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Abstract

We study approval-based committee elections for the case where the voters’ preferences come
from a 2D-Euclidean model. We consider two main issues: First, we ask for the complexity of
computing election results. Second, we evaluate election outcomes experimentally, following
the visualization technique of Elkind et al. (2017). Regarding the first issue, we find that many
NP-hard rules remain intractable for 2D-Euclidean elections. For the second one, we observe
that the behavior and nature of many rules strongly depend on the exact protocol for choosing
the approved candidates.

1 Introduction
The idea of committee elections is that a group of agents (typically referred to as the voters) wants
to choose a fixed-sized subset of candidates (typically referred to as a committee). For example, the
voters may be choosing the finalists of some competition, the members of some governing body,
or the products to offer in an online store (see, e.g., the overview of Faliszewski et al. (2017) for a
discussion of various types of committee elections). The committee should reflect the preferences
of the voters, and its selection should follow the principles underlying its purpose (for example, the
finalists of a competition should be individually excellent, members of a governing body should
represent the voters proportionally, and a store’s portfolio should be diverse).

We consider the approval preference model, i.e., we assume that each voter specifies a subset
of candidates that he or she finds suitable for the committee, and we focus on the case where these
approval sets are derived from some (two dimensional) Euclidean model. We do so for two reasons.
First, the results of 2D-Euclidean elections can be easily interpreted and we want to verify if various
approval-based committee rules (ABC rules, for short) indeed implement the desired principles in
choosing the committees. To this end, we use the visualization technique of Elkind et al. (2017).
Second, for many prominent ABC rules it is known that computing their results is NP-hard in
general, but becomes tractable if the preferences are, in some sense, one-dimensional (for example,
all the domain restrictions considered by Elkind and Lackner (2015) are one-dimensional). We
check if these polynomial-time results can be extended to the two-dimensional case.

We consider voting rules that seek committees of different types. In particular, we consider
Multiwinner Approval Voting (AV), which focuses on individual excellence, Proportional Approval
Voting (PAV), Phragmén’s Sequential rule (Phr), and Rule X, which focus on proportionality, and
Approval Chamberlin–Courant (CC), which focuses on diversity. Additionally, we also consider
Minimax Approval Voting (MAV), which is based on the egalitarian principle.
Approval-Based Euclidean Elections.
Briefly put, in a Euclidean model each candidate and each voter is represented as his or her ideal
point, i.e., a point in some Euclidean space R`, whose coordinates are interpreted as a given can-
didate’s or voter’s positions on some ` issues (for example, in a two-dimensional model these two
issues may correspond to the extents to which an individual supports personal and economic free-
dom). To derive the voters’ approval sets, we use the following two principles:

1. In the voter-range model, if a voter approves some candidate then he or she also approves all



the closer ones.

2. In the candidate-range model, if a candidate is approved by a voter, all the voters closer to this
candidate also approve him or her.

For the one-dimensional case, these models correspond to the candidate interval and voter interval
models of Elkind and Lackner (2015). We also consider what we call a voter/candidate range
model, which generalizes both approaches, and using it we generalize/strengthen some results from
the literature.

Main Contributions.
We seek to understand the structure of the committees produced by the considered rules and whether
these committees can be computed efficiently.

In our first set of results, we show that all our rules that are NP-hard in the general approval
setting (e.g., MAV, CC, and PAV) remain NP-hard for 2D-Eucludiean elections, both for the voter
and candidate range models. Our proofs hold under the assumption that we are given the ideal points
and radii of the candidates and voters; this is important as otherwise even recognizing if an election
comes from a 2D-Euclidean domain may be hard (indeed, Peters (2017) has shown it for the ordinal
case; we expect the same for the approval one).

In the second set of results, we present visualizations of our ABC rules under several distri-
butions of the ideal points and several strategies for choosing the voters’ or candidates’ radii (we
employ the technique of Elkind et al. (2017), which shows how frequently committee members are
selected from given areas of the preference space). We obtain several high-level conclusions. For
example, we find that forcing the voters to approve a given number of candidates leads to unap-
pealing results, or that AV might have some deficiencies as a rule to choose individually excellent
candidates.

2 Preliminaries
For an integer p, by [p] we mean the set {1, . . . , p}. We use the Iverson bracket notation, i.e., for a
logical formula F , by [F ] we mean 1 if F is true and 0 otherwise.
Approval Elections.
An approval-based election (in short, an election) is a pair E = (C, V ), where C = {c1, . . . , cm}
and V = {v1, . . . , vn} are, respectively, the set of candidates and the set of voters. For each voter
v ∈ V , by A(v) we denote the approval set of v, i.e., the set of those candidates that voter v
finds acceptable. Conversely, by V (c) we denote the set of voters who approve candidate c, i.e.,
V (c) = {v ∈ V | c ∈ A(v)}. To make the notation lighter, we assume that the approval sets of the
voters are implicitly included in the elections.

Elkind and Lackner (2015) introduced a number of domain restrictions regarding the voters’
preferences. For example, if it is possible to order the candidates so that each voter approves their
contiguous subset, then we say that the voters have candidate interval (CI) preferences. Similarly, if
it is possible to order the voters so that each candidate is approved by a contiguous group of voters,
then we speak of voter interval (VI) preferences. We focus on Euclidean preferences, which we
discuss in Section 3.
ABC Rules.
An approval-based committee rule—in short an ABC rule—is a function that given an election
(C, V ) and a positive integer k ∈ N, returns a nonempty family of size-k subsets of C, referred
to as the winning committees. For a general overview of ABC rules, we point the reader to the
recent survey by Lackner and Skowron (2020). Below we describe the rules that we focus on (we
let E = (C, V ) be an election and k be the desired committee size).



Thiele Methods. Fix a non-decreasing function w : N → R. The w-score of a committee W is
defined as:

w-score(W ) =
∑

v∈V w(|W ∩A(v)|).

The w-Thiele rule returns the committees with the maximal w-scores. Rules of this type
(often referred to as Thiele methods) were introduced by Thiele (1895). Notable examples of
Thiele rules include Multiwinner Approval Voting (AV), Approval Chamberlin-Courant rule
(CC), and Proportional Approval Voting (PAV), defined, respectively, through the following
w-functions:

wAV(t) = t; wCC(t) = [t ≥ 1]; wPAV(t) =
∑t

i=1
1/i.

AV is focused on individual excellence, CC gives diverse committees, and PAV seeks propor-
tional representation.

Phragmén’s Sequential Rule. The rule starts with an empty committee and extends it until k can-
didates are found: Each candidate costs one dollar, the voters earn virtual money at some fixed
rate, e.g., one dollar per second (the time is continuous), and as soon as some voters can buy
a not-yet-selected candidate c that they all approve, the rule includes c in the committee and
resets their budgets to 0. This rule was introduced by Phragmén (1894) and seeks proportional
representation of the voters.

Rule X. This is a two-phase rule, where both phases resemble the Phragmén’s Sequential Rule, but
in the first one the voters get their money upfront, and in the second one they earn it as in
Phragmén’s Sequential Rule, but their starting budgets depend on the first phase. For a formal
definition of the rule, we refer to the paper of Peters and Skowron (2020), where the rule
is introduced.1 In this paper we only consider the first phase of the rule, which can return
committees of size strictly smaller than k.

Minimax Approval Voting (MAV). Given two subsets of candidates, A,B ⊆ C, their Hamming
distance is dHam(A,B) = |A\B|+ |B \A|. MAV, introduced by Brams et al. (2007), selects
committees that minimize the Hamming distance to the farthest vote, i.e., the committees W
that minimize maxv∈V dHam(A(v),W ). Thus the rule implements the egalitarian principle;
for other such rules, see, e.g., the works of Betzler et al. (2013) and Aziz et al. (2018).

Complexity of Winner Determination.
The outcomes of AV, Phragmén’s Sequential Rule, and Rule X are computable in polynomial time,
provided that we break ties according to some simple rule (e.g., lexicographically). For MAV and all
w-Thiele rules with non-linear, concave w functions it is NP-hard to decide if there is a committee
that achieves at least a given score (see the works of LeGrand (2004), Procaccia et al. (2008), and
Aziz et al. (2015) for the cases of MAV, CC, and PAV, respectively, and the work of Skowron
et al. (2016) for a general result regarding Thiele rules). Yet, for MAV there are polynomial-time
algorithms for the candidate and voter interval cases Liu and Guo (2016), and for Thiele rules defined
by concave w-functions there are polynomial-time algorithms for the candidate interval case Peters
and Lackner (2020); the problem is open for the other Thiele rules and for the voter interval case.

Our rules have also been studied with respect to approximation and parameterized complexity;
we point the reader to the survey of Lackner and Skowron (2020) for these results.

1We omit the definition due to restricted space. To appreciate our results, it suffices to know that Rule X is similar to
Phragmén’s Sequential Rule but provides stronger proportionality guarantees.



3 Euclidean Preferences
In this section we describe our model of Euclidean-based approval preferences. While such models
have been studied for over half a century (see, e.g., the works of Davis and Hinich (1966), Plott
(1967), Enelow and Hinich (1984, 1990) for some early discussions), researchers mostly focused
on ordinal preferences, and when they considered the approval setting, they usually analyzed prob-
abilistic models (see, e.g., the work of Laslier (2006)).

Given an election E = (C, V ), we say that the voters have tD-Euclidean preferences (t ∈ N)
if for each agent a ∈ C ∪ V (i.e., for each candidate and each voter) there exists a point xa =
(xa,1, . . . , xa,t) in Rt and a nonnegative real value ra ∈ R such that:

c ∈ A(v) ⇐⇒
√∑t

j=1(xc,j − xv,j)2 ≤ rc + rv .

Intuitively, for a ∈ C ∪ V the point xa describes a’s ideal position in a t-dimensional space of
opinions. For a candidate c ∈ C, rc can be seen as c’s charisma: It specifies which positions
surrounding his or her ideal one the candidate can accommodate credibly. For a voter v ∈ V , rv
specifies v’s willingness to compromise, i.e., the positions around his or her ideal one that the voter
still accepts. Two special cases of Euclidean Preferences are:

1. The voter range model (VR), where we require that all the candidates have radii equal to zero.

2. The candidate range model (CR), where all the voters have radii equal to zero.

We refer to the full model as the voter/candidate range model (VCR). Elkind and Lackner (2015)
argued that the candidate interval model is equivalent to our 1D-VR model (although they used a
different name, of course). It turns out that the voter interval model is equivalent to our 1D-CR
model.2

Proposition 1. The sets of voter interval and 1D-CR elections are equal.

The VCR model is strictly more powerful than the VR and CR ones. For example, election with
candidate set C = {a, b, c, d} and voters with approval sets {a, b}, {b, c}, {b, d}, and {a, b, c, d} is
VCR, but neither VR nor CR.

4 Computing Winning Committees
The main goal in this section is to show that our NP-hard rules remain intractable even in the 2D-
Euclidean setting. Yet, first we briefly consider 1D-Euclidean elections.

4.1 One-Dimensional Euclidean Preferences
Elkind and Lackner (2015) have shown polynomial-time algorithms for computing CC winning
committees in 1D-VR and 1D-CR elections. We unify this result into a single algorithm for 1D-
VCR elections (the main idea is remarkably close to that for the 1D-VR case).

Proposition 2. There is an algorithm that given a 1D-VCR election and committee size, computes
some winning CC committee in polynomial time.

A natural question is whether it is possible to extend the above result to PAV, other Thiele meth-
ods. We leave this question open. It is also interesting to consider MAV as in this case 1D-VR and
1D-CR algorithms do exist Liu and Guo (2016).

2It is a bit confusing that the voter range corresponds to the candidate interval model and candidate range corresponds to
voter interval. This crossing is due to the fact that our terminology regards the reason for approval, and the terminology of
Elkind and Lackner (2015) regards the shape of approval sets.



Figure 1: Construction of a penny graph.

4.2 Two-Dimensional Euclidean Preferences
In our NP-hardness proofs for the 2D Euclidean elections we use penny graphs. A penny graph is
defined by a set of unit disks, i.e., balls of diameter one in R2, such that no two disks overlap (but
they can touch). Each disk corresponds to a vertex and two vertices are connected by an edge if their
disks touch (i.e., if their centers are exactly at distance 1). A graph is a penny graph if it has such a
representation by unit disks (the name comes from the analogy between the disks and pennies lying
on a flat surface). All penny graphs are planar. We will need the following algorithm of Valiant.

Lemma 1. Valiant (1981). There is a polynomial-time algorithm that given a planar graph with
maximum degree at most 4 computes its embedding on the plane so that its vertices are at integer
coordinates and its edges are drawn with vertical and horizontal line segments.

Recall that in the Independent Set problem (IS) we are given a graph G = (X,E) and a positive
integer r. We ask if there exists an independent set of G—i.e., a subset of vertices U ⊆ X such
that no two vertices in U are adjacent—of size at least r. It is known that the problem is NP-hard
for cubic planar graphs (Mohar, 2001, Theorem 4.1(a)). Given an instance (G, r) of IS, where
G is a cubic planar graph, we construct an instance of IS for penny graphs, as follows (we use
the construction of Cerioli et al. (2011, Theorem 1.2); we repeat it here as we need its specific
properties).

First, we use Lemma 1 to obtain a planar representation of G, where the vertices are at integer
coordinates and the edges consist of vertical and horizontal line segments (see the left-hand side
of Figure 1; note that in this figure the vertices have degrees at most three, not necessarily exactly
three). Second, we multiply vertex coordinates by four, ensuring that the lengths of the line segments
forming the edges also are multiples of four. Third, for each vertex v we put a unit disk centered at
the position of v, and we replace all the line segments forming the edges by sequences of consecutive
unit disks (located on the integral points within these lines; see the center of Figure 1). This way,
each edge becomes a sequence of 4t − 1 disks, where t is an integer (possibly different for each
edge). Finally, for each edge we introduce a single local displacement, which consists of replacing
the second disc that lies on the edge with two tangent disks (it does not matter from which end we
start counting the disks); these two disks are also tangent to the disks on the two sides of the disk
that we replaced (see the right-hand side of Figure 1). Local displacements ensure that disks on the
edges come in multiples of four. All in all, we obtain a penny graph.

LetG′ be the penny graph that we constructed. Each vertex ofG′ has either two or three adjacent
vertices. The vertices with two neighbors correspond to disks put on the edges and we refer to them
as intermediate. We call a vertex locally displaced if it corresponds to a disk that was introduced
as a result of a local displacement. Let L be the total number of intermediate vertices. One can
easily verify that G has an independent set of size r if and only if G′ has an independent set of size
r′ = r + L/2 (this follows from the work of Cerioli et al. (2011)). We refer to the penny graphs
obtained by this construction as almost integral and we use the fact that IS is NP-hard for them.

We are ready to show that for a large class of Thiele rules, computing the results is intractable
even for 2D elections.
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Figure 2: Two cases for estimating the distance between points qij and qj` in the proof of Theorem 1.

Theorem 1. For each non-linear concave function w : N → R, deciding if there is a committee of
a given size with at least a given w-Thiele score is NP-hard for 2D-VR elections, even if the voters
have the same approval radii.

Proof. Let p be the largest integer such that for each p′ ∈ [p] we have that w(p′) = p′ · w(1). Since
w is non-linear, p is well-defined. Since w is concave, w(p+1) < (p+1) ·w(1). Further, we fix ε to
be a small positive constant—the upper-bound on the value of ε will be clear from the construction.

We reduce from the Independent Set problem for almost integral penny graphs (where the graph
is given by its geometric representation). Let (G, r) be an instance of IS, where G is an almost
integral penny graph and r is an integer (these are G′ and r′ from the construction above). Let n
denote the number of edges in G. We distinguish the following points in R2 (we will use them as
the ideal points of the agents):

Vertex Points: For each vertex xi, we have a vertex point located in the center of xi’s disk; we
overload the notation and also refer to this point as xi.

Edge Points: For each edge e = {xi, xj} in G, we have a point in the middle of e, to which we
refer as eij (we view edges in G as straight, unit-length line segments).

Bisector Points: For each edge {xi, xj} inG, we take the bisector of the line segment xixj and let
qij be a point on its bisector (on an arbitrary side) such that its distance from the line segment
is ε.

Given (G, r), we construct an election E = (C, V ) with the following candidates and voters:

1. The set of candidates consists of vertex candidates and bisector candidates: In each vertex
point xi we put one vertex candidate, called ci, and in each bisector point we put p−1 bisector
candidates, called b1ij , . . . , b

p−1
ij . We write Cb to denote the set of all bisector candidates.



2. We have the following three groups of voters (we argue that the approval sets are specified
correctly a bit later):

(a) The edge voters: For each edge e = {xi, xj} we have a voter located in point eij , who
approves ci, cj , and p− 1 bisector candidates located in qij .

(b) The vertex voters: For each intermediate vertex xi, we have one voter, vi, who is located
in point xi and approves only ci.

(c) The bisector voters: In each bisector point qij we put three voters, u1ij , u
2
ij , u

3
ij , who all

approve the p− 1 bisector candidates that are in their location.

We set the committee size to be k = r + (p− 1)n. We ask if there exists a committee with w-score
greater or equal to s = (3r + 4n(p− 1))w(1). This ends the construction.

Let us now show that if all the voters have approval radius 1/2 then they approve exactly the
candidates indicated above. First, observe that for each vertex xi of the penny graph, the distance
between point xi and each bisector point of the form qij (i.e., each bisector point associated with
an edge incident to xi) is

√
1/4 + ε2 > 1/2. Thus the distances between the vertex voters and the

bisector candidates, as well as between the vertex candidates and the bisector voters, are strictly
greater than 1/2, and the respective approval ballots do not interfere with each other. Further, it is
clear that if ε is sufficiently small, then for each qij , its distance from each x` is also strictly greater
than 1/2.

It remains to consider balls of diameter 1, centered at some bisector points, qij and qj`. There
are two cases to analyze. The first one occurs when the line segments xixj and xjx` are orthogonal
(see Figure 2a). In such a case the distance between qij and qj` is (1/2− ε)

√
2, which is more than

1/2 for ε < 1/2 · (1−
√
2
2 ) ≈ 0.14 (so we require ε < 0.14).

The second case occurs when the disks centered at xj and x` constitute a local displacement (see
Figure 2b, two plots on the left). Then the points xi, xj , x`, and xt form a parallelogram, where the
lengths of sides xixj and x`xt are 1, and the lengths of sides xix` and xjxt are a = 1/2 ·

√
6. To see

why this is the case, note that the lengths of the diagonals of the parallelogram are 1 (the diagonal
xjx`) and 2 (the diagonal xixt), and let α be the magnitude of the angle ∠xjxix`. By the law of
cosines we have. 12+a2−2a cos(α) = 12, and 12+a2−2a cos(π−α) = 22.After adding these two
equalities and simple calculations we obtain that a = 1/2 ·

√
6. Now observe that the points vij , vj`,

qij , and qj` form an isosceles trapezoid (see the right plot in Figure 2b). If ε < 1/2 ·
(√

6
4 −

1
2

)
, then

clearly the distance between qij and qj` is greater than 1/2. This completes the proof that the voters’
approval sets are indeed as indicated in the construction.

It remains to show that the reduction is correct. Let us assume that G is a “yes” instance of IS.
Take any independent set U of size r and define the corresponding committee to be SU = {ci | xi ∈
U} ∪Cb, i.e., let SU consist of the vertex candidates corresponding to the members of U and all the
bisector candidates. Let us calculate the w-score of SU :

1. Each bisector candidate b`ij contributes exactly 4w(1) points to the committee. This is because
he or she is approved by three bisector voters u1ij , u2ij , and u3ij at her location (and each of
these voters approves exactly p − 1 bisector candidates), and by the edge voter at point eij
(who in total approves at most p committee members; the p − 1 bisector candidates and, as
U is an independent set, at most one vertex candidate). Each of these voters contribues w(1)
points for each bisector candidate.

2. Each vertex candidate from the committee contributes 3w(1) points. Indeed, each of them is
approved by three voters (either three edge voters or two edge voters and one vertex voter).
Each vertex voter approves exactly one candidate and, by the argument from the previous
point, each edge voter approves at most p committee members. Thus each vertex candidate
from the committee brings in w(1) points for each voter that approves him or her.
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Figure 3: Density functions for our models of generating ideal points (red areas correspond to
candidates, green areas correspond to voters, and olive areas correspond to both).

So the w-score of SU is (3r + 4n(p− 1))w(1), as required.
For the other direction, assume that there is a size-k committee S with score at least s = (3r +

4n(p − 1))w(1). Since each vertex candidate is approved by exactly three voters and, thus, can
contribute at most 3w(1) points to the score of the committee, if S has score s then it must include
all the bisector candidates and each of these bisector candidates has to contribute 4w(1) points to the
committee. The latter happens exactly if all the edge voters approve at most p committee members,
which happens exactly if the vertex candidates from S form an independent set.

The above proof also holds for the 2D-CR model (it suffices to assume that the candidates have
radii 1/2 and the voters have radii 0). An analogous result also holds for MAV.

Theorem 2. Deciding if there is a MAV committee of a given size and with at most a given score
is NP-hard for 2D-VR elections (2D-CR elections) even if all voters (all candidates) have the same
approval radius and each voter approves the same number of candidates.

Theorems 1 and 2 also hold for higher dimensions.

5 Visualization
The visualization idea of Elkind et al. (2017) is to generate a large number of elections, where the
agents’ ideal points come from some distributions, compute their results, and draw 2D histograms
indicating how many winners appear in each area of the space. We adopt their methodology to the
approval-based setting.

5.1 Generating the Histograms
We consider three ways to generate the points representing the candidates and voters (illustrated in
Figure 3):

1. The uniform square model, where the points are selected uniformly at random from the
[−3, 3] × [−3, 3] square. This is a “baseline” distribution that was also considered by Elkind
et al. (2017).

2. The asymmetric Gaussians model, where 70% of the points are generated from a two-
dimensional Gaussian distribution with center (−1, 0) and standard deviation 0.8, and 30%
come from a Gaussian with center (1, 0) and the same standard deviation. This model simu-
lates a society where a large majority has views centered in one area and a significant minority
has views centered in some distance from them. This model is intended to highlight rules’
abilities to choose proportional results.

3. The overlapping squares model, where the points of the voters are selected uniformly at ran-
dom from square [−1.5, 3]× [−1.5, 3] and the points of the candidates are selected uniformly



(a) The uniform square model (b) The asymmetric Gaussians model (c) The overlapping squares
model

Figure 4: Histograms for our rules and ways of generating elections. The numbers in parentheses
over each column provide the average number of candidates approved by a single voter.

at random from square [−3, 1.5] × [−3, 1.5]. This model captures a setting where the pop-
ulations of the candidates and voters represent different opinions (it is quite extreme in this
respect, which makes the differences between the rules more visible).

In most settings we focus on the voter range model, where the candidates have radii set to zero
and voters’ radii are generated using models from one of the following two groups:

1. In the first group, we either fix the number of approved candidates or the approval radius.
Specifically, in the 10-nearest model, each voter’s radius is such that he or she approves the 10
closest candidates. In the radius-0.7 and radius-1 models, the radii are fixed to, respectively,
0.7 and 1. We refer to these three models as the fixed ones.

2. In the second group, we choose the number of approved candidates or the approval radius
from a uniform distribution. Specifically, in the [1, 100]-nearest model, for each voter we
choose number t uniformly at random from the set {1, . . . , 100} and then select the radius so
that the voter approves exactly t closest candidates. In the radius-[0, 3] model, for each voter
we choose the radius uniformly at random from interval [0, 3]. We refer to these two models
as the uniform ones.

For the asymmetric Gaussians model, we also consider the candidate range model, with the follow-
ing candidate radii:

3. In the radius-{1, 1.5} model, the candidates from the left-hand side Gaussian (the larger one)
have radius 1 and the other ones have radius 1.5. In the radius-{1.5, 1} model, these values
are swapped.

To draw a histogram for a given voting rule and models of generating agents’ points and radii,
we proceed as follows. First, we generate 2000 elections with 100 candidates and 100 voters each.
Then we compute their winning committees of size 10.3 Next, we consider the [−3, 3] × [−3, 3]
square partitioned into cells of size 0.05 × 0.05 and for each cell we count how many members of
the winning committees fall there. Finally, we plot the thus-obtained 2D histograms. We map the
numbers of committee members in each cell to color intensities using the formula of Elkind et al.
(2017); the darker a cell, the more committee members it contains.

3We used implementations from the abcvoting library (https://github.com/martinlackner/abcvoting) in irresolute mode
(except Rule X) and broke ties uniformly at random. This library uses integer linear programming formulations of the
respective NP-hard rules; by Theorems 1 and 2 we know that this approach is as reasonable in the 2D Euclidean setting as
in the general one.



5.2 Discussion
We present the histograms for our voting rules, models of generating agent’s points, and models of
generating the radii in Figure 4. Below we analyze the obtained results.
Choosing Radii Matters.
The most obvious—but, perhaps, the most important—observation from Figure 4 is that depending
how we choose the voters’ radii, the results can vary greatly for all our rules. There are several
reasons for this. Foremost, it is natural that the results for the fixed models are different than those
for the uniform ones. For example, Bredereck et al. (2020, Lemma 9) show how to use Thiele rules
to simulate corresponding committee scoring rules Skowron et al. (2019); Faliszewski et al. (2019)
with Borda as the underlying scoring function. The nearest-[1, 100] radius model is a randomized
variant of their construction. As a consequence, in this model AV behaves like the classic k-Borda
rule and PAV behaves like the HarmonicBorda rule (indeed, for these cases their histograms are
identical to those obtained by Elkind et al. (2017) for k-Borda and HarmonicBorda). On the other
hand, for the nearest-10 radii model, AV is known as the Bloc rule and is known to behave very
differently from k-Borda.
Fixed Models.
It is intriguing to compare the histograms for the nearest-10 model and the radius-0.7 and radius-1
models. In the former, each voter has to approve 10 closest candidates, even if they are quite far away
from him or her, whereas in the two latter ones, the voters only approve candidates that are close
(we chose radii 0.7 and 1 because in the uniform square model the latter leads to approving close
to 8 candidates on average, and in the asymmetric Gaussians model the former leads to approving
under 12 candidates on average; we view these values as close enough to 10 so that the models
are comparable to nearest-10, and as sufficiently different from each other to be interesting). In
most cases, the histograms for the nearest-10 model have very pronounced artifacts, which seem
to go against the spirit of the respective rules. E.g., in the uniform square model all rules have
darker areas in the corners, even though there is no reason to consider the candidates there as more
appealing than the other ones. Similarly, in the asymmetric Gaussians model, PAV and Phragmén
choose fewer candidates from the center of the larger Gaussian, even though many agents have ideal
points in this area, and one would expect a proportional rule to choose more candidates from there.
These artifacts either disappear or are less pronounced in the radius-0.7 and radius-1 models. This
suggests that if one is using approval-based voting rules, then there should be no fixed number of
candidates that the voters should approve.

Elkind et al. (2017) also observed such artifacts for the Bloc rule, which is equivalent to the AV
rule in the nearest-10 model (or, more specifically, in the nearest-k model, where k is the committee
size). Our results suggest that these artifacts appear due to requiring the voters to approve candidates
that are located far away from them (which happens when the number of to-be-approved candidates
is fixed).
Uniform Models.
The differences between the [1, 100]-nearests and radius-[0, 3] models are less worrisome than those
between the fixed models, even if sometimes quite visible; see, e.g., PAV and Phragmén in the
overlapping squares model. Yet, the results for radius-[0, 3] are more appealing as more candidates
in the top-right corner of the candidate square are selected, closer to a large group of voters.
PAV Versus Phragmén.
One striking observation is that the histograms for PAV and Phragmén are, in essence, indistinguish-
able for all our settings. One could argue that this is natural because both rules aim at achieving pro-
portional representation. However, axiomatic studies suggest that they understand proportionality in
quite different ways Peters and Skowron (2020). Our histograms suggest that in the 2D Euclidean
models these two ways coincide.
CC, MAV, and Diversity.



Generally, the histograms for CC show fairly uniform coverage of the candidates’ and voters’ views.
This is good behavior for a rule that aims at choosing diverse committees. The MAV rule often
behaves quite similarly (especially in the uniform square model) but can also follow AV’s behav-
ior. The similarity to CC—and, more generally, tendency to select diverse committees—can be
explained by its egalitarian nature: If all the voters approve a similar number of candidates, then
MAV seeks a committee that maximizes the number of its members approved by the worst-off voter
(i.e., the voter who approves fewest of them). The similarity to AV appears in settings where there
is a large group of voters who approve many more candidates than the remaining voters (as in the
asymmetric Gaussians with radius-0.7 or 1): If a voter approves many candidates, then MAV has to
put many of them in the committee, and if there are many voters like this (approving many common
candidates), the result is similar to using AV.
AV And Individual Excellence.
AV is typically seen as a rule for choosing individually excellent candidates. Our histograms indicate
that, at least in some settings, it might not do well in this task (or, in a different interpretation,
approval sets might be insufficient for it). To this end, let us focus on the uniform square model.
Faliszewski et al. (2017) argue that in the individual excellence setting, similar candidates should
be treated similarly (two similar candidates should either both be in the committee or both be out,
up to boundary cases). If we take geometric proximity of candidates’ ideal points as a measure
of similarity, then an individually excellent committee should consist of candidates located in the
center (by the given argument, the selected candidates should be close to each other; center location
follows from symmetry). Yet, AV achieves such histograms only for nearest-[1, 100] and radius-
[0, 3] models. Since these models, effectively, act as if the voters ranked the candidates,4 it is an
argument that in some settings ordinal models are better suited for individual excellence than the
approval ones.
Rule X And Proportionality.
We note that the histograms for Rule X (or, rather, its first part; recall Section 2) are between those
for Phragmén and AV. (see, e.g., the asymmetric Gaussians case). This is surprising as Peters and
Skowron (2020) have shown that even the first part of Rule X alone has strong proportionality
guarantees Peters and Skowron (2020) and one would not expect increased similarity to AV.
Candidate Range Models.
Finally, let us consider the asymmetric Gaussian model and candidate range models, i.e., radius-
{1, 1.5} and radius-{1.5, 1} models. As expected for a diversity-oriented rule, CC behaves fairly
similarly in both cases. PAV and Phragmén, on the other hand, are quite asymmetric. For the former
model there is a visible area between the centers of the Gaussians from which no candidates are
selected. For the latter model, no such phenomenon occurs. One explanation is that in the radius-
{1, 1.5}model, the more charismatic candidates from the smaller Gaussian are too few to satisfy the
voters from the left-hand extreme of the larger Gaussian, and these voters are sufficiently numerous
to elect the less charismatic, but closer, candidates (to some extent, this is supported by the shape of
the histogram for AV in this model).

6 Conclusions
We have shown that many NP-hard approval-based committee rules remain NP-hard in the 2D Eu-
clidean setting, even if in 1D settings they can by computed in polynomial time. We have also
computed visualizations of our rules and made multiple observations, the crucial one being that one
should not force the voters to approve a fixed number of candidates.

4Consider, e.g., the nearest-[1, 100] model and a group of voters located close to each other. The candidates approved by
all of them are the closest to the group, and, generally, the fewer voters approve a given candidate, the farther he or she is.
This way AV gets similar information as if the voters ranked the candidates.
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Appendix

1D-VCR Elections
Below we show an example of a 1D-VCR election which is neither 1D-VR nor 1D-CR.

Example 1. Let C = {a, b, c, d} be the set of candidates, and V = {v1, v2, v3, v4} be the set of
voters. The voters and the candidates are located in the following points:

v1 = 0.2, v2 = 0.6, v3 = 1, v4 = 0.1,

a = 0, b = 0.4, c = 0.8, d = 1.2.

The radii of the candidates and voters are as follows:

rv1 = 0.1, rv2 = 0.1, rv3 = 0.05, rv4 = 1.1,

ra = 0.1, rb = 0.6, rc = 0.1, rd = 0.2.

We present this election visually below:
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It is easy to verify that the approval sets are:

A(v1) = {a, b}, A(v2) = {b, c},
A(v3) = {b, d}, A(v4) = {a, b, c, d}.

To see that the election is not 1D-VR, note that if it were, then the nearest candidates next to b would
have to be a, c, and d (because for each of these candidates there is a voter that approves him or
her together with b). However, this is impossible, because only two candidates can be placed next to
b (one on each side).

To see that the election is not 1D-CR, we note that if it were, then, equivalently, the election
would have to have the voter interval property. However, this would mean that there is an order
such that each of v1, v2, and v3 are placed right next to v4. Since only two voters can be right next
to v4 in any order, this is impossible.

Total Unimodularity and 1D-Euclidean Preferences
Peters and Lackner (2020) designed an algorithm for computing winning committees according to
some Thiele methods (such as PAV) in the 1D-VR model. The algorithm is based on integer linear
programming formulation, admitting a relaxation which is totally unimodular if preferences are 1D-
VR, and which thus admits an integral optimal solution. Our examples below demonstrate that this
technique is not applicable to 1D-Euclidean preferences.

A matrix A = (aij)i≤n;j≤m ∈ Zn×m with all aij ∈ {−1, 0, 1} is totally unimodular if ev-
ery square submatrix B of A has det(B) ∈ {−1, 0, 1}. A binary matrix A = (aij)i≤n;j≤m ∈
{0, 1}n×m has the strong consecutive ones property if the 1-entries of each row form a connected



block, i.e., an interval. A binary matrix has the consecutive ones property if its columns can be
permuted so that the resulting matrix has the strong consecutive ones property. Every binary matrix
with the consecutive ones property is totally unimodular. Peters and Lackner (2020) observed that
for any 1D-VR election, the binary matrix of preferences has the consecutive ones property, and,
thus, is totally unimodular. By some well-known facts on preservation of total unimodularity under
certain matrix operations (cf. Propositions 2, 6 and 9 in Peters and Lackner (2020)) it follows that
if input preferences are VR 1D-Euclidean, then the constraint matrix for Integer Programming (IP)
formulation of PAV or CC is totally unimodular. However, if we consider the 1D-VCR model, with-
out restriction to VR (or CR), then even the preference matrix might not be totally unimodular, as
illustrated in the following example.

Example 2. Consider the election from Example 1. The preference matrix of this election is (the
rows correspond to the voters v1, . . . , v4 and the columns correspond to the candidates, a, b, c, d):

1 1 0 0
0 1 1 0
0 1 0 1
1 1 1 1


and its determinant is −2. This violates the total unimodularity condidtion.

Furthermore, even if we consider the 1D-CR model, corresponding to the voter interval (VI)
domain restriction, the method based on total unimodularity does not work either. To see this,
consider the following example.

Example 3. Let V = {v1, v2, v3}, and C = {a, b, c, d}, and

A(v1) = {a, b}, A(v2) = {b, c}, A(v3) = {b, d}.

This election exhibits the VI property. Its preference matrix M is totally unimodular, but the matrix
constructed from M by adding a row of 1s, which is the constraint matrix both for the IP-PAV
and IP-CC, is identical to the preference matrix from Example 2, and as such, it is not (totally)
unimodular.

Missing Proofs
In this section we present the proofs that were omitted from the main part of the paper and two
corollaries to the main theorems that shed some additional light on the results.

Proposition 2. There is an algorithm that given a 1D-VCR election and committee size, computes
some winning CC committee in polynomial time.

Proof. Consider a 1D-VCR election E = (C, V ), with C = {c1, . . . , cm} and V = {v1, . . . , vn},
and committee size k (k ≤ m). Each agant a ∈ C ∪ V has position xa and radius ra. We convert
this representation so that for each agent a we have interval [b(a), e(e)] where b(a) = xa − ra and
e(a) = xa+ra. A voter approves a candidate if their intervals have nonempty intersections. W.l.o.g.,
we assume that there are no two candidates so that the interval of one is fully contained in the other
(indeed, every voter who would approve the candidate with the smaller interval would also approve
the one with the larger). We also assume that the candidates are ordered so that b(c1) < · · · < b(cm)
(we have strict inequalities due to the previous assumption).

For each i ∈ [m] and j ∈ [k], let f(i, j) be the highest CC score possible to obtain by a
committee of size j that consists of candidates from the set {c1, . . . , ci} and includes ci; we let



f(i, j) = ∞ if a committee satisfying these requirements does not exist. Note that f(i, 1) can be
computed in polynomial time for each i ∈ [m]. For i > 1, we express f(i, j) recursively as:

f(i, j) = max
`∈[i−1]

f(`, j − 1) + |{v ∈ V (ci) | b(v) > e(c`)}|.

To understand this formula, note that, due to our assumptions, all voters v with b(v) ≤ e(c`) either
approve c` (so we should not account them due to including ci in the committee) or do not approve
ci.

We can compute function f in polynomial time using standard dynamic programming approach.
The score of the winning size-k committee for our election is maxi∈[m],j∈[k] f(i, j). We can com-
pute a committee with this score using standard methods.

Next we show a somewhat stronger variant of Theorem 1, for the case of PAV.

Proposition 3. Finding a winning committee according to PAV is NP-hard for 2D-VR elections,
even if all voters v ∈ V have the same approval radius rv and the same size of their approval sets
A(v).

Proof. The statement holds for anyw-Thiele rule, for which 2w(1) > w(2) (so in particular, it holds
for PAV as in its case we have w(1) = 1 and w(2) = 3/2). As in the proof Theorem 1, we reduce
from the Independent Set problem for almost integral penny graphs (where the graph is given by
its geometric representation). Let (G, r) be an instance of IS, where G is an almost integral penny
graph and r is an integer. Let n denote the number of edges in G. We distinguish the following
points in R2 (we will use them as the ideal points of the agents):

Direct Vertex Points: For each vertex xi that is of degree three (i.e. which is not intermediate in
G), we have a vertex point located in the center of xi’s disk; we overload the notation and also
refer to this point as xi.

Intermediate Vertex Points: We distinguish the vertex points that correspond to intermediate
vertices. (i.e., those of degree two).

Edge Points: For each edge e = {xi, xj} in G, we have a point in the middle of e, to which we
refer as eij (we view edges in G as straight, unit-length line segments).

Intermediate Dummy Points: For each intermediate vertex xi, denote by xi1 and xi2 the vertices
that xi is adjecent to. Consider the line orthogonal to the edges connecting xi to these two
vertices, i.e., take the bisector of the line segment xi1xi2 and let qi on this bisector (on an
arbitrary side) such that its distance from the line segment (and, since xi lies exactly in the
middle of xi1xi2 , from xi) is ε, for any ε ∈ (0, 12 ).

Given I , we construct an election E = (C, V ) with the following candidates and voters:

1. The set of candidates consists of vertex candidates and dummy candidates: In each vertex
point xi we put one vertex candidate, called ci, and in each dummy intermediate point qi we
put one dummy candidates, called di.

2. We have the following two groups of voters: the edge voters: for each edge e = {xi, xj}
we have a voter located in point eij , who approves ci, cj , and the dummy voters: in each
intermediate dummy point qi we put one voter ui, who approves the candidates ci and di.

We set the committee size to be k = r. We ask if there exists a committee with w-score greater or
equal to s = 3r · w(1). This ends the construction.

Let us now show that if all the voters have approval radius 1/2 then they approve exactly the
candidates indicated above. First, observe that for each non-intermediate vertex xi of the penny



graph, the distance between point xi and each dummy intermediate point qi (i.e., each dummy
intermediate point associated with an intermediate vertex adjecent to xi) is at least

√
12 + ε2 > 1/2.

Thus the distances between the non-intermediate vertex voters and the dummy candidates, as well as
between the non-intermediate vertex candidates and the dummy voters, are strictly greater than 1/2,
and the respective approval ballots do not interfere with each other. Secondly, the distance between
any edge voter vij and a dummy candidate ci is at least

√
(1/2)2 + ε2 > 1/2. Further, it is clear that

if ε is sufficiently small, then for each qi, its distance from each non-intermediate vertex x` with
` 6= i is also strictly greater than 1/2.

The distance between any intermediate vertex voter vi and dummy candidate di is exctly ε < 1/2.
The same holds for the distance between dummy voter ui and intermediate vertex candidate ci.
Obviously, dummy candidate di and dummy voter ui are located at the same point. This completes
the proof that the voters’ approval sets are indeed as indicated in the construction, and in particular,
each voter approves exactly two candidates.

It remains to show that the reduction is correct. Let us assume that G is a “yes” instance of IS.
Take any independent set U of size r and define the corresponding committee to be SU = {ci |
xi ∈ U}, i.e., let SU consist of the vertex candidates corresponding to the members of U . Let us
calculate the w-score of SU : each candidate from the committee contributes 3w(1) points. Indeed,
each of them is approved by three voters. Every non-intermediate candidate is approved by three
edge voters, and each intermeidate vertex candidate is approved by two edge voters and one dummy
voter. So the w-score of SU is 3r · w(1), as required.

For the other direction, assume that there is a size-k committee S with score at least s = 3r ·
w(1). Each vertex candidate (intermediate or not) is approved by exactly three voters and, thus, can
contribute at most 3w(1) points to the score of the committee. However, each dummy candidate
di can only contribute at mots w(1) points to the score of the committee, as he or she is approved
only by the dummy voter di, so the committee S must consist of only vertex candidates. Further, if
vertices corresponding to the ideal points of the members of S did not form an independent set, then
at least one of the candidates from S would have contributed at most w(1) + w(2) < 3w(1) points
to the score of the committee. Thus, if S achieves a score at least s = 3r ·w(1), then the candidates
S have to form an independent set.

Theorem 2. Deciding if there is a MAV committee of a given size and with at most a given score
is NP-hard for 2D-VR elections (2D-CR elections) even if all voters (all candidates) have the same
approval radius and each voter approves the same number of candidates.

Proof. We reduce from the Penny Graphs Vertex Cover problem (PGVC), which is known to be
NP-hard (Cerioli et al., 2011, Theorem 1.2). Let I be an instance of PGVC, where we are given a
penny graph G = (X,E), and an integer k. We ask if there is a vertex cover U ⊆ X of G of size at
most equal to k.

From I we construct an election instance as follows. We define the set of candidates to be
C = {ci | xi ∈ X}, i.e., the centers of the unit disks representing the vertices of the graph G are the
candidates. Further, for each edge {x, y} ∈ E we add voter vxy located in the middle of the edge
(i.e., in the middle of the unit-length line segment connecting the centers of x and y), with approval
radius 1/2 (thus the voter approves candidates cx and cy). We ask if there is a size-k committee
whose Hamming distance to each voter is at most k.

As we have a penny graph, for each voter vxy and each candidate cz with z 6∈ {x, y}, the distance
from vxy to cz is sufficiently large so that vxy does not approve cz . Indeed, d(vxy, cz) ≥

√
3
2 .

Assume that I is a “yes” instance of PGVC and let U ⊆ X be a vertex cover of G. Let SU ⊆ C
consist of candidates corresponding to the vertices forming the cover of G. Then, every voter vxy
approves of at least one member of the committee SU . Additionally, there might be at most k − 1
candidates in SU that vxy does not approve of. Therefore, the Hamming distance of SU from an



arbitrary voter vxy is at most:

dHam(A(vxy), SU ) ≤ 1 + k − 1 = k.

For the other direction, suppose there is no vertex cover of G. Thus, for any set U ⊆ X of size
k there is an edge {x, y} ∈ E such that x, y 6∈ U . Take the edge {x, y} that is not covered by U
and consider the corresponding voter vxy . Since cx, cy 6∈ SU , and for any z ∈ U , the corresponding
candidate is not approved by vxy , we have that dHam(vxy, SU ) = |A(vxy)|+ |SU | = 2 + k, which
proves that for any committee S ⊆ C of size k, the Hamming distance of this committee from some
voter is strictly grater than k. This ends the proof.

The same reduction also proves hardness for the Chamberlin-Courant rule.

Corollary 1. Finding a winning committee according to CC is NP-hard in the 2D-VR elections
(2D-CR elections), even if all voters v ∈ V have the same approval radius rv and the same size of
their approval sets A(v).
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