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Abstract

Weighted voting games apply to a wide variety of multi-agent settings. They enable the
formalization of power indices which quantify the coalitional power of players. We take a novel
approach to the study of the power of big vs. small players in these games. We model small (big)
players as having single (multiple) votes. The aggregate relative power of big players is measured
w.r.t. their votes proportion. For this ratio, we show small constant worst-case bounds for the
Shapley-Shubik and the Deegan-Packel indices. In sharp contrast, this ratio is unbounded for the
Banzhaf index. As an application, we define a false-name strategic normal form game where each
big player may split its votes between false identities, and study its various properties. Together,
our results provide foundations for the implications of players’ size, modeled as their ability to
split, on their relative power.

1. Introduction

Weighted Voting Games (WVGs) are a class of cooperative games that naturally appear in diverse
settings, such as parliaments, councils, and firm shareholders. In recent years, they were found to
naturally appear in multi-agent systems such as VCG auctions [Bachrach et al., 2011] and other
online economic systems. WVGs are defined by a set of players, their weights, and a threshold T
A set of players forming a coalition must have an aggregate weight of at least 7. It is natural to
ask: What is a player’s power to influence decisions, or, alternatively, what is a player’s share of the
benefit of forming a coalition? This power measure does not necessarily comply with the player’s
proportional weight. For example, consider a WVG with a large threshold T, a big player with
weight T — 1 and a small player with weight 1. Despite the large discrepancy in their weights, a
consensus is required for any motion to pass, suggesting they have equal power. This view of power
considers a player’s pivotal role as “king-maker”— “To the victors go the spoils”.

Due to this reason, cooperative game theory studies power indices to capture the true effective
power of players in WVGs. This literature views the power index of a player as a numeric predictor of
utility. The most prominent power indices include the Shapley-Shubik index [Shapley and Shubik,|
[1954] which stems from the more general Shapley value Shapley, 1952|, and the Banzhaf index
[Banzhaf I1I, 1964]. Other power indices emphasize different aspects of the power structure, such
as the Deegan-Packel index |[Deegan and Packel, 1978], which we also study. Our work lies in the
intersection of three strands of WVG literature:

Big vs. small players and group power. We layout a WVG model with big vs. small players
and study the power of big players compared to their vote proportion, assuming that all player
weights are natural numbers and consider all players with weight larger than 1 as “big” and all
players with weight 1 “small”. The inequality in voting — “big vs. small” — is a main drive for
the study of power indices, going back to the formation of the US electoral college.
points out that Luther Martin of Maryland, a staunch anti-federalist and one of the US founding



fathers, analyzed the then-forming electoral college in a manner similar to the Banzhaf index. In

the compilation by [2008], p. 50, Martin claims:

The number of delegates ought not to be in exact proportion to the number of inhabitants,
because the influence and power of those states whose delegates are numerous, will be
greater [even relative to their proportion] when compared to the influence and power of
the other states...

The contrast between big vs. small players exists not only in traditional voting settings but also in
modern contexts. For example, we see multiple situations in which several small websites (where
here “small” is in terms of their number of users) aggregate their market power by forming a unified
service platform to compete with a big incumbent website. Similarly, we see an aggregation of
computational power (e.g., mining pools in Bitcoin, consortia of cloud computing services). The
other direction of a big player splitting itself to multiple small identities also exists, even when such
a split is costly in terms of advertising and maintaining the brand, e.g., flight search engines and
web hosting services.

Shapley and Shubik| [1954] demonstrate that in the settings of one big player and many small
players, the power of the big player can be higher than its proportional weight. They do not answer
(nor ask) the question of how large this ratio can be. They also do not analyze the opposite direction,
of whether this ratio is bounded below by some constant, possibly smaller than 1. As we explain
below, our results generalize and answer these questions. Beyond the case of one big player and
many small players, which we completely characterize, our model and results extend in two aspects:

o Arbitrary number of big (and small) players - We obtain results regarding the power vs. pro-
portion of any specific one big player and regarding the aggregate power of big players. As the
distinction between big and small immediately suggests, the relative power of these groups now
becomes the focus. Examples for such groups are the top 1% wealthy people, the G7 coun-
tries, Bitcoin’s large miners. These settings typically involve a few big players and many small
players. Milnor and Shapley! [1978] and Neyman| [1981] take this to an extreme by considering
so-called “oceanic games” where there are a few significant large players and a continuum of
small players. In contrast, our results are not asymptotic and hold for any arbitrary number
of big and small players.

e The Banzhaf and Deegan-Packel indices - Since different power indices structuring naturally
encapsulates different aspects of strategic power, it is important to compare the results of
different indices given our model, and more so as the Banzhaf index gives qualitatively different
results than the other indices.

Power vs. Proportion. Our main theoretical results, given in Sections[3}f5} characterize the ratio
between the aggregate power of the big players and their aggregate proportional weight for different
power indices. Most previous literature analyzes ways to adjust voters’ voting weights in order to
equate voting power to actual weight. An early suggestion by is that, in the UN,
states should be assigned seats proportional to the square root of their population, in order to achieve
proportional representation for each citizen, worldwide, regardless of her state. [Stomczynski and|
[Zyczkowski, 2006} Stomezyriski and Zyczkowski, 2007] further suggest an improvement in the form
of the double square root voting system, where on top of assigning seats proportional to the square
root, the voting threshold (quota) of the representative body itself is determined so to optimize
proportionality.

More recent attention to whether a good choice of the quota can attain proportionality is found
in |Zick et al., 2011; |Zick, 2013} Oren et al., 2014; [Bachrach et al., 2016b; Bachrach et al., 2016a).
Theoretical guarantees, experimental results, and probabilistic models are suggested, for which this
occurs. For example, these works collectively establish that under some probabilistic assumptions,
setting the threshold T to be about 50% of the total sum of weights results in power being equal to




proportion with high probability. In contrast, our worst-case analysis of this problem does not depend
on probabilistic assumptions that might not hold in reality, due to the independence assumptions
or specific properties of the distributions. We also show examples, where the threshold is very close
to 50%, and the power is far from proportional. In addition, it may not be possible to tune the
threshold T because of exogenous dictates (e.g., important parliament votes, where a two-thirds
majority is required) or because the model aims to capture some underlying reality (e.g., over the
Internet) that constrains 7.

A third approach focuses on the probabilistic modelling of the WVG weights. For example,
land Tauman| [2014] show that if player weights are sampled uniformly from the unit simplex, the
expected Shapley-Shubik power of a player relative to its proportion goes to 1 with rapid convergence
in the number of players. |[Lindner and Machover| [2004] study a different model where the ratio of
the Shapley-Shubik index to proportional weight in infinite chains of game instances asymptotically
approaches 1. |Chang et al| [2006] follow up with an experimental analysis of a similar model thus
further verifying the previous conceptual conclusions.

False-name manipulation in WVG As an application of our main results for power vs. propor-
tion, we define in section [f] a false-name strategic normal-form game where each big player may split
its votes between false identities. |Aziz et al| [2011] are the first to study power indices in the con-
text of false-name manipulation, showing upper and lower bounds on a player’s gain (or loss) from
splitting its votes into two parts, for the Shapley-Shubik and Banzhaf indices. They also address a
range of computational issues, among them the decision problem of splitting into two equal parts,
which is NP-hard for both indices. |Faliszewski and Hemaspaandra| [2009] show that the decision
problem of benefiting from splitting into two equal parts to be in PP, and [Rey and Rothe| [2014]
show it is PP-complete for the Shapley-Shubik index, PP-complete for the Banzhaf index with three
equal splits, and PP-hard for both indices with general splits.

Our results contribute to the above literature on false-name splits by unifying it with the two
previously mentioned aspects (‘big vs. small’ and ‘power vs. proportion’) and by generalizing on two
additional fronts:

e General splits - We consider splits into multiple identities, rather than splits into two or three
identities. |Lasisi and Allan| [2017] initiated work on this more general problem, where they
show some upper and lower bounds for the individual power gain from general splits compared
to the original power. These bounds assume that only a single agent splits, whereas the bounds
we provide hold under any combination of strategic manipulations by the agents.

e Global bounds on manipulation - By our results for the power vs. proportion we extract useful
global bounds on manipulation. Regularly power is compared before and after splits. Since
previous work shows the most basic questions in regard to successful power manipulation to
be computationally hard, developing global performance bounds is important.

2. Preliminaries

Weighted Voting Games (WVGs), starting with weighted majority games [Morgenstern and Von Neu-|
imann, 1953; [Shapley, 1962], aim to capture a situation where several players need to form a coalition.
Each player has a weight, and a subset of players can form a coalition if their sum of weights passes a
certain threshold. In this paper, we make a distinction between “big” versus “small” players, where
small players have a weight of one. Formally,

Definition 2.1. (Adapted from |Shapley [1969]) A weighted voting game is a tuple { A, m, T} with

m

—— r
A={ay,..,a,},M ={1,...,1}, 1§T§m+2aj,
j=1




where ay, ...,ar.,m, T € N, there are r “big players”, m “small players” of weight 1, and a coalition
threshold TEl We at times denote the small players as 11,...1,,. Note that A is a multiset. When
we write A\ {i}, for some weight i, at most one occurrence of i is removed from A.

A basic question in WVGs is how to split the gains from forming a coalition among its members.
One possible notion of fairness is to split gains in a way that is approximately proportional to the
weights of the coalition members.

Definition 2.2. The proportional value of a weighted voting game is P(A,m,T) =

However, reality tells us that many times the “power” of players is different than their propor-
tional weight. Well-established literature on power indices formally studies this by looking at our
setting as a cooperative game. For the analysis we have the following value function v(S) which
describes whether a subset of players S C AU M is able to form a coalition:

1 > s>T
U(S) = ses
0 otherwise.

We next compare the aggregate power of the big players, using several three well-known power
indices, to their aggregate proportional weight.

3. The Shapley-Shubik power index

Define the ordered tuple A+ M = (aq,...,ar, 11, ..., 1;). Let Sy,4- be the group of all permutations
operating on m + r objects. For some o € S, 1, 0(A+ M) is the ordered tuple which results by
applying the permutation o to A + M. We usually omit the term A 4+ M when it is clear from
the context. Define o|,,d|, as the set of all players (strictly, non-strictly) preceding player p in
permutation o(A + M). The permutation pivotal player indicator function for a player p is

1y0 =v(5]p) —v(oly).

In words, the indicator 1, , is equal to one if the players preceding p in the permutation o (A + M)
do not form a coalition and adding p enables the coalition formation. In such a case, we say that p
is pivotal for o. Note that 1, , € {0,1} and that each permutation has exactly one pivotal player.

Definition 3.1. (Adapted from [Winter, 2002/) The Shapley-Shubik power index of a weighted voting
game (A,m,T) is

¢p(A, m, T) = EUNUNI(Serr) []IP;U]’

for a player p (whether a big player a; or a small player 1;), where UNI is the uniform distribution
over a discrete set.

This definition is a special case of the Shapley value applied to WVGs. Three well-known properties
of this power index are:

1. There is some loss of generality by fixing the parameters a;,T to be exact multiples of the weight of the small
player. Our model can be slightly generalized as follows: Let s be some minimal weight corresponding to some
operational or regulatory minimal size of a venture, or to an electoral threshold for parliaments. Any player with
an integer weight s < w < 2s is termed “small” as small players are the ones that cannot split. The model as
presented corresponds to the case s = 1 for tractability and readability but we believe that our results hold for
the more general model as well.



e Symmetry. a; = aj — ¢q,(A,m,T) = ¢a;(A,m,T). This implies that for any two small
players i, j, ¢1,(A,m, T) = ¢1,(A, m,T). Thus, for simplicity, we sometimes write ¢1 (A, m,T).

e Efficiency. ) ¢4, (A,m,T)+m¢p1(A,m,T) =1, ie., the sum of all players’ Shapley-Shubik
j=1
indices is 1.

e Non-Negativity. The Shapley-Shubik index of any player p is non-negative: ¢,(A,m,T) >
0.

Definition 3.2. The Shapley-proportional ratios are the global supremum (infiumum) over all
weighted voting games
Z ¢aj (A7m7T) Z ¢a]’ (A,m, T)
i=1

R,= inf =00
2T Amr P(A,m,T)

Ry= sup = @
¢ Am,T P(Aama T)

Note that R, > 0 because of non-negativity.

Example 3.1 (R, is at least 2). For some k > 2, consider A = {k},m =k —1,T = k. Then
bay (A,m, T) =1, while P(A,m,T) = 5 + 57—-

In fact, this asymptotic lower bound is tight:
Theorem 3.1. R¢ =2

To prove Theorem we first show in lemma a recursive relation for the Shapley-Shubik
index. We are then able to give an inductive proof of Theorem [3.]in Appendix A.

Lemma 3.1. The following recursion holds for ¢1

1 T=1
m—+r
ld,m,T) = mL(Z¢1<A\{ai},m7T—ai>+<m—1>¢1<A7m—1,T—1>> T>1

1<i<r
a; <T

The following example shows that R, = 0.

Example 3.2. For any k > 2, choose A = {k},m = k,T = 2k. Then ¢, (A,m,T) = % while
P(A,m,T) = %

In example a big player has less power in terms of the Shapley-Shubik index than its pro-
portional weight. In the next example the opposite holds:

Example 3.3. For a single player, it may hold that its individual power to proportional weight ratio

is unbounded: Consider A ={2,k},m =1,T = k+3. Then ¢q, (A, m,T) = % while —4— = k—f_?)
m-+ Z:l aj

j=

Nevertheless there does exist an upper bound on the Shapley-Shubik index of any individual big
player:

a;

Theorem 3.2. ¢, (A,m,T) < .
m+r



Proof. Let S, be the set of all permutations over n items and o(A) for some ordered set A and some
o € S, is the ordered set after applying o. For j € {1,...,|A|} let 0;(A) be the element in the j-th
position of the ordered set o(A4), and o|_;(A) be the ordered set of size |A| — 1 obtained by omitting
the element in position j of o(A).

Two ways to think about sampling permutations for the calculation of the Shapley-Shubik index
uniformly at random are the following: First, we can take S,,,, the set of all permutations that are
possible to apply to A+ M, and sample o ~ UNI(S,,+,). Equivalently, for a fixed player a;, we can
choose its position in the permutation applied to A4+ M, namely 1 < j < m+r, uniformly at random,
and then sample a permutation over all other players 0’ ~ UNI(S,,4,—1). We then denote o, (j,0")
as the unique permutation that has o [;(A+M) = a; and o}, | _;(A+M) = o' (A\{a;} +M). Also
recall [m + r] is a short-hand notation for the set {1,...,m 4 r}. This enables rewriting ¢4, (A, m,T)
in terms of total expectation:

¢¢11‘, (Aa m, T) = ]EUNUNI(SerT) []]-117‘,,0} =
1
Eo nUNT(Smsr-0) [BinUNI(mtr) Lasoz (G0 | 0] <

a; a;
EO'/NUNI(SWL+T71) m+r = m+r

—~
N2

The transition in (1) is by the following argument. Let v;(c’) be the sum of the first j elements
in ¢’. By definition, a; is pivotal in o} (j,0) iff vj(0’) < T and v;(0’) + a; > T. Each choice of
j determines a unique integer value for v;(c’). ILe., there are overall a; integer values that have
the property that their sum is smaller than 7" and with the addition of a; their sum is at least T,
namely 7' — 1,...,T — a;. There are at most a; unique values of j (and, as a result, of v;(c’)) that
would result in j being pivotal for o7 (j,0’). This is out of the total of m + r possible values for j,

uniformly chosen. So for any ¢’ the inner expectation is bounded by ma_;r. O

4. The Banzhaf index

We show a contrary result for the Banzhaf index [Banzhaf 111, 1964], where an asymptotic example
has an unbounded ratio of aggregate big players’ power over their proportion.

Definition 4.1. (See [Dubey and Shapley, 1979]) Let P(S) be the power set of S, and UNT be the

uniform distribution over a discrete set. The Absolute Banzhaf index of a WVG is:

By (A,m,T) = Eguni(pa\{a:yur [0(S U{a;}) —v(S)]
B1(A,m,T) = Es unipavm\{1}) [v(SU{1}) —v(S)].

The Normalized Banzhaf index is:
Ba,(A,m, T)

> B, +mBi(A,m,T)

j=1

/Bai, =

While the Shapley-Shubik index gives equal probabilities to all permutations over players, the
Banzhaf index gives equal probabilities to all subsets of players. The normalization is needed to
achieve the efficiency property, where summation over the indices of all players sums up to exactly
one. The absolute Banzhaf indices may sum to less or more than 1. For an individual absolute
Banzhaf index, by definition

Bo,(A,m, T) <1 (1)



Definition 4.2. The Banzhaf-proportional ratios are the global supremum over all WV s

> B, (A,m,T)
1

R 1= S —i:
b Ab,}iLI?T P(Av m, T) '

A similar definition holds for Rg.

While the power of the big players cannot be much larger than their proportional weight according
to the Shapley-Shubik index, the Bhanzaf index gives a different result:

Theorem 4.1. Ry, Rg are unbounded.

The proof of Theorem given in Appendix D, shows that the ratio in the following example
goes to infinity with k.

Example 4.1. Consider A = {2k},m = k!5 T = M Then for k = 1600, we have

3200

P(Am.T)=— "2
(Am, 1) = 350 160015

2—11, B, (A,m, T)~0.999999.

The intuition for the calculation is as follows. Since there is only one big player, and all other
players have a weight of one, only the size of the subset of other players matters for the index.
Choosing a subset S of small identical players with uniform probability is like letting each small
player participate in the chosen subset with probability % (a Bernoulli trial). So, the size of the
subset is sampled from the Binomial distribution with parameters B(m, %) Measure concentration
properties of the symmetric binomial distribution around its mean imply that with high probability
the size of the sampled set is close enough to % so that the big player in the example is pivotal.
Details of this calculation can be directly extracted from the argument in the proof of Theorem [£.1]
The normalized Banzhaf index is for these parameters is:

0.999999

~1.
0.999999-+16001-5 - 3.52795 % 10—33

/Bal (A7 m7 T) ~

This yields 21 for both the ratio of absolute Banzhaf to proportion and normalized Banzhaf to
proportion.

Example is in the spirit of Section b of and the asymptotic results analysed
in Section 7 of [Dubey and Shapley, 1979]. As far as we know, the exact bound that we derive along
with its the formal analysis are new.

Theorem 7 of |Aziz et al., 2011] states that if a single player splits her votes between exactly
two identities, its power as measured by the Banzhaf index cannot increase by a factor larger than
2. In contrast, Theorem [{.1] above shows that, with general splits, a player might end up decreasing
its power by an unbounded factor. This paints an overall non-favorable picture for false-name
manipulations as measured by the Banzhaf index.

5. The Deegan-Packel index

Definition 5.1. An all-pivotal set in a WVG is a set S such that for any player s € S, v(S) —v(S\
s) = 1. Let the set of all-pivotal subsets be AP. The Deegan-Packel index is:

]]-LLZES:|
I

pa; (A,m, T) = Esuniap) {

where UNT is the uniform disribution over a discrete set.



Thus, the Deegan-Packel index is similar to the Banzhaf index but takes into account only the
all-pivotal subsets that are, in a sense, the minimal coalitions. It also considers the size of the
coalition, so participation in a large coalition results in less “power” than being a part of a small
coalition. One can verify that this index is efficient, i.e., the sum of indices of all players is always
exactly one.

Definition 5.2. The Deegan-Packel-proportional ratio is the global supremum over all WVG's

Z p(l"i, (A7 m7 T)
R,= sup =2 |
v Am,T P(Aam7 T)

Example 5.1. R, > 2: Let A= {k},m=k—1,T =k. Then p,, (A, m,T) =1, while P(A,m,T) =
k

2k—1

Theorem 5.1. Rp < 3.

The theorem follows from lemmas given in appendices E,F. It exploits properties of the all-pivotal
coalition in two threshold regimes: If the threshold is large, we show that enough small players must
participate in an all-pivotal coalition, making the relative power of the big players in such a coalition
small. If the threshold is small, we are able to use algebraic manipulations over binomials to derive
the bound.

6. A Power Index False-name Game

In this section, we consider a framework general to all power indices under the possibility of votes
split by big players in the voting game. Our discussion focuses on the Shapley-Shubik power index,
where we give a conjecture with empirical results. We begin with a notation. Given a natural
number a, define the integer partitions of a as

Partitions(a) = U {b1,...,b;}

i=1

> bj=a,¥i_b €N

j=1

In words, the partitions of a are all the different multi-sets of natural numbers such that their sum is
a. Note that we allow several big players to split into multiple identities each, which is stronger than
many other incentive analyses of false-name attack where only one strategic player is considered.

Definition 6.1 (The false-name weighted voting game for a power index o € {¢,f3,p}). Let
{A,m, T} be a WVG. We define a non-cooperative game with |A| strategic players (which are the big
players in the WVG). The strategy space of each strategic player is Partitions(a;). Given strategies
s; ={b},..,b5'} for 1 <i<r, let B={b],.. bil,é bl ...,b¢ Y. The payoff for player i is

Yt

U (1, .ory Zab7BmT

Let ¢ = Z ¢; stand for the total number of elements in B.
i=1

We wish to understand how the option to split (submit false-name bids) changes the power of
the strategic players. The previous section sheds light on this question:

Theorem 6.1. When o = ¢ (the Shapley-Shubik index), then for any tuple of strategies s1, ..., Sy,
Zu (81, ey ) <2P(A,m,T).

In particular, this happens in any mized or pure Nash or correlated equilibrium of the game.



A similar result holds for the Deegan-Packel power index, but with the ratio 3.

Proof. By Theorem [3.1} given By, s, as the set of big players there (where the number of big
players is ¢), we have

IR > aj
j=1

T cq
i=1j=1
ZZ (bbz (BSI)“~7S'r"m7T) S 2 l -Z‘ [ . = 2 T :
i=1j=1 m+3> > b m+ Zlaj
i=

O
Thus, strategically splitting vote weights using false-name manipulations cannot increase the

overall power of the big players to be more than double their proportional weight. On the other
hand, we conjecture that such strategic manipulations cannot harm their overall Shapley-Shubik
power:

Conjecture 6.1. For the Shapley-Shubik index ¢ with any weighted voting game {A,m, T} and a
choice of strategies resulting in a corresponding weighted voting game {B,m, T}, it holds that

Zd)aqz(A?mvT) < szl:qsb{(varT)
=1

i=1 j=1
Remark 6.1.
o Section[6.9 gives empirical results supporting the conjecture, obtained from an exhaustive search

over small WVGs.

a;
—
° Theorem is a special case of the conjecture, where each playeri’s strategy choice is {1,...,1}.

o Theorem 6 of [Aziz et al., 2011 states that a single player that splits her votes to exactly two
identities cannot decrease its Shapley-Shubik index by more than a factor of "74'1 Our conjec-
ture gives a much stronger bound for the aggregate power of big players: the worst decrease of
aggregate power, caused by any combination of splits, is by a constant factor of 2.

Combining Theorem [6.1] and Conjecture [6.1] yields:

Corollary 6.1. For all strategies si, ..., s, in the Shapley false-name WVG {A,m, T}, if Conjec-
ture holds,

1 T T
5 Z@“ (A,m,T) < Zu‘f(sl, vy 8r) < 2P(A,m,T).
i=1 i=1

To conclude, false-name attacks can unboundedly increase the aggregate Shapley-Shubik power
index of the big players, e.g., by splitting to singletons (Example . However, no attack can
increase the power to more than twice the power resulting from the simple attack of splitting to
singletons (Theorem [6.1)). False-name attacks can also decrease the Shapley-Shubik index (Exam-
ple. However, we believe, as expressed in Conjecture that no false-name attack can decrease
the aggregate Shapley-Shubik power to be less than one-half of the original power.

6.1 The worst-case effects of false-name manipulation for a single player

While the total utility of the big players is conjectured to not lose much by splits, a single player
may multiplicatively lose arbitrarily much in B compared to A. This is evident by Example [3-3] but
we give two additional examples that do not require all players to fully split. In the first example,
the player that chooses not to split loses by this choice. In the second example, the player that
chooses to split loses by this choice.



k k
. —~ =
Example 6.1. Consider A ={k,k,k},B={k,1,..,1,1,...,1},m =k, T = 4k. Then

1 1

¢a1( , 1M, ) k+3 ¢b1( s ) 3k+1

Thus, with k > 6, the ratio is higher than 2. The example can be generalized to exceed any bound r,
T

r+1 k k
with A =Tk, ok}, B = {6}, 10, 10 {0, o 1 hm =k, T = (r + 2)k.

k
—
Example 6.2. Consider A= {k,k},B={1,....1,k},m=0,T =k+ 1. Then

1

1 G
¢a1(A,m,T):§ Zd)b]l(B,m,T):m

j=1

The basic upper bound on the power of a single big player that Theorem [3.2] yields, continues to
hold under the possibility of splits, and it decreases as the number of splits increase:

Corollary 6.2. For a player i, and any strategy choice s1, ..., s, of the players, it holds that:

il THM B3
uf(s15e0y80) = G (Bom.T) <

Jj=1

S
Z z *Zm—&—r—k(ci—l)_

=tm+ Y e g=1
k=1

a;

m+r+(c;—1)

This further yields another result.

Corollary 6.3. For the settings where there is a single big player a1, m small players, and any
threshold T, the big player has a strategy that guarantees at least % the power of its best possible
strateqy.

Proof. We start by showing that P(A,m,T) > %Sups1 u(f(sl), and then give a strategy s; that
attains u?(s1) = P(A,m,T).
If ag > m, P(A,m,T) >

index.

% > %supSl uf(sl), by the efficiency property of the Shapley-Shubik
Assume a; < m. The big player is the only strategic player in the game. By Corollary for
any strategy si,
al < 2&1
m—+1~" m+a

uf(s1) < = 2P(A,m,T).

Thus, the proportional value for the big player is at least half as good as the best possible strategy.

ai

——
By the symmetry property of the Shapley-Shubik index, s; = {1,...,1} (“full split”) guarantees the
proportional value. O]
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Figure 1: Ratio of big players’ power before and after splits

6.2 Experimental results

-
To support Conjecture (6.1, we ran an exhaustive validation over all WVGs with m < 25, >~ a; < 25.
j=1
A total of 5,833,920 WVGs were checked against all valid sub-partitions of them, resulting in a
total of 1,246,727,916 valid pairs being compared. The maximal ratio attained was 1.958333’. The
minimal ratio attained was 0.08. The exhaustive search consists of two parts. First, using dynamic
programming over a dual recursion to that of Lemma (see Appendix I), we built a full recursion
table of all Shapley-Shubik indices for the WVGs in the range. Then, for each WVG we considered
all valid partition strategy sets B.

While the maximal ratio over all instances of the experimental analysis was close to 2, in most
instances the ratio was much closer to 1. Figure|l|shows a histogram of the number of cases (on the
y-axis) for different possible ratios between 0 and 2 (on the x-axis). As can be seen from the figure,
the ratio is concentrated around 1.

7. Discussion and Future Directions

Many questions remain open. We find Conjecture [6.1] hard to prove even in limited settings. For
example, consider the WVG {B,m, T} where m < T < Z‘l]ﬂ b;, i.e., the overall weights of the small
players are less than the threshold, which itself is less than the overall weights of the big players.
In this case it is possible to show that if we take A = {Zyill b;}, i.e., a single big player, then that
player has a Shapley-Shubik index of 1 in the WVG {A,m,T}. The conjecture’s inequality in that
case then states that the sum of Shapley-Shubik indices of the big players in B is larger or equal

to % This reads as a very clean combinatorial problem: If we draw a permutation at random over

a multiset of integers m x {1} U B, with m < T < Z‘zﬂ b;, then the probability that the pivotal
player (crossing the threshold T') is “big” is higher than the probability that it is “small”. This can
be even simplified further if we assume all big players are of identical size k.

Section [6]is developed in regards to the Shapley-Shubik index. The negative nature of the results
in section [l make a similar treatment of the Banzhaf index superfluous, but the Deegan-Packel index
might induce a similar conjecture and experimental results. The model itself could be generalized
so that the threshold value T" and big players’ values A are not a multiple of the small players value,



or into some other idea of looser distinctions between big and small players. Tight bounds can be
derived for the Deegan-Packel index, and similar results explored for other power indices in common
use, such as these by [Johnston| [1978], [Holler and Packel| [1983] and |Coleman! [1971]. Generalizing
our results to a larger class of cooperative games is also interesting.
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Appendix A. Proof of Theorem through three lemmas

Lemma 3.1. The following recursion holds for ¢

1 T=1
m-+r
pdm = L <I;<T¢1<A\{ai},m7T—ai> + (m=1)¢1 (A, m—1,T — 1>> r>1
a;<T

Proof. Fix a small player for which we measure the expected number of permutations where it is
pivotal. The recursion is done by the conditional expectation on the identity of the first player in
the permutation. If 7' = 1, then only iff our fixed player is first, is it pivotal, which happens in
probability #ﬂ For T > 1, if the first player in the permutation is a; and a; > T, then our fixed
player is not pivotal. If it is some big player with a; < T, then the problem reduces to the WVG
with parameters (A \ {a;},m,T — a;). Similarly, if a small player different than our fixed player is
first (for which there are m — 1 alternatives), the problem reduces to the WVG with parameters
(A,m—1,T—1). If our fixed player is first, it is not pivotal. All the above events are with a uniform

probability of mir. O
Let r; = [{t}1<i<r,a;=j|, the amount of big players with weight equal to j, and let a = max A.

We have by definition

T:er, Zajzzrj'j' (2)
=2 J=1 =2

Lemma A.1. R¢ =2, if for any WVG parameters (A,m,T) it holds that

m— Zri min(z, T)
¢1 (A7m7T) > =2

m (m + Zri min(4, T))

=2




Proof. By Example[3.1] Ry > 2. We thus show R, < 2. By the premise of the lemma,

a
m— Zri min(z, T')

$1(A,m,T) > = >
m (m + Zri min(4, T))
i=2
a T (3)
m — Zri 1 m— Zaj
i=2 Eq.[A j=1
m(’”*Z’”i”‘) m|m+) a
i=2 =
Now,
" € sym E ‘
Z¢aj (Aam7T) ffgy 1= md)l(A?maT) qS
j=1
m-Sa Y (4)
1-—2 0 9 =L _op(A,m,T)

m—l—Zaj m—l—Zaj
j=1 j=1

_ If we divide both sides by P(A, m,T'), and since this holds for any parameters (A, m,T), we get
Ry < 2.
O

Lemma A.2. For any WVG (A,m,T),

m— Zri min(z, T')
¢1 (A7m7T) > i:i

m (m + Zm min (4, T))

=2

Proof. We prove the lemma by induction on the threshold Value T. ForT =1, we have 01(A,m,T) =

L > _m=r_which satisfies the condition of Eq. [3] since ZT’ min(i, T) = Zri = r. Now take

m+r — m(m-+r)’
=2
a threshold value T', and assume for all lower threshold Values and any A,m, the condition holds.

We make several justified assumptions:

e Recall that ¢ = max A, the largest weight of a big player. We assume w.lo.g. a < T. If
it is strictly higher than T, consider the game A’ where all a; > T values are set to T.
Then ¢1(A,m,T) = ¢1(A’,m,T) because these players are pivotal iff they appear in the
permutation without a preceding pivotal player, in both cases. For A’, ' = max A’ =T, r;- =
{ihi<i<ra=j| and

a

a’ T a
Zré min (i, T) = Zri min (i, T) + Z riT = Zri min(i, T).
i=2 =2

i=T+1 1=2

So proving the induction assumption for (A’,m,T) also proves it for (A,m,T).



T
e We assume m > Zaj. Otherwise we have by the non-negativity property of the Shapley-
j=1

Shubik index,

T

a
m— Z a; m_zri min(i7 T)
my(A,m,T) 20> 71 & =2 ,
J’_ . ) . .
m j;l aj m+ Zrl min(z,T")

i=2
where (1) is since a < T, and therefore for 1 < i < a, min(i, T') = i.

T
e We assume m > 2, as otherwise, by the m > Zaj assumption, A = ) and ¢1(A,m,T) = %7
j=1
which is exactly the required induction hypothesis in this case.

We now develop the induction step. We can write

meo1(A,m,T) Lemma B (Induction step)
Z¢1(A\{ak}7m7T_ak)+(m_l)¢1(A7m_laT_]')
1<k<r
~an<T _
m—+r
Expl Exp2
T-1
(m_l) ¢1(A7m_17T_1)+ Z T ¢1(A\{Z}7mvT_Z) (1)
m- =2 S
m—+r o
T
m—1-— er min(j, T — 1)
1 ( =2
. m - +
m-+r T
m—1 —l—ermin(j,T— 1)
j=2

T_1 m—(ZTj min(j, T — z)) —(r;—1) min(s, T—1)

ZT‘ 2<j#i<T )(i)
i m+(ZTJmln(]’T_Z))+(Tz_1)mln(z,T_Z) =

1=2
2<j#Ai<T
T a a
m—ZaJ m—er~j m—Zr]mm(],T)
j=1  Eq.[g j=2 3 J=2
T - a - a ’
m—!—Zaj m—|—Z7“j-j m+ermin(j,T)
j=1 j=2 j=2

where in (1) we replace Expl and Fxp2 by the induction hypothesis for lower values of T, and
for Exp2 note that in the game (A \ {i},m,T — i) for any weight 2 < j # ¢ < T, the number of
players with weight j is r;, but for the weight ¢ it is r; — 1. In 1emma of the appendix we show
(2), and (3) is since a < T. The RHS is the inductive result required by Eq. (3). This completes

the induction step.
O



Appendix B. Proof of step (2) in the Induction step|equation, used in
the proof of lemma in Appendix [A]

Lemma B.1.

T
m—1— er min(7,7 — 1)
m j=2

m+r T
m—l—i—ermin(j,T— 1)
j=2

_|_

Z rymin(j, T —14) | — (r; — 1) min(¢, T — 7) m*Zaj
j=1

T-1 _—
E : r 2<jAI<T -
m+r =
i=2 m+ | Y rymin(,T =) | + (i — 1) min(i, T — i) m+zaj
2<jAI<T

Proof. We define (within the following equations), G~ (A, m,T,i),GT (A, m,T,i) for shorter nota-
tions. Observe that for any weight 2 < < T — 1,

G AmT) L m— [ Y mminG, T4 | - (r — Dmin(i, T - i) >
2<j#i<T
T T
m— Z g —TT-(T—1)—(ri—1)i=m—2rj~j—&—rT—i—i:m—Zaj—l—rT—&—i7
2<jAI<T—1 j=2 =1

and similarly,

T
G (A,m,T,i) o Z rymin(j, T — 1) +(ri—l)min(i,T—i)gm—&—Zaj—rT—i,
2<jAI<T j=1

ermln], -1 Za]—rT

By making the relevant substitutions to the LHS of the lemma’s claim, we thus have,

T
m—l—ermin(j,T—

3 _
m j=2 AmTz)>
m-+r T Zerr GT(A,m,T,i) —
m—1+> rmin(,T-1) ;=9
T . 5)
m—Zaj+rT—1 -1 m—ZaH—rT—H‘
m j=1 T j=1
m—+r m+r

T T N
m—i—Zai—rT—l i=92 m—i—Zai—rT—i
j=1 j=



For the case where rr = 1 we further have

i T
m— Y aj+rp—1 54 m— Y aj+rr+i
m j=1 T j=1 B
m-4r u +Zm+r " o
m+ Y aj—rp—1 =2 m+ > a;—rr—1i
j=1 j=1
T T
m— 3 a; T-1 m—ZaﬂrHl(l)
m =1 T =1
Ly S
mer m+ > a;—2 im T m+ > a;j—i—1
J=1 =1
v v (6)
m— > a; 7 m— > a
m+1 =t T j=1
T T -
mer m+ Y a; i m+ Y a;
j=1 j=1
T-1 r r
m4 Y ritre M= ya; m= 3 a
= = i=1
T - r )
TET me Y mt Y
j=1 j=1
1
where for (1) note that by arithmetics, Zn > mt .
m+ > a;—2 m+ ) a;
j=1 j=1
We next treat the case where rp # 1.
T T
m—> aj+rr—1 ;4 m— > aj+rr+i
m j=1 T j=1 (;)
T T —
mer m+ > a;—rp—1 i mtr my, a;j—rp—1i
Jj=1 j=1
. .
m — a; aj +nr—rp)rp
j; / (j; ! ) 2mreT @
T + T - T T —
m+ 3 aj—rr  (m+r)m+ 3 a;—rr)  (mAr)im+ 3 a;—rr—1)(m+ 3 a; —rr)
j=1 j=1 Jj=1 j=1
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We develop (1) in Appendix We prove (2) by examining two cases, based on the value of rr.
1. If rp = 0, it is immediate by assignment.

2. If rp > 2, we have

Expl Exp3
” Exp2 - Efﬁl
Zaj+r—rT2rT~T+r—rT2 2T, m—i—Zaj—rT—lZm—i—rTT—rT—lZ m

Jj=1 Jj=1



which allows us to replace Expl with Fxp2, cancel Exp3 and Expd with each other, and arrive

at
Expl
I
”
m— Y a; (Z aj +r—rr)rr Ezpd
j=1 j=1 2"m rpT
r + r - r ” 2
m+ Zlaj_rT (m +r)(m + Zlaj_TT) (m+r)(m+2aj—rT—1)(m+Zaj—rT)
J= J= : =1
j=1 J
Exp3
r Exp2
m— 3 a; ;p\
Jj=1 2T rT 2TTT
T + r - T =
m+ > aj—re  (m+r)im+ Y a;—rr) (mA+r)(m+ ) a;—rr)
j=1 j=1 j=1
T T
m— Y a; m— Y a;
j=1 j=1
T Z T
m+ > a;—rr  m+ > qj
=1 j=1

Appendix C. Expansion of the steps taken to derive (1) in Eq. El

A note on notation - before each equality/inequality, we mark the expressions that are to be manip-
ulated in the subsequent step. We note that these expressions are not related to the next ones after
the equality /inequality sign. For example, Eaxpl and Exp2 are central to transformation (1), but
they are unrelated to Fxp3 and Fap4, which are marked because they are central to transformation
(2). After giving the full chain of inequalities, we explain each transformation.

Expl Exp2
T T
m—> aj+rr—1 54 m— > aj+rr+i
m 7j=1 T j=1 (_)
m-+r - m+r : .
m+ > aj—rp—1 = m+ > aj—rp—1i
i=1 i=1
Exp3
r A~ r
m— Y a;+rr 2rp =23 a;
m j=1 j=1
: + +
m—+r

3
_|_
M=
u@
I
<3
~

T T
(m+ Zlaj —rp—1)(m+ Z1aj —7r7)
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|
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a; +rr

1 = 2ma (2)
E T jrl + IS m >
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Jj=1 ° j=1

j=1

FExp4
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m— Y a;+rr 2% a;
m 7j=1 J=1
m+r ' T - T T +
m+ Y a;—rp (m+ > a;—rp—1)(m+ > aj —rr)
Jj=1 7j=1 Jj=1
Exp5
—_—
-
T-1 m— > aj+rr .
1 j=1 2ma (3)
m-+r Z " r + T T =
i=2 m+ > aj—rr (m+ > aj—rp—1)(m+ > aj —rr)
j=1 =1 j=1
Exp7
Exp6 o
_ .
T-1 T .
mA4 Y M=y a;+ry 2m Y rivi—2my a;
= = N i—2 =1 @

mor m+y aj—rp (m4r)(m+> a; —rp—1)(m+ > a; —rr)
Jj=1 j=1 j=1

Exp8
m— ), a;+rr
( o > 231 ! B 2mryT (5)
m4+r r T r -
m+3 aj—rr  (m+r)(m+ 3] a; —rr—1)(m+ 3 aj —rr)
=1 j=1 =1
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=1 =1
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=1 =1
2mrrT
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Hence we arrive at the desired expression. We state in words the changes introduced in each
step:

1. We transform Ezpl by performing

r

3
\
M~

,
m— > aj+rpr—1 aj+rr—1 m+> aj—rp—1+1

j=1 j=1 j=1

T = T T =
m+ > aj—rr—1 m+ > aj—rp—1 m+ > a; —7rr

Jj=1 Jj=1 J=1

T T
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j=1 j=1 1

T T + T =
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j=1 j=1
T + T T =
m+ > a;—1rr (m+ > aj—rpr—1)(m+ > a;j —7rr)
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T T T
m—> a+rr (m—>Y aj+rpr—1)—(m+ > a; —rpr—1)
Jj=1 Jj=1 j=1
T + T T =
m+ > a;—7rr (m+ > aj—rr—1)(m+ > aj —rr)
j=1 j=1 j=1
T T
m— > a;+rr 2rp —2 ) a;
j=1 j=1
T + T T
m+ > aj—rr (m+ Y aj—rp—1)(m+ > aj —rr)
j=1 j=1 j=1
A similar transformation is applied to Fxp2.
T T
2. We omit Exzp3. We substitute Exp4, which is (m+ Y aj —rp —1), with (m+ > aj —rp—1).
j=1 j=1
m— i a;+rr
3. We gather the terms multiplying Exp5 (which is —>———) as the first summand, and all
m+ > a;—rr
i=1
other terms as the second summand.
T—1
m+ r
. I ) Z;Q Yomtr—rr r
4. Since r = Y r;, we can rewrite Ezp6 as = =1- .
j=2 m—+r m—+r m—+r

T T
Since > a; = > r; -1, we can rewrite Eaxp7
j=1 i=2

T-1 r T-1 T
Qeri-i—2mZaJ— :2eri-i—2erj-j: —2mry - T.
i=2 j=1 i=2 j=2



5. We rewrite Exp8
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Appendix D. Proof of Theorem
Proof. Choose k = (2ny)? for some natural number ny, so k = 4,16,36,.... This choice maintains
the property that the weighted voting game parameters and all binomial coefficients’ arguments
5 2k k1.5
throughout the proof are natural numbers. Consider A = {2k}, m = k'*, T = +T Then

P(Am,T) = %_‘2_% € o(1) and

1 B2 k<|S|< B2 4k
v(SU{ar}) —v(S) = al

0 otherwzse.
The absolute Banzhaf index gives an equal probability to each subset in P((A\{a1})UM) = P(M).
There are 28'° subsets, and by the above, each one of those adds one to the index iff it has ¢ small
players as specified above. Thus,

okl

1 1 k*

B(,“(A7m,T): Z szkﬁ Z ( i >Z
SeP(M) z:&—
1.5 Tk 3
(8)
Pryapos. [|X <] -
X 1

]-_PTXNB(kl'E’,% |:k115_2> \/E:|

where B(n, p) is the binomial distribution with n players and success probability p.
We cite a Chernoff-type inequality (By Theorem 1 of |Okamoto, 1959]), for X ~ B(n,p),c > 0:

X o
Prccntn |5 —pl2 o] <272 )



o — 1B 1 1
If we choose n = k ,p—i,c—ﬁ,weget

X 1 1
PTXNB(kl»S,%) |ﬁ - §| > ﬁ < 2¢72Vk <0.05 (10)
So Eq.[§land Eq. [10] yield
B, (A,m,T) > 0.95. (11)

This concludes the argument for the absolute Banzhaf index. For the normalized Banzhaf index, we

first need to bound the small player’s absolute Banzhaf index. Notice that for a fixed small player
1.5

to be pivotal, the sum of subset S elements needs to be exactly T'— 1 = kT + k — 1. This means

that either a; € S and there are % — k — 1 small players (other than our one fixed small player)

in the subset, or a; ¢ S and there are E° 4k — 1 other small players in the subset. Thus,
’ 2

1 m—1
ﬁi(A,m,T) :P'I"[(ll ES]2m_1<kl25 —k—1>+

1 m—1

1 k1.5 -1 N k1.5 -1 B
P ANy | B2 k—1)]
1 ' -1 K9 -1\
2k [\E2 4 k-1 N B2 vk)|
1 k1'5 k1‘5
kTS (k125 L k> < Prxopns,1) [|X -1z k} =

X 1 1 | EqI0  _
PTXNB(kl-E’,%) |:,Z€15 — §| > \/E:| < 2e 2VEk

(12)

)

where (1) is by Pascal identity. So for the normalized Banzhaf index, we can write
: Bq. 0.95
Bay (A,m, T) = v 1 > — > 0.7 O
kL5p1(A,m,T) + B, 2k1Se—2vVk 41

Appendix E. Proof of Theorem for the high threshold regime

Z Pa;(A,m,T)

Lemma E.1. If for some A,m, T, izlp

(A,—m,T)>37 then T' < 7% andZaj<m.

j=1

Proof. By the lemma’s premise, for some A, m,T values,

Z pai (Aa m7 T)
= >3 1
PAmT) O (13)

T
First, note that we must have ) a; <
j=1

. Otherwise,

©[3

Z:l aj 3 *
3P(A,m,T)=3—"——>
m+ a; T

j=1

I3

eff <
2 Zpai(Au muT)7

i=1

ol 3|V



and dividing both sides by P(A, m,T) contradicts Eq.

Recall that AP is the set of all-pivotal player subsets. Let [ = mingeap [S\ 4|, the least amount
of small player participants in an all-pivotal subset S. We use the notation z* = max(z,0). It can
be directly checked that it must hold that [ = (T — " a;)*. Now,

j=1

r
. ]lai S
Zpai(Aama T) = E IESNUNI(AP) |: = :|
=1 .
1=1

5]

~Lges| @ 1SN Al
Es~unr(ap) Z 5] ] < Es~unrcap) [FSEGR] < (14)
1=1
T r r
Es~unrcap) {H—T] < e

Y

(T — Zajﬁ +r
j=1

where (1) is since for the numerator, we have >_._; 1,,e5 = |S N A|. Also, for any all-pivotal set S,
1 <|S\ A| by its definition, and so for the denominator we have I 4+ |[SNA| < |[S\ A|+|SNA| = |S|.
We thus have

Eq. [ =
- Bt N (15)
(T—Zaj)++r m—!—Zaj
j=1

Finally, we consider two cases.

T T m
1. If T — ; h T P < —.
;a3<0,we ave <]Z::1a]< 5

2. I T — Z a;j > 0, we can make the substitution (7' —3_7_, a;)* =T —>7"_, a;. We can also
j=1

write Zj:1 a; = 3 for some ¢ > 2. We can then rearrange Eq. [15{ and have

rm+ Y a)

= 6-2) mW
T<,,7J1+Zaj—rér(

r0-2)  mQ
3Zaj J=1 3 0~
j=1
m(9—2)+@<@
66 0 2

”
where (1) is since r < Q =

5 20 (the big players are of size at least 2).



Appendix F. Proof of Theorem for the low threshold regime

T

Lemma F.1. For any A,m,T with T < ¢ and ) a; <m,
j=1

pai (A7 m7 T)
=1

=<2

P(Am,T) —

Proof. Let a = max A and rs, ...,r, the number of players with weights 2, ..., a respectively. For
some all-pivotal set S € AP, let i;(S) = [{i}a,=j.a;es| be the number of elements of size j in
S. Let APT = {(i2(S), ...,1a(S)) }seap be the set of all unique tuples (i2(S), ..., 14(S)) such that
there is some S € AP with these size-counts values. Recall the notation 2 = max(z,0). For any

tuple I = (ig,...,4q) € APT, there are (][] (:JJ))((T7 ) all-pivotal sets S in AP such that
j=2 i

m

a ..
Jig)t
=2

(i2(S), ..., 14(S)) = I. This yields overall

[AP|= ) (ﬁ(Z))((T— _imﬂj)*)

IEAPT j=2
Jj=2

Also for any S € AP and its corresponding I € APT, it holds that
[SNAI=D a5, IS = (T =Y j-i)" +D ;.
=2 j=2 j=2

We can write the sum

r r lai g 1 SNA
> pu (A1) = Y- Bserian |52 | = o ¥ B
i=1 =1 e

a .
a PR
j=2

Ieg:PT (jl;lz (:’J)) ((T*jézj'ijﬁ)

(T= >0 j-ig) T+ 30 4y
j=2 j=2

> (ﬁ (:j))((T— i’;nj‘ij)-'-)

IEAPT j=2

Claim of the appendix shows that if 7' < %, then

;T(U Gles gj-w) i 2]_>+ sy -
mil IG;DT (jﬁg (Z))<(T— i;nzl—zﬁ + 1)
j§2j~i,~<T 7=

Jj=2

m m
( a ) < 2( a ) By the two claims and Eq. [16) we have
(T=>j-ij—2)*+1 (T—Z2J-Zj)+
i=2 i=

a
Then, Claimﬁof the appendix states that for any I € APT with )~ j-i; < T < %, it holds that
+
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a
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We can then follow up with

r m+za3 2

Db (AmT) S2—tm = — I <2 (4.m.7)
m m m+ Y a; m+ Y a;
j=1 j=1

with the inequality going from the first to second line due to Z a; < m (from the lemma assump-
j=1

.
> a

tions) and < Z—— (big players are at least of size 2).

Appendix G. Technical claims for the Deegan-Packel upper bound

Claim G.1. If T < %, then

Z'.
SN 1) [P B
IEAPT \j=2 (T - 23 i)* (T*Z]"ijV*Zij_
= =
7" () (st )
ml S\ NI NT = 3 =2 41
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Proof. We begin with the following inequalities:

01 (0) [P

I€APT

> <;<:;:>><<T_g;.ij>+>@_,i

a . ézij
> (1T (zD) ((T—éjw) (TS j iyt i1

IEAPT N j=2
> >l Jj=2

i=2

where the transitions hold due to that:
a
1. Any all-pivotal size-counts tuple I € APT with ) i; = 0 (and there is exactly one like that,
=2
which corresponds to the case where the all-pivotal set is comprised only of small players), will
a
not contribute to the sum due to the )" i; expression in the numerator of the summand.
j=2

2. Since we only sum over I € APT with Z?:z i; > 1, this condition is true for all summands,

and so we can replace this expression in the inequality with 1 and draw the inequality.

Now notice that for each element I, we can rewrite

a m z:: 1
Ql(ﬁ)QT Z]%)L i ﬁ+1m

J=

9<h<a \j—2 \Y (T - Z J-i)t (T — Z it +1
)ik . o . — - =
ik : ij (T— > jij—k-ip)t)(T— > j-ij—kip)t+1
Qil;%a 2<j#k<a N 2<j#k<a ! 2<j#k<a !
Tk1> ( (q))( m+1 1
Z . Tk H . PR . R
i, — 1 _ 15 T — jeij—k-ip)t+1/m+1
o ssjhca N1/ /N 29;@1 ’ )
(18)

with transitions due to:

1. Moving summation outside.

All summands with i = 0 don’t contribute to the sum, so we can limit the summation to k

2.
values with i # 0. We can also isolate the k terms in all the products and sub-sums of the

summands.



3. In general for a > b > 1, it holds that ({_})-a = (})b, by just moving terms in and out the
binomial coefficient. We use this identity twice.

Now we may continue with
a >y
S O™
IEAPT N j=2 (T - Z J-ig)t (T — ij'ij)Jr‘i’l
j=2
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with the transitions due to:

1. First, notice the summands do not change. We switch the order of summation, and separate
the iteration over sets in APT, to first consider all possible non-zero values of iy, namely [
between 1 and 7y.

2. We move the ﬁ expression outside of all sums since it’s not dependent on any sum parameter.
We move the 7 expression to the first sum since it only depends on k. We move [ to run

from 0 to rp — 1 instead of 1 to r, and we make the substitution i = [ + 1 in the summand.

3. Binomial coefficients are monotone increasing in the first argument, and so (““lk_l) < (;I’:) for
each summand.



4. For a binomial coefficient (§) with b < %, it is monotone increasing in the second argument.

2
Since T' < 7, it holds in our case, and since k > 2, the second argument indeed non-decreasing
by the substitution & — 2.

. Whenever 0 < [, <7, — 1 and I € APT has i, = I + 1, we have Z Joij+ ki =

2<j#k<a
Z j-ij+ k-l +k <T+k, otherwise some player of size k& would not be pivotal, and
2<j#k<a
I corresponds to an all-pivotal set. This is equivalent to Z joij+ k-l <T,soif we
2<j4k<a

a
sum over all elements I € APT that have Z j-i; < T (Notice that for ease of notation we
j=2
make the substitution [, = i, we make the same substitution in the summand - it is ok since
ir =l + 1 is not in our summation assumptions anymore).

6. Isolating the k element in the sub-sums and products is no longer required.

7. By definition r = Z Tk

k=2
O

Claim G.2. For any I € APT with ) j-i; < T < %, it holds that ( mAl ) <

2(

j=2 (T—-32 ji;=2)t41
j=2

am )
(T— Z:J-ij)* ’

Proof. Let I € APT be some tuple of all-pivotal size-counts, with > j-i; <T.

Jj=2
We separate to two cases:
1. If Y j-i;=T—1, then
Jj=2
m—+1 1 m
(- g -mpead) (7 ) merzmm=a(D) = £ )
(T=>j-i5=2)"+1 1 1 (T = > J-i)*
=2 j=2

a

2. If Y j-i; <T — 1, then by our assumption 7' < % and so

j=2

T->jij<m+1—(T=Y j-ij) (19)
j=2

Jj=2

which we can follow with

(T— g;lij—1> (m+1)(T—éj-ij)
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< m ) = a a <
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Thus

( m+1 ) ( m+1 )(Eq~<2< m ) 2( m
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Appendix I. Second recursion lemma and Duality

Lemma 1.1. The following recursion holds for ¢,

¢1(A7m7T) =
1 T
m-+r F=m+ Z 4
j=1
1 .
mH( Z p1(A\{a;},m,T) + (m—1)p1 (A, m—1,T)) T<m+Zaj
1<i<r j=1
m+ > a; >T
1<j#i<r

Proof. Fix some small player, for which we measure the expected number of permutations where it
is pivotal. The recursion is done by conditional expectation on the identity of the last player in the

T
permutation. If T'=m+ > a;, then only iff our fixed player is last, is it pivotal, which happens in
j=1
T
probability #ﬂ For T < m+ Zl aj, if the last player in the permutation is a; and m+ ~ §_< a; <
J= <j#i<lr
T, then our fixed player is not pivotal. If it is some big player ¢ with m+ > a; > T, then the
1<j#i<r
problem reduces to the weighted voting game with parameters (A \ {a;}, m,T). Similarly if a small
player different than our fixed player is last (for which there are m — 1 alternatives), the parameters
are (A,m — 1,T). If our fixed player is last, it will not be pivotal. All above events are with a
uniform probability of %M ]

Remark. The recursions in Lemma [B.1] and Lemma [[L1] are dual and can be obtained from one
another using the following lemma:

Lemma 1.2. The following duality holds for ®

O, (A,m,T) = <I>1(A,m,m—|—Zaj —T+1).
j=1

The proof of this lemma is simple and therefore omitted. Essentially, the lemma follows since,
for every permutation, you may iterate over the set of players to pass the threshold 'from the left’
or ’from the right’.
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