFT of the buyer+seller+mediator is at least 0.

3 One Agent Per Category
This section presents our two auctions for a special case in which the single PS recipe in the market
is a vector of ones, so each PS must contain a single agent from each category.

Both auctions are parametrized by an ordering on the categories: each of the |G|! possible or-
derings yields a different auction. The ordering should be fixed in advance and not depend on the
agents’ values.

We present the auctions using a running example with three categories in the following order:
buyers, sellers and mediators. The recipe is (1, 1, 1). In each category there are five agents. The
agents’ values are:

• Buyers: 17, 14, 13, 9, 6.

• Sellers: -1, -4, -5, -8, -11.

• Mediators: -1, -3, -4, -7, -10.

3.1 External-competition auction
The auction requests the agents to report their values, and then proceeds as follows.



Step 1: Optimal trade calculation. Order the agents in each category by descending order of
their value. Combine the highest-value agents in each category to a PS. Combine the next-highest-
value agents in each category into a PS. Keep constructing PS as long as the GFT of the constructed
PS is positive. The resulting set of PS is the optimal trade. We denote by k the number of PS in the
optimal trade.

In the running example, k = 3 and the optimal trade contains the following PS: (17,−1,−1)
with GFT 15, (14,−4,−3) with GFT 7, and (13,−5,−4) with GFT 4. The remaining market,
denoted by Nrm, contains two buyers 9, 6, two sellers −8,−11 and two mediators −7,−10.

Step 2. Order the procurement-sets in the optimal trade by ascending GFT, such that, GFT(S1) ≤
· · · ≤ GFT(Sk). In the running example, S1 is the PS (13,−5,−4).

Step 3. Consider the agents in S1 in the pre-determined order of categories. Initialize i to the first
agent in S1 by this ordering. In the running example, it is the buyer 13.

Step 4. Look for an external competition to i with a largest GFT. There are two cases.

Case 4a. No external competition for i is found. Then, i is removed from the trade (and added to
Nrm), and we go back to step 4 with i being the next agent in S1.

In the running example, we consider first the buyer 13. The maximum GFT of a PS that contains
this buyer and agents from Nrm is −2, for the PS (13,−8,−7). This GFT is negative so it is not
considered an external competition. Hence, the buyer 13 is removed from trade.

Case 4b. An external competition for i is found; denote it by T1. From now on we call this agent
i the pivot agent and its category the pivot category. Denote the pivot category by go. For each
g 6= go, denote by vTg the value of the single agent in T1 ∩ Ng . Trade prices are calculated as
follows:

• The price pg for each agent in category g 6= go is set to the value vTg .

• The price po for each agent in category go is set to: po := −
∑

g 6=go
vTg .

In the running example, the next member of S1 (after the buyer 13 is removed) is the seller
−5. The maximum GFT of a PS that contains this seller and agents from Nrm is +1, for the PS
(13,−5,−7); note that the removed buyer 13 participates in this PS. This GFT is positive so it is an
external competition; the pivot category go is the sellers’ category.

The prices are set to 13 for the buyers (like the buyer in T1), −7 for the mediators (like the
mediator in T1), and −6 = −(13 − 7) for the sellers. The final price-vector is thus (13,−6,−7),
i.e., all buyers pay 13, all sellers receive 6 and all mediators receive 7.

Step 5. Once the prices are calculated, the final trade is determined as follows:

• For each category, count the number of members remaining in the trade.

• In each category with the smallest count, all agents participate in the trade.

• In each category with a larger count, there is a lottery determining who will participate in the
trade.

In the running example, there are two remaining buyers (17, 14) all of whom trade at price 13;
there are three remaining sellers (−1,−4,−5) two of whom (selected at random) trade at price −6;
similarly, there are three remaining mediators (−1,−3,−4) two of whom trade at price −7.



Note that selecting a different one of the 6 category-orders leads to a different outcome. A-
priori, there is no reason to prefer one ordering over the other — our auction has the same desirable
properties (proved below) for any ordering.

The SBBA auction of Segal-Halevi et al. (2016) is a special case of our auction, where the recipe
is (1, 1). Their two variants correspond to the two orderings — buyers-sellers or sellers-buyers.

3.2 Proof of correctness
First, note that there must be an agent i ∈ S1 for whom an external competition exists. In the
worst case, when only one last agent of S1 remains in the trade, the other agents of S1 (who were
previously removed from trade) form an external competition for this agent. This is because their
total GFT is GFT(S1), which is positive since S1 is in the optimal trade.

Lemma 1. For each category g ∈ G, denote by vSg the value of the single agent in S1 ∩Ng . Then:∑
g 6=go

vTg ≤
∑
g 6=go

vSg

Proof. For g < go, the agent in S1 ∩Ng had been removed from trade before the pivot was found,
and was later used as an external competition for the pivot, so it is the same agent as in T1 ∩Ng and
thus vTg = vSg .

For g > go, the agent in S1 ∩ Ng had not been removed from trade, and thus, another (non-
trading) agent was used as an external competition. Since the values of non-trading agents are
smaller than that of trading agents, vTg ≤ vSg .

Now we prove the properties of the auction.

Theorem 1. The external-competition auction of Subsection 3.1 is strongly-budget-balanced,
individually-rational and dominant-strategy truthful, and its gain-from-trade approaches the op-
timum when the optimal market size (k) approaches∞.

Proof. Strong budget balance is obvious: the price po is calculated such that the sum of prices in
each PS is 0.

Individual rationality: we prove that the price paid by each trading agent is at most the agent’s
reported value.

• Each trading agent in a category g 6= go pays the value vTg of a non-trading agent in the
same category g. The agents in each category are ordered by descending value, and the value
of each trading agent is at least as large as the value of each non-trading agent in the same
category, so it is at least vTg .

• Let vSo be the value of the pivot agent (who is an agent in S1). By definition of external
competition, the sum of values of agents in T1 plus vSo is at least 0, so

vSo +
∑
g 6=go

vTg ≥ 0

=⇒ vSo ≥ −
∑
g 6=go

vTg = po

Since agents are ordered by descending value, the values of other trading agents are at least
vSo which is at least po.



Truthfulness: By Myerson’s theorem, it is sufficient to prove that the choice rule is monotone,
and each trading agent pays his/her threshold value.

Monotonicity is obvious: an agent increasing his reported value (while other reports are fixed) is
more likely to participate in the optimal trade, more likely to have an external competition, and thus
more likely to remain in the trade.

To calculate the threshold value of an agent i from category g, we consider three cases, depending
on the fixed ordering of the categories:

1. The category g comes before the pivot-category go. This means that an agent from g had been
removed from S1 before the pivot was found. All agents whose value is higher than vTg are
in PS Sj for j ≥ 2, they do not affect the auction in any way, and they remain in the trade.
Any such agent whose value drops below vTg , replaces the vTg agent in the PS S1, and has no
external competition, and so is removed from the trade. Therefore, vTg is a threshold-value for
all agents of g, and indeed pg = vTg .

2. g = go. All agents whose value is higher than vSo (the value of the pivot agent) are in PS Sj

for j ≥ 2, they do not affect the auction in any way, and they remain in the trade. Consider an
agent of go whose value vo drops below vSo but above po (recall that vSo ≥ po). We claim that
this agent remains in the trade. First, vo is still in the optimal trade (it replaces the pivot agent
in S1), since:

vo +
∑
g 6=go

vSg ≥ vo +
∑
g 6=go

vTg (by Lemma 1)

= vo − po (by definition of po)
≥ 0 (by assumption on vo),

so the GFT of vo plus the other agents in S1 is still above 0. Second, T1 is still an external
competition for vo, since:

vo +
∑
g 6=go

vTg = vo − po ≥ 0.

But, once vo drops below po, the set T1 is no longer an external competition, so the agent is
removed from the trade. Hence, po is a threshold value for all agents of go.

3. The category g comes after the pivot-category go. This means that no agent from g had been
removed from the trade before the pivot was found. As shown in Lemma 1, in this case
vSg ≥ vTg . All agents whose value is higher than vSg are in PS Sj for j ≥ 2, they do not affect
the auction in any way, and they remain in the trade.

Consider an agent of g whose value vg drops below vSg but above vTg . We claim that this agent
remains in the optimal trade (it replaces the agent vSg in S1), since:

GFT (S1)− vSg + vg ≥ GFT (S1)− vSg + vTg

= vSo +
∑
g 6=go

vSg − vSg + vTg

≥ vSo +
∑
g 6=go

vTg (by Lemma 1)

≥ 0 (T1 is external competition)

so the GFT of vg plus the other agents in S1 is above 0.

But, once vg drops below vTg , it is replaced by the agent vTg in S1, and does not enter the
optimal trade. Hence, vTg is a threshold-value for all agents of g, and pg = vTg .



Gain-from-trade: For each g ∈ G and j ∈ {1, . . . , k}, denote by vjg the value of the single agent
in Ng ∩ Sj . Then the optimal GFT is:

OPT =
∑
g∈G

k∑
j=1

vjg

If no traders are removed, then all these k PS are trading, and the GFT equals OPT. If some traders
are removed, they are removed from S1 which is the least profitable PS. In this case, k− 1 deals are
made, where in each deal, the trader from each category g is:

• If g is before the pivot — one of the k − 1 high-value traders in g;

• If g is the pivot or after the pivot — one of the k high-value traders in g, selected at random.

Hence, the expected GFT is at least:

∑
g<go

k∑
j=2

vjg +
∑
g≥go

k − 1

k

k∑
j=1

vjg

≥
∑
g∈G

k − 1

k

k∑
j=1

vjg

=
k − 1

k
OPT.

3.3 Ascending-prices auction
Our ascending-prices auction holds a price pg for each category g ∈ G. All prices are initialized to
−∞, and initially all agents are in the trade (since every agent will be happy to pay −∞). While
the prices increase, each agent in category g with value vg remains in the trade as long as pg < vg ,
and exits the trade when pg > vg (since the prices increase monotonically, agents never return to
the trade after exiting). When pg = vg , the agent is indifferent between trading and not trading; for
simplicity, we assume that in this case the agent does not trade. Also, for simplicity we assume that
the agents’ valuations are generic in the sense that, for each category g ∈ G, all agents have different
values. During the presentation of the ascending auction, we use the same running example as in
Subsection 3.1.

Step 1: Initialization. For each category g, count the number of agents in Ng; let nmin be the size
of the smallest category. For each category g with more than nmin agents, increase the price pg such
that some agents leave the trade, until the number of remaining agents in all categories is nmin.

In the running example, this step is not needed since initially there are 5 agents in each category.

Step 2. Loop over the categories in the pre-specified order. For each category g, increase pg
continuously until one of the following happens:

(a) an agent from category g exits the trade, or —
(b) the sum of prices increases to zero:

∑
g∈G pg = 0.

In case (a), repeat the step with the next category (after the last category, return to the first one).
If a category becomes empty, the auction stops and there is no trade.

In case (b), stop and have the agents trade in the final prices: each agent in category g ∈ G trades
at price pg . If, in some category, there are more remaining agents than in other categories, then a
lottery is used to select who will trade.



In the running example, at the first round, the buyers’ price increases to 6, the sellers’ price in-
creases to -11, the mediators’ price increases to -10; after the first round, there are 4 agents remaining
in each category, and the sum of prices is still negative, so we continue. At the second round, the
prices increase to 9, -8, -7 and the sum is still negative. At the third round, the buyers’ price increases
to 13 and the sellers’ price is increased towards -5, but when it hits -6, the sum of prices becomes 0
so the auction stops. The final trade is exactly the same as in the external-competition auction.

Theorem 2. The ascending-prices auction of Subsection 3.3 is strongly-budget-balanced,
individually-rational and obviously truthful, and its gain-from-trade approaches the optimum when
the optimal market size (k) approaches∞.

Proof. SBB and IR are immediate from the description.
As for obvious-truthfulness: Li (2017) defines a strategy S as obviously-dominant (for a given

agent) if “for any deviating strategy T , starting from an earliest information set where S and T
diverge, the best possible outcome from T is no better than the worst possible outcome from S”. We
show that, in the ascending-prices auction, for each agent i in category g, the strategy S of exiting
when pg = vi is obviously-dominant.

The worst outcome from S has a value of 0. We now show that, for any deviation T , the best
possible outcome from T when S and T diverge has a value of at most 0. Indeed, if T is exiting too
early (at some v′i < vi), then the point at which S and T diverge is when pg = v′i, and at that point
the outcome from T has a value of 0. If T is exiting too late (at some v′′i > vi), then the point at
which S and T diverge is when pg = vi, and at that point all possible outcomes from T have a value
of 0 or less.

We now analyze the gain-from-trade.
Let go be the category in which the protocol stops. Let no be the number of traders of this

category that remain in the trade. Then, in each category g < go, there are no− 1 remaining traders,
and in each category g ≥ go, there are no remaining traders.

Recall that k is the number of deals in the optimal trade; we claim that k = no:

• First, suppose that the price pg of each category g ≥ go is increased up to the value of the next
agent in g (who did not exit the trade in the actual auction). Since the auction stopped when
the sum of prices hit 0, the sum of prices after the increase is positive. Each price pg equals
the no-th highest value in category g. This means that there are at least no procurement-sets
with a positive GFT, so k ≥ no.

• Second, suppose that the price pg of each category g ≤ go is decreased down to the value of
the previous agent in g (who did exit the trade in the actual auction). Now the sum of prices
is negative. Each price pg equals the (no + 1)-th highest value in category g. This means that
there are not (no + 1) procurement-sets with a positive GFT, so k < no + 1. Hence, k = no.

So at least k − 1 deals are done. From here, the proof is identical to the gain-from-trade proof in
Theorem 1.

4 General Procurement-Set Recipes
This section extends the previous one by allowing the PS recipe to be an arbitrary vector of positive
integers, rather than just a vector of ones. For each category g there is an integer rg ≥ 1, and every
PS must contain exactly rg traders from this category.

The external-competition auction can be extended to the setting of an arbitrary vector of positive
integers. However, as the proof is somewhat involved, we choose to focus here on the ascending-
prices auction extension.



We present the mechanisms using a running example in which there are two categories — buyers
and sellers, and the recipe is (1, 2), so that each PS should contain one buyer and two sellers. The
market contains:

• Five buyers with values: 17, 14, 13, 9, 6.

• Nine sellers with values: -1, -2, -3, -4, -5, -7, -8, -10, -11.

Note that our setting of an arbitrary vector of positive integers might include an agent say a seller
that has multiple items for sale. However the setting is a single parameter setting in which case that
seller has identical value for each of his items.

Note that the optimal trade in this setting can be calculated just like in Section 3: the agents in
each category are ordered by descending value, and then grouped greedily into procurement-sets. In
the running example, the optimal trade contains three PS: (17;−1,−2) with GFT 14, (14;−3,−4)
with GFT 7, and (13;−5,−7) with GFT 1.

4.1 Ascending-prices auction
Similarly to subsection 3.3, the auction maintains a price pg for each category g. All prices are
initialized to −∞, and initially all agents are in the trade.

Step 1: Initialization. For each category g, let cg := floor(|Ng|/rg); this is the largest number of
PS that can be composed of agents of category g. Let cmin := ming∈G cg; this is the largest number
of PS that can be composed of the existing agents. For each category g for which floor(|Ng|/rg) >
cmin, increase the price pg such that some agents leave the trade, until the number of remaining
agents in each category g decreases such that floor(|Ng|/rg) = cmin. Note that, when g is the
category for which the minimum of cg is attained, we already have floor(|Ng|/rg) = cmin without
any increase, so the price of this category (at least) remains−∞, and the initial price-sum is negative.

Initialize c := cmin. Informally, c is the number of procurement-sets that we aim to con-
struct from the traders currently in the market. Note that initially, for every category g, we have
floor(|Ng|/rg) = cmin so |Ng| ≥ rg · c.

In the running example, cbuyers = floor(5/1) = 5 and csellers = floor(9/2) = 4 and cmin = 4.
In the initialization step, pbuyers increases to 6 so that the low-value buyer leaves. The market now
has 4 buyers and 9 sellers. The value of c is initially 4.

Step 2. Loop over the categories in the pre-specified order. For each category g, increase pg until
one of the following happens:

(a) The number of agents in g drops to rg · c, or —
(b) The weighted sum of prices increases to zero, where the weights are the recipe constants,

i.e.:
∑

g∈G rg · pg = 0.
In case (a), repeat the step with the next category in the pre-specified order. After the last

category, set c := c− 1 and cycle back to the first category. If c drops to 0 then the auction ends and
there is no trade.

In case (b), the auction terminates and the agents trade in the final prices. If, in some category,
there are more remaining agents than needed to fill the procurement-sets, then a lottery is used to
select who will trade.

In the running example, at the first round, psellers increases to −11 so that one seller leaves.
Now there are 4 buyers and 8 sellers so exactly 4 PS are supported. However, the price-sum is
6 + 2 · (−11) < 0. Hence, we decrease c to 3 and continue.

In the second round, pbuyers increases to 9 such that one buyer leaves, and psellers increases to
−8 such that two sellers leave. The weighted sum of prices is 9 + 2 · (−8) < 0, so we decrease c to
2 and continue.



In the third round, pbuyers increases to 13 such that one buyer leaves. We start increasing psellers
towards −5 such that two sellers would leave, but during the increase, the price hits −6.5, and then
the sum of prices is 13 + 2 · (−6.5) = 0, so the auction stops.

There are now two remaining buyers (17, 14) and five remaining sellers (−1,−2,−3,−4,−5).
All remaining buyers trade and pay 13; 4 out of 5 remaining sellers are selected at random, they
trade and receive 6.5.

Theorem 3. The ascending-prices auction of Subsection 4.1 is strongly-budget-balanced,
individually-rational and obviously truthful, and its gain-from-trade approaches the optimum when
the optimal market size (k) approaches∞.

Proof. SBB, IR and truthfulness are obvious — just as in Theorem 2. We now analyze the gain-
from-trade. Let c∗ be the final value of c. Note that the number of agents remaining in each category
g is at least rg · c∗ and at most rg · (c∗ + 1).

We claim that c∗ ≤ k ≤ c∗ + 1:

• First, suppose that the price pg of each category g is increased such that exactly rg · c∗ agents
remain. Now the sum of prices is positive, and each price pg equals the (rg · c∗+1)-th highest
value in category g. This means that there are at least c∗ procurement-sets with a positive
GFT, so k ≥ c∗.

• Second, suppose that the price pg of each category g is decreased to its value at the end of
round c∗+1, such that exactly rg · (c∗+1) agents remain. Now the sum of prices is negative.
Each price pg equals the (rg · c∗ + rg + 1)-th highest value in category g. The expression
(rg · c∗ + rg + 1) is at most rg · (c∗ + 2), with equality holding iff rg = 1. This means that
there are not (c∗ + 2) procurement-sets with a positive GFT, so k ≤ c∗ + 1.

Hence, in each category g, the number of agents is at least rg · (k − 1) and at most rg · (k + 1). At
least k − 1 deals are done, and the participants are from the at most k + 1 highest sets of rg traders
in each category g. From here, the proof is similar to the gain-from-trade proof in Theorem 1.

5 Related Work
The literature on two-sided markets is large and we do not attempt to cover it here; see e.g. Brustle
et al. (2017); Babaioff et al. (2018, 2020) for some recent references. Below we focus on auctions
for markets with three or more sides.

Babaioff and Nisan (2004) handle a multi-sided market using multiple two-sided sub-markets,
where each sub-market hosts an independent double-auction. Their example is the lemonade in-
dustry, which consists of lemon pickers, squeezers, and drinkers. In our auction, all three cate-
gories bid together in a single centralized auction with recipe (1, 1, 1); in their setting, there are
three different double-auctions, one each for pickers, squeezers and drinkers. The sub-markets
are constructed so that the optimal number of deals is the same in all of them. So if the double-
auction mechanisms make deals as a function of the optimal number only, their protocol is guar-
anteed to have a material balance. However, their protocol does not preserve SBB: in https:
//github.com/erelsgl/auctions we have a runnable example in which the same SBB
double-auction is used in all sub-markets, but the combined outcome is not SBB. Babaioff and
Nisan (2004) do present a SBB variant of their mechanism, but only in expectation, and it requires
a prior distribution on the agents’ valuations. In contrast, our mechanism is SBB with probability 1,
and requires no prior.

Babaioff and Walsh (2005) extend the above work from a linear supply-chain to an arbitrary di-
rected acyclic graph. For example, they consider a market in which pickers sell lemons to squeezers,



sugar-makers and squeezers sell to manufacturers, and manufacturers sell lemonade to drinkers. It
still does not guarantee SBB.

Chen et al. (2005) consider a supply-chain auction with a sole buyer and single item-kind, but
there are different producers in different supply-locations. The buyer needs a different quantity of
the item in different demand-locations. The buyer conducts a reverse auction and has to pay, in
addition to the cost of production, also the cost of transportation from the supply-locations to the
demand-locations. They do not guarantee SBB. Gonen et al. (2007) generalized the above settings
to a unified trade reduction procidure.

McAfee (2008) designs fixed price SBB double auction under the assumptions that the buyer’s
distribution dominates the seller’s distribution or that there is exponential distribution. Our result
does not assume knowledge of the distribution of participating categories. Additionally, we also
allow for general number of categories as opposed to two.

Colini-Baldeschi et al. (2016); Colini-Baldeschi et al. (2017) also presents SBB auctions. Their
auctions target double-sided and combinatorial markets respectively. However, their goal is to max-
imize social welfare as opposed to our goal which is maximizing gain from trade3. Thus their
mechanisms are not asymptotically-optimal for gain from trade. They also require a prior on the
agents’ valuations.

Feldman et al. (2018); Feldman and Gonen (2018) presents a multilateral randomized market
with buyers, mediators and sellers in the context of ad auctions. Their sellers are pre-associated with
the mediators and they assume that mediators and buyers arrive over time in some uniform random
order. Moreover, their trade matches are conducted in two stages: first the mediator trade with the
buyer on behalf of his sellers and then the mediator transfers payments to his matched sellers. Our
auction unites all three categories of buyer, seller and mediator actions into a single simultaneous
trade step.

Some works attempt to handle mechanisms with buyers and sellers interacting through an in-
termediary or trader such as Feldman et al. (2010) and Blume et al. (2007). However, their design
reduces to a one-sided auction or a two-sided auction.

The present work handles multiple categories of agents, but each agent is single-parametric. An
orthogonal line of work Segal-Halevi et al. (018a,b); Gerstgrasser et al. (2019); Gonen and Egri
(2017) remains with two agent categories (buyers and sellers), but aims to handle multi-parametric
agents. Another orthogonal line of work gets around Myerson –Satterthwaite in a different way: it
relaxes truthfulness but keeps the maximum GFT. See e.g. Lubin et al. (2008).

6 Future Work
The results in this paper can be generalized in several ways.

1. Allow several recipes of procurement-sets. For example, suppose there are three categories:
buyer, seller and purchaser. Each PS should contain either a buyer and a seller, or a purchaser and
two sellers. In this case, even calculating the optimal trade, without any strategic considerations,
may already be non-trivial.

2. Allow transaction costs. In general, each procurement-set may have a different cost-of-
transaction, depending on the geographic locations of the agents in the PS, as well as other factors.
Again, such transaction costs make the computation of the optimal trade difficult, even before strate-
gic considerations, and even when all transaction costs are common knowledge. We have prelimi-
nary results showing that, without any restrictions on the transaction costs, there might be no auction

3When optimizing gain from trade we optimize the difference between the total value of the sold items for the buyers and
the total value of these items for the sellers. When optimizing social welfare in a market we optimize the sum of the buying
agents’ valuations plus the sum of the unsold items’ value held by selling agents at the end of trade. Despite their conceptual
similarity, the two objectives are rather different in approximation. In many cases the social welfare approximation is close
to the optimal social welfare solution; however, the gain from trade approximation may not be within any constant factor of
the optimal gain from trade.



that satisfies all the desirable properties of Theorem 1. We believe that such an auction can be found
given some natural restrictions on the transaction costs.
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