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Abstract

We examine the problem of assigning plots of land to prospective buyers who prefer
living next to their friends. In this setting, each agent’s utility depends on the plot
she receives and the identities of the agents who receive the adjacent plots. We are
interested in mechanisms without money that guarantee truthful reporting of both
land values and friendships, as well as Pareto optimality and computational effi-
ciency. We explore several modifications of the Random Serial Dictatorship (RSD)
mechanism, and identify one that performs well according to these criteria, We also
study the expected social welfare of the assignments produced by our mechanisms
when agents’ values for the land plots are binary; it turns out that we can achieve
good approximations to the optimal social welfare, but only if the agents value the
friendships highly.

1 Introduction

Koranit, a village in the North Galilee region of Israel, was recently permitted to expand.
Predetermined plots of land, of approximately equal size and price, have been drawn and
must be assigned to prospective buyers1. However, while similar in size and official value,
plots are not viewed as identical by the buyers: some buyers prefer living close to the village
center, others favor living in an area with a view of the surrounding mountains, and yet
others are interested in level plots suitable for a garden. Land ownership laws preclude direct
ownership by buyers; rather, land is leased (for several decades) from a central governing
body, and prospective buyers are prohibited by law from paying each other in order to
secure land plots. In other words, land plots are to be treated as indivisible goods, allocated
without monetary transfers. Prospective buyers form a small, close-knit community. Several
of them are siblings (with parents having lived in the village for decades), or are long-term
residents (in rented properties), with friends they’d like to be close to. Consequently, buyers
have preferences not just over plots, but also over their potential neighbors. In fact, some
pairs of buyers only care about being neighbors, regardless of where they end up. Thus,
we are interested in mechanisms that would enable the buyers to distribute the plots among
themselves in a fair and efficient manner, and account for friendships.

1.1 Our Contributions

We briefly discuss the complexity of finding an allocation that maximizes the social welfare
in the complete information scenario, showing that this problem is NP-hard as well as hard
to approximate. We then focus on the setting where each agent has at most one friend. This
constraint is both realistic and simplifies our computational problem significantly: while our
problem remains NP-hard, it admits a 2-approximation algorithm in this case.

We then investigate our problem from the perspective of mechanism design without
money: can we incentivize the agents to truthfully report their plot values and friendship
information? Given our application domain, we are interested in mechanisms that are
simple to describe and participate in, while providing good social welfare guarantees. Since

1One of these buyers happens to be the sister of the last author.
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Figure 1: (a) Map of the proposed Koranit expansion (plots are numbered 1−35). Red lines denote
roads. (b) The plot graph based on Figure (a). Two plots are adjacent if they share a border.

our problem generalizes the one-sided matching problem, a natural starting point is the
Random Serial Dictatorship (RSD) mechanism, under which agents pick plots one by one.
We show that RSD does not perform well in the presence of friendships, and explore several
modifications of RSD, in which the picking order is based on friendship information. We
identify settings in which our mechanisms are truthful and produce Pareto optimal outcomes,
and provide bounds on their expected social welfare for the case where agents have binary
valuations for the plots. For omitted proofs, see the full version of the paper Elkind et al.
[2020].

1.2 Related Work

Well-known approaches to the one-sided matching problem include the Competitive Equi-
librium from Equal Incomes (CEEI), proposed by Hylland and Zeckhauser [1979], the Prob-
abilistic Serial (PS) mechanism Bogomolnaia and Moulin [2001], and Random Serial Dicta-
torship (RSD). However, neither CEEI nor PS are truthful; indeed, Svensson [1999] shows
that RSD is the only truthful mechanism that satisfies ex-post Pareto optimality, anonymity
and non-bossiness. Another intriguing truthful mechanism has been very recently proposed
by Abebe et al. [2020].

The social welfare of truthful mechanisms in one-sided matching markets has been stud-
ied by Bhalgat et al. [2011] for rank-based valuation functions. Filos-Ratsikas et al. [2014]
consider the social welfare of RSD for unit sum preferences, and show that RSD offers a√
n-approximation to the optimal social welfare in this case. Adamczyk et al. [2014] fo-

cus on binary and unit-range preferences, and show that RSD offers a 3-approximation to
the optimal social welfare for binary preferences, and a

√
en-approximation for unit range

preferences. Christodoulou et al. [2016] analyze the Price of Anarchy (PoA) of one-sided
matching markets for unit-sum preferences. They show that PoA for RSD is O(

√
n). Krysta

and Zhang [2016] study the one-sided matching market problem under matroid constraints.
They propose a truthful mechanism and show that it offers e

e−1 -approximation of the optimal
social welfare.

Bodine-Baron et al. [2011] analyze a housing allocation problem where students have
an inherent friendship structure. They focus on allocation stability and social welfare,
rather than strategic behavior. An online variant of this problem is studied by Huzhang et
al. [2017]. Massand and Simon [2019] also consider the stability of a one-sided matching



market with externalities, but assume that agents cannot misreport their valuations.

2 Model and Preliminaries

We consider a set of agents N = {1, . . . n} (land buyers) who need to be matched to n
plots V = {v1, . . . vn}. Each agent receives exactly one plot. Thus, the goal is to output an
allocation, i.e., a bijection A : N → V, where agent i gets plot A(i).

We represent neighboring plots using a plot graph G = 〈V, E〉: this is an undirected graph
where nearby plots w and v are connected by an edge {w, v} ∈ E (see Figure 1b). Each
agent i ∈ N has a valuation function ui : V → [0, 1] ∩ Q: ui(v) is the value i derives from
receiving plot v. Agents have friends, and care about living next to them. We represent
friendships by a weighted directed friendship graph 〈N,F 〉, where (i, j) ∈ F indicates that i
and j are friends and the edge weight ϕi,j ∈ Q≥0 is the additional utility i obtains for living
next to j. We assume that friendships are reciprocal, but not necessarily symmetric; i.e.,
(i, j) ∈ F ⇔ (j, i) ∈ F , but it may be the case that ϕi,j 6= ϕj,i. Let F ∗ = {{i, j} : (i, j) ∈ F};
the unweighted undirected graph 〈N,F ∗〉 captures the presence of friendships, but not their
weights. We set ϕmin = min(i,j)∈F ϕi,j . The quantity ϕmin plays an important role in
our analysis: some of our proposed mechanisms offer better performance guarantees when
ϕmin > 1, i.e. when the value of friendship exceeds the value of any plot.

The utility Ui(A) of agent i under allocation A is

ui(A(i)) +
∑

(i,j)∈F

ϕi,j × I ({A(i), A(j)} ∈ E) . (1)

The first term in (1) is agent i’s utility from the plot she receives; the second term is her
(non-negative) externality for nearby friends.

An instance of our allocation problem is a tuple I = 〈N,V, E , F, (ui)i∈N , (ϕi,j)(i,j)∈F )〉;
let A(I) denote the set of all allocations for an instance I.

The social welfare of an allocation A ∈ A(I) is defined as the sum of agents’ utilities:
SW(A) =

∑
i∈N Ui(A). Let OPT(I) = maxA∈A(I) SW(A). Given two allocations A,A′ ∈

A(I), we say that A′ dominates A if Ui(A
′) ≥ Ui(A) for all i ∈ N , and the inequality is

strict for at least one agent. An allocation A is Pareto optimal (PO) if no other allocation
dominates it. A non-PO allocation presents an avoidable loss of social welfare; we are thus
interested in algorithms that output PO allocations.

We consider several special cases of our problem. We say that an instance I is friendship-
uniform if there exists a positive value ϕ ∈ Q≥0 such that ϕi,j = ϕ for all (i, j) ∈ F . We
say that I is binary if ui(v) ∈ {0, 1} for all i ∈ N , v ∈ V . We say that I is generic if for
every i ∈ N , every pair of plots v, w ∈ V and every edge (i, j) ∈ F we have ui(v) 6= ui(w),
ui(v) 6= ui(w) +ϕi,j . If each agent has at most one friend (an important assumption for the
sequel), in a generic instance no agent is indifferent between two plots, even if one of them
is adjacent to her friend’s plot.

3 Optimal Friend-Constrained Allocations

We first analyze the complexity of finding (approximately) optimal allocations under the
assumption of complete information, i.e., when the weighted friendship graph as well as
agents’ valuation functions are known. Formally, given an instance I of our problem and
a positive rational value T , we ask whether there is an allocation A with SW(A) ≥ T ; we
refer to this problem as SW-Opt.

We first observe that even in the friendship-uniform case our problem is at least as hard
as Subgraph Isomorphism, and hence NP-hard Garey and Johnson [1979]. To see this, let



all agents value all plots at c ≥ 0 and each friendship at ϕ > 0; the maximum social welfare
achievable is n× c+ ϕ× |F |. This welfare is obtained in allocations in which every pair of
friends receive adjacent plots; such allocations exist if and only if 〈N,F ∗〉 is isomorphic to
a subgraph of the plot graph G. Thus, we obtain the following proposition.

Proposition 3.1. SW-Opt is NP-complete. This result holds even if there exist c, ϕ > 0
such that ui(v) = c for all i ∈ N , v ∈ V and ϕi,j = ϕ for all (i, j) ∈ F .

The proof of Proposition 3.1 shows that SW-Opt is NP-hard even if the input instance
is friendship-uniform and (i) 〈N,F ∗〉 consists of a single clique and a collection of singletons
(in which case our problem is at least as hard as Clique), or (ii) 〈N,F ∗〉 has maximum
degree 2 (in which case our problem is at least as hard as Hamiltonian Cycle). The
reduction from Clique with c = 0 also shows that SW-Opt is hard to approximate.

Motivated by these hardness/inapproximability results, in the remainder of the paper
we focus on the setting where 〈N,F ∗〉 has maximum degree 1, i.e., it is a collection of edges
(pairs of friends) and singleton nodes. In this case, the respective subgraph isomorphism
problem reduces to finding a maximum matching in the plot graph, which can be done in
polynomial time. While at a first glance this variant of the model may appear to be very
restrictive, it is quite natural in our setting. Indeed, buying land is a serious commitment,
so the ‘friendships’ in our context are typically sibling relationships, or other tight and long-
running connections between households, and it is unlikely that a household is engaged in
several such connections.

Nevertheless, even this special case of SW-Opt is NP-hard. The hardness result holds
even in the friendship-uniform case and if the plot graph G consists of a single path (i.e.,
plots are located along a road) and several isolated plots.

Theorem 3.2. SW-Opt is NP-complete even if the instance is binary and friendship-
uniform, the friendship graph 〈N,F ∗〉 has maximum degree 1, and the plot graph G consists
of a single path and isolated nodes.

On the positive side, if the friendship graph has maximum degree 1, the problem of
finding an allocation with maximum social welfare admits a poly-time 2-approximation
algorithm.

Theorem 3.3. Given an instance I where 〈N,F ∗〉 has maximum degree 1, we can compute
in polynomial time an allocation A∗ such that SW(A∗) ≥ 1

2OPT(I).

To summarize, for friendship graphs of maximum degree 1, SW-Opt is NP-hard, but
admits a simple 2-approximation algorithm. In the remainder of the paper, we restrict
ourselves to friendship graphs of maximum degree 1, and ask if this constraint allows us
to find good allocations even when agents’ plot values and/or friendships are not publicly
known.

4 Plot Allocation Mechanisms

In this section we adopt a mechanism design perspective. That is, we are interested in
deterministic/randomized mechanisms (without money) that elicit valuations and friend-
ships, and output an allocation based on the reports; these mechanisms should be simple to
describe and participate in, and produce good allocations, even when agents are strategic.

We consider mechanisms where agents pick plots directly (and hence they do not need to
report the plot values), and report their friendships; these reports may be used to select the
picking order, and to restrict agents’ plot choices. Such mechanisms are easy to describe,
making the allocation procedure transparent — an important concern in our setting.



Formally, we say that a deterministic mechanism is friendship-truthful (FT) if no agent
can increase her utility by misreporting friendship information no matter what other agents
report and no matter which plots they pick. A randomized mechanism is universally FT
if it is friendship-truthful for every choice of its random bits, even when agents know the
random bits used by the mechanism. A deterministic mechanism is Pareto optimal (PO)
if it is guaranteed to output a PO allocation on every input; a randomized mechanism is
universally PO if it outputs a PO allocation on every input and for every choice of its
random bits.

We are now ready to discuss mechanisms for land allocation with friends. We begin with
serial dictatorship, identify its shortcomings, and explore several ways to overcome them.
We derive a mechanism that is universally friendship-truthful, poly-time computable, and
universally PO.

4.1 Serial Dictatorship

A natural starting point in our analysis is the (Random) Serial Dictatorship (RSD)
mechanism Abdulkadiroglu and Sonmez [1998]; Brandl et al. [2016]. In the deterministic
version of this mechanism, agents sequentially pick the plots, in a predetermined order;
in the randomized version, agent order is chosen uniformly at random. For the one-sided
matching problem, which is a special case of our problem, the optimal strategy of every
agent under the SD mechanism is simple: she should simply choose the best available
plot. Moreover, for one-sided matching the (R)SD mechanism is (universally) PO as long
as all agents have generic utilities. Its performance with respect to the social welfare is
well-understood; in particular, for binary utilities, a variant of this mechanism offers a
constant-factor approximation to the optimal social welfare Adamczyk et al. [2014].

However, in the presence of friendships the agents’ decision problem under RSD becomes
much more complicated, as illustrated by the following example.

Example 4.1. Consider an instance with agents 1, 2, 3, 4, and plots v1, v2, v3, v4, arranged
on a path. Let F ∗ = {{1, 4}, {2, 3}}. Suppose that agents’ values for the plots are given by
the table below and ϕi,j = .4 for all (i, j) ∈ F . Consider what happens when we run the
SD mechanism on this instance, with agent order (1, 2, 3, 4).

v1 v2 v3 v4

agent 1 .5 .3 0 0
agent 2 0 .5 .3 0
agent 3 0 .7 0 .5
agent 4 0 .5 0 0

Agent 1 picks first. If he were to choose v1, agent 2 would face the choice between v2
and v3 (v4 is obviously less attractive). While she prefers v2, she realizes that if she were to
choose v2, agent 3, who is her friend, would choose the non-adjacent plot v4, so agent 2’s
utility would be .5. If agent 2 chooses v3, agent 3 would pick v2, so agent 2’s utility would
be .3 + ϕ2,3 = .3 + .4 = .7. Therefore, agent 2 picks v3; agent 3 picks v2 next, and finally
agent 4 picks v4. Under this scenario, agent 1 ends up several plots away from his friend,
so his utility is .5.

Now, suppose that agent 1 chooses v2 instead. While u1(v2) = .3 < u1(v1), in this case
agent 2 would pick v3, agent 3 would pick v4, and agent 4 ends up with v1, i.e., right next to
agent 1. Thus, agent 1’s total utility from choosing v2 is .7. As his utility from choosing v3
or v4 is at most .4, his best choice is v2, and the resulting allocation A is given by A(1) = v2,
A(2) = v3, A(3) = v4, A(4) = v1.



Example 4.1 illustrates interesting phenomena that arise when using the SD mechanism.
First, when deciding, agent 1 must reason about the decisions of agents who pick their plots
after him. To choose optimally, he must know agents’ plot values and friendships: indeed,
if agents 3 and 4 had a low value for v2 and high values for v3 and v4, he could safely pick
v1, as v2 would remain available for his friend.

Second, agent 1’s decision depends on the order of agents who pick after him. If agent
4 picked immediately after agent 1, then agent 1 could safely pick v1 and expect agent 4 to
pick the adjacent plot v2. Consequently, his decision is even more difficult if the order of
agents is unknown. In particular, if agent order is chosen uniformly at random (i.e., using
RSD with hidden agent order), then, to evaluate the expected utility for each selection, he
must consider all 3! = 6 scenarios corresponding to the permutations of the other agents.

Third, on this instance the SD mechanism produced an allocation that is not Pareto
optimal: agents 1 and 4 would benefit from swapping their plots.

Thus, SD fails most of our criteria for a good mechanism. While it is simple to describe,
the agents’ decision problem is far from simple (in fact, the best upper bound on its compu-
tational complexity we could obtain is PSPACE, however, we do not know the tight upper
bound on its computational complexity). Further, agents must reason about other agents’
utilities as well as their own, and the outcome may fail to be PO.

These difficulties mainly stem from the fact that whenever an agent i has a friend j that
comes after her in the permutation, i must predict j’s decision. More specifically, for each
available plot, i needs to know whether j can and will pick an adjacent plot on her turn.
Clearly, this task is much easier when j picks immediately after i: indeed, in our example,
agent 2 had a much easier time making up her mind than agent 1. Thus, we will now explore
variants of the SD mechanism that enable friends to choose consecutively.

4.2 Choose-Together-SD (CT-SD) Mechanisms

Following the argument outlined at the end of Section 4.1, we consider a variant of RSD
where if i and j are friends, they appear consecutively in the permutation.

Online Choose-Together RSD (On-CT-RSD) is our first implementation of this
idea. In this mechanism, at each step one of the unallocated agents is picked uniformly at
random. The agent then picks a plot and may declare another unallocated agent as her
friend; if she does, then her friend is the next to choose a plot (but cannot declare another
friend). Let Vi denote the set of plots that agent i can select from on her turn. We say that
a plot v is a singleton plot in Vi if it is not adjacent to any other plot in Vi. If an agent i
has a friend who has not selected a plot yet, and i selects a singleton plot in Vi, then she
will not be placed next to her friend in the resulting allocation.

Suppose first that the friendship information is publicly available, i.e., agent i can declare
agent j to be her friend if and only if (i, j) ∈ F . In this case, under On-CT-RSD the agents
can compute their strategies in polynomial time.

Theorem 4.2. Suppose that agents cannot misreport friendship information. Then each
agent can compute her optimal strategy in polynomial time. To compute her strategy, each
agent only needs to know her preferences and the preferences of her friend (if she has one).

A further appealing feature of On-CT-RSD is that it is ordinal, in the sense that agents
make their choice based on comparing plot values (accounting for additional value if a friend
will be adjacent). However, even if friendships are public, On-CT-RSD allocations are not
necessarily PO; in fact, as Example 4.3 shows, On-CT-RSD may output an allocation that
is dominated by a better allocation.



Example 4.3. Consider an instance with agents 1, 2, 3 and plots v1, v2, v3, where E =
{{v2, v3}}. Let F ∗ = {{1, 2}}. Agents’ plot valuations are shown below, and ϕ1,2 = ϕ2,1 =
.5. Suppose that the On-CT-RSD mechanism picks agent 1 first, so the order is (1, 2, 3).

v1 v2 v3

agent 1 1 .9 0
agent 2 1 0 .4
agent 3 1 .1 0

Agent 1 can guarantee herself a utility of 1 by picking v1. Her utility can be improved
if she picked v2 and her friend, agent 2, cooperates by picking v3. However, agent 2 would
prefer v1 if it is available. Hence, the plot v1 remains agent 1’s best choice, and the mecha-
nism produces the allocation A(1) = v1, A(2) = v3, A(3) = v2. Now, an allocation A′ given
by A′(1) = v2, A′(2) = v3, A′(3) = v1 dominates A with Ui(A

′) > Ui(A) for all i ∈ N .

Example 4.3 fails to produce a PO allocation: agent 2 does not choose a plot adjacent
to her friend’s because she gains more from choosing v1 over v3 than she gains from friend-
ship. Indeed, if we change ϕ from .5 to 1, On-CT-RSD produces a PO allocation. This
observation can be generalized.

Theorem 4.4. On-CT-RSD is universally PO on generic instances
〈N,V, E , F, (ui)i∈N , (ϕi,j)(i,j)∈F 〉 with ϕmin > 1.

So far we have assumed that agents cannot misreport their friendships. Let us now
examine the role of this assumption.

Proposition 4.5. On-CT-RSD is not universally FT.

Proof. Let us revisit Example 4.3. Suppose again that agent 1 is the first in the picking order.
We argued that if agent 1 declares agent 2 as her friend, she maximizes her utility by picking
the plot v1, resulting in a total utility of 1. Suppose, however, that agent 1 picks plot v2 and
declares agent 3 to be her friend. Then agent 3 chooses next, and picks the plot v1. Agent 2
is then forced to pick plot v3, so that the total utility of agent 1 is u1(v2) + ϕ1,2 = 1.4 > 1.
Thus, agent 1 benefits from misreporting friendship information.

However, as is the case for PO, if ϕmin > 1, this negative result no longer holds.

Theorem 4.6. On-CT-RSD is universally friendship-truthful for every instance with
ϕmin > 1.

To summarize, On-CT-RSD is an attractive mechanism if ϕmin > 1; however, in general
it is neither universally PO nor universally friendship-truthful. We next discuss modifying
this mechanism to avoid these issues.

4.3 Choose-Adjacent-SD (CA-SD) Mechanisms

The main reason why On-CT-RSD fails both PO and friendship-truthfulness when ϕmin <
1 is that when agent i declares agent j to be her friend, j can ‘jump the queue’, but may
choose a plot not adjacent to i’s. We now consider a mechanism that explicitly prohibits
such behavior.

Specifically, this mechanism, Online Choose-Adjacent RSD (On-CA-RSD), pro-
ceeds identically to On-CT-RSD with one difference: if agent i declares j to be her friend
and chooses a non-singleton plot in Vi, at the next step j must choose a plot adjacent to
i’s; if i chooses a singleton plot in Vi, j can then choose any plot in Vj . Alternatively, if an



agent selects a singleton plot, the mechanism may forbid her from declaring a friend; this
has no impact on our analysis.

Note that On-CA-RSD is equivalent to On-CT-RSD if ϕmin > 1: whenever an agent
i chooses after her friend, she would pick an adjacent plot if at all possible. However,
in general, the mechanisms are different: e.g., on the instance described in Example 4.3
On-CA-RSD would output an allocation A with A(1) = v2, A(2) = v3, A(3) = v1.

It turns out that On-CA-RSD satisfies the criteria formulated in the beginning of this
section.

Theorem 4.7. On-CA-RSD is universally PO and universally friendship-truthful; more-
over, agents’ strategies are polynomial-time computable.

On-CA-RSD has many attractive properties: it is simple, agents can compute their
strategies efficiently and without knowing other agents’ preferences (not even their friends’
preferences!), and the mechanism always produces a PO allocation. However, if agents’
value for being close to their friends is low relative to the differences among the plot values,
they may find this mechanism to be highly problematic.

Example 4.8. Let G consist of a single edge {v, w} and n− 2 isolated plots. Every agent
values w at 0 and all other plots at 1. Suppose all friendships have value ϕ = .1. If agents i
and j are friends and i is the first agent to pick, then i will choose v (as she can then benefit
from being next to j) and j will be forced to choose w and get the worst plot in V.

One may then wonder if it is possible to modify On-CA-RSD to give an agent the
option to decline her friend’s ‘invitation’ and choose at a later point, but without having
her plot choices constrained. There are several ways to implement this idea. For instance,
if agent i declares a remaining agent j as a friend, we can offer j the choice of (1) picking
a plot right after i, but it must be adjacent to i’s plot (if at all possible), or (2) declining
the invitation and returning to the pool of remaining agents; we refer to this mechanism as
CA-Back-To-Pool-RSD (CA-BP-RSD). Alternatively, we can sample a default agent
order in advance (uniformly among all possible n! orders), announce it to all agents, and
then approach the agents one by one in this order, asking them to pick a plot and to declare
a friend. If i declares j to be her friend, then j can either accept the invitation, jump the
queue and pick a plot adjacent to i’s (if such a plot exists); or, decline and keep her place
in the queue (or, even more drastically, move to the end of the queue); we refer to these
mechanisms as CA-Back-to-Queue-RSD (CA-BQ-RSD) and CA-Back-to-End-RSD
(CA-BE-RSD), respectively. These mechanisms seem to preserve the spirit of On-CT-
RSD, but offer agents more flexibility. Unfortunately, our next example shows that neither
is universally friendship-truthful.

Example 4.9. Consider an instance with agents 1, 2, 3, 4, and plots v1, v2, v3, v4, arranged
on a path in that order. Let F ∗ = {{1, 4}}. Suppose that agents’ values for the plots are
given by the table below and ϕ1,4 = ϕ4,1 = .2.

v1 v2 v3 v4

agent 1 0 1 0 0
agent 2 .3 0 .1 .2
agent 3 .3 0 .2 0
agent 4 0 0 0 1

Under On-CA-RSD, if agent 1 picks first, she would pick v2, and announce agent 4
as her friend, forcing agent 4 to pick an adjacent plot. Under CA-BP-RSD agent 4 can
decline this option, in which case agents 2, 3, and 4 pick their plots in random order. Agent



4 chooses next w.p. 1/3, in which case she will be able to pick her favorite plot. Thus, her
expected utility is at least 1/3 > ϕ4,1, so she will not confirm friendship with agent 1. Thus,
under CA-BP-RSD, if agent 1 declares agent 4 as her friend, her utility is 1.

Now, suppose agent 1 falsely declares agent 3 as her friend. Agent 3 has no reason to
decline this invitation; indeed, accepting ensures that she receives her favorite plot (rather
than risk losing it to agent 2). Thus, agent 3 accepts and picks v1. Agents 2 and 4 prefer
v4 to v3, so the first to pick claims v4 for themselves. Thus, with probability .5 agent 4
ends up with v3, which is adjacent to agent 1’s plot. Hence, under CA-BP-RSD, agent 1’s
expected utility from declaring agent 3 as her friend is 1 + .5 × .2 = 1.1, which is higher
than her utility from a truthful declaration.

The same argument shows that CA-BQ-RSD and CA-BE-RSD are not friendship-
truthful: if the order is (1, 2, 3, 4), then agent 1 prefers declaring agent 3 as her friend.

Thus, there does not seem to be an easy way to make On-CA-RSD more flexible while
retaining universal PO and friendship-truthfulness.

5 Social Welfare Maximization

So far, we focused on simplicity, polynomial-time computability and friendship-truthfulness;
the only allocative efficiency measure we discussed was PO, which is a relatively weak
requirement. We will now derive bounds on the social welfare of the assignments produced by
On-CT-RSD and On-CA-RSD and their variants. For simplicity, we focus on friendship-
uniform instances, i.e., we assume that ϕi,j = ϕ for some fixed ϕ and all (i, j) ∈ F . Since
our problem is at least as hard as the one-sided matching problem, we cannot expect RSD
and its variants to perform well for general valuations; thus, we focus on binary instances.

For binary utilities, Adamczyk et al. [2014] propose the following modification of the
RSD mechanism, which we call RSD∗. In each iteration, before picking the next agent,
RSD∗ asks all remaining agents to report if they have a positive value for some available
plot. If some agents answer ‘yes’, RSD∗ picks one of them uniformly at random, lets her
pick a plot, and starts the next iteration; otherwise, RSD∗ arbitrarily pairs remaining agents
with remaining plots. RSD∗ reduces waste while maintaining truthfulness, yielding a 1.45-
approximation under binary valuations; can we obtain a similar approximation ratio in our
setting?

Our first result is discouraging: On-CT-RSD may produce assignments with very poor
social welfare, even if ϕ > 1, i.e., even in the setting where it is PO for generic instances
and friendship-truthful.

Example 5.1. Consider an instance with N = {1, . . . , n}, V = {v1, . . . , vn}, where E =
{{v1, v2}}. Suppose that F ∗ = {{1, 2}}, ϕ1,2 = ϕ2,1 = 100. All agents value v1 at 1 and all
other plots at 0.

Under On-CT-RSD agents 1 and 2 end up in adjacent plots if and only if one of them
appears first in the picking order, i.e., with probability 2

n . Thus, the expected social welfare
under this mechanism is 1 + 2× 2

n × 100, whereas the optimal social welfare is 202.

When friendships are valuable, i.e., ϕ� 1, we would like to avoid the situation described
in Example 5.1. This can be accomplished by prioritizing pairs of friends, i.e., ensuring that
pairs of friends choose first, followed by agents who do not have friends. This requires us to
elicit friendship information offline, before agents start picking plots. As we cannot assume
that agents will report this information truthfully, to fully specify such a mechanism, we
need to handle inconsistent reports: what if i says that j is her friend, but j does not say
that i is her friend? We take the conservative approach and treat i and j as friends iff both
declare this friendship.



Formally, this mechanism, Friends-First Choose-Together RSD∗ (FF-CT-RSD∗)
proceeds as follows. First, each agent reports who their friend is (or ∅ for no friends). Let
P be the set of pairs {i, j} who report each other as friends. We pick agents in the following
order: as long as there exist a pair of adjacent unoccupied plots and P 6= ∅, we randomly
remove a pair of agents {i, j} from P ; i and j then choose their plots (in random order).
We execute RSD∗ over remaining agents and plots once P = ∅ or no adjacent plots are
available. We analyze the performance of FF-CT-RSD∗, under the assumption that agents
cannot lie about their friendships and ϕ > 1.

Theorem 5.2. Let A be the output of FF-CT-RSD∗ on a binary instance I with ϕmin > 1,
where agents truthfully report friendships. Then E(SW(A)) ≥ 1

4OPT(I).

Of course, since FF-CT-RSD∗ prioritizes pairs of friends, we cannot expect it to be
friendship-truthful. Thus, if friendship-truthfulness is considered desirable, we are left with
On-CA-RSD or its variants. Specifically, On-CA-RSD, too, can be modified by pushing
friendless agents who value all available plots at 0 to the back of the queue, in the spirit of
RSD∗; we refer to this mechanism as On-CA-RSD∗. It can be verified that this mechanism
remains friendship-truthful.

Since On-CA-RSD∗ does not prioritize friendships, we cannot expect it to have a con-
stant approximation ratio (consider, e.g., its performance on the instance in Example 5.1).
However, if ϕ > 1, we can bound the approximation ratio of On-CA-RSD∗ in terms of ϕ.

Theorem 5.3. Let A be the output of On-CA-RSD∗ on a binary instance I with ϕmin > 1.
Then E(SW(A)) ≥ 1

2ϕ+2OPT(I).

The positive results presented so far in this section are for the case ϕ > 1. For ϕ < 1,
positive results are more elusive. In particular, it is no longer the case that FF-CT-RSD∗

has a constant approximation ratio.

Proposition 5.4. There exists a friendship-uniform binary instance I with OPT(I) = 2+2ϕ
such that the expected social welfare of the output of FF-CT-RSD is at most 6

n + 4ϕ.

Our last result applies not just to variants of the RSD mechanism, but to all truthful
mechanisms: the approximation ratio of any such mechanism is at least 1 + 1

2ϕ , even if
agents cannot misreport their friendship information.

Proposition 5.5. Consider a mechanism M that has access to the friendship graph
〈N,F 〉, asks the agents to report their values for the plots, and outputs an allocation
based on the agents’ report and the friendship graph. If no agent can benefit from mis-
reporting her plot values under M then here exists a friendship-uniform binary instance
I = 〈N,V, F, (ui)i∈N , (ϕi,j)(i,j)∈F 〉 such that for the allocation A output by M we have
E(SW(A))
OPT(I) ≤

2ϕ
2ϕ+1 .

6 Conclusions and Future Work

We analyze the problem of allocating plots to buyers who have intrinsic preferences over
their neighbors. While the problem in its full generality offers several non-trivial computa-
tional challenges, we show that under some realistic assumptions on buyer preferences and
permitted reports, it is possible to design simple mechanisms that maintain both truthful
reporting and social welfare guarantees. We focus on RSD-like mechanisms for our problem;
however, it may also be useful to consider other approaches, such as CEEI or PS, to check
if they offer a tradeoff between truthfulness and social welfare. There are strong positive
results if all agents value their friendships highly (ϕi,j > 1), or not at all (i.e., if ϕi,j = 0).



Paradoxically, the presence of low-valued friendships may result in significant welfare loss,
as shown by Proposition 5.5. This may be because even low-value friendships significantly
distort agents’ behavior under RSD.
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A Missing Proofs from Section 3

Theorem 3.2. SW-Opt is NP-complete even if the instance is binary and friendship-
uniform, the friendship graph 〈N,F ∗〉 has maximum degree 1, and the plot graph G consists
of a single path and isolated nodes.

Proof. It is immediate that this problem is in NP: we can compute the social welfare of a
given allocation using formula (7). To prove hardness, we provide an NP-hardness reduction
from Path Rainbow Matching.

An instance of the Path Rainbow Matching problem is given by an integer k, and
a properly edge-colored path, i.e., an undirected path P = 〈V,E〉 with vertices V =
{v1, . . . , vs}, and edges E = {e1, . . . , es−1} such that ei = {vi, vi+1} for all i = 1, . . . , s − 1
together with a finite set of colors C = {c1, . . . , cq}, and a mapping ξ : E → C from edges of
P to colors such that ξ(ei) 6= ξ(ei+1) for each i = 1, . . . , s− 1. An instance 〈k, P,C, ξ〉 is a
‘yes’-instance if there exists a subset of edges M ⊆ E with |M | ≥ k such that all edges in M
are pairwise disjoint and have different colors, and a ‘no’-instance otherwise. This problem
is known to be NP-hard Le and Pfender [2014].

Given an instance of Path Rainbow Matching 〈k, P,C, ξ〉, we construct an instance
〈N,V, E , F, (ui)i∈N , (ϕi,j)(i,j)∈F 〉 of our problem as follows.

We set N = {1, . . . , 2q + s}: there are two agents corresponding to each color and s
additional dummy agents. We refer to agents 1, . . . , 2q as color agents.

The plot graph (V, E) has V = {v1, . . . , vs, w1, . . . , w2q}, and E = {{vi, vi+1} : i =
1, . . . , s− 1}, i.e., it is a copy of the given path instance together with 2q additional isolated
plots (one for each color agent).

The agents are friends if and only if they correspond to the same color and all friendships
have weight ϕ = .1: we set F = {(2i− 1, 2i), (2i, 2i− 1) : 1 ≤ i ≤ q} and ϕi,j = .1 for each
(i, j) ∈ F .

The agents’ plot valuations are defined as follows. Dummy agents value all plots at 0:
ui(x) = 0 for each i = 2q + 1, . . . , 2q + s and each x ∈ V. Each color agent values ‘her’
isolated plot at 1 and all other isolated plots at 0: for each i = 1, . . . , 2q we have ui(wi) = 1,
ui(wj) = 0 for j 6= i. Also, for each edge {x, y} with ξ({x, y}) = ci one agent in {2i− 1, 2i}
values x at 0 and y at 1, and the other agent values y at 0 and x at 1. Specifically, for every
color ci ∈ C let Ei = {e ∈ E : ξ(e) = ci}, and suppose that Ei = {{vi1 , vj1}, . . . , {vir , vjr}},
where i1 < i2 < · · · < ir and j` = i` + 1 for ` = 1, . . . , r. Then agent 2i − 1 values a plot
vk ∈ {v1, . . . , vs} at 1 if k = i` for an odd value of ` or k = j` for an even value of `, and
otherwise she values it at 0. Similarly, agent 2i values a plot vk ∈ {v1, . . . , vs} at 1 if if
v = i` for an even value of ` or v = j` for an even value of j, and otherwise she values it at
0.

We claim that our instance admits an assignment A with SW(A) ≥ 2q+ 2kϕ if and only
if 〈k, P,C, ξ〉 is a ‘yes’-instance of Path Rainbow Matching. Indeed, suppose we start
with a ‘yes’-instance of Path Rainbow Matching, and let M be the respective matching.
For each edge e = {u, v} ∈ M , if ξ(e) = ci, we assign color agents 2i − 1 and 2i to the
endpoints of e so that each of them is given the endpoint that she values at 1; we assign
the remaining color agents to their preferred isolated plots, while the dummy agents are
matched arbitrarily to the remaining nodes. Then each color agent values her plot at 1, and
in addition there are k pairs of friends who are allocated adjacent plots, so the overall social
welfare is 2q + 2kϕ.

Conversely, suppose that there is an allocation A with SW(A) ≥ 2q+ 2kϕ. Suppose first
there exists some color agent i with Ui(A) < 1. Then A(j) = wi for some agent j ∈ N \ {i},
and uj(wi) = 0, so we can swap i and j and increase the overall social welfare: even if A(i)
is adjacent to the plot of i’s friend, the loss in social welfare caused by moving i away from
her friend is at most 2ϕ < 1, and the gain in plot values is 1. Thus, we can assume that



in A each color agent values her plot at 1. This means that there exist at least k pairs of
friends who are allocated adjacent plots, with each friend valuing her plot at 1. Let 2i− 1,
2i be some such pair of friends, and suppose that they have been allocated plots vj , vj+1.
Then either ξ({vj , vj+1}) = ci or ξ({vj−1, vj}) = ξ({vj+1, vj+2}) = ci. However, the latter
case is impossible: we defined the plot valuation functions so that at least one of the agents
2i − 1 and 2i values both vj and vj+1 at 0 in this case. Thus, these pairs correspond to a
rainbow matching in P of size at least k.

Theorem 3.3. Given an instance I where 〈N,F ∗〉 has maximum degree 1, we can compute
in polynomial time an allocation A∗ such that SW(A∗) ≥ 1

2OPT(I).

Proof. Our algorithm proceeds as follows.
First, we find a maximum matching in 〈V, E〉; let {{v1, w1}, . . . , {vs, ws}} be the set of

edges of this matching. Suppose that F ∗ = {{i1, j1}, . . . , {it, jt}}, where ϕi`,j` + ϕj`,i` ≥
ϕir,jr +ϕjr,ir whenever 1 ≤ ` < r ≤ t, i.e., the edges in F ∗ are sorted by the total friendship
weight in non-increasing order. Then for each k = 1, . . . ,min{t, s} we allocate plot vk to ik
and plot wk to jk; all remaining plots are matched arbitrarily to the remaining agents. Let
the resulting allocation be A1.

Second, we consider the weighted complete bipartite graph with parts N and V where
the weight of an edge {i, v} ∈ N × V is equal to ui(v), and compute an allocation that
corresponds to a maximum-weight matching in this graph; let this allocation be A2.

We output the better of the two allocations A1 and A2 (breaking ties arbitrarily). To see
that this algorithm provides a 1

2 -approximation, consider an arbitrary allocation A. Under
this allocation, at most min{s, t} pairs of friends are allocated adjacent plots, so the total
utility they derive from friendship is at most SW(A1). Moreover, the total value that the
agents assign to their plots under A is at most SW(A2). Thus, we have SW(A) ≤ SW(A1)+
SW(A2), whereas we output an allocation whose social welfare is at least 1

2 (SW(A1) +
SW(A2)). Moreover, both A1 and A2 can be computed in polynomial time, which concludes
the proof.

B Missing Proofs from Section 4

Theorem 4.2. Suppose that agents cannot misreport friendship information. Then each
agent can compute her optimal strategy in polynomial time. To compute her strategy, each
agent only needs to know her preferences and the preferences of her friend (if she has one).

Proof. Since agents cannot misreport friendships, their strategic decisions are limited to
what plot to pick. Consider an agent i ∈ N . If i has no friends, she should simply pick the
plot with the highest value among the available plots. Now, suppose that (i, j) ∈ F . If i
picks after j, she can choose the plot that maximizes her utility, taking her friend’s (known)
location into account. Finally, if i picks before j, she can consider all available plots, and,
for each option, check whether j would choose one of the adjacent plots at the next step; in
this way, she can determine which plot would maximize her utility. Note that to make her
decision, i does not have to reason about the utilities of agents in N \ {i, j}.

Theorem 4.4. On-CT-RSD is universally PO on generic instances
〈N,V, E , F, (ui)i∈N , (ϕi,j)(i,j)∈F 〉 with ϕmin > 1.

Proof. Suppose for the sake of contradiction that, given an instance of our problem with
ϕmin > 1, On-CT-RSD produces an allocation A, yet there exist another allocation A′ for
this instance such that U`(A

′) ≥ U`(A) for all ` ∈ N and Ui(A
′) > Ui(A) for some i ∈ N .

We can assume without loss of generality that under On-CT-RSD the picking order is



(1, 2, . . . , n). Let i be the first agent in this order such that Ui(A
′) > Ui(A); note that, since

our instance is generic, this means that A(`) = A′(`) for all ` < i and hence A′(i) ∈ Vi.
Suppose first that i has no friends. Then under On-CT-RSD she picks the most valuable

plot in Vi and A′(i) ∈ Vi, so we have Ui(A) = ui(A(i)) ≥ ui(A′(i)) = Ui(A
′), a contradiction.

Thus, we can assume that (i, j) ∈ F for some j ∈ N .
Now, suppose that in our run of On-CT-RSD agent i picks her plot after j, and hence

A′(j) = A(j). Then the utility that i would obtain by picking A′(i) in the execution of On-
CT-RSD is equal to the utility she obtains in A′; since A′(i) ∈ Vi, we obtain a contradiction
again.

It remains to consider the case where in our run of On-CT-RSD agent i chooses before
agent j (and then j chooses next). Then i’s best strategy is to pick the highest-value non-
singleton plot in Vi (and to simply pick the highest-value plot if all plots in Vi are singletons).
Indeed, if i picks a non-singleton plot in Vi, since ϕj,i > 1, agent j would necessarily pick
an adjacent plot in the next step, and, since ϕi,j > 1, agent i would derive a higher utility
from this choice than from any singleton plot in Vi.

Suppose first that all plots in Vi are singletons, and hence under On-CT-RSD agent i
picks the highest-value singleton plot in Vi. Then A′(i), too, is a singleton plot in Vi, i.e.,
in A all plots adjacent to A′(i) are occupied by agents who appear before i in the picking
order, and we know that these agents are allocated the same plots in A′. Thus, i and j are
not allocated adjacent plots in A′, and hence Ui(A

′) = ui(A
′(i)) ≤ ui(A(i)) = Ui(A), where

the inequality holds since under On-CT-RSD agent i picks the highest-value singleton plot
in Vi. Thus, we obtain a contradiction in this case.

To complete the proof, suppose that i picks a non-singleton plot in Vi under On-CT-
RSD, and therefore Ui(A) > 1. Then it has to be the case that Ui(A

′) > 1, i.e., in A′

agents i and j are allocated adjacent plots. Thus, A′(i) is a non-singleton plot in Vi, but
then we obtain a contradiction again, since A(i) is the highest-value non-singleton plot in
Vi, so Ui(A) = ui(A(i)) + ϕi,j ≥ ui(A′(i)) + ϕi,j = Ui(A

′).

Theorem 4.6. On-CT-RSD is universally friendship-truthful for every instance with
ϕmin > 1.

Proof. Clearly, if an agent has no friends, she cannot benefit from declaring another agent
to be her friend, as it would not give her access to a better plot. Similarly, if an agent j is
‘invited’ by i, i.e., j picks right after i because i declared j to be her friend, j is not asked
to report her friendship information, so she has no opportunity to misreport. Now, suppose
that i has a friend (say, j), and i gets to pick a plot before j. If all plots in Vi are singletons,
then friendship information is irrelevant, and i has no incentive to misreport. Otherwise,
let v be a highest-value non-singleton plot in Vi. Then the highest utility i can hope to get
in this run of the mechanism is ui(v) + ϕi,j , which is exactly the utility she would get by
picking v and declaring j to be her friend: indeed, since ϕj,i > 1, j would then choose a
plot adjacent to v. Hence, i has no incentive to misreport the friendship information in this
case as well.

Theorem 4.7. On-CA-RSD is universally PO and universally friendship-truthful; more-
over, agents’ strategies are polynomial-time computable.

Proof. The analysis is similar to the analysis for On-CT-RSD with ϕ > 1. Suppose for
the sake of contradiction that, given an instance of our problem, On-CA-RSD produces an
allocation A, yet there exist another allocation A′ for this instance such that U`(A

′) ≥ U`(A)
for all ` ∈ N and Ui(A

′) > Ui(A) for some i ∈ N . We can assume without loss of generality
that under On-CA-RSD the picking order is (1, 2, . . . , n). Let i be the first agent in this
order such that Ui(A

′) > Ui(A); since or instance is generic, this means that A(`) = A′(`)
for all ` < i and hence A′(i) ∈ Vi.



If i has no friends, then under On-CA-RSD she picks the most valuable plot in Vi; as
A′(i) ∈ Vi, we have Ui(A) = ui(A(i)) ≥ ui(A′(i)) = Ui(A

′), a contradiction.
Now, suppose that (i, j) ∈ F for some j ∈ N . If in our run of On-CA-RSD agent i

picks her plot after j, we have A′(j) = A(j). Suppose first that agent j picked a singleton
plot in Vj , so that the choice of agent i is unconstrained, and hence she picks the most
valuable plot in Vi. Then the analysis is similar to the previous case: as A′(i) ∈ Vi, we have
Ui(A) = ui(A(i)) ≥ ui(A

′(i)) = Ui(A
′), a contradiction. On the other hand, if j did not

pick a singleton plot, then A(i) is the most valuable plot among the plots that are adjacent
to A(j). Thus, if A′(i) 6= A(i) then A′(i) is not adjacent to A′(j) = A(j). But this means
that Uj(A

′) = Uj(A) − ϕj,i, a contradiction with our assumption that U`(A
′) ≥ U`(A) for

all ` ∈ N .
Finally, suppose that in our run of On-CA-RSD agent i picks her plot before j. Note

that A′(i), A′(j) ∈ Vi. If these plots are adjacent, then i can pick A′(i); as j will be forced
to pick an adjacent plot in the next iteration, we have Ui(A) ≥ Ui(A

′). Otherwise, we have
Ui(A

′) = ui(A
′(i)), so agent i can obtain the same utility as in A′ simply by choosing A′(i).

This completes the proof of Pareto optimality.
For friendship truthfulness, the proof is very similar to the proof of Theorem 4.6: just as

in that proof, an agent does not benefit from misreporting if she does not have a friend or
if she chooses after her friend. Further, if agent i chooses before her friend j, the maximum
utility she can obtain is the higher of maxv∈Vi ui(v) and maxv∈Vns

i
ui(v) +ϕi,j , where Vns

i is
the set of non-singleton plots in Vi, and she can guarantee herself that utility by reporting
truthfully.

Finally, the polynomial-time computability follows from the description of the optimal
strategies given in the previous paragraph.

C Missing Proofs from Section 5

Theorem 5.2. Let A be the output of FF-CT-RSD∗ on a binary instance I with ϕmin > 1,
where agents truthfully report friendships. Then E(SW(A)) ≥ 1

4OPT(I).

Proof. Consider the FF-CT-RSD at iteration t; we define N t be the left (unassigned) agents
at time t, Gt be the topology unallocated plots at time t with vertex set Vt and edges Et,
F t be the singular friendship structure among N t, OPTt be the optimal allocation of N t to
the plot topology Gt and SWt be the total social welfare by the algorithm by time t. We
denote the past history of plot assignment before the t-th iteration as Ht. We note that the
SW(A) = SWT (T be the total number of iterations) and SW(OPT) = SW(OPT0). Now,
at each iteration t, we divide all friendship pairs into four sets as follows:

Zt
1 = {(i, j) ∈ F t : ul(OPTt) = 1 + ϕ; l = i, j}

Zt
2 = {(i, j) ∈ F t : ui(OPTt) + uj(OPTt) = 2ϕ+ 1}

Zt
3 = {(i, j) ∈ F t : ul(OPTt) = ϕ; l = i, j}

Zt
4 = {(i, j) ∈ F t : ul(OPTt) ≤ 1; l = i, j}

For convenience, we write |Zt
i | = zti for all i = 1, . . . , 4 and |F t| = f t. As friendship value

ϕ > 1, at iteration t, if the first while loop runs then the randomly chosen pair will always
be able to capture two adjacent plots due to higher friendship value ϕ than plot values and
availability of adjacent plots. which implies that

E[SWt+1|Ht] ≥ SWt +
zt1
f t

(2ϕ+ 2) +
zt2
f t

(2ϕ+ 1) +
zt3 + zt4
f t

(2ϕ) (2)



Now, we analyze the decrease in the optimal welfare after each iteration when the first
while loop condition satisfies (Et 6= ∅ and F t 6= ∅). Consider randomly selected pair (i, j) at
iteration t, they will grab any available adjacent plots among available plots (v, w) ∈ Et due
to higher friendship value than plot values. If randomly chosen (i, j) ∈ Zt

1 ∪ Zt
2 ∪ Zt

3, then
(i, j) can destroy at most 2 allocated adjacent plots to friends in OPTt allocation and their
own friendship. Therefor, it can cost at most 6ϕ in friendship value of the OPTt allocation
and if (i, j) ∈ Zt

4 then it can cost at most 4ϕ in friendship value of the OPTt allocation.
Moreover, in the case when (i, j) ∈ Zt

1 ∪ Zt
2 ∪ Zt

4, by grabbing adjacent plots (v, w), it can
disturb at most 4 assigned plot (with value 1) in OPTt allocation and when (i, j) ∈ Zt

3,
by grabbing adjacent plots (v, w), it can disturb at most 2 plot values in OPTt allocation.
Therefore we can write using equation 2;

E[SW(OPTt+1)− SW(OPTt)|Ht]

≤ zt1 + zt2
f t

(6ϕ+ 4) +
zt3
f t

(6ϕ+ 2) +
zt4
f t

(4ϕ+ 4)

≤ 4(2ϕ+ 2)zt1
f t

+
4(2ϕ+ 1)zt2

f t
+

8ϕ(zt3 + zt4)

f t

≤ 4 · E[SWt+1 − SWt|Ht]

Once all pairs of friends or adjacent edges in the topology are exhausted (F t = ∅ or
Et = ∅), our algorithm becomes random serial dictatorship in one-sided matching market.
Theorem 2 in Adamczyk et al. [2014] implies that

E[SW(OPTt+1)− SW(OPTt)|Ht] ≤
3 · E[SWt+1 − SWt|Ht] ≤ 4 · E[SWt+1 − SWt|Ht]

This implies that the sequence of random variables X0 = 0 and Xt−Xt−1 = 4 · (SWt−
SWt−1)− (SW(OPT)t− SW(OPT)t−1) is a sub-martingale as E[Xt+1|Ht] ≥ Xt. Therefore
by Doobs Stopping Theorem, we get E[XT |Ht] ≥ 0 which implies,

0 ≤ E
[ T∑
k=1

(Xk −Xk−1)

]
= 4 · E

[ T∑
k=1

(SWk − SWk−1)

]

− E
[ T∑
k=1

(SW(OPTk−1)− SW(OPTk))

]
⇒ E[SW(A)] ≥ OPT

4

This concludes the proof.

Theorem 5.3. Let A be the output of On-CA-RSD∗ on a binary instance I with ϕmin > 1.
Then E(SW(A)) ≥ 1

2ϕ+2OPT(I).

Proof. Let N t,Gt,Vt, Et,Ht,SWt and OPTt are defined similar to the proof of Theorem 5.2
at t−th iteration of On-CA-RSD *. We denote |N t| as nt for simplification. We define the



subsets of the N t as follows:

Zt
1 = {i ∈ N t : i has friend j, ul(OPTt) = ϕ+ 1; l = i, j}

Zt
2 = {i ∈ N t : i has friend j, ui(OPTt) + uj(OPTt) = 1 + 2ϕ}

Zt
3 = {i ∈ N t : i has friend j, ul(OPTt) = ϕ; l = i, j}

Zt
4 = {i ∈ N t : i has no friend, ul(OPTt) ≤ 1; l = 1, 2}

Zt
5 = {i ∈ N t : i has no friend, ui(v) = 0,∀v ∈ Vt}

Consider t with Et 6= ∅, If randomly chosen i ∈ Zt
1 ∪Zt

2 ∪Zt
3 ∪Zt

4, as value of friendship
ϕ > 1 and Et 6= ∅, i will declare her friend j and pick a plot v ∈ Vt with available
adjacent plot with maximizing her own utility then if possible her friends utility. If i ∈
N t \ (Zt

1∪Zt
2∪Zt

3∪Zt
4∪Zt

5), i will pick a plot with value 1. We note that the On-CA-RSD
never picks i ∈ Zt

5. This implies

E[SWt+1|Ht] ≥ SWt +
zt1
nt

(2ϕ+ 2) +
zt2
2

(2ϕ+ 1)

+
(zt3 + zt4)2ϕ

nt
+ 1− (zt1 + zt2 + zt3 + zt4 + zt5)

nt

(3)

We now analyse the decrease in optimal welfare at iteration t whenever Et 6= ϕ. If the
randomly chosen agent i at iteration t belongs to Zt

1 ∪ Zt
2 ∪ Zt

3 then the agent i will pick
the plot v ∈ Vt and force her friend j to pick w ∈ Nv. Therefore in any case, by grabbing
two adjacent plots (v, w) ∈ Et, they can destroy at most 2 other friendship values, their
own friendship value in the OPTt allocation where if i ∈ Zt

4 then it can destroy at most
2 friendship values in OPTt allocation (as they are not assigned adjacent plots in OPTt

allocation). Now, we analyse the decrease in plot values in optimal welfare. If i ∈ Zt
1 ∪ Zt

4,
they can destroy at most 4 plot values in OPTt allocation. Similarly, if i ∈ Zt

3 ∪ (N t \ (Zt
1 ∪

Zt
2 ∪ Zt

3 ∪ Zt
4 ∪ Zt

5)), it can destroy at most 2 plot values in OPTt allocation and for i ∈ Zt
2

can destroy at most 3 plot values in OPTt allocation (only one of them assigned to high
valued plot in OPTt). This implies that:

E[SW(OPTt)− SW(OPTt+1)|Ht]

≤ zt1(6ϕ+ 4)

nt
+
zt2(6ϕ+ 3)

nt
+
zt3(6ϕ+ 2)

nt
+
zt4(4ϕ+ 4)

nt

+
(

1− zt1 + zt2 + zt3 + zt4 + zt5
nt

)
(2ϕ+ 2)

≤ zt1(2ϕ+ 2)2

nt
+
zt2(2ϕ+ 1)(2ϕ+ 2)

nt
+
zt3(2ϕ)(2ϕ+ 2)

nt
+

zt4(2ϕ)(2ϕ+ 2)

nt
+
(

1− zt1 + zt2 + zt3 + zt4 + zt5
nt

)
(2ϕ+ 2)

≤ (2ϕ+ 2) · E[SWt+1 − SWt|Ht]

Note that zt1 + zt2 + zt3 + zt4 + zt5 ≤ nt. Once all adjacent edges in the topology are
exhausted (Et = ∅), our algorithm becomes a random serial dictatorship in a one-sided
matching market. Theorem 2 in Adamczyk et al. [2014] implies that

E[SW(OPTt+1)− SW(OPTt)|Ht] ≤
3 · E[SWt+1 − SWt|Ht] ≤ (2ϕ+ 2) · E[SWt+1 − SWt|Ht]



By similar argument as Theorem 5.2, we obtain

E[SW(A)] ≥ OPT

2ϕ+ 2

which concludes the proof.

Proposition 5.4. There exists a friendship-uniform binary instance I with OPT(I) = 2+2ϕ
such that the expected social welfare of the output of FF-CT-RSD is at most 6

n + 4ϕ.

Proof. Consider an instance with N = {1, . . . , n}, where n = 2k is even, V =
{v1, . . . , vk, w1, . . . , wk}, E = {{v1, vi} : 2 ≤ i ≤ k} ∪ {{w1, wi} : 2 ≤ i ≤ k} ∪ {{v1, w1}},
F ∗ = {{2i − 1, 2i} : i = 1, . . . , k}. Suppose that u1(v1) = u1(w1) = u2(v1) = u2(w2) = 1
and all other plot values are 0.

If ϕ < .5, an optimal allocation assigns v1 and w1 to agents 1 and 2, so that the social
welfare is 2 + 2ϕ. Now, under FF-CT-RSD∗ the probability that agents 1 and 2 appear in
the first two positions of the picking order is 2

n , and the probability that they appear in the
next two positions of the picking order is 2

n as well; if neither of these events happens, plots
v1 and w1 will be occupied by agents who value them at 0 (but derive positive utility from
being next to their friend), so the social welfare will be at most 4ϕ. Thus, the expected
social welfare of the allocation produced by FF-CT-RSD∗ is at most 2× 2

n +1× 2
n +4ϕ.

Proposition 5.5. Consider a mechanism M that has access to the friendship graph
〈N,F 〉, asks the agents to report their values for the plots, and outputs an allocation
based on the agents’ report and the friendship graph. If no agent can benefit from mis-
reporting her plot values under M then here exists a friendship-uniform binary instance
I = 〈N,V, F, (ui)i∈N , (ϕi,j)(i,j)∈F 〉 such that for the allocation A output by M we have
E(SW(A))
OPT(I) ≤

2ϕ
2ϕ+1 .

Proof. Let I1 = 〈N,V, F, (ui)i∈N , (ϕi,j)(i,j)∈F 〉, where N = {1, . . . , n} and the number of
agents n is even, n = 2k, V = {v1, . . . , vn}, E = {{v1, vi} : 2 ≤ i ≤ n}, F = {{2i − 1, 2i} :
1 ≤ i ≤ k}, ui(v) = 0 for all i ∈ N and all v ∈ V, and there exists a positive value ϕ such
that ϕi,j = ϕ for all (i, j) ∈ F . That is, the plot graph is a star with center v1, and each
agent has a friend and values all plots at 0. We have SW(A) = 2ϕ for every A ∈ A(I1).

By the pigeonhole principle, there exists a pair of friends {2i−1, 2i} such that mechanism
M allocates v1 to 2i − 1 or 2i with probability at most 2

n . Now, consider the instance I2
that is obtained from I1 by changing u2i(v1) to 1. Since M is truthful, agent 2i cannot
increase her utility in I1 by misreporting her utility function, so given I2,M allocates v1 to
2i with probability at most 2

n . Thus, the expected social welfare of the allocation produced
by M on I2 is at most 2

n + 2ϕ, whereas OPT(I2) = 1 + 2ϕ. As n can be arbitrarily large,
the bound follows.

Theorem C.1. Let A be the output of FF-CT-RSD∗ on a binary instance I with ϕ < 1,
where all agents report their friendships truthfully. Then E(SW(A)) ≥ ϕ

4ϕ+4OPT(I).

Proof. The proof of the theorem is similar to the Theorem 5.2. Consider the same termi-
nologies which were defined in Theorem 5.2. First we analyse the gain in social welfare at
t−th iteration when F t 6= ∅ and Et 6= ϕ. We notice that the adjacent plots are available at
t−th iteration. If randomly selected pair (i, j) ∈ Zt

1 then both can obtain their maximum
possible utility 1 + ϕ, however, it becomes little tricky when (i, j) /∈ Zt

1. If (i, j) ∈ Zt
2,

then increment in social welfare at t−th iteration is at least min{2, 2ϕ+ 1}–either (i, j) can
grab the assigned plots in OPTt or they both grab their respective high valued plots which



are non-adjacent. Similarly, when (i, j) ∈ Zt
3 ∪ Zt

4, (i, j) grabs two adjacent plots or two
non-adjacent plots where at least one of them is getting high valued plots. Which implies;

E[SWt+1|Ht] ≥ SWt +
zt1(2ϕ+ 2)

f t
+
zt2(min{2, 2ϕ+ 1})

f t

+
(zt3 + zt4)(min{1, 2ϕ})

f t

The decrease in the optimal welfare after t−th iteration should be upper bounded by a
similar quantity as Theorem 5.2. Therefore for ϕ < 1 we can write:

E[SW(OPTt+1)− SW(OPTt)|Ht]

≤ zt1 + zt2
f t

(6ϕ+ 4) +
zt3
f t

(6ϕ+ 2) +
zt4
f t

(4ϕ+ 4)

≤
4
(

1 + 1
ϕ

)
(2ϕ+ 2)zt1

f t
+

4
(

1 + 1
ϕ

)
(min{2, 2ϕ+ 1})zt2

f t

+
4
(

1 + 1
ϕ

)
(min{2, 2ϕ+ 1})(zt3 + zt4)

f t

≤ 4
(

1 +
1

ϕ

)
· E[SWt+1 − SWt|Ht]

Now, by the similar analysis as Theorem 5.3, we obtain the desired result.

Theorem C.2. Let A be the output of On-CA-RSD∗ on a binary instance I with ϕ < 1.
Then E(SW(A)) ≥ ϕ

4ϕ+4OPT(I).

Proof. The proof of the theorem is similar to the Theorem 5.2 and Theorem C.1.

C.1 Mixed Integer Program

In this section, we showcase a mixed integer program (MIP) formulation for the HA+X
problem.

max :
∑
i∈N

Ui(A) (4)∑
i∈N

ai,v ≤ 1, ∀v ∈ V (5)∑
v∈V

ai,v ≤ 1, ∀i ∈ N (6)

ui =
∑
v∈V

[ui(v)ai,v + ϕ
∑
f∈Fi

∑
v′∈Nv

af,v′ ], ∀i ∈ N (7)

ai,v ∈ {0, 1},∀i ∈ N, v ∈ V (8)

Equation 7 is the core of the MIP formulation, and it encodes the utility function by
hard-coding the friends and nearby functions for each buyer and cottage. Equations 5 and 6
require that each buyer be matched to at most one cottage, and each cottage be matched
to at most one buyer. And Equation 8 encodes the binary variable constraints for ab,c.
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