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Abstract
We study a unified model of goods and chores with copies, as a framework to study (1)
The existence of EFX and other fair allocation solution concepts for chores, and (2) The
existence of EFX and other fair allocation solution concepts for goods with copies. Quite
surprisingly, we show that these two issues are tightly related via a duality theorem that we
develop. We demonstrate the usefulness of this theorem by using it to prove the existence
of EFX allocations for chores and “leveled preferences”. This unified framework relies on
a new solution concept that we term EFXWC and that we believe may be of independent
interest. It is a strict relaxation of EFX that is appropriate for goods with copies, and its
existence implies the existence of EFX for chores. Any allocation that is EFXWC is at least
4
11 -MMS for goods with copies. In contrast, it is known that there exist EF1 allocations
that are no better than 1

n -MMS for goods, where n is the number of agents.

1 Introduction
This work stems from the question of existence of various solution concepts for fair allocation of
indivisible items, for two different models that on the face of it do not seem tightly related. The first
model has indivisible goods with multiple copies. While the seminal work of Budish [2011] includes
copies as a key ingredient (motivated by applications like the allocation of university courses to
students or the assignment of tasks to workers), most subsequent work focuses on the case of no
copies. We consider a model with copies where each agent may receive at most one copy of each
good; we term such allocations “exclusive” (they are termed “valid” allocations in [Kulkarni et al.,
2020], or “at most one” allocations in [Kroer and Peysakhovich, 2019]). For example, continuing
with the main motivation of [Budish, 2011], when allocating courses to students, one student cannot
be allocated multiple seats in the same course. Another example is digital goods with a license quota
(imagine a university that has X software licenses and allocates at most one license per student). A
third example is the task of paper reviewing (it is meaningless to assign the same paper twice to
the same reviewer). As we shall see, many existence results significantly change when we consider
exclusive allocations of goods with copies.

The second model that we consider has indivisible chores (or “bads”), which are items with
negative values. Previous literature usually treats goods and chores differently (see, e.g., [Barman
and Krishna Murthy, 2017; Chaudhury et al., 2020b; Huang and Lu, 2019; Garg and Taki, 2020]). As
it stands, our knowledge on chores is lacking compared to our knowledge on goods. For example,
while it is known that EFX allocations always exists for three agents and any number of goods
(without copies) [Chaudhury et al., 2020b], almost nothing is known regarding EFX allocations
of chores. While this specific gap is a knowledge gap, other gaps provably hold. For example, for
goods, every optimal Nash-welfare allocation satisfies the so called “envy bounded by a single item”
(EF1) notion as well as Pareto-optimality [Caragiannis et al., 2016]. In contrast, for chores, there
is no single valued welfare function that implies both fairness and efficiency [Bogomolnaia et al.,
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2017a]. In the divisible case, there is a polynomial time algorithm to find a competitive division for
goods, but this problem is PPAD-hard for chores [Chaudhury et al., 2020a].

Given the above, one may conclude that studying existence of solution concepts for fair allocation
of goods with copies and for chores is to be achieved by two disparate lines of research. However,
a main contribution of this paper shows that these two models are tightly related, via a formal
duality theorem that we develop for a large class of fairness notions that we define. This duality has
been informally observed in the past. For example, [Bogomolnaia et al., 2017a] nicely explain the
intuitive connection: “Say that we must allocate 5 hours of a painful job [...] Working 2 hours [on
the job] is the same as being exempt [from the job] for 3 hours”. Very recently, [?] employed this
connection in their proofs. We believe that such an important duality should be formally highlighted
and explored much beyond a technical tool inside a proof or a short intuitive remark. Furthermore,
as we demonstrate, our formal treatment of this duality reveals several conclusions that were, to the
best of our knowledge, previously unknown (e.g., the possible inexistence of EFX, the hierarchy of
fairness notions that evolve as a result).

Our results. Consider (as a main example) the notions of EFX and EF1, where each agent i prefers
her own bundle over the bundle of any other agent j if one arbitrary item (for EFX) or the most
valued item (for EF1) is removed from it. As is standard in the literature, we assume additive
values/costs, and study exclusive allocations. We first observe that EFX does not always exist with
copies (while EF1 does [Biswas and Barman, 2018]). Our counterexample for EFX uses a simple
setting with any number of n ≥ 3 agents and identical values (Example 1).

In light of this inexistence problem, we define “EFX Without Commons” (EFXWC), which is
weaker than EFX and stronger than EF1 (i.e., EFX implies EFXWC but not vice versa). EFXWC
requires each agent i to prefer her own bundle over the bundle of any other agent j, if an arbitrary
item which is not also in i’s bundle is removed from j’s bundle. Note that a setting without copies
is a special case of a setting with copies and exclusive allocations, and in a setting without copies
EFXWC is identical to EFX by definition.

We define similar “without commons” notions for other solution concepts, in particular EF1WC
and EFLWC, and present multiple evidence for their usefulness (also see Figure 1):

• These concepts expand the hierarchy of solution concepts for fair allocations: we show EFX =⇒
EFXWC =⇒ EF1WC =⇒ EF1, but not vice versa.

• We prove that EFXWC approximates the maximin share (MMS) much better than EF1. MMS is
an important share-based (rather than envy-based) fairness notion advocated by Budish [2011].

Moreover, the most important technical evidence for the usefulness of EFXWC comes from a
surprising connection to the existence of a (standard) EFX allocation for chores. Specifically, for
any setting with n agents and any tuple of n valuations/costs, we show that an EFXWC allocation for
goods with n − 1 copies for each good exists if and only if an EFX allocation for chores without
copies exists. By this characterization result, existence of EFXWC allocations can be used as a
technical tool to determine existence of (standard) EFX allocations for chores.

This connection is obtained using a “duality theorem” we develop of goods on the one hand,
and chores with copies on the other, showing for example that any allocation for goods with copies
is EFXWC if and only if its “dual” allocation for chores with copies is EFXWC (the theorem is
formulated in a general way that fits other solution concepts as well). Our new characterization of



existence of EFX allocations for chores is a main corollary of this theorem since the dual allocation
for goods with n− 1 copies is an allocation with one copy of each chore. The duality theorem is in
fact flexible enough to apply to settings with a mixture of goods and chores (see Remark 1).

Do EFXWC exclusive allocations for goods with copies always exist (while EFX exclusive al-
locations need not necessarily exist, even for three agents)? We prove an affirmative answer for
the special case of “leveled” preferences [Babaioff et al., 2017; Manjunath and Westkamp, 2021],
where larger bundles are always preferred to smaller ones. This result implies the existence of EFX
allocations for chores for this case via our duality theorem, thus demonstrating its usefulness.

1.1 Additional Related Literature
Solution concepts: An EF1 allocation is guaranteed to exist for both goods [Lipton et al., 2004;
Caragiannis et al., 2019] and chores [Aziz et al., 2019; Bhaskar et al., 2020]. Envy-freeness up to
any item (EFX) existence is still a wide open problem for n ≥ 4 agents and additive goods. An
MMS allocation does not always exist, as was observed by Kurokawa et al. [2016], but fractional
approximations of it may be guaranteed, prompting the notion of α-MMS. Their work guarantees
existence of 2

3 -MMS, and further works guarantee 3
4 -MMS or more for goods, depending on the

number of agents [Ghodsi et al., 2018; Garg and Taki, 2020]. For chores, Aziz et al. [2017] and
Huang and Lu [2019] establish 11

9 -MMS. The more technical envy-free concept of EFL, which we
find useful as an intermediary to argue about EFX, was introduced by Barman et al. [2018], who
show its existence for additive goods. For goods, envy-freeness notions can be sorted into a hierarchy
(namely, EFX =⇒ EFL =⇒ EF1), with the notions separated by their α-MMS guarantees, as
shown by Amanatidis et al. [2018]. We are able to establish a similar hierarchy for our more general
goods with copies model.
Allocation restrictions: Kroer and Peysakhovich [2019] consider optimization of the MNW (Max-
imal Nash Welfare) with the constraint of “at most one” allocations. They show this achieves an
approximate CEEI in large enough instances. Barman and Krishnamurthy [2017] study identical
ordinal preferences for both goods and chores. Mixed instances of goods and chores are consid-
ered by Aziz et al. [2019]. As we show, a mixed model of goods and chores is a special case of
our goods with copies model. Biswas and Barman [2018] consider a model where each agent has
cardinality constraints over the amount of a same-typed good she can be allocated. Our model is a
special case and thus their general results hold, namely existence of EF1 allocations and 1

3 -MMS
allocations. EFX and EFL allocations may not exist for certain instances in their model as well
as in ours. We refine these notions by the introduction of “Without Commons” which enables our
duality results, the hierarchy of concepts we describe, and our existence results. Other matroid
constraints models over allocations are presented in [Biswas and Barman, 2019; Dror et al., 2020].
Some works assume bundles must be connected in a given underlying graph [Bouveret et al., 2017;
Bilò et al., 2018], but our model does not seem to immediately translate to these settings.
Duality framework: The possible duality between goods and chores was noted in [Bogomolnaia
et al., 2017b]. They give an example of how to transform a chores instance into a goods instance
that seems to follow the transformation outlined in our Definition 8 of the dual allocation. Kulkarni
et al. [2020] note that a chore can be reinterpreted as n − 1 goods, and use it as a technical tool in
their proofs, converting an instance of goods and chores to an optimization problem with goods and
“valid allocations”.

2 Preliminaries
Our model: Let T denote the set of all possible item types (we slightly abuse notation and also use
T as an item set with exactly one copy of each item). Let M be the set of items to be allocated,
which is a multiset of T that includes kt ≤ n copies of each item type t ∈ M. Let N be the set
of agents and n = |N |. Each agent i ∈ N has an additive valuation function vi : 2M → R. An
item t ∈ M is termed a “good” if vi (t) ≥ 0 for each agent i and > 0 for at least one agent, and
a “chore” if vi (t) ≤ 0 for each agent i. We assume that each item is either a good or a chore, i.e.,
we do not allow an item to be a good for one agent and a chore for another agent. We use t when
referring to a general item, g when referring to a good, and cwhen referring to a chore. An allocation
A = (A1, . . . , An) is a partition of all items among the agents (no item can be left unallocated). We
focus on allocations that satisfy the following constraint:



Definition 1. An allocation A is exclusive if no two copies of the same item are allocated to the
same agent.1

Throughout, we use “allocation” to denote an exclusive allocation. We denote the set of all
exclusive allocations of item setM by EA (M).

Definition 2. An exclusive allocationA′ Pareto dominates the exclusive allocationA if for all agents
i, vi (A′i) ≥ vi (Ai) and vj

(
A′j
)
> vj (Aj) for at least one agent j.

An exclusive allocation A ∈ EA (M) is Pareto optimal if there is no exclusive allocation that
Pareto dominates it.
Fairness notions for goods and chores: Previous literature studies the following notions.
Definition 3. An exclusive allocation A of goods is

• EFX: ∀ i, j ∈ N ,∀g ∈ Aj , vi (Ai) ≥ vi (Aj \ {g}).
• EF1: ∀ i, j ∈ N ,∃g ∈ Aj , vi (Ai) ≥ vi (Aj \ {g}).
• EFL: ∀ i, j ∈ N , either (1) |Aj | ≤ 1, or (2) ∃g ∈ Aj , vi (Ai) ≥ max{vi (Aj \ {g}) , vi (g)}.
• PROP: ∀ i ∈ N , vi (Ai) ≥ 1

nvi (M).
• α-MMS (for some 0 < α ≤ 1): ∀i ∈ N ,

vi (Ai) ≥ α · max
A∈EA(M)

min
j∈N

vi (Aj) .

1-MMS is termed MMS.
The last two notions, PROP and MMS, are “share-based”. Their definition above holds for chores

too, and in fact for any mixture of goods and chores. More generally, in share-based fairness, an
agent’s allocation is measured against what is deemed her fair share:
Definition 4. Given a valuation v, the number of agents n and an item setM, a share function s
outputs a real value, i.e., s(v, n,M) ∈ R. An exclusive allocation A is called s-share-fair if we
have vi (Ai) ≥ s(vi, n,M),∀i ∈ N .
For example, for PROP, s(vi, n,M) = 1

nvi(M).
The first three notions above are “envy-based”, and their definition above is for goods. The

definition of envy-based notions for chores is different in that, when an agent i compares her bundle
to the bundle of another agent j, she removes a single chore from her own bundle (while a good is
removed from the other agent’s bundle). For example, an exclusive allocation A for chores is EFX
if for every i, j ∈ N and c ∈ Ai,

vi (Ai \ {c}) ≥ vi (Aj) . (1)

The connection between envy-based fairness for goods and for chores is phrased more generally as
follows.
Definition 5 (Comparison criteria for goods and chores).

• Given a valuation function v, and two bundles BI and BU , a comparison criterion f outputs
F for “fair” and U for “unfair”, i.e., f(v,BI , BU ) ∈ {F,U}.

• Given a comparison criterion f , the comparison criterion f c satisfies f c(v,BI , BU ) = f(−v,BU , BI).
Note that, denoting by f the comparison criterion for EFX for goods, it holds that f c is the

comparison criterion for EFX for chores in Eq. (1). One can similarly define EF1 and EFL for
chores. More generally:
Definition 6 (Envy-based fairness for goods and chores).

• Given a comparison criterion f , we say that an allocationA is f -fair iff ∀i, j ∈ N : f(vi, Ai, Aj) =
F .

• A solution concept E is envy-based if there exists a comparison criterion f such that an allo-
cation A for goods satisfies E iff A is f -fair, and an allocation A for chores satisfies E iff A is
f c-fair.

1 ?? termed this “valid allocations”.



EFX, EF1, and EFL are all examples within this general class.
Remark 1. We define these fair allocation solution concepts for the case where all items are goods
and for the case where all items are chores. Our results can be extended to a setting where some
items are goods while others are chores, using the envy-based fair allocation solution concepts of
[Aziz et al., 2019]. For brevity we defer this to the full version.

3 Warm-up: EFX with Copies
We begin by showing that EFX may not exist with copies.
Example 1. Consider n ≥ 3 agents, n+ 1 goods, and n

2 < k < n copies of each good. All agents
share the same valuation function v, and for every item type gw ∈M:

v(gw) =

{
w w < n+ 1;

n2 w = n+ 1.

Proposition 1. For goods with copies, an EFX allocation may not exist even for 3 agents. The same
holds for EFL.

Proof. Consider Example 1. We show non-existence of EFL allocations. Since every EFX allocation
is also EFL by [Barman et al., 2018], this shows no EFX allocations exist for these settings. Fix an
agent l who does not receive a copy of gn+1. Since there are k copies of g1 and k copies of gn+1

where 2k > n, there exists an agent h which receives both g1 and gn+1. Agent l EFL-envies agent h
since the first condition of EFL is not satisfied (|Ah| ≥ 2), and for any g ∈ Ah with vl (g) ≤ vl (Al),

vl (Al) ≤
∑
w≤n

vl (gw) < vl (gn+1) ≤ vl (Ah \ {g}) ,

violating the second condition of EFL.

To handle the inexistence problem we introduce a new fairness notion called EFXWC, which is a
generalization of EFX for a model with copies. Intuitively, when comparing two bundles, EFXWC
puts aside all items common to both bundles, and then compares the remaining items in an EFX
way:
Definition 7 (EFXWC for goods). An exclusive allocation A of goods is EFXWC if for every agents
i, j ∈ N and item g ∈ Aj \Ai it holds that vi (Ai \Aj) ≥ vi ((Aj \Ai) \ {g}) .

Remark 2. We remark that:

• EFXWC is an envy-based notion and therefore its definition extends to chores using Definition 6.

• A model with no copies is a special case of our model, and when there is one copy of each good
in our model then EFXWC is equivalent to EFX.

• EFX implies EFXWC: By additivity of the values, the inequality in Def. 7 is equivalent to
the EFX inequality vi (Ai) ≥ vi (Aj \ {g}), but EFX allows g to be any item while EFXWC
restricts its choice.

A main technical justification of EFXWC is its ability to give a “dual” view of goods and chores,
which also yields a new characterization of existence of standard EFX allocations for chores. This
is summarized by the following result (it is a corollary of Theorem 2 stated in the next section).
Corollary 1 (Characterization of EFX existence for chores). An EFX allocation for chores exists
in the standard setting without copies iff an EFXWC allocation for goods exists in our setting with
k = n− 1 copies of each good.

The following example illustrates the above.
Example 2 (Special case of Example 1). There are n = 3 agents and 4 goods with n − 1 = 2
copies each. All agents have valuation v as defined in Example 1 (the values of items t1, t2, t3, t4
are 1, 2, 3, 9 respectively).



In Example 2, the allocation A1 = {t1, t2, t4}, A2 = {t3, t4} and A3 = {t1, t2, t3} is EFXWC.
Indeed, agent 3 EFX-envies the others (and moreover EFL-envies them), but after putting aside
common items, only item t4 is left for the other agents, implying EFXWC. We now show that the
“dual” allocation is EFX for chores. The dual allocation is given by A◦i = T \ Ai for every i
(see formal definition in Section 4). I.e., A◦1 = {t3}, A◦2 = {t1, t2} and A◦3 = {t4}. When the
goods are treated as chores by simply taking the negation −v of the valuation (such that the values
of t1, t2, t3, t4 are −1,−2,−3,−9 respectively), it is not hard to check that the dual allocation is
EFX for these chores. Indeed, agent 3 envies the others, but removing any chore from agent 3’s
single-chore bundle alleviates the envy.

4 The Duality of Goods and Chores
In this section we show that allocations of goods and allocations of chores are “dual” in a formal
sense, and that fairness notions translate between the dual allocations (Sec. 4.1 shows this for envy-
based and Sec. 4.2 for share-based).
Definition 8 (Duality). The dual of a tuple (A, v,M) is:

• The dual allocation A◦ is A◦i = T \Ai.
• The dual valuation is v◦ = −v. Thus goods become chores and vice versa.
• The dual item setM◦ contains n− kt copies of every t ∈ T , where kt is the number of copies

of t inM.
Proposition 2 (Properties of Dual Transformations).

1. If A is an exclusive allocation of item setM then A◦ is an exclusive allocation of item setM◦.
2. The dual of the dual is the original: A◦◦ = A, v◦◦ = v andM◦◦ =M.
3. The dual operation is a one-to-one mapping.

Proof.
1. A◦ is an allocation since each item t is allocated kt times in A, so it does not appear in the

bundles of n− kt agents. Every such agent is allocated a copy of t in A◦, and other agents are
not. A◦ is exclusive since by construction each bundle A◦i is contained in T and has at most
one copy of each item.

2. A◦i
◦ = T \A◦i = T \ (T \Ai) = Ai, v

◦◦ = −v◦ = v, andM◦◦ contains n− (n− kt) = kt
items ∀t ∈ T .

3. Assume that A1,A2, v1, v2,M1,M2 satisfy A◦1 = A◦2, v◦1 = v◦2 ,M◦1 =M◦2, then we have
A1 = A◦1

◦ = A◦2
◦ = A2. The rest follows similarly.

Theorem 1. An exclusive allocation A is Pareto optimal iff the dual allocation A◦ is Pareto optimal.

Proof. First we prove a property of dual: If vi (Bi) > vi (Ai) then v◦i (B
◦
i ) > v◦i (A

◦
i ). From

vi (Bi) > vi (Ai) we have vi (M\Bi) < vi (M\Ai), i.e. vi (B◦i ) < vi (A
◦
i ). Because v◦i = −vi,

we have v◦i (B
◦
i ) > v◦i (A

◦
i ).

Suppose that allocation B Pareto dominates allocation A. We prove that allocation B◦ Pareto
dominates allocation A◦. By the property we just proved, we have v◦i (Bi) ≥ v◦i (Ai) for all i ∈ N
and there is a j such that v◦j (B

◦
j ) > v◦j (A

◦
j )

This directly implies the statement, as there is a Pareto dominating allocation over A iff there is
such an allocation for the dual.

4.1 A Meta-Theorem for Envy-based Notions
The idea of EFXWC generalizes to other envy-based notions:
Definition 9 (Comparison without commons). Given a comparison criterion f , the comparison
criterion fWC satisfies fWC(v,BI , BU ) = f(v,BI \BU , BU \BI), for all v,BI , BU .
As additional examples to EFXWC, consider EF1WC and EFLWC. Note that by Definition. 5, for any
comparison criterion f we have (fWC)

c = (f c)WC ≡ f cWC. We now show our first main theorem –
that envy-based fairness holds under a duality transformation from goods to chores.



Theorem 2. Given a comparison criterion f , an exclusive allocation A is fWC-fair with respect to
v iff its dual A◦ is f cWC-fair with respect to v◦.

Proof. We prove fWC(vi, Ai, Aj) = f cWC(v
◦
i , A

◦
i , A

◦
j ) for all i, j ∈ N . Let Oi = Ai \ Aj and

Oj = Aj \Ai. Note that Oi = A◦j \A◦i and Oj = A◦i \A◦j . Thus,

fWC(vi, Ai, Aj) = f(vi, Oi, Oj) = f c(−vi, Oj , Oi)
= f cWC(v

◦
i , A

◦
i , A

◦
j ).

It follows from Theorem 2 that an exclusive allocation is EFXWC for goods if and only if its dual
allocation is EFXWC for chores. An important application is Corollary 1 in Section 3, since the dual
of a setting of chores with no copies is a setting of goods with n − 1 copies of each good, and in a
setting of chores with no copies EFXWC is identical to EFX.

4.2 A Meta-Theorem for Share-based Notions
Does a similar duality result hold for share-based fairness notions? We give an affirmative answer
for a class of share-based notions that satisfy a property we term linear shares. MMS and PROP are
both examples of notions in this class. The idea of a linear share-based notion is as follows. Focus on
one agent and consider all values from her point of view. For any allocation, our dual transformation
shifts the value of every bundle in her eyes by a constant d (in particular d = v(T )). It is natural
that her fair share for this allocation also shifts by the same constant d. A linear share-based notion
is one for which this natural property holds. The following definition formalizes this intuition, while
generalizing the dual transformation to appropriate one-to-one mappings.
Definition 10 (Linear shares). Two item sets M and M′ are linearly related w.r.t. valuations v,
v′ and a real constant d if there is a one-to-one mapping from exclusive allocations A ∈ EA (M)
to exclusive allocations A′ ∈ EA (M′) such that v (Ai) = v′(A′i) + d for all i ∈ N . A share
is called linear if for any item setsM andM′ that are linearly related w.r.t. v, v′ and d we have
s(v, n,M) = s(v′, n,M′) + d.

An example of linearly related item sets and valuations is the following: consider M and M′
whereM′ is equal toM with an additional n copies of a new item t, and v′ is equal to v with an
additional value for t. An example of a linear share s is one for which s(v, n,M) = s(v′, n,M′)−
v′(t).
Theorem 3. For any linear share s, an exclusive allocation A is s-share-fair for M, v iff A◦ is
s-share-fair forM◦, v◦.

Proof. We prove that for every agent i ∈ N , item setsM andM◦ are linearly related w.r.t. valua-
tions vi, v◦i and d = vi (T ). Given an allocation A ∈ EA (M), let us consider the dual transforma-
tion, which is a one-to-one mapping that satisfies the condition in Definition. 10:

vi (Aj)−v◦i (A◦j ) = vi (Aj)− (−vi
(
A◦j
)
)

= vi (Aj) + vi (T \Aj) = vi (T ) .
Suppose that A is s-share-fair forM, vi. By definition, we have vi (Ai) ≥ s(vi, n,M) for all

i ∈ N . Since the share s is linear, s(vi, n,M) = s(v◦i , n,M◦) + vi (T ). Therefore, v◦i (A
◦
i ) ≥

s(v◦i , n,M◦) ∀i ∈ N , and A◦ is s-share-fair forM◦, v◦i . The converse is proved similarly.

Proposition 3. MMS and PROP are linear.

Proof. Suppose that item setsM andM′ are linearly related with v, v′ and d. We have a one to
one mapping from exclusive allocations A ∈ EA (M) to exclusive allocations A′ ∈ EA (M′) such
that v (Ai) = v′(A′i) + d for all i ∈ N and all allocations. For MMS, we have

max
A∈EA(M)

min
j∈N

vi (Aj) = max
A∈EA(M′)

min
j∈N

v′i(Aj) + d

= d+ max
A∈EA(M′)

min
j∈N

v′i(Aj)

For PROP, it holds that vi (M) =
∑
j∈N vi (Aj) =

∑
j∈N (v

′
i(A
′
j) + d) = v′i(M′) + n · d. So

the value of PROP increases by d.



Goods H a b c d
Copies 1 2 1 1 1
v 1000 100 1 2 2

Table 1: Instance with an EFL allocation that is not EF1WC

In contrast to MMS and PROP, α-MMS is not linear, since a shift d in the valuation translates to
a shift αd in the share.

5 A Hierarchy of Envy-Based Concepts
We analyze some connections between the envy-based fairness notions introduced above, as sum-
marized in Figure 1.
Proposition 4. EFXWC =⇒ EFLWC =⇒ EF1WC.

Proof. The second implication is straight-forward since the only difference in the two definitions is
an extra constraint over the choice of good g in the second EFLWC condition. Other than that, the
definitions identify.

For the first implication, fix an EFXWC allocation A and i, j ∈ N . We wish to show i does not
EFLWC-envy j. If |Ai \ Aj | = 1, the first EFLWC condition holds. Otherwise, if there is any good
g ∈ Ai \ Aj s.t. vi(g) ≥ vi(Aj \ Ai), the EFXWC condition fails when removing a good different
than g. Therefore all goods satisfy vi(g) ≤ vi(Aj \ Ai), and again by the EFXWC condition,
vi(Ai \ (Aj ∪ {g})) ≤ vi(Aj \ Ai). We can therefore choose an arbitrary good implying that the
second EFLWC condition holds.

Example 3. (EFLWC 6=⇒ EFXWC) Consider two agents and five goods with a single copy each,
and identical valuations a = b = 1, c = d = 1 + ε, e = ε = 0.01. The allocation {{c, d, e}, {a, b}}
is EFLWC but not EFXWC.
Proposition 5. EFXWC 6=⇒ EFL,EFL 6=⇒ EF1WC.

The first negation is due to Example 2. The second negation is due to Example 4:
Example 4. (EFL 6=⇒ EF1WC) Consider three agents, and goods as given in Table 1, where v is
the identical valuation of all agents. Then A = {{a, b}, {a, c, d}, {H}} is EFL, but not EF1WC, as
agent 1 EF1WC-envies agent 2.
Example 5. (EF1 6=⇒ EF1WC) Consider three agents, fivegoods a, b, c, d, e with two copies each,
and identical values v(a) = 1, v(b) = v(c) = 1

2 , v(d) = v(e) = ε = 1
100 . Consider the allocation

A = {{a, d, e}, {a, b, c}, {b, c, d, e}. It is EF1, and players’ values are (1.02, 2, 1.02). But agent
1 EF1WC envies agent 2 (the special good for the EF1 condition is a). For comparison, A′ =
{{a, b, e}, {a, c, d}, {b, c, d, e} is both EF1 and EF1WC.

5.1 MMS Approximations
We next show that this hierarchical structure implies (strictly) different approximation guarantees to
MMS.2 We show upper bounds on the approximation guarantees of the three “Without Commons”
notions that we introduced, and a lower bound for the approximation guarantee of EFLWC, thus
separating EFXWC and EFLWC from EF1WC by a factor that grows to infinity with n. It is interesting
to note that the bounds we show for goods with copies are strictly lower than known bounds for
goods without copies: for EFXWC we give an upper bound of 0.4 while without copies a lower
bound of 4

7 is known [Amanatidis et al., 2018]; for EFLWC we give an upper bound of 1
3 while

without copies a lower bound of 1
2 is known [Barman et al., 2018].

EF1WC: [Amanatidis et al., 2018] show that EF1WC allocations do not guarantee an approximation
strictly larger than 1

n to MMS for goods without copies (note that upper bounds on α for goods
without copies immediately apply to goods with copies since the former is a special case of the
latter). For completeness, we give an explicit example:

2Since our duality theorems do not hold for α-MMS, the results in this section cannot be directly trans-
formed to chores.



Goods H x x’ x” y y’ ya yb yc
Copies 6 7 3 3 3 3 1 1 1
v 2.5 1 1 1 1

2
1
2

1
2

1
2

1
2

Table 2: EFXWC 0.4-MMS upper bound

Example 6 (EF1WC cannot guarantee strictly more than 1
n -MMS for goods with copies.). Consider

an example with n agents, all goods have one copy each, and identical valuations. Let L1, ..., Ln be
goods, all with value 1, and let H1, ...,Hn−1 be additional goods, all with value n. Then

A = {{Hθ, Lθ}︸ ︷︷ ︸
1≤θ≤n−1

, {Ln}}.

is an EF1WC allocation with v(An) = v(Ln) = 1, while an MMS of n is guaranteed for agent n by
A′ = { {Hθ}︸ ︷︷ ︸

1≤θ≤n−1

, {L1, ..., Ln}}.

EFXWC: We give an upper bound of 0.4 and a lower bound of 4
11 .

Example 7 (There is an EFXWC allocation which is at most 0.4-MMS for goods with copies).
Consider 13 agents and 9 goods as given in Table 2, where v is the valuation of agent 13, and all
other agents value all goods as 1. The following allocation is EFXWC:

A = {{H,x}︸ ︷︷ ︸
×6

, {x′, x′′}︸ ︷︷ ︸
×3

, {y, y′, yθ}︸ ︷︷ ︸
θ∈(a,b,c)

, {x}}

In the following allocation all agents have a value of exactly 2.5 in terms of v:
A′ = {{H}︸︷︷︸

×6

, {x, x′, y}︸ ︷︷ ︸
×3

, {x, x′′, y′}︸ ︷︷ ︸
×3

, {x, ya, yb, yc}}

We establish the following 4
11 -MMS lower bound by appropriately generalizing a proof of [Ama-

natidis et al., 2018] to the case of goods with copies. We intentionally keep similar notations to
allow easy comparison.
Theorem 4. An EFXWC allocation is at least 4

11 -MMS for goods with copies.

Proof. Suppose that allocation A is an EFXWC allocation. Let us takes the perspective from agent
α. We divide the agents into three disjoint sets: L1 = {i ∈ N | |Ai \ Aα| ≤ 1}, L2 = {i ∈ N |
|Ai \ Aα| = 2}, L3 = {i ∈ N | |Ai \ Aα| ≥ 3}. Define the set of goods ∀θ ∈ {1, 2, 3}, Sθ =
∪i∈Lθ (Ai \Aα).
Claim 1. EFXWC implies:

1. For any good g ∈ S2, vα (g) ≤ vα (Aα) .
2. For any agent i ∈ L3, vα (Ai \Aα) ≤ 3

2 · vα (Aα) .

Proof. For the first inequality, let i be an agent in the set L2. By the condition of EFXWC,
∀g ∈ Ai \Aα, vα ((Ai \Aα) \ g) ≤ vα (Aα \Ai) ≤ vα (Aα) .

As |Ai \ Aα| = 2, vα (g) = vα ((Ai \Aα) \ g′) ≤ vα (Aα), where g′ is another good in the set
Ai \Aα.

For the second inequality, ming∈Ai\Aα vα (g) ≤ 1
2vα (Aα) , since otherwise we have for any

good g′ ∈ Ai \Aα,

vα((Ai \Aα) \ {g′}) =
∑

g∈(Ai\Aα)\{g′}

vα(g)

≥
∑

g∈(Ai\Aα)\{g′}

min
g′′∈Ai\Aα

vα (g
′′)

≥ 2 min
g′′∈Ai\Aα

vα (g
′′) > 2 · 1

2
vα(Aα) = vα(Aα),



contradicting EFXWC. For g = argming′∈Ai\Aα vα (g
′):

vα (Ai \Aα) = vα ((Ai \Aα) \ {g}) + vα (g) ≤

vα (Aα) + min
g∈Ai\Aα

vα (g) ≤
3

2
· vα (Aα)

Suppose that allocation A∗ is a maximin share allocation for agent α. Let the allocation A′ =
{Ai ∈ A∗ | |Ai ∩ S1| = 0 and |Ai ∩ S2| ≤ 1}. We remove any bundle contains at least one good
in S1 or at least two goods in S2 from the allocation A∗. Notice that allocation A′ cannot be empty.
As α ∈ L1, the number of bundles is at least 1 + |S1| + |S2|

2 . And we remove at most |S1| + |S2|
2

bundles. Let n′ = |A′|.
Next we prove that there is a bundle A′j in the allocation A′ such that vα

(
A′j
)
≤ 11

4 · vα (Aα) .
Let n′ be the size of |A′|, y be the size of |L3| and x be the number of goods in set S2 appearing in
the allocation A′.

Claim 2. We have the following quantity relationships: (1) n′ ≥ x, (2) n′ ≥ x
2 + y.

Proof. The first inequality holds as each bundle in A′ has at most one good from S2. For the second
inequality, we have

n = |L1|+ |L2|+ |L3| ≥ |S1|+
|S2|
2

+ y.

The number of removed bundles is at most |S1| + |S2|−x
2 . Therefore, n′ ≥ n − |S1| − |S2|−x

2 ≥
x
2 + y.

By Claim 1, the total sum of goods from sets S2 and S3 in allocation A′ for agent α is upper
bounded by

x ·max
g∈S2

vα (g) + y ·max
i∈L3

vα (Ai \Aα)

≤x · vα (Aα) + y · 3
2
vα (Aα)

By Claim 2, the average valuation is bounded by

x+ 3
2y

n′
· vα (Aα) ≤

x+ 3
2 · (n

′ − x
2 )

n′
· vα (Aα)

= (
1

4
· x
n′

+
3

2
) · vα (Aα) ≤

7

4
· vα (Aα)

Therefore, there is an agent j such that vα
(
A′j \Aα

)
≤ 7

4 · vα (Aα) . We have

vα
(
A′j
)
= vα

(
A′j \Aα

)
+ vα

(
A′j ∩Aα

)
≤ 7

4
· vα (Aα) + vα (Aα) =

11

4
· vα (Aα) .

MMS is mini∈N vα (A
∗
i ) ≤ vα

(
A′j
)
≤ 11

4 · vα (Aα).

EFLWC: We give an upper and a lower bound of one-third.
Example 8 (There is an EFLWC allocation with at most 1

3 -MMS for goods with copies). Consider
2`+ 1 agents and goods as given in Table 3, where v is the valuation of agent 2`+ 1 and all other
agents value all goods as 1. Then,

A = {{H,x}︸ ︷︷ ︸
×`

, {x′, yθ, zθ}︸ ︷︷ ︸
1≤θ≤`

, {x}}

is EFLWC, but v(A2`+1) = 1, while a MMS of at least 3− 2
` is guaranteed by

A′ = {{H}︸︷︷︸
×`

, {x, x′, yθ}︸ ︷︷ ︸
1≤θ≤`

, {x, z1, ..., z`}}



Goods H x x’ ∀1≤i≤`,yi ∀1≤i≤`, zi
Copies ` `+ 1 ` 1 1
v 3 1 1 1− 2

`
2
`

Table 3: EFLWC
1
3

-MMS upper bound

Theorem 5. An EFLWC allocation is at least 1
3 -MMS for goods with copies.

Proof. Suppose that A is an EFLWC allocation, and consider the perspective of an agent i∗. Among
the remaining n−1 agents, letL1 be the set of agents satisfying the first EFLWC condition, and letL2

be the remaining agents (that must thus satisfy the second condition). Denote ` = |L1|, n− `− 1 =
|L2|. Define ∀θ ∈ {1, 2}, Sθ = ∪j∈Lθ (Aj \Ai∗) (we allow multiple copies in the same set). Notice
that for any j ∈ S2 we have by the second EFLWC condition that there is such good g with

max{vi∗(Aj \ (Ai∗ ∪ {g})), vi∗(g)} ≤ vi(Ai∗ \Aj),

and so

vi∗(Aj \Ai∗) = vi∗(Aj \ (Ai∗ ∪ {g})) + vi∗(g)

≤ 2vi∗(Ai∗ \Aj)
≤ 2vi∗(Ai∗),

which implies
vi∗(S2) =

∑
j∈L2

vi∗(Aj \Ai∗) ≤ 2(n− `− 1)vi∗(Ai∗).

All goods that are not in S1, S2 must have a copy in Ai∗ . Denote all the remaining goods’ copies
R, then we overall haveM = S1 ∪ S2 ∪R.

In any allocation A′, there are at most ` agents with goods from S1. That is since the first EFLWC
condition for an agent j requires |Aj \Ai∗ | = 1, and so we have |S1| =

∑
j∈L1

|Aj \Ai∗ | = `. Let
L′ then be the set of at least n− ` agents with no good from S1, and let {Sj2}j∈L′ , {Rj}j∈L′ be the
allocations of S2, R goods to these agents under A′. By additivity, there must be some agent j with

vi∗(S
j
2) ≤

2(n− `− 1)

|L′|
vi∗(Ai∗)

≤ 2(n− `− 1)

n− `
vi∗(Ai∗) < 2vi∗(Ai∗).

Since A′ is an exclusive allocation, and since R includes only goods with a copy in Ai∗ , agent
j satisfies vi∗(Rj) ≤ vi∗(Ai∗), and overall vi∗(Aj) = vi∗(S

j
1) + vi∗(S

j
2) + vi∗(R

j) ≤ 3vi∗(Ai∗).
Since such an agent exists for any exclusive allocation, it exists for the MMS allocation, and so the
minimal bundle in terms of vi∗ in that allocation is bounded by 3vi∗(Ai∗). This shows the 1

3 -MMS
guarantee.

6 Existence of EFXWC for Leveled Preferences
Leveled preferences are defined as follows:
Definition 11. A valuation v is a leveled preference for goods if for any two bundles, |B1| >
|B2| =⇒ v(B1) > v(B2).

We prove our existence result for goods. By our duality framework (Theorem 2 in Section 4),
these existence results hold for chores and in fact for mixed goods and chores.
Theorem 6. There is an algorithm that always finds an EFXWC exclusive allocation for goods with
copies in the case of leveled preferences. Its runtime is O(n|T |2).

Proof. We can choose an initial allocation A such that |Ai| − |Aj | ≤ 1 for any i, j ∈ N , e.g., by
setting some arbitrary order 1, ..., n over the agents, an arbitrary order 1, ..., t over the good types,



Goods H a b c d e f
Copies 2 1 1 2 2 2 1
v1 2.5 1 1 1 1 0.1 0.1
v2 2 1.5 1 0.7 0.7 0.7 0.7
v3 2 1 0.5 0.5 0.1 0.1 0.1

Table 4: Envy-cycle cancelation failure for goods with copies

and allocating the ki copies of the next good to the next ki agents in a cyclic fashion. If there is
exactly one level, then A is EFXWC (and moreover, EFX), and we are done.

Let the number of goods in the upper level be H , and thus the number of goods in the lower
level is H − 1. If the allocation A is not an EFXWC allocation, we perform the following operation.
Suppose that agent i EFXWC-envies agent j (that is, EFX-envies it after removing the goods they
have in common). Agent i must be at a lower level than agent j, otherwise after removing a good
from j, agent i is at a higher level and by the leveled preferences prefers its own bundle.

It must hold that maxg∈Aj\Ai vi(g) > ming∈Ai\Aj vi(g), otherwise we have for any good g′ ∈
Aj \Ai:

vi((Aj \Ai) \ {g′}) ≤ |(Aj \Ai) \ {g′}| max
g∈Aj\Ai

vi(g) ≤

|Ai \Aj | min
g∈Ai\Aj

vi(g) ≤ vi(Ai \Aj),

in contradiction to our assumption of EFXWC-envy.
Let gmax = argmaxg∈Aj vi(g), g∈ = argming∈Ai vi(g). Let agent i get the bundle (Ai \

{gmin}) ∪ {gmax}, and let agent j get the bundle (Aj \ {gmax}) ∪ {gmin}. After this operation,
the allocation remains exclusive. Agent i gets a strictly improved bundle by its valuation, and both
agents get a bundle with the same cardinality as before, thus maintaining the sets of lower-level and
upper-level bundle agents unchanged.

We construct the potential function to show the number of steps is bounded and polynomial. For
any good g ∈ T , let ωi(g) be its ordinal position according to agent i’s preference over the goods,
e.g., for the minimal good g ∈ T by i valuation we have ωi(g) = 1, and for the maximal good g′ we
have ωi(g′) = |T |. We consider the potential function

ψ(A) =
∑
i∈N

|Ai|=H−1

∑
g∈Ai

ωi(g).

Notice that at each step this potential function strictly increases as we replace some good with a
strictly preferred good for some lower level agent. Also note that 0 ≤ minA∈EA(M) ψ(A) ≤
maxA∈EA(M) ψ(A) ≤ n|T |2, and the function always returns an integer value. Thus the maximal
number of substitution steps is in O(n|T |2).

Remark 3. Many existence results of envy-based fairness notions for goods (without copies) rely
on the primitive of envy-cycle canceling, first shown by [Lipton et al., 2004]. We thus note an
important technical difference in proving existence for fwc notions. For goods with copies, it is
sometimes impossible to cancel an envy cycle without breaking the fairness notion. This was first
pointed out in [Bhaskar et al., 2020]. We give below another such example that has two additional
properties: First, the allocation is EFXWC before cancelling the envy-cycle, but not even EF1WC after
the cancellation. Second, in our example the choice of which envy cycle to cancel is immaterial to
the difficulty arising, as there is only one envy cycle.

Example 9. There are 3 agents and 7 good types. The valuation and the number of copies are listed
in Table 4. Note that these valuations have identical ordinal preferences. Consider the allocation
A1 = {b, c, d, e, f}, A2 = {H, a}, A3 = {H, c, d, e}. It is an EFXWC allocation. We have agent 1
envies agent 2 and vice versa. Let us reallocate the bundles to resolve this envy cycle. Even though
everyone gets a better bundle, it is not EF1WC, as agent 1 then gets the bundle {H, a} but EF1WC-
envies the bundle {H, c, d, e}.



Goods a b c d
Copies 2 1 1 1
v1 1 1 1 ε
v2 1 ε ε ε
v3 ε ε ε 1

Table 5: MNW allocation that is not EF1WC

Remark 4. Another intriguing property of goods with copies is that the Maximal Nash Welfare
allocation is not necessarily EF1WC, unlike the case with goods, as the following example shows.
Definition 12. Nash Welfare of an allocation is the product NW (A) =

∏
i∈N vi(Ai)

The Max Nash Welfare allocation is MNW = argmaxANW (A).

Example 10. Consider Table 5 with ε = 10−6. The MNW allocation is the exclusive allocation
{{a, b, c}, {a}, {d}}. In this allocation agent 2 EF1WC-envies agent 1.

7 Discussion
To the best of our knowledge, we provide the first duality relationship between goods and chores,
which establishes the equivalence of both settings for a broad class of fairness notions. It is inter-
esting to further investigate this duality phenomenon for other fair division settings. For the new
fairness notions such as EFXWC,EFLWC, the main open challenge is to settle their general existence
for goods with copies. As a special case, the existence of EFX, EFL for chores is open. It is also
worth investigating a more flexible model where the number of copies of each good is only loosely
set, e.g., constrained between a minimal and maximal value.
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