Every choice function is pro-con rationalizable

Serhat Dogan and Kemal Yildiz

Abstract

We consider an agent who is endowed with two sets of orderings: pro-orderings and conorderings. For each choice set, if an alternative is the top-ranked by a pro-ordering (con-ordering), then this is a pro (con) for choosing that alternative. The alternative with more pros than cons is chosen from each choice set. Each ordering may have a weight reflecting its salience. In this case, each alternative is chosen with a probability proportional to the total weight of its pros and cons. We show that every nuance of the rich human choice behavior can be captured via this structured model. Our technique requires a generalization of Ford-Fulkerson Theorem, which may be of independent interest. As an application of our results, we show that every choice rule is plurality-rationalizable.

1 Introduction

Charles Darwin, the legendary naturalist, wrote "The day of days!" in his journal on November 11, 1838, when his cousin Emma Wedgwood accepted his marriage proposal. However, whether to marry at all had been a hard decision for Darwin. Just a few months prior, Darwin had scribbled a carefully considered list of pros -such as "constant companion" and "charms of music" -and cons -such as "fewer conversations with clever people" and "no books"- regarding the potential impact of marriage on his life. ${ }^{1}$ With this list of pros and cons, Darwin seems to follow a choice procedure ascribed to Benjamin Franklin. ${ }^{2}$ Here we present Franklin (1887)'s choice procedure in his own words.

To get over this, my Way is, to divide half a Sheet of Paper by a Line into two Columns, writing over the one Pro, and over the other Con. I endeavour to estimate their respective Weights; and where I find two, one on each side, that seem equal, I strike them both out: If I find a Reason pro equal to some two Reasons con, I strike out the three. If I judge some two Reasons con equal to some three Reasons pro, I strike out the five; and thus proceeding I find at length where the Ballance lies. And tho' the Weight of Reasons cannot be taken with the Precision of Algebraic Quantities, yet when each is thus considered separately and comparatively, and the whole lies before me, I think I can judge better, and am less likely to take a rash Step; and in fact I have found great Advantage from this kind of Equation, in what may be called Moral or Prudential Algebra.

Choice models most commonly used in economics are based on maximization of preferences. An alternative mode of choice, which is common for the scholarly work in other social disciplines such as history, law, and political science, is the less formal reason-based analysis (Shafir et al. (1993)). Reasonbased analysis is also commonly used for the analysis of 'case studies' in business and law schools. ${ }^{3}$ In the vein of Franklin's prudential algebra, first, various arguments that support or oppose an alternative are identified, then the balance of these arguments determines the choice. ${ }^{4}$ We formulate and analyze the pro-con choice model that connects these two approaches by presenting a reason-based choice model, in which the 'reasons' are formed via a preference-based language.

[^0]We formulate the pro-con choice model in the deterministic choice setup by extending Franklin's prudential algebra to choice sets that possibly contain more than two alternatives. A (deterministic) pro-con model (pcM) is a pair $\langle\succ, \triangleright\rangle$ such that $\succ=\left\{\succ_{1}, \cdots, \succ_{m}\right\}$ is a set of pro-orderings and $\triangleright=$ $\left\{\triangleright_{1}, \cdots, \triangleright_{q}\right\}$ is a set of con-orderings. We require that an ordering can not both serve as a pro- and con-ordering. Since \succ and \triangleright are defined as sets of orderings rather than lists or profiles of orderings, each ordering can be used only once as a pro- or con-ordering. ${ }^{5}$ Given an $\mathrm{pcM}\langle\succ, \triangleright\rangle$, for each choice set S and alternative x, if x is the \succ_{i}-top-ranked alternative in S for some $\succ_{i} \in \succ$, then we interpret this as a 'pro' for choosing x from S. On the other hand, if x is the \triangleright_{i}-top-ranked alternative in S for some $\triangleright_{i} \in \triangleright$, then we interpret this as a 'con' for choosing x from S.

Our central new concept is the following: A choice function ${ }^{6}$ is pro-con rational(izable) if there is an pcM $\langle\succ, \triangleright\rangle$ such that for each choice set S, an alternative x is chosen from S if and only if pros for choosing x from S are more than the cons for choosing x from $S .{ }^{7}$

A random pro-con model (RpcM) is a triplet $\langle\succ, \triangleright, \lambda\rangle$, where \succ and \triangleright stand for the sets of proorderings and con-orderings, as before. The weight function λ assigns to each pro-ordering $\succ_{i} \in \succ \mathrm{a}$ value in the $[0,1]$ interval and con-ordering $\triangleright_{i} \in \triangleright$ a value in the $[-1,0]$ interval, which we interpret as a measure of the salience of each ordering. ${ }^{8}$ The total weight of an alternative in a choice set is the total weight of the pro-and con-orderings at which it is top-ranked. To make a choice from each choice set, a pro-con-rational agent considers the alternatives with a positive total weight, and chooses each alternative from this consideration set with a probability proportional to its total weight.

The most familiar stochastic choice model in economics is the random utility model (RUM), which assumes that an agent is endowed with a probability measure μ over a set of orderings \succ such that he randomly selects an ordering to be maximized from \succ according to μ. An RUM $\langle\succ, \mu\rangle$ is an RpcM in which there is no set of con-orderings. Both the RpcM and the RUM are additive models, in the sense that the choice probability of an alternative is calculated by summing up the weights assigned to the orderings. The primitives of both the RpcM and RUM are structurally invariant, in the sense that the decision maker uses the same $\langle\succ, \mu\rangle$ and $\langle\succ, \triangleright, \lambda\rangle$ to make a choice from each choice set. These two features of RUM reflect themselves in its characterization. ${ }^{9}$ Despite the similarity between the RpcM and the RUM, in Theorem 2, we show that every random choice function is pro-con rational. Our technique is build on our Theorem 3 an original extension of Ford Jr \& Fulkerson (2015)'s seminal result in optimization theory. Then, by using the construction in Theorem 2's proof together with two key results from the integer-programming literature, in Theorem 1, we show that each (deterministic) choice function is pro-con rational. ${ }^{10}$

The remaining observations in the paper are as follows. In Section 2.3, we observe that our Theorem 1 fails to hold in the context of multi-valued choice rules unless we allow multiple appearance of an ordering as a pro- or con-ordering. In Section 2.4, we illustrate that our results facilitate identification of other inclusive choice models, by showing that each choice function is plurality-rationalizable. The model and the result can thought of as a generalization of an earlier model and a related result by McGarvey (1953). For the uniqueness of representation, the RpcM has characteristics similar to the RUM, which we present and discuss in Section 3.3.

[^1]
1.1 Related literature

In the deterministic choice literature, previous choice models proposed by Kalai et al. (2002) and Bossert \& Sprumont (2013) yield similar "anything goes" results. A choice function is rationalizable by multiple rationales (Kalai et al. (2002)) if there is a collection of preference relations such that for each choice set the choice is made by maximizing one of these preferences. Put differently, the decision maker selects an ordering to be maximized for each choice set. A choice function is backwardsinduction rationalizable (Bossert \& Sprumont (2013)) if there is an extensive-form game such that for each choice set the backwards-induction outcome of the restriction of the game to the choice set coincides with the choice. In this model, for each choice set, a new game is obtained by pruning the original tree of all branches leading to unavailable alternatives. For random choice functions, Manzini \& Mariotti (2014) provide an anything-goes result for the menu-dependent random consideration set rules, in which an agent keeps a single preference relation and attaches to each alternative a choice-set-specific attention parameter. Then, he chooses an alternative with the probability that no morepreferable alternative grabs his attention. In contrast to these models, we believe that the pro-con model is more structured and exhibits limited context dependency. An agent following a pro-con model restricts the pro- and con-orderings to the given choice set to make a choice.

It may be of interest to view our model from the perspective of probabilistic social choice. Existing work in this literature show that the class of probabilistic group decision rules have considerable richness and appeal. As a partial list one can consider Intriligator (1973), Barberá \& Sonnenschein (1978), Pattanaik \& Peleg (1986), and Intriligator (1982). These studies typically investigate the structure of coalitional power under probabilistic social decision rules. The closest to our work is Pattanaik \& Peleg (1986) who axiomatically characterize the random dictatorship procedure, in which there is a probability measure μ on the members of the society N such that for each profile of individual preferences $\left\{\succ_{i}\right\}_{i \in N}$, the society chooses from each choice set according to the RUM $\left\langle\left\{\succ_{i}\right\}_{i \in N}, \mu\right\rangle$. Along these lines, for a social-choice interpretation of the mixed-sign representation in an RpcM, consider a chair who stochastically aggregates different opinions in a committee to make a choice. It is typically assumed that as more committee members top rank an alternative, the choice probability of this alternative increases. However, there may be an antagonistic relationship between the chair and some committee members, so that the chair would be less likely to choose the alternative favored by them.

Franklin's moral algebra is well known in the field of multi-criteria decision making. ${ }^{11}$ Köksalan et al. (2011) reports Franklin's moral algebra as one of the earliest examples of multi-criteria decision making. Hammond et al. (1998) proposes the related 'even swaps' method as a practical way of making trade-offs among any set of objectives across a range of alternatives. Our approach diverges from the bulk of research in this literature in taking the route of revealed preference analysis. That is, we recover the primitive objectives and the way that they are reconciled from observed choices.

Our Theorem 2 is related to a result in a contemporary paper by Saito (2017), who offers characterizations of the mixed logit model. It follows from the results of this paper, which is proved by using a different approach, that each RCF can be expressed as a convex combination of two random utility functions. ${ }^{12}$ We discuss the technical differences at the end of Section 3.2.

2 Deterministic pro-con choice

2.1 The model

Given a nonempty finite alternative set X, any nonempty subset S is called a choice set. Let Ω denote the collection of all choice sets. A (deterministic) choice function C is a mapping that assigns each choice set $S \in \Omega$ a member of S, that is $C: \Omega \rightarrow X$ such that $C(S) \in S$. An ordering, denoted generically by \succ_{i} or \triangleright_{i}, is a complete, transitive, and antisymmetric binary relation on X.

[^2]A (deterministic) pro-con model ($\mathbf{p c M}$) is a pair $\langle\succ, \triangleright\rangle$, where $\succ=\left\{\succ_{1}, \cdots, \succ_{m}\right\}$ and $\triangleright=\left\{\triangleright_{1}, \cdots, \triangleright_{q}\right\}$ are sets of pro- and con-orderings on X. Given an $\mathrm{pcM}\langle\succ, \triangleright\rangle$, for each choice set S and alternative $x \in S$, if x is the \succ_{i}-top-ranked alternative in S for some $\succ_{i} \in \succ$, then we interpret this as a 'pro' for choosing x from S. On the other hand, if x is the \triangleright_{i}-top-ranked alternative in S for some $\triangleright_{i} \in \triangleright$, then we interpret this as a 'con' for choosing x from S. Define $\operatorname{Pros}(x, S)=\left\{\succ_{i} \in \succ: x=\max \left(S, \succ_{i}\right)\right\}$ and $\operatorname{Cons}(x, S)=\left\{\triangleright_{i} \in \triangleright: x=\max \left(S, \triangleright_{i}\right)\right\}$.

Definition 1 A choice function C is pro-con rational if there is an $p c M\langle\succ, \triangleright\rangle$ such that for each choice set $S \in \Omega$ and $x \in S, C(S)=x$ if and only if $|\operatorname{Pros}(x, S)|>|\operatorname{Cons}(x, S)|$.

Note that if an agent is pro-con rational, then at each choice set S there should be a single alternative x such that the number of $\operatorname{Pros}(x, S)$ is greater than the number of $\operatorname{Cons}(x, S)$. Moreover, the pro-con model is not a direct adaptation of its random counterpart. In that, we require each ordering to have a fixed unit weight, instead of having fractional weights. Next, to illustrate how the model works, we revisit Luce and Raiffa's dinner example (Luce \& Raiffa (1957)) by following a pro-con model.

Example 1 Suppose you choose chicken when the menu consists of steak and chicken only, yet go for the steak when the menu consists of steak (S), chicken (C), and fish (F). Consider the pro-orderings \succ_{1} and \succ_{2} that order the three dishes according to their attractiveness and healthiness, so suppose $S \succ_{1} F \succ_{1} C$ and $F \succ_{2} C \succ_{2} S$. As a con-ordering, consider $F \triangleright S \triangleright C$, which orders the dishes according to their riskiness. Since cooking fish requires expertise, it is the most risky one and chicken is the safest option.

Now, to make a choice from the grand menu, the pros are: " S is the most attractive", " F is the most healthy", but also " F is the most risky". Thus, S is chosen from the grand menu. If only S and C are available, then we have " C is the most healthy", " S is the most attractive", but also " S is the most risky", so C is chosen.

In our Definition 1, we ask for a rather structured representation that corresponds to one-to-one elimination in Franklin's prudential algebra. We see at least two benefits of this stringency. First, we obtain the uniqueness property presented in Section 3.3. Second, in Section 2.3, we argue that our Theorem 1 fails to hold in the context of multi-valued choice rules. Finally, given our Theorem 1, one can use our representation to identify other inclusive choice models, which otherwise may not be an easy exercise. In Section 2.4, we present an application along these lines, in which we show that each choice function is plurality-rationalizable.

2.2 Main result

We show that every choice function is pro-con rational. In the language of mathematical programming, in Theorem 2, we show that the relaxed (convex) problem has a solution. In Section 5.3, we prove Theorem 1, which translates into finding an integer solution, by using the construction in Theorem 2's proof together with two key results from the integer-programming literature, the ones developed by Hoffman \& Kruskal (2010) and Heller \& Tompkins (1956).

Theorem 1 Every choice function is pro-con rational.
Remark 1 The constructed pro-con representation is a rather parsimonious one. To see this, consider a more stringent pro-con model, in which if an alternative x is chosen from a choice set S, it is barely chosen in the sense $|\operatorname{Pros}(x, S)|-|\operatorname{Cons}(x, S)|=1$, and if an alternative y is not chosen, it is barely not chosen in the sense $|\operatorname{Pros}(y, S)|-|\operatorname{Cons}(y, S)|=0$. It follows from the proof of Theorem 1 that the same anything-goes-result holds for this model.

2.3 Extension to multi-valued choice

There are instances in which an agent must choose more than a single alternative from a choice set. For example, consider a school that chooses a cohort from a set of applicants or a professor who chooses a set of questions out of his archive to prepare an exam. As for the random choice, imagine that we have access the support of the random choice function, but not the frequencies, then the observed choice behavior yields a choice rule. ${ }^{13}$

So far, we have assumed that the observed choice behavior is summarized by a choice function or a random choice rule. Both models rule out the possibility that choice can be multi-valued. Formally, a choice rule $\mathbb{C}: \Omega \rightarrow \Omega$ such that for each $S \in \Omega, \mathbb{C}(S) \subset S$. A choice rule is pro-con rational if there exists a pro-con model $\langle\succ, \triangleright\rangle$ such that for each choice set $S \in \Omega, \mathbb{C}(S)=\arg \max _{x \in S}(|\operatorname{Pros}(x, S)|-$ $|\operatorname{Cons}(x, S)|)$. That is, for each choice set $S \in \Omega$ and $x \in S, x \in \mathbb{C}(S)$ if and only if $|\operatorname{Pros}(x, S)|-$ $|\operatorname{Cons}(x, S)| \geq|\operatorname{Pros}(y, S)|-|\operatorname{Cons}(y, S)|$ for each $y \in S$.

A natural question is if our result in Theorem 1 extends to choice rules or not. To see that not every choice rule is pro-con rational, consider the choice rule \mathbb{C} defined on $\{x, y, z\}$ such that $\mathbb{C}(\{x, y, z\})=\{x, y\}, \mathbb{C}(\{x, y\})=\{x\}, \mathbb{C}(\{y, z\})=\{y\}$, and $\mathbb{C}(\{x, z\})=\{z\}$. It is easy to see that \mathbb{C} is not pro-con rational. ${ }^{14}$ The stringency in here derives from the requirement that each ordering can be used only once as a pro- or con-ordering in a pro-con model.

In contrast, if we allow multiple appearance of an ordering as a pro- or con-ordering, then every choice rule can be recovered. To see this, let \mathbb{C} be a choice rule, and let p be the associated random choice function such that for each $S \in \Omega$ and $x \in \mathbb{C}(S), p(x, S)=1 /|\mathbb{C}(S)|$. It follows from Theorem 2 that there is a random pro-con model $\langle\succ, \triangleright, \lambda\rangle$ which represents p. Moreover, it follows from the construction in the proof of Theorem 2 that if for each $S \in \Omega$ and $x \in \mathbb{C}(S), p(x, S)$ is a rational number, then for each $\succ_{i} \in \succ$ and $\triangleright_{j} \in \triangleright$, we can choose $\lambda\left(\succ_{i}\right)=m_{i} / M$ and $\lambda\left(\triangleright_{j}\right)=m_{j} / M$, where m_{i}, m_{j}, M are positive integers. Now, consider a list (or a profile) of pro-orderings with m_{i}-many copies of \succ_{i} and m_{j}-many copies of \triangleright_{j} for each $\succ_{i} \in \succ$ and $\triangleright_{j} \in \triangleright$. It directly follows from this construction that for each $S \in \Omega$ and $x \in S, x \in \mathbb{C}(S)$ if and only if x maximizes the difference between number of pro-orderings at which x is top-ranked in S and the number of con-orderings at which x is top-ranked in S.

2.4 Plurality-rationalizable choice rules

We analyze a collective decision making model based on plurality voting. It turns out that this model is closely related to our pro-con choice model. To introduce this model, let $\left[\succ^{*}\right]=\left[\succ_{1}^{*}, \ldots, \succ_{m}^{*}\right]$ be a preference profile, which is a list of orderings. In contrast to a set of orderings, denoted by \succ or \triangleright, an ordering \succ_{i}^{*} can appear more than once in a preference profile $\left[\succ^{*}\right]$. For each choice set $S \in \Omega$ and $x \in S, x$ is a plurality winner of $\left[\succ^{*}\right]$ in S if for each $y \in S \backslash\{x\}$, the number of orderings in $\left[\succ^{*}\right]$ that top rank x in S is more than or equal to the number of orderings in $\left[\succ^{*}\right]$ that top rank y in S. That is, for each $y \in S \backslash\{x\},\left|\left\{\succ_{i}^{*} \in\left[\succ^{*}\right]: x=\max \left(S, \succ_{i}^{*}\right)\right\}\right| \geq\left|\left\{\succ_{i}^{*} \in\left[\succ^{*}\right]: y=\max \left(S, \succ_{i}^{*}\right)\right\}\right|$. Next, we define plurality-rationalizability, then by using our Theorem 1, we show that every choice rule is plurality-rationalizable.

Definition 2 A choice rule C is plurality-rationalizable if there is preference profile $\left[\succ^{*}\right]$ such that for each choice set $S \in \Omega$ and $x \in S, x \in \mathbb{C}(S)$ if and only if x is a plurality winner of $\left[\succ^{*}\right]$ in S.

Proposition 1 Every choice rule is plurality-rationalizable. ${ }^{15}$

[^3]Proof. Let \mathbb{C} be a choice rule. In Section 2.3, by using Theorem 1, we show that if we allow multiple appearance of an ordering as a pro- or con-ordering, then every choice rule is pro-con rational. First, to formalize this representation, let \succ and \triangleright be the set of pro- and con-orderings such that each $\succ_{i} \in \succ\left(\triangleright_{i} \in \triangleright\right)$ is copied k_{i} times to represent \mathbb{C}. Then, define for each $S \in \Omega$ and $x \in S$, $\operatorname{SPros}(x, S)=\sum_{\left\{\succ_{i} \in \operatorname{Pros}(x, S)\right\}} k_{i}$ and $\operatorname{SCons}(x, S)=\sum_{\left\{\triangleright_{i} \in \operatorname{Cons}(x, S)\right\}} k_{i}$, where $\operatorname{Pros}(x, S)$ and $\operatorname{Cons}(x, S)$ are defined as usual with respect to \succ and \triangleright. Now, we know that for each $S \in \Omega$ and $x \in S, x \in \mathbb{C}(S)$ if and only if $x \in \arg \max _{x \in S}\left(\left|\operatorname{SPros}\left(x, S, \succ^{*}\right)\right|-\left|\operatorname{SCons}\left(x, S, \triangleright^{*}\right)\right|\right)$.

Now, to construct the desired preference profile, let $k=\max _{\left\{\triangleright_{i} \in \triangleright^{*}\right\}} k_{i}$, and begin with the list of all orderings defined on X copied k times. This is preference profile with $k n$! elements. Then, eliminate k_{i} copies of the inverse of each ordering $\triangleright_{i} \in \triangleright$, and add k_{i} copies of each ordering $\succ_{i} \in \succ$. Note that since we have k copies of each ordering, the elimination part is well-defined. Let $\left[\succ^{*}\right]$ be the obtained preference profile.

We show that for each $S \in \Omega$ and $x \in S, x \in \mathbb{C}(S)$ if and only if x is a plurality winner of $\left[\succ^{*}\right]$ in S. We know that $x \in \mathbb{C}(S)$ if and only if for each $y \in S \backslash\{x\},|\operatorname{SPros}(x, S)|-|S C o n s(x, S)| \geq$ $|S \operatorname{Pros}(y, S)|-|S C o n s(y, S)|$. Now, note that by construction of $\left[\succ^{*}\right]$, for each $y \in S$ the number of orderings in $\left[\succ^{*}\right]$ that top rank y in S equals k times the number of all orderings that top rank y in S, added to $|S \operatorname{Pros}(y, S)|-|S \operatorname{Cons}(y, S)|$. Since for each $y \in S$, the number of all orderings that top rank y in S is fixed, it follows that $x \in \mathbb{C}(S)$ if and only if x is a plurality winner of [\succ^{*}] in S.

If we restrict our attention to choice functions, then we can consider an even more stringent model. In which, we require that an alternative x is chosen from a choice set S if and only if x is the plurality winner at the margin, in the sense that if x receives k votes then each other alternative receives $k-1$ votes. It follows from Remark 1 and the proof of Proposition 1 that every choice function is plurality-rationalizable via this more demanding model.

In an early paper McGarvey (1953) shows that for each asymmetric and complete binary relation, there exists a preference profile such that the given binary relation is obtained from the preference profile by comparing each pair of alternatives via majority voting. ${ }^{16}$ We obtain McGarvey's result, as a corollary to Proposition 1. To see this, note that if we restrict a choice rule to binary choice sets, then we obtain an asymmetric and complete binary relation. Since for binary choices, being a plurality winner means being a majority winner, McGarvey's result directly follows.

3 Random pro-con choice

3.1 The model

A random choice function (RCF) p is a mapping that assigns each choice set $S \in \Omega$, a probability measure over S. For each $S \in \Omega$ and $x \in S$, we denote by $p(x, S)$ the probability that alternative x is chosen from choice set S.

A random pro-con model (RpcM) is a triplet $\langle\succ, \triangleright, \lambda\rangle$, where \succ and \triangleright stand for the sets of pro- and con-orderings on X as before. The weight function, denoted by λ, is such that for each $\succ_{i} \in \succ$ and $\triangleright_{i} \in \triangleright$, we have $\lambda\left(\succ_{i}\right) \in(0,1], \lambda\left(\triangleright_{i}\right) \in[-1,0)$, and the weighted sum of pro-orderings and con-orderings is one, i.e. $\sum_{\left\{\succ_{i} \in \succ\right\}} \lambda\left(\succ_{i}\right)+\sum_{\left\{\triangleright_{i} \in \triangleright\right\}} \lambda\left(\triangleright_{i}\right)=1$. The weight function λ acts like a probability measure over the set of orderings that can assign negative values. In measure theoretic language, the primitive of a random pro-con model is a signed probability measure defined over the set of orderings.

Given an RpcM $\langle\succ, \triangleright, \lambda\rangle$, for each choice set S and alternative $x \in S$, if x is the \succ_{i}-top-ranked alternative in S for some $\succ_{i} \in \succ$, then we interpret this as a 'pro' for choosing x from S. On the other hand, if x is the \triangleright_{i}-top-ranked alternative in S for some $\triangleright_{i} \in \triangleright$, then we interpret this as a 'con' for choosing x from S. We interpret the weight assigned to each pro-ordering or con-ordering as a measure of the strength of that ordering.

[^4]To define when an RCF is pro-con rational, let $\operatorname{Pros}(x, S)=\left\{\succ_{i} \in \succ: x=\max \left(S, \succ_{i}\right)\right\}$ and $\operatorname{Cons}(x, S)=\left\{\triangleright_{i} \in \triangleright: x=\max \left(S, \triangleright_{i}\right)\right\}$. Next, we formally define when an RCF is pro-con rational. For a given RpcM $\langle\succ, \triangleright, \lambda\rangle$, for each choice set $S \in \Omega$ and $x \in S$, we denote the total weight of x in S by $\lambda(x, S)$, i.e. $\lambda(x, S)=\lambda(\operatorname{Pros}(x, S))+\lambda(\operatorname{Cons}(x, S))$. For each choice set $S \in \Omega$, let S^{+}be the set of alternatives in S that receives a positive total weight, i.e. $S^{+}=\{x \in S: \lambda(x, S)>0\}$.

Definition 3 An RCF p is pro-con rational if there is an $R p c M\langle\succ, \triangleright, \lambda\rangle$ such that for each choice set $S \in \Omega$ and $x \in S$,

$$
\begin{equation*}
p(x, S)=\max \left\{0, \frac{\lambda(x, S)}{\sum_{\left\{y \in S^{+}\right\}} \lambda(y, S)}\right\} \tag{1}
\end{equation*}
$$

That is, to make a choice from each choice set S, a pro-con-rational agent considers the alternatives with a positive total weight, and chooses each alternative from this consideration set with a probability proportional to its total weight. An equivalent formulation is as follows. An RCF p is pro-con rational if there is an RpcM $\langle\succ, \triangleright, \lambda\rangle$ such that for each choice set $S \in \Omega$ and $x \in S$, $p(x, S)=\lambda(\operatorname{Pros}(x, S))+\lambda(\operatorname{Cons}(x, S))$, where $\lambda(\operatorname{Pros}(x, S))$ and $\lambda(\operatorname{Cons}(x, S))$ are the sum of the weights over $\operatorname{Pros}(x, S)$ and $\operatorname{Cons}(x, S)$. Our proof of Theorem 2 clarifies this equivalence.

As an alternative to the random utility model (RUM), Tversky (1972) proposes elimination by aspects model in which an agent views each alternative as a set of attributes. Then, at each stage, the agent selects an attribute with probability proportional to its weight and eliminates all the alternatives without the selected attribute. Pro-con model offers a choice procedure that both carries the act of selecting an ordering to be maximized as in the random utility model and elimination of the alternatives based on their attributes as in Tversky (1972)'s elimination by aspects. In that, a pro-con-rational agent's attitude to the relevant attributes is twofold: If it is a pro-ordering, then he seeks maximization as in the RUM, if it is a con-ordering, then he is satisfied by elimination of the worst alternative as in the elimination by aspects model. In line with this interpretation, we illustrate in Example 2 that each ordering in an RpcM can be interpreted as an attribute or a relevant criterion.

To illustrate how RpcM works, we focus on a particular choice problem in which there are only two orderings $\left(\succ_{1}, \succ_{2}\right)$ that are relevant for choice, such as price and quality, and present an attraction effect scenario. ${ }^{17}$ In this scenario, when we introduce an asymmetrically dominated alternative, called a decoy, the choice probability of the dominating alternative goes up. This choice behavior, known as the attraction effect, is incompatible with any RUM.

Example 2 (Attraction Effect) Suppose $X=\{x, y, z\}$, where x and y are two competing alternatives such that none clearly dominates the other, and z is another alternative that is dominated by x but not y. Consider the following $\operatorname{RpcM}\langle\succ, \triangleright, \lambda\rangle$, in which there is single pair of orderings used both as the pro- and con-orderings, with weights shown in parenthesis. We can interpret this ordering pair as two distinct criteria that order the alternatives.

(1)	(1)	$\left(-\frac{1}{2}\right)$	$\left(-\frac{1}{2}\right)$ \succ_{1}
\succ_{2}	\succ_{1}^{-1}	\succ_{2}^{-1}	
x	y	y	z
z	x	z	x
y	z	x	y

Now, since for both criteria x is better than z, we get $p(x,\{x, z\})=1$. Since x and y fail to dominate each other, and y fail to dominate z, we get $p(y,\{x, y\})=p(y,\{y, z\})=1 / 2$. That is, z is a 'decoy' for x when y is available. Note that when only x and y are available, since x is the \succ_{2}-worst alternative, x is eliminated with a weight of $1 / 2$. However, when the decoy z is added to the choice set, then x is no longer the \succ_{2}-worst alternative, and we get $p(x,\{x, y, z\})=2 / 3$. That is, availability of decoy z increases the choice probability of x. Thus, our model captures the intuition that the choice probability

[^5]of an alternative may increase when a decoy is added, since this alternative may no longer be the worst one according to a relevant attribute.

3.2 Main result

In our main result, we show that every random choice function is pro-con rational. We present a detailed discussion of the result in the introduction. We present the proof in Section 5.2. As a notable technical contribution, we generalize the Ford-Fulkerson Theorem (Ford Jr \& Fulkerson (2015)) from combinatorial matrix theory to prove the result. Next, we state the theorem and present an overview of the proof. Then, we discuss the technical connection to Saito (2017).

Theorem 2 Every random choice function is pro-con rational.
An overview of the proof: For a given RCF p, we show that there is a signed weight function λ, which assigns each ordering \succ_{i}, a value $\lambda\left(\succ_{i}\right) \in[-1,1]$ such that λ represents p. That is, for each choice set S and $x \in S, p(x, S)$ is the sum of the weights over orderings at which x is the top-ranked alternative. We prove this by induction.

To clarify the induction argument, for $k=1$, let $\Omega_{1}=\{X\}$ and let \mathcal{P}^{1} consists of n-many equivalence classes such that each class contains all the orderings that top rank the same alternative, irrespective of whether these are chosen with positive probability. That is, for $X=\left\{x_{1}, \ldots, x_{n}\right\}$, we have $\mathcal{P}^{1}=\left\{\left[\succ^{x_{1}}\right], \cdots,\left[\succ^{x_{n}}\right]\right\}$, where for each $i \in\{1, \ldots, n\}$ and ordering $\succ_{i} \in\left[\succ^{x_{i}}\right], x_{i}=\max \left(X, \succ_{i}\right.$). Now for each $x_{i} \in X$, define $\lambda^{1}\left(\left[\succ^{x_{i}}\right]\right)=p\left(x_{i}, X\right)$. It directly follows that λ^{1} is a signed weight function over \mathcal{P}^{1} that represents the restriction of the given RCF to Ω_{1}, denoted by p_{1}. By proceeding inductively, it remains to show that we can construct λ^{k+1} over \mathcal{P}^{k+1} that represents p_{k+1}.

In Step 1 of the proof we show that finding such a λ^{k+1} boils down to finding a solution to the system of equalities described by row sums (RS) and column sums (CS). Up to this point the proof structure is similar to the one followed by Falmagne (1978) and Barberá \& Pattanaik (1986) for the characterization of RUM.

To understand (RS), while moving from the $k^{t h}$-step to the $(k+1)^{t h}$-step, each $\left[\succ^{k}\right]$ is decomposed into a collection $\left\{\left[\succ_{j}^{k+1}\right]\right\}_{j \in J}$ such that for each $\left[\succ_{j}^{k+1}\right]$ there exists an alternative x_{j} that is not linearly ordered by $\left[\succ^{k}\right]$, but placed at $\left[\succ_{j}^{k+1}\right]$ right on top of the alternatives that are not linearly ordered by $\left[\succ^{k}\right]$. Therefore, the sum of the weights assigned to $\left\{\left[\succ_{j}^{k+1}\right]\right\}_{j \in J}$ should be equal to the weight assigned to $\left[\succ^{k}\right]$. This gives us the set of equalities formulated in (RS). To understand (CS), let S be the set of alternatives that are not linearly ordered by $\left[\succ^{k}\right]$. Now, we should design λ^{k+1} such that for each $x_{j} \in S, p\left(x_{j}, S\right)$ should be equal to the sum of the weights assigned to orderings at which x_{j} is the top-ranked alternative in S. The set of equalities formulated in (CS) guarantees this. This follows from our Lemma 2, which we obtain by using the Mobius inversion. ${ }^{18}$

Our proof is based on two interwoven observations. To understand the first, let us turn back to the induction argument. It is easy to see that the signed weight function λ^{2} over \mathcal{P}^{2} that represents p_{2} is determined uniquely. That is, there is a unique λ^{2} that satisfies equalities (RS) and (CS) formed for $k=2$. But, then for λ^{3} (in general for each $k \geq 3$) to be defined over \mathcal{P}^{3}, the solution to the associated (RS) and (CS) for $k=3$ is no longer unique. The difficulty is that although any λ^{3} that satisfies equalities (RS) and (CS) for the $k=3$ represents p_{3}, depending on the choice of λ^{3}, the (RS) and (CS) formed for a future step, $k>3$, may not have a solution. Therefore, to conclude the induction successfully, for each $k \geq 3$, we should be "forwarding looking" in choosing λ^{k}.

Our second critical observation is that finding a solution to the system described by (RS) and (CS) can be translated to the following basic problem: Let $R=\left[r_{1}, \ldots, r_{m}\right]$ and $C=\left[c_{1}, \ldots, c_{n}\right]$ be two real-valued vectors such that the sum of R equals to the sum of C. Now, for which R and C can we find an $m \times n$ matrix $A=\left[a_{i j}\right]$ such that A has row sum vector R and column sum vector C, with each entry $a_{i j} \in[-1,1]$? Ford Jr \& Fulkerson (2015) provide a full answer to this question when R and C are positive real valued. ${ }^{19}$ However, there are two issues peculiar to our problem. First issue is

[^6]that the row and column sums can be negative real valued. Indeed, we get nonnegative-valued rows and columns only if the Block-Marschak polynomials are nonnegative, that is, the given p is an RUM. Second issue is that, related to our previous observation, we need "forward looking" solutions. In our Theorem 3, we provide a generalization of Ford-Fulkerson Theorem that paves the way for our proof by solving the two issues.

Theorem 3 (Generalized Ford-Fulkerson Theorem) Let $R=\left[r_{1}, \ldots, r_{m}\right]$ and $C=\left[c_{1}, \ldots, c_{n}\right]$ be real-valued vectors with $-1 \leq r_{i} \leq 1$ and $-m \leq c_{j} \leq m$ such that $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$. If $2 m \geq$ $\sum_{i=1}^{m}\left|r_{i}\right|+\sum_{j=1}^{n}\left|c_{j}\right|$, then there is an $m \times n$ matrix $A=\left[a_{i j}\right]$ such that:
i. A has row sum vector R and column sum vector C,
ii. each entry $a_{i j} \in[-1,1]$, and
iii. for each $j \in\{1, \ldots, n\}, \sum_{i=1}^{m}\left|a_{i j}\right| \leq\left|c_{j}\right|+\max \left\{0, \frac{\sum_{i=1}^{m}\left|r_{i}\right|-\sum_{j=1}^{n}\left|c_{j}\right|}{n}\right\}$.

To get an intuition for Theorem $3,{ }^{20}$ it is easy to see that the sum of the absolute values of the rows and columns should be bounded in order to extend the result to real-valued vectors. So, in Theorem 3, we require this sum be less than or equal to $2 m$, where m is the number of rows. The choice of this specific bound has two implications. First, we can extend Ford-Fulkerson Theorem with real-valued rows and columns. This solves the first issue. Second, we guarantee that there is a solution that satisfy the bound in item (iii) of Theorem 3. This solution turns out be the forwarding looking solution, which solves the second issue.

The rest of the proof is as follows. In Step 2, we show that (RS) equals (CS). In Step 3, by using a structural result presented in Lemma 3, we show that the row and column vectors associated with (RS) and (CS) satisfy the premises of our Theorem 3. This completes the construction of the desired signed weight function.

As discussed in Section 1.1, Saito (2017) independently shows that each RCF can be expressed as a convex combination of two random utility functions by using different techniques. To see our technical contribution note that by following the construction in our proof and directly applying the Ford-Fulkerson Theorem, each RCF can be expressed as an affine combination of random utility functions. To show that these weights can be chosen from $[-1,1]$ interval, we generalize the Ford-Fulkerson Theorem (see Theorem 3) and follow a deliberate induction argument supported by other structural results, such as Lemma 3. We believe that our technique can be fruitful in solving similar random choice problems.

3.3 Uniqueness

An RCF may have different random utility representations even with disjoint sets of orderings. Falmagne (1978) argues that random utility representation is essentially unique. That is, the sum of the probabilities assigned to the orderings at which an alternative x is the $k^{t h}$-top-ranked in a choice set is the same for all random utility representations of the given RCF. Similarly, the primitives of an RpcM are structurally invariant in the sense that the agent uses the same triplet $\langle\succ, \triangleright, \lambda\rangle$ to make a choice from each choice set. As an instance of this similarity, both models render a unique representation when there are only three alternatives. ${ }^{21}$ As for the general case, Proposition 2 provides a uniqueness result for the RpcM, which can be thought as the counterpart of Falmagne's result for the RUM. Finally, as a direct corollary to Proposition 2, we present the counterpart of our uniqueness result for a pro-con model.

For a given RpcM $\langle\succ, \triangleright, \lambda\rangle$, let for each $S \in \Omega$ and $x \in S, \lambda\left(x=B_{k} \mid S, \succ, \triangleright\right)$ be the sum of the weights assigned to the pro- and con-orderings at which x is the $k^{\text {th }}$-top-ranked alternative in S. In our next result, we show that for each RCF the sum of the weights assigned to the orderings at which x is the $k^{t h}$-top-ranked alternative in S is the same for each pro-con representation of the given RCF. That is, $\lambda\left(x=B_{k} \mid S, \succ, \triangleright\right)$ is fixed for each $\operatorname{RpcM}\langle\succ, \triangleright, \lambda\rangle$ that represents the given RCF.

[^7]Proposition 2 If $\langle\succ, \triangleright, \lambda\rangle$ and $\left\langle\succ^{\prime}, \triangleright^{\prime}, \lambda^{\prime}\right\rangle$ are random pro-con representations of the same $R C F p$, then for each $S \in \Omega$ and $x \in S$,

$$
\begin{equation*}
\lambda\left(x=B_{k} \mid S, \succ, \triangleright\right)=\lambda^{\prime}\left(x=B_{k} \mid S, \succ^{\prime}, \triangleright^{\prime}\right) . \tag{2}
\end{equation*}
$$

Proof. Let $\langle\succ, \triangleright, \lambda\rangle$ and $\left\langle\succ^{\prime}, \triangleright^{\prime}, \lambda^{\prime}\right\rangle$ be two RPMs that represent the same RCF p. Now, for each choice set $S \in \Omega$, both λ and λ^{\prime} should satisfy the identity (CS) used in Step 1 of the proof of Theorem 2. That is, for each $S \in \Omega$ and $x \in S$ both λ and λ^{\prime} generates the same $q(x, S)$ value. Therefore, if we can show that $\lambda\left(x=B_{k} \mid S, \succ, \triangleright\right)$ can be expressed in terms of $q(x, \cdot)$, then (2) follows. To see this, let $\langle\succ, \triangleright, \lambda\rangle$ be any RpcM that represents p. Next, for each $S \in \Omega, x \in S$, and $k \in\{1, \ldots,|S|\}$, consider a partition $\left(S_{1}, S_{2}\right)$ of S such that $x \in S_{2}$ and $\left|S_{1}\right|=k-1$. Let $\mathbb{P}(S, x, k)$ be the collection of all these partitions. Now, for each fixed $\left(S_{1}, S_{2}\right) \in \mathbb{P}(S, x, k)$, let $\lambda\left(x \mid S_{1}, S_{2}, \succ, \triangleright\right)$ be the sum of the weights of the orderings at which x is the top-ranked alternative in S_{2} and the top-ranked alternative in S_{1}. Note that for each such ordering, x is the $k^{t h}$-top-ranked alternative in S. Now, it follows that we have:

$$
\begin{equation*}
\lambda\left(x=B_{k} \mid S, \succ, \triangleright\right)=\sum_{\left\{\left(S_{1}, S_{2}\right) \in \mathbb{P}(S, x, k)\right\}} \lambda\left(x \mid S_{1}, S_{2}, \succ, \triangleright\right) \tag{3}
\end{equation*}
$$

Since for each $T \in \Omega$ such that $S_{2} \subset T$ and $T \subset X \backslash S_{1}$, by definition, $q(x, T)$ gives the total weight of the orderings at which x is the top-ranked alternative in S, it follows that

$$
\begin{equation*}
\sum_{\mathbb{P}(S, x, k)} \lambda\left(x \mid S_{1}, S_{2}, \succ, \triangleright\right)=\sum_{\mathbb{P}(S, x, k)} \sum_{S_{2} \subset T \subset X \backslash S_{1}} q(x, T) . \tag{4}
\end{equation*}
$$

Finally, if we substitute (3) in (4), then we express $\lambda\left(x=B_{k} \mid S, \succ, \triangleright\right)$ only in terms of $q(x, \cdot)$, as desired.

Next, we present the counterpart of our uniqueness result for a pro-con model. For a given $\operatorname{pcM}\langle\succ, \triangleright\rangle$, let for each $S \in \Omega$ and $x \in S, \operatorname{Pros}^{k}(x, S)$ be the set of pro-orderings at which x is the $k^{t h}$-top-ranked alternative in S. Similarly, let $\operatorname{Cons}^{k}(x, S)$ be the set of con-orderings at which x is the $k^{t h}$-top-ranked alternative in S. We show that for a given choice function, the difference between the number of pro-orderings at which x is the $k^{t h}$-top-ranked alternative in S and the number of conorderings at which x is the $k^{t h}$-top-ranked alternative in S is the same for each pro-con representation of the given choice function. We obtain this result as a direct corollary to our Proposition 2.

Corollary 1 If $\langle\succ, \triangleright\rangle$ and $\left\langle\succ^{\prime}, \triangleright^{\prime}\right\rangle$ are pro-con representations of the same choice function C, then for each $S \in \Omega, x \in S$, and $k \in\{1, \ldots, n\}$, both representations lead the same $\left|\operatorname{Pros}^{k}(x, S)\right|-\left|\operatorname{Cons}^{k}(x, S)\right|$ value.

Proof. Since each pro- and con-ordering has a unit weight at each pro-con representation of a given choice function, $\left|\operatorname{Pros}^{k}(x, S)\right|-\left|\operatorname{Cons}^{k}(x, S)\right|$ equals $\lambda\left(x=B_{k} \mid S, \succ, \triangleright\right)$. Then, it follows from Proposition 2 that $\left|\operatorname{Pros}^{k}(x, S)\right|-\left|\operatorname{Cons}^{k}(x, S)\right|$ is fixed for each pro-con representation.

4 Conclusion

Our main results show that the pro-con model-an additive model similar to the RUM-provides a language to describe any choice behavior in terms of structurally-invariant primitives. The structural invariance of the pro-con model reflects itself as a form of uniqueness, which is similar to the uniqueness of a random utility model. Knowing that each choice function is pro-con rational facilitates identification of other permissive choice models. We present an application along these lines, in which we show that each choice rule is plurality-rationalizable. Although our study covers a rather extensive treatment of the pro-con model, we can hardly claim that it is exhaustive, as it leads to a wide variety of directions yet to be pursued.

References

Allison, G. T. (1971), Essence of decision: Explaining the Cuban missile crisis, number 327.5 (729.1), Little, Brown and Company,. 1

Arrow, K. J., Raynaud, H. et al. (1986), 'Social choice and multicriterion decision-making', MIT Press Books 1. 3

Barberá, S. \& Pattanaik, P. K. (1986), 'Falmagne and the rationalizability of stochastic choices in terms of random orderings', Econometrica: Journal of the Econometric Society pp. 707-715. 2, 8

Barberá, S. \& Sonnenschein, H. (1978), 'Preference aggregation with randomized social orderings', Journal of Economic Theory 18(2), 244-254. 3

Block, H. \& Marschak, J. (1960), Contributions to Probability and Statistics, Stanford University Press, Stanford, CA. 2

Bossert, W. \& Sprumont, Y. (2013), 'Every choice function is backwards-induction rationalizable', Econometrica 81(6), 2521-2534. 3

Brualdi, R. A. \& Ryser, H. J. (1991), Combinatorial Matrix Theory, Vol. 39, Cambridge University Press. 8, 13

Falmagne, J.-C. (1978), 'A representation theorem for finite random scale systems', Journal of Mathematical Psychology 18(1), 52-72. 2, 8, 9

Fiorini, S. (2004), 'A short proof of a theorem of Falmagne', Journal of Mathematical Psychology 48(1), 80-82. 8, 15

Fishburn, P. C. (1978), 'Choice probabilities and choice functions', Journal of Mathematical Psychology 18(3), 205-219. 5

Ford Jr, L. R. \& Fulkerson, D. R. (2015), Flows in networks, Princeton University Press. 2, 8, 13
Franklin, B. (1887), The Complete Works of Benjamin Franklin: 1772-1775, Vol. 5, GP Putnam's Sons. 1

Gelb, L. H. \& Betts, R. K. (2016), The irony of Vietnam: The system worked, Brookings Institution Press. 1

Glass, B. (1988), The Correspondence of Charles Darwin. Volume 2: 1837-1843, University of Chicago Press. 1

Hammond, J. S., Keeney, R. L. \& Raiffa, H. (1998), 'Even swaps: A rational method for making tradeoffs', Harvard business review 76, 137-150. 3

Heller, I. \& Tompkins, C. (1956), 'An extension of a theorem of Dantzig's', Linear inequalities and related systems 38, 247-252. 4, 20

Hoffman, A. J. \& Kruskal, J. B. (2010), Integral boundary points of convex polyhedra, in '50 Years of Integer Programming 1958-2008’, Springer, pp. 49-76. 4, 20

Huber, J. \& Puto, C. (1983), 'Market boundaries and product choice: Illustrating attraction and substitution effects', The Journal of Consumer Research 10(1), 31-44. 7

Intriligator, M. D. (1973), 'A probabilistic model of social choice', The Review of Economic Studies 40(4), 553-560. 3

Intriligator, M. D. (1982), 'Probabilistic models of choice', Mathematical Social Sciences 2(2), 157-166. 3

Kalai, G., Rubinstein, A. \& Spiegler, R. (2002), 'Rationalizing choice functions by multiple rationales', Econometrica 70(6), 2481-2488. 3

Knoblauch, V. (2016), 'Elections generate all binary relations on infinite sets', Mathematical Social Sciences 84, 105-108. 6

Köksalan, M. M., Wallenius, J. \& Zionts, S. (2011), Multiple criteria decision making: from early history to the 21st century, World Scientific. 1, 3

Luce, R. D. \& Raiffa, H. (1957), 'Games and decisions: Introduction and critical survey (New york, 1957)', Chs. vi and xiv . 4

Manzini, P. \& Mariotti, M. (2014), 'Stochastic choice and consideration sets', Econometrica 82(3), 1153-1176. 3

Manzini, P., Mariotti, M. \& Tyson, C. J. (2013), 'Two-stage threshold representations', Theoretical Economics 8(3), 875-882. 5

McFadden, D. (1978), 'Modeling the choice of residential location', Transportation Research Record (673). 2

McGarvey, D. C. (1953), 'A theorem on the construction of voting paradoxes', Econometrica: Journal of the Econometric Society pp. 608-610. 2, 6

Pattanaik, P. K. \& Peleg, B. (1986), 'Distribution of power under stochastic social choice rules', Econometrica: Journal of the Econometric Society pp. 909-921. 3

Payne, J. W. \& Puto, C. (1982), 'Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis', Journal of Consumer Research 9(1), 90-98. 7

Rieskamp, J., Busemeyer, J. R. \& Mellers, B. A. (2006), 'Extending the bounds of rationality: evidence and theories of preferential choice', Journal of Economic Literature pp. 631-661. 7

Saito, K. (2017), 'Axiomatizations of the mixed logit model', mimeo . 3, 8, 9
Shafir, E. (1993), 'Choosing versus rejecting: Why some options are both better and worse than others', Memory \& cognition 21(4), 546-556. 2

Shafir, E., Simonson, I. \& Tversky, A. (1993), 'Reason-based choice', Cognition 49(1), 11-36. 1
Stanley, R. P. (1997), Enumerative Combinatorics. Vol. 1, vol. 49 of Cambridge Studies in Advanced Mathematics, Cambridge University Press. 15

Stearns, R. (1959), 'The voting problem', The American Mathematical Monthly 66(9), 761-763. 6
Telhami, S. (1990), 'Israeli foreign policy: A static strategy in a changing world’, Middle East Journal 44(3), 399-416. 1

Tversky, A. (1972), 'Elimination by aspects: A theory of choice.', Psychological review 79(4), 281. 7

5 Appendix

5.1 Proof of Theorem 3

We start by proving some lemmas that are critical for proving the theorem. First, we report the original Theorem of Ford Jr \& Fulkerson (2015). ${ }^{22}$ Then, we prove Theorem 3, which offers a generalization of the result to any real-valued row and column vectors.

Theorem 4 (Ford Jr \& Fulkerson (2015)) Let $R=\left[r_{1}, \ldots, r_{m}\right]$ and $C=\left[c_{1}, \ldots, c_{n}\right]$ be positive realvalued vectors with $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$. There is an $m \times n$ matrix $A=\left[a_{i j}\right]$ such that A has row sum vector R and column sum vector C, and each entry $a_{i j} \in[0,1]$ if and only if for each $I \subset\{1,2, \ldots, m\}$ and $J \subset\{1,2, \ldots, n\}$,

$$
\begin{equation*}
|I||J| \geq \sum_{i \in I} r_{i}-\sum_{j \notin J} c_{j} . \tag{FF}
\end{equation*}
$$

Lemma 1 Let $R=\left[r_{1}, \ldots, r_{m}\right]$ and $C=\left[c_{1}, \ldots, c_{n}\right]$ be positive real-valued vectors with $0 \leq r_{i} \leq 1$ and $0 \leq c_{j} \leq m$ such that $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{i}$. Then there is an $m \times n$ matrix $A=\left[a_{i j}\right]$ such that A has row sum vector R and column sum vector C, and each entry $a_{i j} \in[0,1]$.

Proof. Given such R and C, since for each $i \in\{1,2, \ldots, m\}, 0 \leq r_{i} \leq 1$, we have for each $I \subset$ $\{1,2, \ldots, m\}, \sum_{i \in I} r_{i} \leq|I|$. Then, it directly follows that (FF) holds and conclusion follows from Theorem 4.

By using Lemma 1, we prove Theorem 3 that is formulated and discussed in Section 3.2.
Proof of Theorem 3 (Generalized Ford-Fulkerson Theorem). Since r_{i} and c_{j} values can be positive or negative, although the sum of the rows equals the sum of the column, their absolute values may not be the same. We analyze two cases separately, where $\sum_{i=1}^{m}\left|r_{i}\right| \geq \sum_{j=1}^{n}\left|c_{j}\right|$ and $\sum_{i=1}^{m}\left|r_{i}\right|<\sum_{j=1}^{n}\left|c_{j}\right|$. Before proceeding with these cases, first we introduce some notation and make some elementary observations.

For each real number x, let $x^{+}=\max \{x, 0\}$ and $x^{-}=\min \{x, 0\}$. Note that for each $x, x^{+}+x^{-}=$ x. Let $R^{+}=\left[r_{1}^{+}, \ldots, r_{m}^{+}\right]$and $R^{-}=\left[r_{1}^{-}, \ldots, r_{m}^{-}\right]$. Define the n-vectors C^{+}and C^{-}respectively. Next, let $\Sigma_{R^{+}}=\sum_{i=1}^{m} r_{i}^{+}, \Sigma_{R^{-}}=\sum_{i=1}^{m} r_{i}^{-}, \Sigma_{C^{+}}=\sum_{j=1}^{n} c_{j}^{+}$and $\Sigma_{C^{-}}=\sum_{j=1}^{n} c_{j}^{-}$. That is, $\Sigma_{R^{+}}\left(\Sigma_{R^{-}}\right)$and $\Sigma_{C^{+}}\left(\Sigma_{C^{-}}\right)$are the sum of the positive (negative) rows in R and columns in C. Since the sum of the rows equals the sum of the columns, we have $\Sigma_{R^{+}}+\Sigma_{R^{-}}=\Sigma_{C^{+}}+\Sigma_{C^{-}}$.

For each row vector R and column vector C, suppose for each $i \in\left\{1, \ldots, m_{1}\right\}, r_{i} \geq 0$ and for each $i \in\left\{m_{1}+1, \ldots, m\right\}, r_{i}<0$. Similarly, suppose for each $j \in\left\{1, \ldots, n_{1}\right\}, c_{j} \geq 0$ and for each $j \in\left\{n_{1}+1, \ldots, n\right\}, c_{j}<0$. Now, let $R^{1}\left(R^{2}\right)$ be the m_{1}-vector ($\left(m-m_{1}\right)$-vector), consisting of the nonnegative (negative) components of R. Similarly, for each column vector C, let $C^{1}\left(C^{2}\right)$ be the n_{1}-vector ($\left(n-n_{1}\right)$-vector), consisting of the non-negative (negative) components of C. It directly follows from the definitions that $\sum_{i=1}^{m_{1}} r_{i}=\sum_{i=1}^{m} r_{i}^{+}$and $\sum_{i=m_{1}+1}^{m} r_{i}=\sum_{i=1}^{m} r_{i}^{-}$. Similarly, $\sum_{j=1}^{n_{1}} c_{j}=\sum_{j=1}^{n} c_{j}^{+}$ and $\sum_{j=n_{1}+1}^{n} c_{j}=\sum_{j=1}^{n} c_{j}^{-}$.
Case 1: Suppose that $\sum_{i=I}\left|r_{i}\right| \geq \sum_{j \in J}\left|c_{j}\right|$ and let

$$
\delta=\frac{\Sigma_{R^{+}}-\Sigma_{C^{+}}}{n} .
$$

Note that since $\sum_{i=1}^{m}\left|r_{i}\right| \geq \sum_{j=1}^{n}\left|c_{j}\right|$, we have $\Sigma_{R^{+}} \geq \Sigma_{C^{+}}$and $\Sigma_{R^{-}} \leq \Sigma_{C^{-}}$. Moreover, since the sum of the rows equals the sum of the columns, we have $\Sigma_{R^{+}}-\Sigma_{C^{+}}=\Sigma_{C^{-}}-\Sigma_{R^{-}}$. Therefore, by the choice of δ, we get

$$
\begin{equation*}
\sum_{i=1}^{m} r_{i}^{+}=\sum_{j=1}^{n} c_{j}^{+}+\delta \text { and } \sum_{i=1}^{m} r_{i}^{-}=\sum_{j=1}^{n} c_{j}^{-}-\delta . \tag{5}
\end{equation*}
$$

[^8]Next, consider row-column vector pairs $\left(R^{1}, C^{+}+\epsilon\right)$ and $\left(-R^{2},-\left(C^{-}-\epsilon\right)\right)$, where ϵ is the nonnegative n-vector such that for each $j \in\{1, \ldots, n\}, \epsilon_{j}=\delta$. It follows from (5) that for both pairs the sum of the rows equals the sum of the columns. Now we apply Lemma 1 to the row-column vector pairs $\left(R^{1}, C^{+}+\epsilon\right)$ and $\left(-R^{2},-\left(C^{-}-\epsilon\right)\right)$. It directly follows that there exists a positive $m_{1} \times n$ matrix A^{+}and a negative $\left(m-m_{1}\right) \times n$ matrix A^{-}that satisfy (i) and (ii). We will obtain the desired matrix A by augmenting A^{+}and A^{-}. We illustrate A^{+}and A^{-}below.

Since A^{+}and A^{-}satisfy (i) and (ii), A satisfies (i) and (ii). To see that A satisfies (iii), for each $j \in$ $\{1, \ldots, n\}$, consider $\sum_{i=1}^{m}\left|a_{i j}\right|$. Note that, by the construction of A^{+}and A^{-}, for each $j \in\{1, \ldots, n\}$,

$$
\begin{equation*}
\sum_{i=1}^{m}\left|a_{i j}\right|=c_{j}^{+}+\epsilon_{j}+\left(-c_{j}^{-}+\epsilon_{j}\right)=\left|c_{j}\right|+2 \epsilon_{j}=\left|c_{j}\right|+2 \frac{\Sigma_{R^{+}}-\Sigma_{C^{+}}}{n} \tag{6}
\end{equation*}
$$

Since for each $j \in\{1, \ldots, n\}, c_{j}=c_{j}^{+}+c_{j}^{-}$such that either $c^{+}=0$ or $c_{j}^{-}=0$, we get $\left|c_{j}\right|=$ $c_{j}^{+}-c_{j}^{-}$. To see that (iii) holds, observe that $\sum_{i=1}^{m}\left|r_{i}\right|-\sum_{j=1}^{n}\left|c_{j}\right|=\Sigma_{R^{+}}-\Sigma_{C^{+}}+\Sigma_{C^{-}}-\Sigma_{R^{-}}$. Since the sum of the rows equals the sum of the columns, i.e. $\Sigma_{R^{+}}+\Sigma_{R^{-}}=\Sigma_{C^{+}}+\Sigma_{C^{-}}$, we also have $\Sigma_{R^{+}}-\Sigma_{C^{+}}=\Sigma_{C^{-}}-\Sigma_{R^{-}}$. This observation, together with (6), implies that (iii) holds.
Case 2 Suppose that $\sum_{i=1}^{m}\left|r_{i}\right|<\sum_{j=1}^{n}\left|c_{j}\right|$. First, we show that there exists a non-negative m-vector ϵ such that
(E1) for each $i \in\{1, \ldots, m\}, r_{i}^{+}+\epsilon_{i} \leq 1$ and $r_{i}^{-}-\epsilon_{i} \geq-1$, and
(E2) $\sum_{i=1}^{m} r_{i}^{+}+\epsilon_{i}=\sum_{j=1}^{n} c_{j}^{+}$(equivalently $\sum_{i=1}^{m} r_{i}^{-}-\epsilon_{i}=\sum_{j=1}^{n} c_{j}^{-}$) holds.
Step 1: We show that if $\Sigma_{C^{+}}-\Sigma_{R^{+}} \leq m-\sum_{i=1}^{m}\left|r_{i}\right|$, then there exists a non-negative m-vector ϵ that satisfies (E1) and (E2). To see this, first note that $m-\sum_{i=1}^{m}\left|r_{i}\right|=\sum_{i=1}^{m}\left(1-\left|r_{i}\right|\right)$. Next, note that, by simply rearranging the terms, we can rewrite (E2) as follows:

$$
\begin{equation*}
\sum_{i=1}^{m} \epsilon_{i}=\Sigma_{C^{+}}-\Sigma_{R^{+}} \tag{7}
\end{equation*}
$$

Since $\Sigma_{C^{+}}-\Sigma_{R^{+}} \leq \sum_{i=1}^{m}\left(1-\left|r_{i}\right|\right)$, for each $i \in\{1, \ldots, m\}$, we can choose an ϵ_{i} such that $0 \leq \epsilon_{i} \leq$ $1-\left|r_{i}\right|$ and (7) holds. It directly follows that the associated ϵ vector satisfies (E1) and (E2).

Step 2: We show that since $2 m \geq \sum_{i=1}^{m}\left|r_{i}\right|+\sum_{j=1}^{n}\left|c_{j}\right|$, we have $\Sigma_{C^{+}}-\Sigma_{R^{+}} \leq m-\sum_{i=1}^{m}\left|r_{i}\right|$. First, it directly follows from the definitions that

$$
\sum_{i=1}^{m}\left|r_{i}\right|+\sum_{j=1}^{n}\left|c_{j}\right|=\Sigma_{R^{+}}-\Sigma_{R^{-}}+\Sigma_{C^{+}}-\Sigma_{C^{-}}
$$

Since the sum of the rows equals the sum of the columns, i.e. $\Sigma_{R^{+}}+\Sigma_{R^{-}}=\Sigma_{C^{+}}+\Sigma_{C^{-}}$, we also have $\Sigma_{R^{+}}-\Sigma_{C^{-}}=\Sigma_{C^{+}}-\Sigma_{R^{-}}$. It follows that

$$
\Sigma_{C^{+}}-\Sigma_{R^{-}} \leq m
$$

Finally, if we subtract $\sum_{i=1}^{m}\left|r_{i}\right|$ from both sides of this equality, we obtain $\Sigma_{C^{+}}-\Sigma_{R^{+}} \leq m-\sum_{i=1}^{m}\left|r_{i}\right|$, as desired.

It follows from Step 1 and Step 2 that there exists a non-negative m-vector ϵ that satisfies (E1) and (E2). Now, consider the row-column vector pairs $\left(R^{+}+\epsilon, C^{1}\right)$ and $\left(-\left(R^{-}-\epsilon\right),-C^{2}\right)$. Since ϵ satisfies (E1) for each $i \in\{1, \ldots, m\}, r_{i}^{+}+\epsilon_{i} \in[0,1]$ and $r_{i}^{-}-\epsilon_{i} \in[-1,0]$. Since ϵ satisfies (E2), for both of the row-column vector pairs the sum of the rows equals the sum of the columns. Therefore, we can apply Lemma 1 to row-column vector pairs $\left(R^{+}+\epsilon, C^{1}\right)$ and $\left(-\left(R^{-}-\epsilon\right),-C^{2}\right)$. It directly follows that there exists a positive $m \times n_{1}$ matrix A^{+}and a negative $m \times\left(n-n_{1}\right)$ matrix A^{-}that satisfy (i) and (ii). We obtain the desired matrix A by augmenting A^{+}and A^{-}. We illustrate A^{+}and A^{-}below.

	$c_{1} \quad c_{2} \quad \cdots \quad c_{n_{1}} \geq 0$		
$\begin{aligned} & \left(r_{1}^{+}+\epsilon_{1}\right) \\ & \left(r_{2}^{+}+\epsilon_{2}\right) \end{aligned}$			$\begin{aligned} & \left(r_{1}^{-}-\epsilon_{1}\right) \\ & \left(r_{2}^{-}-\epsilon_{2}\right) \end{aligned}$
$\left(r_{m}^{+}+\epsilon_{m}\right)$			$\left(r_{m}^{-}-\epsilon_{m}\right)$
		$c_{n_{1}+1}<0 \quad \cdots \quad c_{n}$	

Since A^{+}and A^{-}satisfy (i) and (ii), A satisfies (i) and (ii). In this case, since we did not add anything to the columns and each entry in $A^{+}\left(A^{-}\right)$is non-negative (negative), for each $j \in\{1, \ldots, n\}$, $\sum_{i=1}^{m}\left|a_{i j}\right|=\left|c_{j}\right|$. Therefore, A also satisfies (iii).

5.2 Proof of Theorem 2

To prove Theorem 2, let p be an RCF and \mathcal{P} denote the collection of all orderings on X. First, we show that there is a signed weight function $\lambda: \mathcal{P} \rightarrow[-1,1]$ that represents p, i.e. for each $S \in \Omega$ and $x \in S, p(x, S)$ is the sum of the weights over $\left\{\succ_{i} \in \mathcal{P}: x=\max \left(S, \succ_{i}\right)\right\}$. Note that λ can assign negative weights to orderings. Once we obtain this signed weight function λ, let \succ be the collection of orderings that receive positive weights, and let \triangleright^{\prime} be the collection of orderings that receive negative weights. Let \triangleright be the collection of the inverse of the orderings in \triangleright^{\prime}. Finally, let λ^{*} be the weight function obtained from λ by assigning the absolute value of the weights assigned by λ. It directly follows that p is pro-con rational with respect to the $\operatorname{RpcM}\left\langle\succ, \triangleright, \lambda^{*}\right\rangle$. We first introduce some notation and present crucial observations to construct the desired signed weight function λ.

Let p be a given RCF and Let $q: X \times \Omega \rightarrow \mathbb{R}$ be a mapping such that for each $S \in \Omega$ and $a \notin S$, $q(a, S)=q(a, S \cup\{a\})$ holds. Next, we present a result that is directly obtained by applying the Möbius inversion. ${ }^{23}$

Lemma 2 For each choice set $S \in \Omega$, and alternative $a \in S$,

$$
\begin{equation*}
p(a, S)=\sum_{S \subset T \subset X} q(a, T) \tag{8}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
q(a, S)=\sum_{S \subset T \subset X}(-1)^{|T|-|S|} p(a, T) \tag{9}
\end{equation*}
$$

Proof. For each alternative $a \in X$, note that $p(a, \cdot)$ and $q(a, \cdot)$ are real-valued functions defined on the domain consisting of all $S \in \Omega$ with $a \in S$. Then, by applying the Möbius inversion, we get the conclusion.

Lemma 3 For each choice set $S \in \Omega$ with $|S|=n-k$,

$$
\begin{equation*}
\sum_{a \in X}|q(a, S)| \leq 2^{k} \tag{10}
\end{equation*}
$$

${ }^{23}$ See Stanley (1997), Section 3.7. See also Fiorini (2004), who makes the same observation.

Proof. First, note that (10) can be written as follows:

$$
\begin{equation*}
\sum_{a \in S}|q(a, S)|+\sum_{b \notin S}|-q(b, S)| \leq 2^{k} \tag{11}
\end{equation*}
$$

For a set of real numbers, $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$, to show $\sum_{i=1}^{n}\left|x_{i}\right| \leq 2 d$, it suffices to show that for each $I \subset\{1,2, \cdots, n\}$, we have $-d \leq \sum_{i \in I} x_{i} \leq d$. Now, as the set of real numbers, consider $\{q(a, S)\}_{a \in X}$. It follows that to show that (11) holds, it suffices to show that for each $S_{1} \subset S$ and $S_{2} \subset X \backslash S$,

$$
-2^{k-1} \leq \sum_{a \in S_{1}} q(a, S)-\sum_{b \in S_{2}} q(b, S) \leq 2^{k-1}
$$

holds. To see this, first, for each $S_{1} \subset S$ and $S_{2} \subset X \backslash S$, it follows from Lemma 2 that for each $a \in S_{1}$ and for each $b \in S_{2}$, we have

$$
\begin{equation*}
q(a, S)=\sum_{S \subset T \subset X}(-1)^{|T|-|S|} p(a, T) \text { and } q(b, S)=\sum_{S \subset T \subset X}(-1)^{|T|-|S|-1} p(b, T) \tag{12}
\end{equation*}
$$

Note that we obtain the second equality from Lemma 2, since for each $b \notin S$, by definition of $q(b, S)$, we have $q(b, S)=q(b, S \cup\{b\})$. Next, note that for each $T \in \Omega$ with $S \subset T, a \in S$, and $b \notin S, p(a, T)$ has the opposite sign of $p(b, T)$. Now, suppose for each $b \in S_{2}$, we multiply $q(b, S)$ with -1 . Then, it follows from (12) that

$$
\begin{equation*}
\sum_{a \in S_{1}} q(a, S)-\sum_{b \in S_{2}} q(b, S)=\sum_{S \subset T \subset X}(-1)^{|T|-|S|} \sum_{a \in S_{1} \cup S_{2}} p(a, T) \tag{13}
\end{equation*}
$$

Note that, for each $T \in \Omega$ such that $S \subset T, \sum_{a \in S_{1} \cup S_{2}} p(a, T) \in[0,1]$. Therefore, the term $(-1)^{|T|-|S|} \sum_{a \in S_{1} \cup S_{2}} p(a, T)$ adds at most 1 to the right-hand side of (13) if $|T|-|S|$ is even, and at least -1 if $|T|-|S|$ is odd. Since $|S|=n-k$, for each m with $n-k \leq m \leq n$, there are $\binom{k}{m-n+k}$ possible choice sets $T \in \Omega$ such that $S \subset T$ and $|T|=m$. Moreover, for each $i \in\{1, \ldots, k\}$, there are $\binom{k}{i}$ possible choice sets T such that $S \subset T$ and $|T|=n-k+i$. Now, the right-hand side of (13) reaches its maximum (minimum) when the negative (positive) terms are 0 and the positive (negative) terms are $1(-1)$. Thus, we get

$$
-\sum_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}\binom{k}{2 i+1} \leq \sum_{S \subset T \subset X}(-1)^{|T|-|S|} \sum_{a \in S_{1} \cup S_{2}} p(a, T) \leq \sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k}{2 i}
$$

It follows from the binomial theorem that both leftmost and rightmost sums are equal to 2^{k-1}. This, combined with (13), implies

$$
-2^{k-1} \leq \sum_{a \in S_{1}} q(a, S)-\sum_{b \in S_{2}} q(b, S) \leq 2^{k-1}
$$

Then, as argued before, it follows that $\sum_{a \in X}|q(a, S)| \leq 2^{k}$.
Now, we are ready to complete the proof of Theorem 2. Recall that we assume $|X|=n$. For each $k \in\{1, \ldots, n\}$, let $\Omega_{k}=\{S \in \Omega:|S|>n-k\}$. Note that $\Omega_{n}=\Omega$ and $\Omega_{1} \subset \Omega_{2} \subset \cdots \subset \Omega_{n}$. For each pair of orderings $\succ_{1}, \succ_{2} \in \mathcal{P}, \succ_{1}$ is k-identical to \succ_{2}, denoted by $\succ_{1} \sim_{k} \succ_{2}$, if the first k-ranked alternatives are the same. Note that \sim_{k} is an equivalence relation on \mathcal{P}. Let \mathcal{P}^{k} be the collection of orderings, such that each set (equivalence class) contains orderings that are k-identical to each other (\mathcal{P}^{k} is the quotient space induced from \sim_{k}). For each $k \in\{1, \ldots, n\}$, let $\left[\succ^{k}\right]$ denote an equivalence class at \mathcal{P}^{k}, where \succ^{k} linearly orders a fixed set of k alternatives in X.

Note that for each $k \in\{1, \ldots, n\}, S \in \Omega_{k}$ and $\succ_{1}, \succ_{2} \in \mathcal{P}$, if $\succ_{1} \sim_{k} \succ_{2}$, then since S contains more than $n-k$ alternatives, $\max \left(\succ_{1}, S\right)=\max \left(\succ_{2}, S\right)$. Therefore, for each $S \in \Omega_{k}$, it is sufficient to specify the weights on the equivalence classes contained in \mathcal{P}^{k} instead of all the weights over \mathcal{P}. Let p_{k} be the restriction of p to Ω_{k}. Similarly, if λ is a signed weight function over \mathcal{P}, then let λ^{k} be the restriction of λ to \mathcal{P}^{k}, i.e. for each $\left[\succ^{k}\right] \in \mathcal{P}^{k}, \lambda^{k}\left[\succ^{k}\right]=\sum_{\succ_{i} \in\left[\succ^{k}\right]} \lambda\left(\succ_{i}\right)$. It directly follows that λ
represents p if and only if for each $k \in\{1, \ldots, n\}, \lambda^{k}$ represents p_{k}. In what follows, we inductively show that for each $k \in\{1, \ldots, n\}$, there is a signed weight function λ^{k} over \mathcal{P}^{k} that represents p_{k}. For $k=n$ we obtain the desired λ.

For $k=1, \Omega_{1}=\{X\}$ and \mathcal{P}^{1} consists of n-many equivalence classes such that each class contains all the orderings that top rank the same alternative, irrespective of whether these are chosen with positive probability. That is, if $X=\left\{x_{1}, \ldots, x_{n}\right\}$, then $\mathcal{P}^{1}=\left\{\left[\succ^{x_{1}}\right], \cdots,\left[\succ^{x_{n}}\right]\right\}$, where for each $i \in\{1, \ldots, n\}$ and $\succ_{i} \in\left[\succ^{x_{i}}\right]$, $\max \left(X, \succ_{i}\right)=x_{i}$. Now, for each $x_{i} \in X$, define $\lambda^{1}\left(\left[\succ^{x_{i}}\right]\right)=p\left(x_{i}, X\right)$. It directly follows that λ^{1} is a signed weight function over \mathcal{P}^{1} that represents p_{1}.

For $k=2, \Omega_{2}=\{X\} \cup\{X \backslash\{x\}\}_{x \in X}$ and \mathcal{P}^{2} consists of $\binom{n}{2}$-many equivalence classes such that each class contains all the orderings that top rank the same two alternatives. Now, for each $\left[\succ_{i}^{2}\right] \in \mathcal{P}^{2}$ such that $x_{i 1}$ is the first-ranked alternative and $x_{i 2}$ is the second-ranked alternative, define $\lambda^{2}\left(\left[\succ_{i}^{2}\right]\right)=p\left(x_{i 2}, X \backslash\left\{x_{i 1}\right\}\right)-p\left(x_{i 2}, X\right)$. It directly follows that λ^{2} is a signed weight function over \mathcal{P}^{2} that represents p_{2}. Next, by our inductive hypothesis, we assume that for each $k \in\{1, \ldots, n-1\}$, there is a signed weight function λ^{k} over \mathcal{P}^{k} that represents p_{k}. Next, we show that we can construct λ^{k+1} over \mathcal{P}^{k+1} that represents p_{k+1}.

Note that \mathcal{P}^{k+1} is a refinement of \mathcal{P}^{k}, in which each equivalence class $\left[\succ^{k}\right] \in \mathcal{P}^{k}$ is divided into sub-equivalence classes $\left\{\left[\succ_{1}^{k+1}\right], \cdots\left[\succ_{n-k}^{k+1}\right]\right\} \subset \mathcal{P}^{k+1}$. Given λ^{k}, we require λ^{k+1} satisfy for each $\left[\succ^{k}\right] \in \mathcal{P}^{k}$ the following

$$
\begin{equation*}
\lambda^{k}\left(\left[\succ^{k}\right]\right)=\sum_{j=1}^{n-k} \lambda^{k+1}\left(\left[\succ_{j}^{k+1}\right]\right) \tag{14}
\end{equation*}
$$

If λ^{k+1} satisfies (14), then since induction hypothesis implies that λ^{k} represents p_{k}, we get for each $S \in \Omega_{k}$ and $x \in S, p(x, S)=\lambda^{k+1}\left(\left\{\left[\succ_{j}\right] \in \mathcal{P}^{k+1}: x=\max \left(S, \succ_{j}\right)\right\}\right)$.

Next, we show that λ^{k+1} can be constructed such that (14) holds, and for each $S \in \Omega_{k+1} \backslash \Omega_{k}$, λ^{k+1} represents $p_{k+1}(S)$. To see this, pick any $S \in \Omega_{k+1} \backslash \Omega_{k}$. It follows that $|S|=n-k$. Let $S=\left\{x_{1}, \ldots, x_{n-k}\right\}$ and $X \backslash S=\left\{y_{1}, y_{2}, \cdots y_{k}\right\}$. Recall that each $\left[\succ^{k}\right] \in \mathcal{P}^{k}$ linearly orders a fixed set of k-many alternatives. Let $\left\{\succ^{k}\right\}$ denote the set of k alternatives ordered by \succ^{k}. Now, there exist $k!$-many $\left[\succ^{k}\right] \in \mathcal{P}^{k}$ such that $\left\{\succ^{k}\right\}=X \backslash S$. Let $\left\{\left[\succ_{1}^{k}\right], \cdots,\left[\succ_{k!}^{k}\right]\right\}$ be the collection of all such classes. Each ordering that belongs to one of these classes is a different ordering of the same set of k alternatives.

Now, let $I=\{1, \ldots, k!\}$ and $J=\{1, \ldots, n-k\}$. For each $i \in I$ and $j \in J$, suppose that $\succ_{i j}^{k+1}$ linearly orders $X \backslash S$ as in \succ_{i}^{k} and ranks x_{j} in the $k+1^{t h}$ position. Consider the associated equivalence class $\left[\succ_{i j}^{k+1}\right]$. Next, we specify $\lambda^{k+1}\left(\left[\succ_{i j}^{k+1}\right]\right)$, the signed weight of $\left[\succ_{i j}^{k+1}\right]$, such that the resulting λ^{k+1} represents p_{k+1}. To see this, we proceed in two steps.
Step 1: First, we show that for each $S \in \Omega_{k+1} \backslash \Omega_{k}$, if the associated $\left\{\lambda_{i j}^{k+1}\right\}_{i j \in I \times J}$ satisfies the following two equalities for each $i \in I$ and $j \in J$,

$$
\begin{align*}
& \sum_{j \in J} \lambda_{i j}^{k+1}=\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right) \tag{RS}\\
& \sum_{i \in I} \lambda_{i j}^{k+1}=q\left(x_{j}, S\right) \tag{CS}
\end{align*}
$$

then λ^{k+1} represents $p_{k+1}(S)$. For each $S \in \Omega$ and $x_{j} \in S, q\left(x_{j}, S\right)$ is as defined in (9) by using the given RCF p.

For each $S \in \Omega$ and $a \in S$, let $B(a, S)$ be the collection of all orderings at which a is the topranked alternative in S, and for each $k \in \mathbb{N}$ such that $n-k \leq|S|, \mathbf{B}^{k+1}(a, S)$ be the set of associated equivalence classes in \mathcal{P}^{k+1}, i.e. $B(a, S)=\{\succ \in \mathcal{P}: a=\max (S, \succ)\}$ and $\mathbf{B}^{k+1}(a, S)=\left\{\left[\succ^{k+1}\right] \in\right.$ $\left.\mathcal{P}^{k+1}:\left[\succ^{k+1}\right] \subset B(a, S)\right\}$. To prove the result we have to show that for each $x_{j} \in S$,

$$
\begin{equation*}
p\left(x_{j}, S\right)=\sum_{\left\{\left[\succ^{k+1}\right] \in \mathbf{B}^{k+1}\left(x_{j}, S\right)\right\}} \lambda^{k+1}\left(\left[\succ^{k+1}\right]\right) . \tag{15}
\end{equation*}
$$

To see this, for each $\succ \in \mathcal{P}$ and $a \in X$, let $W(\succ, a)$ denote the set of alternatives that are worse than a at \succ and a itself, i.e. $W(\succ, a)=\{x \in X: a \succ x\} \cup\{a\}$. For each $S \in \Omega$ with $a \in X$. Let $Q(a, S)$
be the collection of all orderings such that $W(\succ, a)$ is exactly $S \cup\{a\}$ and for each $k \in \mathbb{N}$ such that $n-k \leq|S|, \mathbf{Q}^{k+1}(a, S)$ be the set of associated equivalence classes in \mathcal{P}^{k+1}, i.e. $Q(a, S)=\{\succ \in \mathcal{P}$: $W(\succ, a)=S \cup\{a\}\}$ and $\mathbf{Q}^{k+1}(a, S)=\left\{\left[\succ^{k+1}\right] \in \mathcal{P}^{k+1}:\left[\succ^{k+1}\right] \subset Q(a, S)\right\}$. Note that, for each $x_{j} \in S$, we have $Q\left(x_{j}, S\right)=\bigcup_{i \in I}\left[\succ_{i j}^{k+1}\right]$. Moreover, it directly follows from the definitions of $Q\left(x_{j}, \cdot\right)$ and $B\left(x_{j}, \cdot\right)$ that

$$
\begin{equation*}
B\left(x_{j}, S\right)=\bigcup_{S \subset T} Q\left(x_{j}, T\right) \tag{16}
\end{equation*}
$$

It follows from this observation that the right-hand side of (15) can be written as

$$
\begin{equation*}
\sum_{S \subset T} \sum_{\left\{\left[\succ^{k+1}\right] \in \mathbf{Q}^{k+1}\left(x_{j}, T\right)\right\}} \lambda^{k+1}\left(\left[\succ^{t+1}\right]\right) . \tag{17}
\end{equation*}
$$

i. Since (CS) holds, we have

$$
\begin{equation*}
q\left(x_{j}, S\right)=\sum_{\left\{\left[\succ^{k+1}\right] \in \mathbf{Q}^{k+1}\left(x_{j}, S\right)\right\}} \lambda^{k+1}\left(\left[\succ^{k+1}\right]\right) . \tag{18}
\end{equation*}
$$

ii. Next, we argue that for each $T \in \Omega$ such that $S \subsetneq T$,

$$
\begin{equation*}
q\left(x_{j}, T\right)=\sum_{\left\{\left[\succ^{k+1}\right] \in \mathbf{Q}^{k+1}\left(x_{j}, T\right)\right\}} \lambda^{k+1}\left(\left[\succ^{k+1}\right]\right) . \tag{19}
\end{equation*}
$$

To see this, recall that by definition of $q\left(x_{j}, T\right)$ (9), we have

$$
\begin{equation*}
q\left(x_{j}, T\right)=\sum_{T \subset T^{\prime}}(-1)^{\left|T^{\prime}\right|-|T|} p\left(x_{j}, T^{\prime}\right) . \tag{20}
\end{equation*}
$$

Since by the induction hypothesis, λ^{k} represents p_{k}, we have

$$
\begin{equation*}
p\left(x_{j}, T^{\prime}\right)=\sum_{\left\{\left[\succ^{k}\right] \in \mathbf{B}^{k}\left(x_{j}, T^{\prime}\right)\right\}} \lambda^{k}\left(\left[\succ^{k}\right]\right) . \tag{21}
\end{equation*}
$$

Next, suppose that we substitute (21) into (20). Now, consider the set collection $\left\{B\left(x_{j}, T^{\prime}\right)\right\}_{\left\{T \subset T^{\prime}\right\}}$. Note that if we apply the principle of inclusion-exclusion to this set collection, then we obtain $Q\left(x_{j}, T\right)$. It follows that

$$
\begin{equation*}
\sum_{T \subset T^{\prime}}(-1)^{\left|T^{\prime}\right|-|T|} \sum_{\left\{\left[\succ \succ^{k}\right] \in \mathbf{B}^{k}\left(x_{j}, T^{\prime}\right)\right\}} \lambda^{k}\left(\left[\succ^{k}\right]\right)=\sum_{\left\{\left[\succ \succ^{k}\right] \in \mathbf{Q}^{k}\left(x_{j}, T\right)\right\}} \lambda^{k}\left(\left[\succ^{k}\right]\right) . \tag{22}
\end{equation*}
$$

Since (RS) holds, we have

$$
\begin{equation*}
\sum_{\left\{\left[\succ^{k}\right] \in \mathbf{Q}^{k}\left(x_{j}, T\right)\right\}} \lambda^{k}\left(\left[\succ^{k}\right]\right)=\sum_{\left\{\left[\succ^{k+1}\right] \in \mathbf{Q}^{k+1}\left(x_{j}, T\right)\right\}} \lambda^{k+1}\left(\left[\succ^{k+1}\right]\right) . \tag{23}
\end{equation*}
$$

Thus, if we combine (20)-(23), then we obtain that (19) holds.
Now, (17) combined with (18) and (19) imply that the right-hand side of (15) equals to $\sum_{S \subset T} q\left(x_{j}, T\right)$. Finally, it follows from Lemma 2 that

$$
\begin{equation*}
p\left(x_{j}, S\right)=\sum_{S \subset T} q\left(x_{j}, T\right) . \tag{24}
\end{equation*}
$$

Thus, we obtain that (15) holds.
In what follows we show that for each $S \in \Omega_{k+1} \backslash \Omega_{k}$, there exists $k!\times(n-k)$ matrix $\lambda=\left[\lambda_{i j}^{k+1}\right]$ such that both (RS) and (CS) holds, and each $\lambda_{i j}^{k+1} \in[-1,1]$. To prove this we use Theorem 3. For this, for each $i \in I$ let $r_{i}=\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)$ and for each $j \in J$ let $c_{j}=q\left(x_{j}, S\right)$. Then, let $R=\left[r_{1}, \ldots, r_{k!}\right]$ and $C=\left[c_{1}, \ldots, c_{n-k}\right]$. In Step 2, we show that the sum of C equals the sum of R. In Step 3, we show that for each $k>1,2 k!\geq \sum_{i=1}^{k!}\left|r_{i}\right|+\sum_{j=1}^{n-k}\left|c_{j}\right|$.

Step 2: We show that the sum of C equals the sum of R, i.e.

$$
\begin{equation*}
\sum_{j \in J} q\left(x_{j}, S\right)=\sum_{i \in I} \lambda^{k}\left[\succ_{i}^{k}\right] \tag{25}
\end{equation*}
$$

First, if we substitute (9) for each $q\left(x_{j}, S\right)$, then we get

$$
\begin{equation*}
\sum_{j \in J} q\left(x_{j}, S\right)=1+\sum_{j \in J} \sum_{S \subsetneq T}(-1)^{|T|-|S|} p\left(x_{j}, T\right) \tag{26}
\end{equation*}
$$

Now, let $F\left(x_{j}\right)$ be the collection of orderings \succ such that there exists $T \in \Omega$ such that $S \subsetneq T$ and x_{j} is the \succ-top-ranked alternative in T, i.e. $F\left(x_{j}\right)=\left\{\succ \in \mathcal{P}: \max (T, \succ)=x_{j}\right.$ for some $\left.S \subsetneq T\right\}$. For each $k \in \mathbb{N}$ such that $n-k \leq|S|$, let $\mathbf{F}\left(x_{j}\right)$ be the set of associated equivalence classes in \mathcal{P}^{k}. Next, we show that for each $x_{j} \in S$,

$$
\begin{equation*}
\sum_{S \subsetneq T}(-1)^{|T|-|S|+1} p\left(x_{j}, T\right)=\sum_{\left\{\left[\succ^{k}\right] \in \mathbf{F}\left(x_{j}\right)\right\}} \lambda^{k}\left(\left[\succ^{k}\right]\right) \tag{27}
\end{equation*}
$$

To see this, first, since by the induction hypothesis, λ^{k} represents p_{k}, we can replace each $p\left(x_{j}, T\right)$ with $\sum_{\left\{\left[\succ^{k}\right] \in \mathbf{B}^{k}\left(x_{j}, T\right)\right\}} \lambda^{k}\left(\left[\succ^{k}\right]\right)$. Next, consider the set collection $\left\{B\left(x_{j}, T\right)\right\}_{\{S \subsetneq T\}}$. Since $\cup_{\{S \subsetneq T\}} B\left(x_{j}, T\right)=F\left(x_{j}\right)$, it follows from the principle of inclusion-exclusion that (27) holds. Next, when we substitute (27) in (26), we obtain

$$
\begin{equation*}
\sum_{j \in J} q\left(x_{j}, S\right)=1-\sum_{\left\{\left[\succ^{k}\right] \in \mathbf{F}\left(x_{j}\right)\right\}} \lambda^{k}\left(\left[\succ^{k}\right]\right) . \tag{28}
\end{equation*}
$$

Then, since, by the induction hypothesis, λ^{k} represents p_{k}, we can replace 1 with $\sum_{\left\{\left[\succ^{k}\right] \in \mathcal{P}^{k}\right\}} \lambda^{k}\left(\left[\succ^{k}\right]\right)$. Finally, note that an equivalence class $\left[\succ^{k}\right] \notin \cup_{j \in J} \mathbf{F}\left(x_{j}\right)$ if and only if $\left\{\succ^{k}\right\} \cap S=\emptyset$. This means $\mathcal{P}^{k} \backslash \cup_{j \in J} \mathbf{F}\left(x_{j}\right)=\left\{\left[\succ_{i}^{k}\right]\right\}_{\{i \in I\}}$. It follows that (25) holds.
Step 3: To show that the base of induction holds, we showed that for $k=1$ and $k=2$, the desired signed weight functions exist. To get the desired signed weight functions for each $k+1>2$, we will apply Theorem 3 . To apply Theorem 3 , we have to show that for each $k \geq 2, \sum_{i=1}^{k!}\left|r_{i}\right|+\sum_{j=1}^{n-k}\left|c_{j}\right| \leq$ $2 k!$. In what follows we show that this is true. That is, we show that for each $S \in \Omega_{k+1} \backslash \Omega_{k}$

$$
\begin{equation*}
\sum_{i \in I}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right|+\sum_{j \in J}\left|q\left(x_{j}, S\right)\right| \leq 2 k!. \tag{29}
\end{equation*}
$$

To see this, first we will bound the term $\sum_{i \in I}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right|$. As noted before, each $i \in I=\{1, \ldots, k!\}$ corresponds to a specific linear ordering of $X \backslash S$. For each $y \notin S$, there are $k-1$! such different orderings that rank y at the $k^{t h}$ position. So, there are $k-1$! different equivalence classes in \mathcal{P}^{k} that rank y at the $k^{t h}$ position. Let $I(y)$ be the index set of these equivalence classes. Since $\{I(y)\}_{y \notin S}$ partitions I, we have

$$
\begin{equation*}
\sum_{i \in I}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right|=\sum_{y \notin S} \sum_{i \in I(y)}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right| . \tag{30}
\end{equation*}
$$

Now, fix $y \notin S$ and let $T=S \cup\{y\}$. Since for each $i \in I(y),\left[\succ_{i}^{k}\right] \in \mathbf{Q}^{k}(y, T)$ and vice versa, we have

$$
\begin{equation*}
\sum_{i \in I(y)}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right|=\sum_{\left[\succ_{i}^{k}\right] \in \mathbf{Q}^{k}(y, T)}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right| . \tag{31}
\end{equation*}
$$

Recall that by the definition of $q(y, T)$, we have

$$
\begin{equation*}
q(y, T)=\sum_{\left[\succ_{i}^{k}\right] \in \mathbf{Q}^{k}(y, T)} \lambda^{k}\left(\left[\succ_{i}^{k}\right]\right) \tag{32}
\end{equation*}
$$

Next, consider the construction of the values $\left\{\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right\}_{\{i \in I(y)\}}\right.$ from the previous step. For $k=2$, as indicated in showing the base of induction, there is only one row; that is, there is a single $\left\{\left[\succ_{i}^{k}\right]\right\}=$
$\mathbf{Q}^{k}(y, T)$. Therefore, we directly have $\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right|=|q(y, T)|$. For $k>2$, we construct λ^{k} by applying Theorem 3. It follows from iii of Theorem 3 that

$$
\begin{equation*}
\sum_{\left[\succ_{i}^{k}\right] \in \mathbf{Q}^{k}(y, T)}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right| \leq|q(y, T)|+\frac{(k-1)!}{n-k+1} . \tag{33}
\end{equation*}
$$

Now, if we sum (33) over $y \notin S$, we get

$$
\begin{equation*}
\sum_{y \notin S} \sum_{\left[\succ \succ_{]}^{k}\right] \in \mathbf{Q}^{k}(y, S \cup y)}\left|\lambda^{k}\left(\left[\succ^{k}\right]\right)\right| \leq\left(\sum_{y \notin S}|q(y, S \cup y)|\right)+\frac{k!}{n-k+1} . \tag{34}
\end{equation*}
$$

Recall that by definition, we have $\mathbf{Q}^{k}(y, S \cup y)=\mathbf{Q}^{k}(y, S)$ and $q(y, S \cup y)=q(y, S)$. Similarly, since each $j \in J=\{1, \ldots, n\}$ denotes an alternative $x_{j} \in S$, we have $\sum_{x \in S}|q(x, S)|=\sum_{j \in J}\left|q\left(x_{j}, S\right)\right|$. Now, if we add $\sum_{j \in J}\left|q\left(x_{j}, S\right)\right|$ to both sides of (34), then we get

$$
\begin{equation*}
\sum_{i \in I}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right|+\sum_{j \in J}\left|q\left(x_{j}, S\right)\right| \leq \sum_{x \in X}|q(x, S)|+\frac{k!}{n-k+1} . \tag{35}
\end{equation*}
$$

Since by Lemma 3, $\sum_{x \in X}|q(x, S)| \leq 2^{k}$, we get

$$
\begin{equation*}
\sum_{i \in I}\left|\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)\right|+\sum_{j \in S}\left|q\left(x_{j}, S\right)\right| \leq 2^{k}+\frac{k!}{n-k+1} . \tag{36}
\end{equation*}
$$

Finally, note that since for each k such that $2<k<n 2^{k} \leq \frac{(2 n-2 k+1) k!}{n-k+1}$ holds, we have $2^{k}+\frac{k!}{n-k+1} \leq$ $2 k!$. This, together with (36), implies that (29) holds. Thus, we complete the inductive construction of the desired signed weight function.

5.3 Proof of Theorem 1

We prove this result by following the construction used to prove Theorem 2. So, we proceed by induction. Note that since C is a deterministic choice function, for each $x_{i} \in X, \lambda^{1}\left(\left[\succ^{x_{i}}\right]\right) \in\{0,1\}$. Next, by proceeding inductively, we assume that for any $k \in\{1, \ldots, n-1\}$, there is a signed weight function λ^{k} that takes values $\{-1,0,1\}$ over \mathcal{P}^{k} and represents C_{k}. It remains to show that we can construct λ^{k+1} taking values $\{-1,0,1\}$ over \mathcal{P}^{k+1}, and that represents C_{k+1}. We know from Step 1 of the proof of Theorem 2 that to show this it is sufficient to construct λ^{k+1} such that (RS) and (CS) holds. However, this time, in addition to satisfying (RS) and (CS), we require each $\lambda_{i j}^{k+1} \in\{-1,0,1\}$.

First, note that equalities (RS) and (CS) can be written as a system of linear equations: $A \lambda=b$, where $A=\left[a_{i j}\right]$ is a $(k!+(n-k)) \times(n-k) k$! matrix with entries $a_{i j} \in\{0,1\}$, and $b=\left[\lambda^{k}\left(\left[\succ_{1}^{k}\right.\right.\right.$ $\left.]), \ldots, \lambda^{k}\left(\left[\succ_{k}^{k}\right]\right), q\left(x_{1}, S\right), \ldots, q\left(x_{n-k}, S\right)\right]$ is the column vector of size $k!+(n-k)$. Let Q denote the associated polyhedron, i.e. $Q=\left\{\lambda \in \mathbb{R}^{(n-k) k!}: A \lambda=b\right.$ and $\left.-1 \leq \lambda \leq 1\right\}$. A matrix is totally unimodular if the determinant of each square submatrix is 0,1 or -1 . Following result directly follows from Theorem 2 of Hoffman \& Kruskal (2010).

Lemma 4 (Hoffman \& Kruskal (2010)) If matrix A is totally unimodular, then the vertices of Q are integer valued.

Heller \& Tompkins (1956) provide the following sufficient condition for a matrix being totally unimodular.

Lemma 5 (Heller \& Tompkins (1956)) Let A be an $m \times n$ matrix whose rows can be partitioned into two disjoint sets R_{1} and R_{2}. Then, A is totally unimodular if:

1. Each entry in A is 0,1 , or -1 ;
2. Each column of A contains at most two non-zero entries;
3. If two non-zero entries in a column of A have the same sign, then the row of one is in R_{1}, and the other is in R_{2};
4. If two non-zero entries in a column of A have opposite signs, then the rows of both are in R_{1}, or both in R_{2}.

Next, by using Lemma 5, we show that the matrix that is used to define (RS) and (CS) as a system of linear equations is totally unimodular. To see this, let A be the matrix defining the polyhedron Q. Since $A=\left[a_{i j}\right]$ is a matrix with entries $a_{i j} \in\{0,1\}$, (1) and (4) are directly satisfied. To see that (2) and (3) also hold, let $R_{1}=[1, \ldots, k!]$ consist of the the first k ! rows and $R_{2}=[1, \ldots, n-k]$ consist of the the remaining $n-k$ rows of A. Note that for each $i \in R_{1}$, the $i^{t h}$ row A_{i} is such that $A_{i} \lambda=\lambda^{k}\left(\left[\succ_{i}^{k}\right]\right)$. That is, for each $j \in\{(i-1) k!, \ldots, i k!\}, a_{i j}=1$ and the rest of A_{i} equals 0 . For each $i \in R_{2}$, the $i^{t h}$ row A_{i} is such that $A_{i} \lambda=q\left(x_{i}, A\right)$. That is, for each $j \in\{i, i+k!, \ldots, i+(n-k-1) k!\}, a_{i j}=1$ and the rest of A_{i} equals 0 . To see that (2) and (3) hold, note that for each $i, i^{\prime} \in R_{1}$ and $i, i^{\prime} \in R_{2}$, the non-zero entries of A_{i} and $A_{i^{\prime}}$ are disjoint. It follows that for each column there can be at most two rows with value 1 , one in R_{1} and the other in R_{2}.

Finally, it follows from the construction in Step 3 of the proof of Theorem 2 that Q is nonempty, since there is λ vector with entries taking values in the $[-1,1]$ interval. Since, as shown above, A is totally unimodular, it directly follows from Lemma 4 that the vertices of Q are integer valued. Therefore, λ^{k+1} can be constructed such that (RS) and (CS) hold, and each $\lambda_{i j}^{k+1} \in\{-1,0,1\}$.

Serhat Dogan
Bilkent University
Ankara, Turkey
Email: dserhat@bilkent.edu.tr
Kemal Yildiz
Bilkent University
Ankara, Turkey
Email: kemal.yildiz@bilkent.edu.tr

[^0]: ${ }^{1}$ See Glass (1988) for the full list.
 ${ }^{2}$ In 1772, Joseph Priestley wrote a letter to Benjamin Franklin asking for Franklin's advice on a decision he was trying to make. Franklin wrote back indicating that he could not tell him what to do, but he could tell him how to make his decision, and suggested his prudential algebra.
 ${ }^{3}$ Köksalan et al. (2011) reports Franklin's moral algebra as an early example of multi-criteria decision making.
 ${ }^{4}$ Shafir et al. (1993) argue that reason-based analyses have been used to understand unique historic, legal and political decisions. Examples include presidential decisions taken during the Cuban missile crisis (Allison (1971)), the Camp David accords (Telhami (1990)), and the Vietnam war (Gelb \& Betts (2016)).

[^1]: ${ }^{5}$ One concern is the number of orderings in \succ and \triangleright. It follows from this requirement that if there are n alternatives in X, then at most $n!$-many orderings are used in a pro-con model.
 ${ }^{6}$ A choice function C singles out an alternative from each choice set S, which is a nonempty subset of the grand alternative set X.
 ${ }^{7}$ In extending Franklin's prudential algebra, one can consider a sequential pro-con model in which first the alternatives that fail to have more pros than cons in the given choice set are eliminated, and then the elimination continues until an alternative is singled out. Our model is a specific sequential pro-con model in which all the alternatives but the chosen one are eliminated in the first step.
 ${ }^{8}$ In line with the experimental findings of Shafir (1993) indicating that the weight assigned to the pros is more than the weight assigned to the cons, we require the total weighted sum of pro-orderings and con-orderings be unity.
 ${ }^{9}$ Namely, the random choice functions that render a random utility representation are those with nonnegative BlockMarschak polynomials. See Block \& Marschak (1960), Falmagne (1978), McFadden (1978), and Barberá \& Pattanaik (1986).
 ${ }^{10}$ This result does not directly follow from Theorem 2, since a pro-con model is not a direct adaptation of the random procon model, in that we require each ordering to have a fixed unit weight instead of having fractional weights. To best of our knowledge the use of integer programming techniques in this context is new.

[^2]: ${ }^{11}$ For a classical reference one can consult Arrow et al. (1986).
 ${ }^{12}$ We are grateful to an anonymous referee for bringing this connection to our awareness.

[^3]: ${ }^{13}$ See, for example, Fishburn (1978) who explores a connection in this vein.
 ${ }^{14}$ The two stage threshold representation analyzed by Manzini et al. (2013) has a similar feature. In that, although each choice function has a two-stage threshold representation, this does not hold for choice rules. That is, for each choice function there is a triplet $\langle f, \theta, g\rangle$ such that for each $S \in \Omega$, the alternative that maximizes $g(x)$ subject to $f(x) \geq \theta(S)$ is chosen, However, such a two stage threshold representation can not be obtained for every choice rule.
 ${ }^{15}$ Our initial result was for choice functions. We thank Vicki Knoblauch and an anonymous referee for suggesting the extension to choice rules.

[^4]: ${ }^{16}$ Stearns (1959) finds upper and lower bounds on the number of voters to generate any binary relation. Knoblauch (2016) provides an extension for infinite sets.

[^5]: ${ }^{17}$ Experimental evidence for the attraction effect is first presented by Payne \& Puto (1982) and Huber \& Puto (1983). Following their work, evidence for the attraction effect has been observed in a wide variety of settings. For a list of these results, consult Rieskamp et al. (2006).

[^6]: ${ }^{18}$ Fiorini (2004) is the first who makes the same observation.
 ${ }^{19}$ Brualdi \& Ryser (1991) provides a detailed account of similar results.

[^7]: ${ }^{20}$ We present the proof in Section 5.1.
 ${ }^{21}$ This directly follows from the construction used to establish the base of induction in Theorem 2's proof.

[^8]: ${ }^{22}$ This result, as stated in Lemma 4, but with integrality assumptions on R, C, and A follows from Corollary 1.4.2 in Brualdi \& Ryser (1991). They report that Ford Jr \& Fulkerson (2015) prove, by using network flow techniques, that the theorem remains true if the integrality assumptions are dropped, and the conclusion asserts the existence of a real nonnegative matrix.

