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Abstract

Citizens’ assemblies need to represent subpopulations according to their proportions
in the general population. These large committees are often constructed in an online
fashion by contacting people, asking for the demographic features of the volunteers,
and deciding to include them or not. This raises a trade-off between the number of
people contacted (and the incurring cost) and the representativeness of the commit-
tee. We study three methods, theoretically and experimentally: a greedy algorithm
that includes volunteers as long as proportionality is not violated; a non-adaptive
method that includes a volunteer with a probability depending only on their features,
assuming that the joint feature distribution in the volunteer pool is known; and a
reinforcement learning based approach when this distribution is not known a priori
but learnt online.

1 Introduction

Forming a representative committee consists in selecting a set of individuals, who agree
to serve, in such a way that every part of the population, defined by specific features, is
represented proportionally to its size. As a paradigmatic example, the Climate Assembly in
the UK and the Citizens’ Convention for Climate in France brought together 108 and 150
participants respectively, representing sociodemographic categories such as gender, age, edu-
cation level, professional activity, residency, and location, in proportion to their importance
in the wider society. Beyond citizens’ deliberative assemblies, proportional representation
often has to be respected when forming an evaluation committee, selecting a diverse pool
of students or employees, and so on.

Two key criteria for evaluating the committee formation process are the representative-
ness of the final selection and the number of persons contacted (each of these incurring a
cost). The trade-off is that the higher the number of people contacted, the more proportional
the resulting committee.

A first possibility is to use an offline strategy (as for the UK assembly): invitations
are sent to a large number of people (30,000), and the final group is selected among the
pool of volunteers. An alternative setting which is common in hiring is to consider an
online process: the decision-maker is given a stream of candidates and has to decide at each
timestep whether or not to admit the candidate to the final committee. This work focuses
on the latter setting.

A further difficulty is that the distribution of volunteers is not necessarily known in
advance. For example, although the target is to represent distinct age groups proportionally
to their distribution in the wider population, it may be the case that older people are
predominant among volunteers.

Multi-attribute proportional representation in committee selection in an off-line setting
usually assumes full access to a finite (typically large) database of candidates. This as-
sumption is impractical in a variety of real-world settings: first, the database does not exist
beforehand and constructing it would require contacting many more people than necessary;
second, in some domains, the decision to hire someone should be made immediately so that
people don’t change their mind in the meantime (which is typical in professional contexts).
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An online strategy must achieve a good trade-off between sample complexity, i.e. the
number of timesteps needed to construct a full committee, and the quality of the final
committee, as measured by its distance to the target distribution.

We focus on the online setting. We introduce a new model and offer three different
strategies, which rely on different assumptions on the input (and the process). The greedy
strategy selects volunteers as long as their inclusion does not jeopardize the size and repre-
sentation constraints; it does not assume any prior distribution on the volunteer pool. The
nonadaptive strategy, based on constrained Markov decision processes, repeatedly chooses
a random person, and decides whether to include or not a volonteer with a probability
that depends only on their features; it assumes the joint distribution in the volunteer pool
is known; it can be parallelised. Finally, the reinforcement learning strategy assumes this
distribution is not known a priori but can be learnt online.

Which of these strategies are interesting depends on domain specificities. For each, we
study bounds for expected quality and sample complexity, and perform experiments using
real data from the UK Citizens’ Assembly on Brexit.

The outline of the paper is as follows. We discuss related work in Section 2, define the
problem in Section 3, define and study our three strategies in Sections 3.2, 4 and 5, analyse
our experiments in Section 6 and conclude in Section 7.

2 Related work

Diversity and representation in committee (s)election The problem of selecting a
diverse set of candidates from a candidate database, where each candidate is described by a
vector of attribute values, has been considered in several places. In [17], the goal is to find
a committee of a fixed size whose distribution of attribute values is as close as possible to
a given target distribution. In [10, 9], each candidate has a score, obtained from a set of
votes, and some constraints on the proportion of selected candidates with a given attribute
value are specified; the goal is to find a fixed-size committee of maximal score satisfying the
constraints. In the same vein, [3] considers soft constraints, and [7] do not require the size
of the committee to be fixed.1

Our online setting shifts the difficulty of the multi-attribute representation problem from
computational complexity analyses, to the need for probabilistic guarantees on the tradeoffs
between sample complexity and achieved proportionality.

Representative and fair sortition Finding a representative committee (typically, a
panel of citizens) with respect to a set of attributes, using sortition, is the topic of at least
two recent papers. [8] show that stratification (random selection from small subgroups
defined by attribute values, rather than from the larger group) only helps marginally. [14]
go further and consider this three-stage selection process: (1) letters are sent to a large
number of random individuals (the recipients); (2) these recipients answer whether they
agree to participate, and if so, give their features; those individuals constitute the pool; (3)
a sampling algorithm is used to select the final panel from the pool. As the probability
of willingness to participate is different across demographic groups, each person is selected
with a probability that depends on their features, so as to correct this self-selection bias.
This guarantees that the whole process be fair to all individuals of the population, with
respect of going from the initial population to the panel.2

1Note that diversity and proportional representation are often used with a different meaning in multiwin-
ner elections, namely, in the sense that each voter should feel represented in an elected committee, regardless
of attributes. A good entry to this literature is the survey [13].

2Fairness guarantees are pushed further in following (yet unpublished) work by the authors: see https:

//youtu.be/x_1Ce1kT7vc.



The main differences between this work and ours are: (1) (once again) our process is
online; (2) we do not consider individual fairness, only group representativeness; (3) we
care about minimizing the number of people contacted. Moreover, unlike off-line processes,
our process can be applied in contexts where hiring a person just interviewed cannot be
delayed; this may not be crucial for citizens’ assemblies (although someone who volunteers
at first contact may change their mind if the delay until the final selection is long), but this
is definitely so when hiring a diverse team of employees.

Online selection problems Generalized secretary problems [4] are optimal stopping
problems where the goal is to hire the best possible subset of persons, assuming that persons
arrive one at a time, their value is observed at that time, and the decision to hire or not
them must be taken immediately. The problem has been generalized to finding a set of items
maximizing a submodular value function [6, 5] While the latter models do not deal with
diversity constraints, [24] aims at selecting a group of people arriving in a streaming fashion
from a finite pool, with the goal of optimizing their overall quality subject to diversity
constraints. The common point with our approach is the online nature of the selection
process. The main differences are that they consider only one attribute, the size of the pool
is known, and yet more importantly, what is optimized is the intrinsic quality values of the
candidates and not the number of persons interviewed. Closer to our setting is [19] who
consider diversity along multiple features in online selection of search results, regardless of
item quality. They only seek to maximise diversity, and do not consider trade-offs with the
number of items observed.

The diverse hiring setting of [22] is very different. At each time step, the decision-
maker chooses which candidate to interview and only decides on which subset to hire after
multiple rounds, whereas in our setting, candidates arrive one by one and decisions are made
immediately.

3 Formal setting

3.1 Problem definition

Let X = X1 × ... × Xd be the product space of d finite domains, each of size Di = |Xi|,
and where we identify Xi with [Di] = {1, ..., Di}. Each candidate is represented by a
characteristic vector x ∈ X with d features. Let xi ∈ Xi denote the value of the i-th feature.
For each i ∈ [d], we consider a target vector ρi ∈ (0, 1)Di with

∑Di
j=1 ρ

i
j = 1.

The candidate database is infinite and the horizon as well. At each timestep t ≥ 1,
the agent observes a candidate xt drawn i.i.d. from a stationary distribution p over X , i.e.
xt ∼ p. The decision-maker must immediately decide between two actions: accept or reject
the candidate, which we respectively denote as at = 1 and at = 0.

The goal is to select a committee C of K candidates that matches the target vectors as
closely as possible, while minimizing the number of candidates screened.

For some set C, let λ(C) ∈
∏d
i=1[0, 1]Di be the representation profile of C, where λij(C) =

|{x∈C:xi=j}|
|C| . We define the representation loss as ‖λ(C)−ρ‖∞ = maxi∈[d],j∈[Di] |λij(C)−ρij |.

We evaluate how much C matches the target ρ by the `∞ metric, because it is harsher than
`1, `2 on committees that are unacceptable in our applications (e.g. committees with no
women that achieve perfect representation on all other categories than gender).

Let Ct = {xt′ : t′ ≤ t, at′ = 1} denote the set of all accepted candidates at the end of step
t. The agent stops at τ , where τ is the first time when K candidates have been accepted,
i.e. the total number of candidates screened. The agent following a (possibly randomized)
algorithm ALG must minimize the sample complexity Ep,ALG[τ ].



gender \ age S J
M 1/2− ε′ 1/4
F 1/4 ε′

Table 1: Example candidate distribution p with 2 binary features.

Importantly, we consider two settings: whether the candidate distribution p is known or
unknown.

Remark. In this model, we simply ignore non-volunteers, since the agent only needs to make
decisions for volunteers, which from now on we call candidates. The joint distribution of
characteristic vectors in the population of candidates is p.

3.2 Greedy strategy

We describe a first simple strategy. In Greedy, the agent greedily accepts any candidate
as long as the number of people in the committee with xi = j does not exceed the quota
dρijKe+ εK

(Di−1) for any i, j, where ε > 0 is some tolerance parameter for the representation

quality.

Proposition 1. The representation loss incurred by Greedy is bounded as follows:

‖λ(Cτ )− ρ‖∞ ≤
a.s.

(maxi∈[d]Di − 1

K
+ ε).

The proof and pseudocode are included in App. A.
This method is simple to interpret and implement, and can even be used when the candi-

date distribution p is unknown. However, in the following example, we see that Greedy may
be inefficient because it requires interacting with an arbitrarily large number of candidates
to recruit a full committee.

Example 1. Let ε′ > 0,� 1. There are 2 binary features, gender and age, with domains
Xgender = {M,F} and Xage = {S, J}. The candidates are distributed as p given in Table 1.
We want a committee of size K = 4 (e.g., a thesis committee) and the target is ρgender =
(1/2, 1/2) and ρage = (3/4, 1/4).

Let A be the event that in the first 3 timesteps, the agent observes candidates with
characteristic vectors {FS,MS,MS} in any order. Then Greedy accepts all of them, i.e.

A = {C3 = {FS,MS,MS}}. We have: P [A] = 1/4(1/2−ε′)2×3! = 3/2(1/2−ε′)2 ≥ 3/2
(

1/3
)2

=
1/6.

Under event A, Greedy can only stop upon finding FJ in order to satisfy the representa-
tion constraints. Therefore, τ |A follows a geometric distribution with success probability ε′,
hence its expectation is 1/ε′, and Ep,Greedy[τ ] ≥ E [τ |A]× P [A] = 1/6ε′. Therefore, the sample
complexity of Greedy in this example is arbitrarily large.

This example shows the limits of directly applying a naive strategy to our online selection
problem, where the difficulty arises from considering multiple features simultaneously, even
when there are only 2 binary features. We further discuss the strengths and weaknesses of
Greedy, and its sensitivity to the tolerance ε in our experiments in Section 6.

The greedy strategy is adaptive, in the sense that decisions are made based on the current
candidate and candidates accepted in the past. In the following section, we present, with
theoretical guarantees, an efficient yet non-adaptive algorithm based on constrained MDPs
for the setting in which the candidate distribution is known. We then adapt this approach
to the case when this distribution is unknown, using techniques for efficient exploration



/ exploitation in constrained MDPs relying on the principle of optimism in the face of
uncertainty.

4 p is known: constrained MDP strategy

In this section, we assume the distribution p is known, and we place ourselves in the limit
where we would select a committee of infinite size, and aim to maximize the rate at which
candidates are selected, under the constraint that the proportion of accepted candidates per
feature value is controlled by ρ. One advantage of this approximation is that the optimal
policy is stationary, thus simple to represent. Moreover, as stationary policies can be very
well parallelized, in the case where multiple candidates can be interviewed simultaneously.
To apply this approach to the finite-size committee selection problem, one needs to interrupt
the agent when K candidates have been selected. We showcase a high probability bound of
O(
√

1/K) on the representation loss, which guarantees that for large enough values of K,
the resulting committee is representative.

From now on, we assume that any feature vector can be observed, i.e., p(x) > 0 for all
x, so that proportional representation constraints can be satisfied.

4.1 Our model

Fundamentally, our problem could be seen as a contextual bandit with stochastic contexts
xt ∼ p and two actions at = 0 or 1. However, the type of constraints incurred by proportional
representation are well studied in constrained MDPs (CMDPs) [2], whereas the contextual
bandits literature focused on other constraints (e.g., knapsack constraints [1]). We show
how we can efficiently leverage the CMDP framework for our online committee selection
problem.

Formally, we introduce an MDP M = (X ,A, P, r), where the set of states is the d-
dimensional candidate space X , the set of actions is A = {0, 1}, and the (deterministic)
reward is r(x, a) = 1{a=1}. The transition kernel P , which defines the probability to be in
state x′ given that the previous state was x and the agent took action a, is very simple in
our case: we simply have P (x′|x, a) = p(x′) since candidates are drawn i.i.d regardless of
the previous actions and candidates.

We consider the average reward setting in which the performance of a policy π : X×A →
[0, 1] is measured by its gain gp,π, defined as:

gp,π(x) = lim
T→∞

1

T
Ep,π

[
T∑
t=1

r(xt, at)

∣∣∣∣x1 = x

]
.

We simply write gp,π := gπ when the underlying transition is p without ambiguity.
We include proportional representation constraints following the framework of CMDPs,

where the set of allowed policies is restricted by a set of additional constraints specified by
reward functions. In our case, for i ∈ [d], j ∈ [Di], we introduce rij(x, a) = 1{xi=j,a=1}, and

let ξij = rij − ρijr be the reward function for the constraint indexed by i, j. Similarly to the

gain, we define hij
π

= limT→∞
1
T E

π
[∑T

t=1 ξ
i
j(xt, at)

]
. The CMDP is defined by:

max
π
{gπ | ∀i ∈ [d],∀j ∈ [Di], h

i
j

π
= 0}. (1)

Given the simplicity of the transition kernel, and since the MDP is ergodic by the
assumption p > 0, the gain is constant, i.e. ∀x ∈ X , gπ(x) = gπ, and problem (1) is well
defined. From now on, we only write gπ and ξij

π
. Moreover, the optimal policy for the

CMDP (1) is denoted π∗ and is stationary [2].



Lemma 1. gπ is the selection rate under policy π:

gπ =
∑
x

p(x)π(x, 1) = Pp,π[a = 1]

Moreover, if π is feasible for CMDP (1), then:

∀i ∈ [d],∀j ∈ [Di],Pp,π[xi = j|a = 1] = ρij .

Lemma 1 implies that (a) π∗ maximises the selection rate of candidates, and (b) the
constraints of (1) force candidates x with xi = j to be accepted in proportions given by ρij .

The CMDP can be expressed as the linear program:

max
π∈RX×A+

∑
x,a

π(x, a)p(x)r(x, a)

u.c. ∀x ∈ X ,
∑
a

π(x, a) = 1

∀i, j,
∑
x,a

π(x, a)p(x)ξij(x, a) = 0.

(2)

Notice that problem (2) is feasible by the assumption that ∀x ∈ X , p(x) > 0. Next we
study how well the proportional selection along features is respected when we shift from
infinite to finite-sized committee selection.

4.2 Theoretical guarantees

We analyze the CMDP-based strategy where at each timestep, the agent observes candidates
xt ∼ p, decides to accept xt by playing at ∼ π∗(.|xt) and stops when K candidates have
been accepted. We later refer to it as CMDP for brevity.

First, we formally relate the gain gπ that we optimize for in (1) to the quantity of interest
Ep,π[τ ].

Lemma 2. For any stationary policy π, Ep,π[τ ] = K
gπ .

Lemma 2 is a direct consequence of the fact that τ + K follows a negative binomial
distribution with parameters K and 1− gπ, which are respectively the number of successes
and the probability of failure, i.e. of rejecting a candidate under π. Note that this is only
true because in our case the transition structure of the MDP ensures constant gain. A quick
sanity check shows that if the agent systematically accepts all candidates, i.e. gπ = 1, then
Ep,π[τ ] = K, and that maximizing gπ is equivalent to minimizing Ep,π[τ ].

We exhibit a bound on the representation loss of CMDP which follows the optimal sta-
tionary policy π∗ of CMDP (1). Let d̃ =

∑d
i=1(Di − 1). (d̃ = d when all features are

binary.)

Proposition 2. Let π∗ be an optimal stationary policy for CMDP (1). Let δ > 0. Then,

Pp,π
∗

‖λ(Cτ )− ρ‖∞ ≤

√
log( 2d̃

δ )

2K

 ≥ 1− δ.

All proofs of this section are available in Appendix B.1.
The upper bound on the representation loss of CMDP decreases with the committee size in√

1/K. This shows that the stationary policy π∗ works well for larger committees, although
it acts independently from previously accepted candidates. The intuition is that for larger
committees, adding a candidate has less impact on the current representation vector.



Algorithm 1: RL-CMDP algorithm.

input : confidence δ, committee size K, targets ρ
output: committee Cτ

1 t← 0, C0 ← ∅;
2 while |Ct| < K do
3 for episode l = 1, 2, ... do
4 τl = t+ 1;
5 πl ← sol. of (4) via the extended LP (5);
6 while nt(xt) < 2nτl−1(xt) do
7 t← t+ 1, Execute πl;
8 end

9 end

10 end
11 return Ct

Example 2. We take the same attributes and same distribution as in Table 1, with ε′ = 1/6.
Here, the target vectors are ρgender = (1/2, 1/2) and ρage = (1/2, 1/2): an ideal committee
contains as many women as men, as many senior as junior.

With the optimal policy for LP (2), each time the current volunteer is a senior male,
we select him with probability 1/2; all other volunteers are selected with probability 1. The
expected final composition of the pool is 30% of junior male, 30% of senior female, 20% of
junior female and 20% of senior male. As the policy selects in average 5/6 of the volunteers,
the expected time until we select K candidates is Ep,π∗ [τ ] = (6/5)K. More details can be
found in App. E.

5 p is unknown: optimistic CMDP strategy

We now tackle the committee selection problem when the candidate distribution p is un-
known and must be learned online. Let g∗ = gπ

∗
be the value of (1), which is the optimal

gain of the CMDP when the distribution p is known. We evaluate a learning algorithm by:

1. the performance regret: R(T ) =
∑T
t=1(g∗ − r(xt, at)),

2. the cost of constraint violations:

Rc(T ) = maxi,j
∣∣∑T

t=1 ξ
i
j(xt, at)

∣∣.
We propose an algorithm that we call RL-CMDP (Reinforcement Learning in CMDP,

Alg. 1). It is an adaptation of the optimistic algorithm UCRL2 [16], and it also builds on
the algorithm OptCMDP proposed by [12] for finite-horizon CMDPs. Learning in average-
reward CMDPs involves different challenges, because there is no guarantee that the policy
at each episode has constant gain. It does not matter in our case, since as we noted in Sec.
4, the simple structure of the transition kernel ensures constant gain, and does not require
to use the Bellman equation. The few works on learning in average-reward CMDPs make
unsuitable assumptions for our setting [27, 23].

RL-CMDP proceeds in episodes, which end each time the number of observations for some
candidate x doubles. During each episode l, observed candidates xt are accepted on the
basis of a single stationary policy πl.

Let τl denote the start time of episode l and El = [τl, τl+1]. Let nt(x) =
∑t
t′=1 1{xt′=x}

and N(t) = |Ct−1| =
∑t−1
t′=1 1{at′=1}. Let N i

j(t) =
∑t−1
t′=1 1{xit′=j,at′=1} be the number of

accepted candidates x such that xi = j before t.



At each episode l, the algorithm estimates the true candidate distribution by the em-

pirical distribution p̂l(x) =
nτl−1(x)

τl−1 and maintains confidence sets Bl on p. As in UCRL2,

these are built using the inequality on the `1-deviation of p and p̂l from [25]:

Lemma 3. With probability ≥ 1− δ
3 ,

‖p̂l − p‖1 ≤

√
2|X | log

(
6|X |τl(τl − 1)/δ

)
τl − 1

:= βl (3)

Let Bl = {p̃ ∈ ∆(X ) : ‖p̂l − p̃‖1 ≤ βl} be the confidence set for p at episode l. The
associated set of compatible CMDPs is then {M̃ = (X ,A, p̃, r, ξ) : p̃ ∈ Bl}. At the beginning
of each episode, RL-CMDP finds the optimum of:

max
π∈Π,p̃∈Bl

{gp̃,π | ∀i, j, hij
p̃,π

= 0}. (4)

Extended LP In order to optimize this problem, we re-write (4) as an extended LP.
Following [21] and the CMDP literature, we introduce the state-action occupation mea-
sure µ(x, a) = π(x, a)p(x) and variables β(x) to linearize the `1 constraint induced by the
confidence set:

max
µ∈RX×A
β∈RX

∑
x,a

µ(x, a)r(x, a)

u.c. µ ≥ 0,
∑
x,a

µ(x, a) = 1

∀x,
∑
a

µ(x, a) ≤ p̂l(x) + β(x)

∀x,
∑
a

µ(x, a) ≥ p̂l(x)− β(x)

∀x, a,
∑
y

β(y) ≤ µ(x, a)βl

∀i, j,
∑
x,a

µ(x, a)ξij(x, a) = 0.

(5)

The last constraint is the proportional representation constraint. The second to fourth
constraints enforce the compatibility of µ with the `1 confidence set. We retrieve the distri-
bution as p̃l(x) =

∑
a µ(x, a), and the policy as:

πl(x, a) =

{
µ(x,a)
p̃l(x) if p̃l 6= 0

1
2 otherwise .

Precisely, if some p̃l(x) = 0, we may set the policy πl(a|x) arbitrarily. Since the MDP
induced by p̃ is still weakly communicating, and in particular any policy is unichain, the
optimal gain in this CMDP is not affected.

We now provide regret and representativeness guarantees.

Theorem 1. With probability ≥ 1− δ, the regret of RL-CMDP satisfies:

R(T ) = O
(√
|X |T log(|X |T/δ)

)
Rc(T ) = O

(√
|X |T log(|X |T/δ)

)
.



Figure 1: Effect of committee size K on sample complexity and representation loss for
RL-CMDP, on data simulated from the UK Brexit Assembly, using 3 and 5 features. p is
unknown.

Moreover, with probability 1− δ, the representation loss of RL-CMDP at horizon T satisfies:

‖λ(CT )− ρ‖∞ = O

 1

g∗

√
|X | log

(
|X |T/δ

)
T

 .

The full proof is in Appendix B.2. It relies on decomposing regret over episodes, bounding
the error on p which decreases over episodes as the confidence sets are refined, and leveraging
martingale inequalities on the cumulative rewards.

Since R(T )
T = g∗ − N(T )

T , it means that with high probability, the difference between the

optimal selection rate and the selection rate of RL-CMDP decreases in
√

log(T )/T w.r.t. the
horizon T . The representation loss decreases at the same speed, meaning that the agent
should see enough candidates to accurately estimate p, and accept candidates at little cost
for representativeness.

Compared to the bound from Proposition 2, the cost of not knowing p on representative-
ness is a

√
|X | log(|X |) factor. This is due to the estimation of p in the worst case, which

is controlled by Lemma 3. As we show in our experiments (Sec. 6), the impact of |X | on
performance regret (and in turn on sample complexity) is not problematic in our typical
citizens’ assembly scenario: since there are only a handful of features, our algorithm selects
candidates quickly in practice (though representativeness is weakened by not knowing p).
For specific structures of p, we obtain bounds with better scaling in |X |, by controlling each
entry of p with Bernstein bounds [18], instead the `1-norm. For completeness, we describe
this alternative in Appendix C.

Interestingly, the representation loss is also inversely proportional to g∗, the optimal
selection rate in the true CMDP. The reason is that the CMDP constraints do not control

the ratios λij(CT ) =
Nij (T )

N(T ) , but N i
j(T ) instead (by definition of Rc(T ) and ξij). If N(T ) is

small, i.e. due to a small selection rate g, then Rij(T ) = |N i
j(T )− ρijN(T )| is small, but not

necessarily |N
i
j (T )

N(T ) − ρ
i
j |: the committee is too small to be representative.

6 Experiments

The goal of these experiments is to answer the following: (Q1) In practice, for which range
of committee sizes do our strategies achieve satisfying sample complexity and representation
loss? (Q2) What is the cost of not knowing the distribution p for the sample complexity
and representation loss?

Experimental setting To answer these questions, we use summary data from the 2017
Citizens’ Assembly on Brexit. The participants were recruited in an offline manner: vol-



unteers could express interest in a survey, and then 53 citizens were drawn from the pool
of volunteers using stratified sampling, in order to construct an assembly that reflects the
diversity of the UK electorate. We use summary statistics published in the report [20] to
simulate an online recruitment process.

There are d = 6 features: the organisers expressed target quotas for 2 ethnicity groups,
2 social classes, 3 age groups, 8 regions, 2 gender groups and 2 Brexit vote groups (remain,
leave). The report also includes the number of people contacted per feature group (e.g.,
women, or people who voted to remain) and the volunteering rate for each feature group,
which we use as probability of volunteering given a feature group. We use Bayes’ rule to
compute the probabilities of feature groups among volunteers, and use them as the marginal
distributions Pr[xi = j|volunteers] (since we only consider the population of volunteers).
Since we only have access to the marginals, we compute the joint distribution as if the
features were independent, although our model is agnostic to the dependence structure
of the joint distribution. In Appendix D.2, we present additional experiments with non-
independent features, using a real dataset containing demographic attributes. The results
are qualitatively similar.

We study Greedy with tolerance ε = 0.02, 0.05. We run experiments for K =
50, 100, 150, 250, 500, 1000, averaged over 50 simulations. More details are found in App.
D.1.

(A1) We compare Greedy and CMDP, when the distribution p is known. Figure 2 shows
that the greedy strategy with ε = 0.05 requires 10 times more samples than CMDP, and its
representation loss is higher as soon as K ≥ 250. Greedy with lower tolerance ε = 0.02
achieves better representation than CMDP for smaller committees (K ≤ 100), but the margin
quickly decreases with K. However, even for small committees, it requires about 100 times
more samples, which is prohibitively expensive. Figure 2 shows that for CMDP, the sample
complexity grows linearly in the committee size, with a reasonable slope (we need to find
τ ≈ 500 volunteers for a committee of size K ≈ 200).

(A2) To corroborate the previously discussed effect of |X | when p is unknown, we evaluate
RL-CMDP on different configurations: (1) using only the features ethnicity, social class, and
gender (d = 3, |X | = 8), (2) using all features except regions (d = 5, |X | = 48). Fig. 1
shows that unlike CMDP which has full knowledge of p, it is for large committee sizes that
RL-CMDP reaches low representation loss (below 0.05 for K ≥ 1500 in the configuration(1)).
This is because RL-CMDP needs to collect more samples to estimate p, as discussed in Th.
1. For known p, the CMDP approach achieves the same representativeness for middle-sized
committees (repr. loss ≤ 0.05 for K ≈ 250). Hence, comparing the cases of known (Fig. 2)
and unknown distribution p (Fig. 1), the ignorance of p is not costly for sample complexity,
but rather for the representation loss which decreases more slowly.

Consistently with Th. 1, we observe that the representation loss is higher when X is
larger (d = 5). For small and middle-sized committees, the loss of RL-CMDP is much worse
than Greedy’s which also works for unknown p. For large committees though, the margin
is only 0.05 when K & 2000 and τ ≈ 3500 for RL-CMDP (which is ×3 more sample efficient
than Greedy). In absolute terms, the theoretical regret bounds have a large constant

√
|X |.

This constant is likely unavoidable asymptotically because it comes from Lem. 3, but our
experiments suggest that in the non-asymptotic regime, RL-CMDP performs better than the
bound suggests.



Figure 2: Effect of committee size K on sample complexity and representation loss for
different strategies, in the UK Brexit Assembly experiment, using all features. p is known.

7 Conclusion

We formalised the problem of selecting a diverse committee with multi-attribute propor-
tional representation in an online setting. We addressed the case of known candidate dis-
tributions with constrained MDPs, and leveraged exploration-exploitation techniques to
address unknown distributions.

Among future research directions, we plan to consider (and learn) prior distributions
over candidates represented succinctly, using Bayesian networks.
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[8] Gerdus Benadè, Paul Gölz, and Ariel D Procaccia. No stratification without representa-
tion. In Proceedings of the 2019 ACM Conference on Economics and Computation, pages
281–314, 2019.

[9] Robert Bredereck, Piotr Faliszewski, Ayumi Igarashi, Martin Lackner, and Piotr
Skowron. Multiwinner elections with diversity constraints. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[10] L. Elisa Celis, Lingxiao Huang, and Nisheeth K. Vishnoi. Multiwinner voting with
fairness constraints. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18, pages 144–151. International Joint Conferences on
Artificial Intelligence Organization, 7 2018.

[11] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[12] Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in con-
strained mdps. arXiv preprint arXiv:2003.02189, 2020.

[13] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Multiwinner
voting: A new challenge for social choice theory. Trends in computational social choice,
74:27–47, 2017.

[14] Bailey Flanigan, Paul Gölz, Anupam Gupta, and Ariel D. Procaccia. Neutralizing
self-selection bias in sampling for sortition. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[15] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In
The Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.

[16] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for rein-
forcement learning. Journal of Machine Learning Research, 11(4), 2010.
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Algorithm 2: Greedy algorithm.

input : tolerance ε, committee size K, targets ρ
output: committee Cτ

1 t← 0, C0 ← ∅;
2 while |Ct| < K do
3 t← t+ 1;
4 Observe xt ∼ p;
5 if ∀i, j,N i

j(t) + 1{xit=j} ≤ dρ
i
jKe+ εK

Di−1 then

6 Ct ← Ct−1 ∪ {xt} ; // accept xt
7 ∀i, j, N i

j(t− 1)← N i
j(t) + 1{xit=j}

8 end

9 end
10 return Ct

Algorithm 3: CMDP-based strategy.

input : optimal policy π∗ of (1), committee size K
output: committee Cτ

1 t← 0, C0 ← ∅;
2 while |Ct| < K do
3 t← t+ 1, observe xt ∼ p and play at ∼ π∗(.|xt) ;
4 if at = 1 then Ct ← Ct ∪ {xt};
5 end
6 return Ct

A Details of the algorithms

For precision, we provide the pseudocode of Greedy in Alg. 2, and the CMDP-based strategy
in Alg. 3.

We also prove the bound on the representation loss of Greedy from Proposition 1 in
Section 3.2.

Proof. For all i, j, we have by the if-condition and the termination condition:

λij(Cτ ) =
N i
j(τ)

K
≤
dρijKe
K

+
ε

Di − 1

≤ ρij +
1

K
+

ε

Di − 1
(6)

≤ ρij +
Di − 1

K
+ ε. (7)

For i ∈ [d], for j0 ∈ [Di], we have:

ρij0 = 1−
∑
j 6=j0

ρij , λij0(Cτ ) = 1−
∑
j 6=j0

λij(Cτ ).



Combining these observations with (6):

λij0(Cτ ) ≥ 1−
∑
j 6=j0

(
ρij +

1

K
+

ε

Di − 1

)
= 1−

∑
j 6=j0

ρij −
Di − 1

K
− ε

= ρij0 −
Di − 1

K
− ε.

Combining this lower bound with the upper bound (7), we have for all i ∈ [d], j0 ∈ [Di],∣∣λij0(Cτ )− ρij0
∣∣ ≤ Di−1

K + ε, which gives the result.

B Proofs

B.1 Proofs of Section 4

Proof of Lemma 1.

Proof. We have: ∑
x,a

π(x, a)p(x)rij(x, a) = E x∼p
a∼π(·|x)

[
rij(x, a)

]
= Pp,π[a = 1, xi = j],

and gπ =
∑
x,a

π(x, a)p(x)r(x, a) = E x∼p
a∼π(.|x)

[r(x, a)]

= Pp,π[a = 1].

The ratio of these two quantities is equal to ρij by the last constraint of (2). It is also equal

to P[xi = j|a = 1], which gives the result.
Note that it also holds true for j = [Di], since

P[xi = Di|a = 1] = 1−
∑

j′∈[Di−1]

P[xi = j′|a = 1] and

ρiDi = 1−
∑

j′∈[Di−1]

ρij′ .

Proof of Proposition 2.

Proof. For any t > 0, we have

λij(Ct) =

∑t
s=1 1{xis=j,as=1}∑t
s=1 1{as=1}

.

and by Lemma 1, we have:

E
[
1{xi=j}|a = 1

]
= ρij .



Let δ′ > 0. Conditionally on any T ≥ K, (a1, ..., aT ) ∈ {0, 1}T s.t. a1 + ...+ aT = K and
aT = 1, the draws of xit|at = 1 are independent and thus, by Hoeffding’s inequality [15], we
have:

P

|λij(CT )− ρij | ≥

√
log( 2

δ′ )

2N(T )

∣∣∣∣a1, ..., aT

 ≥ 1− δ′

= P

|λij(CT )− ρij | ≥

√
log( 2

δ′ )

2K

∣∣∣∣a1, ..., aT

 .
Summing up over all such sequences (a1, ..., aT ), we obtain that:

P

|λij(Cτ )− ρij | ≥

√
log( 2

δ′ )

2K

 ≥ 1− δ′.

The result follows from applying a union bound over all i ∈ [d], j ∈ [Di − 1] (there are d̃
such (i, j) pairs) and choosing δ′ = δ/d̃.

B.2 Proof of Theorem 1

The following lemma states a standard and useful inequality, which is similar to Lem. 19 in
[16].

Lemma 4. Recall that L is the random number of episodes ran by RL-CMDP up until horizon
T . We have:

L∑
l=1

|El|√
τl − 1

≤ 2
√
T .

Proof. The proof is similar to that of Lem. 13 in [26]: we see El as the “derivative” of τl.
Formally, let us define:

F (x) =

bxc∑
l=1

|El|+ |Edxe|(x− bxc)

f(x) := F ′(x) = |Edxe|.

We first observe that for any integer l ∈ N, f(l) = |El| and F (l) = τl. Secondly, we have

F (x) ≤
bxc∑
l=1

|El|+ |Edxe| =
dxe∑
l=1

|El| = F (dxe),

and thus:
f(dxe)√
F (dxe)− 1

≤ f(x)√
F (x)− 1

.



We derive our bound as follows:

L∑
l=1

|El|√
τl − 1

=

L∑
l=1

f(l)√
F (l)− 1

=

∫ L

1

f(dxe)√
F (dxe)− 1

dx

≤
∫ L

1

f(x)√
F (x)− 1

dx = 2(
√
F (L)− 1)

= 2(
√
τL − 1) ≤ 2

√
T .

We introduce the following notation: for f : X ×A → R, let fπ(x) :=
∑
a f(x, a)π(x, a).

For all t > 0, let lt denote the episode number at time t. The following useful lemma is
based on a martingale argument.

Lemma 5. Let f : X ×A → R. Let δ′ > 0. We have:

P

[
T∑
t=1

(〈fπlt , p〉 − f(xt, at)) ≤
√

2T log(1/δ′)

]
≥ 1− δ′

P

[
T∑
t=1

∣∣〈fπlt , p〉 − f(xt, at)
∣∣ ≤√2T log(2/δ′)

]
≥ 1− δ′.

Proof. We define the filtration Ft = σ(x1, a1, ..., xt, at) and we first show that the sequence
defined by Mt = 〈fπlt , p〉 − f(xt, at) is a martingale difference sequence w.r.t. Ft. E [Mt] <
∞ since the rewards are bounded. Next, the proof that E [Mt|Ft−1] = 0 relies on the fact
that lt, and in turn the stationary policy πlt , are Ft−1−measurable.

Therefore,

E
[
〈fπlt , p〉

∣∣Ft−1

]
= 〈fπlt , p〉.

We also have:

E
[
f(xt, at)

∣∣Ft−1

]
= E

[∑
x,a

f(x, a)1{(xt,at)=(x,a)}

∣∣∣∣Ft−1

]
=
∑
x,a

f(x, a)πlt(x, a) = 〈fπlt , p〉.

Subtracting the two expressions above, we get E [Mt|Ft−1] = 0. (Mt)t is thus a Martin-
gale difference sequence, such that −1 ≤Mt ≤ 1. The result follows from Azuma-Hoeffding’s
inequality.

We now prove Theorem 1.

Proof. We define E = E1 ∩ E2 ∩ E3 to be the “good event”, with:

E1 = {∀l ≥ 1, p̃l ∈ Bl},

E2 = {
T∑
t=1

(〈rπlt , p〉 − r(xt, at)) ≤
√

2T log(3/δ)},

E3 =

∀i, j,
T∑
t=1

∣∣〈ξijπlt , p〉 − ξij(xt, at)∣∣ ≤
√

2T log
(6d̃

δ

) .



By Lemma 3, we have

P [∃l ≥ 1, p̃l ∈ Bl] ≥ 1− δ

3
. (8)

Combining (8) with Lemma 5 and using union bounds, P [E ] ≥ 1 − δ. From now on, we
assume that the good event E holds true.

Performance regret We start by upper bounding the performance regret R(T ). Let
∆l =

∑
t∈El(g

∗ − r(xt, at)) be the regret of episode l. Let (πl, p̃l) be the solution of the

optimistic CMDP (4) at episode l. Since (π∗, p) is feasible for (4), then g∗ ≤ gp̃l,πl . We also
note that

gp̃l,πl =
∑
x,a

r(x, a)p̃l(x)πl(x, a) =
∑
x

rπl(x)p̃l(x).

Therefore, we have:

∆l ≤
∑
t∈El

(gp̃l,πl − r(xt, at))

=
∑
t∈El

(
∑
x

rπl(x)p̃l(x)− r(xt, at))

=
∑
t∈El

∑
x

rπl(x)(p̃l(x)− p(x))

+
∑
t∈El

(
∑
x

rπl(x)p(x)− r(xt, at))

(9)

Using Hölder’s inequality and the fact that ‖r‖∞ = 1, the first term can be bounded by
|El|‖p̃l − p‖1. By validity of the confidence intervals under event E :

‖p̃l − p‖1 ≤ 2βl ≤
2
√

2|X | log
(
6|X |T (T − 1)/δ

)
√
τl − 1

(10)

Summing up over episodes l = 1, ..., L:

R(T ) ≤ 2

√
2|X | log

(6|X |T (T − 1)

δ

) L∑
l=1

|El|√
τl − 1

+

T∑
t=1

(
∑
x

rπlt (x)p(x)− r(xt, at)).

(11)

We bound the first sum using Lemma 4. The second term can be bounded as in Lemma
5 because E2 holds true. This gives us the resulting bound which holds under E :

R(T ) ≤ 4

√
|X | log

(6|X |T (T − 1)

δ

)
T +

√
2T log

(3

δ

)
.

Cost of constraint violations The proof for the cost of constraint violations is very simi-
lar. Let us bound Rij(T ) :=

∑T
t=1 |ξij(xt, at)| for all i, j. We briefly drop the sub/superscripts

i, j.
At each episode l, since (πl, p̃l) is a solution of (4), we have hp̃l,πl = 0, and thus∑
x,a ξ(x, a)πl(x, a)p̃l(x) =

∑
x ξ

πl(x)p̃l(x) = 0. Therefore, we have:



∣∣∣∣∣
T∑
t=1

ξ(xt, at)

∣∣∣∣∣ =

∣∣∣∣∣
L∑
l=1

( ∑
t∈El

ξ(xt, at)−
∑
x

ξπl(x)p̃l(x)
)∣∣∣∣∣

≤
∣∣∣∣ L∑
l=1

∑
t∈El

∑
x

ξπl(x)(p(x)− p̃l(x))

+

L∑
l=1

( ∑
t∈El

ξ(xt, at)−
∑
x

ξπl(x)p(x)
)∣∣∣∣

≤
L∑
l=1

∑
t∈El

∣∣∣∣∣∑
x

ξπl(x)(p(x)− p̃l(x))

∣∣∣∣∣
+

∣∣∣∣∣
L∑
l=1

( ∑
t∈El

ξ(xt, at)−
∑
x

ξπl(x)p(x)
)∣∣∣∣∣

≤
L∑
l=1

|El|‖ξπl‖∞‖p− p̃l‖1

+

∣∣∣∣∣
T∑
t=1

(
ξ(xt, at)−

∑
x

ξπlt (x)p(x)

)∣∣∣∣∣ ,
where the first part of the last inequality is again by Hölder’s inequality. Similarly to the
performance regret, the first term is bounded using the validity of confidence intervals under
the good event E and Lemma 4, and the second term is bounded by the martingale argument
using Lemma 5. Hence, under E we have for any i, j:

Rij(T ) ≤ 4

√
|X | log

(6|X |T (T − 1)

δ

)
T +

√
2T log

(6d̃

δ

)
.

And thus the same bounds holds for Rc(T ) = maxi,j R
i
j(T ).

Representation loss We may now derive the bound on representation loss.
Let f(T ) = O

(√
|X | log(|X |T/δ)

)
. The regret bounds imply that with 1− δ:

R(T ) =g∗T −N(T ) ≤ f(T )⇒ N(T ) ≥ g∗T − f(T )

Rc(T )

N(T )
= max

i,j

∣∣∣∣∣N i
j(T )

N(T )
− ρij

N(T )

N(T )

∣∣∣∣∣ ≤ f(T )

N(T )

i.e., ‖λ(CT )− ρ‖∞ ≤
f(T )

N(T )
.

Therefore, using N(T ) ≥ 1, we have:

‖λ(CT )− ρ‖∞ ≤
f(T )

max(1, g∗T − f(T ))

= O

(√
|X | log(|X |T/δ)

g∗2T

)
.



C Alternative to RL-CMDP with Bernstein bounds

We present RL-CMDP-B, an alternative to RL-CMDP which uses Bernstein empirical bounds
[18].

At each episode l, the algorithm estimates the distributions by p̂l(x) =
nτl−1(x)

τl−1 and

maintains confidence intervals [p
l
(x), pl(x)]. These are built using Bernstein’s empirical

inequality [18], which implies that there exists constants B1, B2 such that with probability
≥ 1− δ

3 , for each l ≥ 1 and x ∈ X ,

|p(x)− p̂l(x)| ≤ B1

√
σ̂2
l (x) log(6|X |τl

δ )

1 ∧ (τl − 1)
+B2

log( 6|X |τl
δ )

1 ∧ (τl − 1)
, (12)

where σ̂l(x) =
√
p̂l(x)(1− p̂l(x)).

Following e.g. [12], we re-write (4) as an extended LP by introducing the state-action
occupation measure µ(x, a) = π(x, a)p(x).

max
µ∈RX×A

∑
x,a

µ(x, a)r(x, a)

u.c. µ ≥ 0,
∑
x,a

µ(x, a) = 1

∀x,
∑
a

µ(x, a) ≤ pl(x)

∀x,
∑
a

µ(x, a) ≥ p
l
(x)

∀i, j,
∑
x,a

µ(x, a)ξij(x, a) = 0.

(13)

The second to fourth constraints enforce the compatibility of µ with the confidence
intervals. Controlling each entry of p with Bernstein bounds instead of the `1-norm allows
for a simpler optimization problem than the extended LP (5). We get the following regret
bound:

Theorem 2 (Regret guarantees). With probability ≥ 1−δ, the regret of RL-CMDP-B satisfies:

R(T ) = O
(√
|X |T log(|X |T/δ) + |X | log(|X |T/δ)2

)
Rc(T ) = O

(√
|X |T log(|X |T/δ) + |X | log(|X |T/δ)2

)
.

With probability ≥ 1− δ, the representation loss satisfies:

‖λ(CT )− ρ‖∞

= O

 1

g∗

√
|X | log

(
|X |T/δ

)
T

+
|X | log(|X |T/δ)2

g∗T

 .

When using Bernstein bounds, the representation loss carries O(|X | log(|X |T/δ)2). This

factor but has a bigger scaling with |X |, but decreases rapidly in log(T )2

T .
The Bernstein version of RL-CMDP may be advantageous for some candidate distributions

p. For example, if the support S of p is very small compared to X , the first term in the



Bernstein empirical inequality (12) is equal to zero for all x outside the support. Therefore,
the representation loss scales as:

‖λ(CT )− ρ‖∞

= O

 1

g∗

√
|S| log

(
|S|T/δ

)
T

+
|X | log(|X |T/δ)2

g∗T

 ,

where |S| � |X |. Thus, the second term with fast decrease in log(T )2

T controls the bound on
representation loss.

C.1 Proofs

The following lemma states a useful inequality akin to Lemma 4.

Lemma 6. We have:

L∑
l=1

|El|
τl − 1

≤ log(T )

Proof. The proof is similar to Lem. 13 in [26]. Using the same notation as in the proof of
Lemma 4,

L∑
l=1

|El|
τl − 1

=

L∑
l=1

f(l)

F (l)− 1
=

∫ L

1

f(dxe)
F (dxe)− 1

dx

≤
∫ L

1

f(x)

F (x)− 1
dx = log(F (L)− 1)

= log(τL − 1) ≤ log T.

We now prove Theorem 2.

Proof. We re-use the same steps and notation as for the proof of Theorem 1.
Here instead, E1 is the event such that the confidence intervals are valid (12). Under the

high-probability good event E = E1 ∩ E2 ∩ E3, we thus have:

|πl(x)− p(x)| .
√

p̂l(x)(1−p̂l(x))bδ,T
τl−1 +

bδ,T
τl−1

where bδ,T = log( 6|X |T
δ ).

In the following, the first inequality is by validity of the Bernstein confidence intervals



under E , and the second inequality is by Cauchy-Schwarz’s inequality:∑
t∈El

∑
x

rπl(x)(p̃l(x)− p(x))

≤
∑
t∈El

∑
x

rπl(x)

√
p̂l(x)(1− p̂l(x))bδ,T

τl − 1

+
∑
t∈El

bδ,T
τl − 1

∑
x

rπl(x)︸ ︷︷ ︸
≤|X|

≤
∑
t∈El

√√√√√(
∑
x

1− p̂l(x))︸ ︷︷ ︸
≤|X|

(
∑
x

p̂l(x)rπl(x)bδ,T )︸ ︷︷ ︸
≤bδ,T

√
1

τl − 1

+
∑
t∈El

|X |bδ,T
τl − 1

(14)

By Lemmas 4 and 6, we have:√
|X |bδ,T

L∑
l=1

|El|√
τl − 1

≤ 2
√
|X |bδ,TT

|X |bδ,T
L∑
l=1

|El|
τl − 1

≤ |X |bδ,T log(T ).

Summing up over episodes in inequality (14) and plugging in the above inequalities gives
the desired bound by following the steps of the proof of Theorem 1.

D Experiments

D.1 Details on the Brexit experiments

We provide in Table 2 the target vectors (ρij)i,j and marginal distributions (Pp[xi = j])i,j
extracted from the Citizens’ Assembly on Brexit report [20].3 The report includes the
volunteering rates for each feature group, i.e. Pr[volunteer|xi = j]. To compute the marginal
distributions (Pr[xi = j|volunteer])i,j , we thus use Bayes’ rule to compute the probability
of each feature group among the volunteer population4, that is:

Pp[xi = j] = Pr[xi = j|volunteer]

=
Pr[volunteer|xi = j] Pr[xi = j]

Pr[volunteer]
.

We often have ρij 6= Pp[xi = j]. For example, compared to the age target, we are less
likely to find younger people (≤ 34 years old) among volunteers. For gender, while the
target was gender parity, we are much less likely to find women than men in the volunteer
population.

3https://citizensassembly.co.uk/wp-content/uploads/2017/12/Citizens-Assembly-on-Brexit-Report.

pdf, pages 28-32.
4In doing so, we notice that the probability of finding non-voter volunteers is almost zero, hence we only

consider “remain” and “leave” for the feature Brexit vote. Indeed, the report states “The only target that
proved impossible to meet was that for non-voters in the 2016 referendum.” p.28.



Targets Marginals
Ethnicity 0.860 / 0.140 0.863 / 0.136
Social class 0.550 / 0.450 0.556 / 0.444
Age 0.288 / 0.344 / 0.367 0.154 / 0.432 / 0.414

Region
0.233 / 0.160 / 0.093
/ 0.134 / 0.222 / 0.047
/ 0.082 / 0.028

0.179 / 0.155 / 0.090
/ 0.117 / 0.211 / 0.073
/ 0.154 / 0.021

Gender 0.507 / 0.493 0.384 / 0.616
Brexit vote 0.481 / 0.519 0.565 / 0.434

Table 2: Target quotas (from the report) and marginal distribution (computed using Bayes’
rule) for the Brexit experiment.

For our experiments presented in Section 6, we used Python and the CPLEX LP solver,
and a machine with Intel Xeon Gold 6230 CPUs, 2.10 GHz, 1.3 MiB of cache.

D.2 Experiments with dependent features

The goal of these experiments is to answer the following: what is the impact of the depen-
dence structure of the joint feature distribution p on the sample complexity and represen-
tation loss of our algorithms? Since we may only retrieve marginal distributions from the
Citizen’s Assembly on Brexit report, we keep the target quotas on each feature but simulate
joint feature distributions from another dataset with demographic attributes, the standard
Adult Census Income dataset [11].

The Adult dataset consists of approximately 49.000 entries of subjects in the US, each
with 14 demographic features and a binary label indicating whether a subject’s income is
above or below 50K USD. We only keep features that can be mapped to our Brexit Citizen’s
Assembly example: gender, age, ethnicity and income, which we use in lieu of social class.
We do not consider proportional representation for region and Brexit vote since there are
no such features in the Adult dataset. In our preprocessing of the Adult dataset, we create
the same three age categories (<35, 35-54, >54), the same two ethnicity groups (white /
non-white) and we use the binary income variable as a proxy for social class, by assigning
> 50K to upper class and ≤ 50K to lower class. This leaves us with 4 features with 2, 2, 2, 3
possible values.

To create dependencies between features, we consider two graphical structures shown in
Figure 3, and for each we fit a Bayesian network to the dataset to generate a model of the
joint distribution p(x). We consider one structure with little dependence, and one structure
with strong dependence between features.

Figure 4 shows that both when p is known, the sample complexity is higher when there
is more dependence (Bayesian network (2)) between features, but the representation loss is
the same. When p is unknown, the representation loss is lower for structure (2) with more
dependence, than structure (1) with little dependence, but the sample size is higher for (2).
For structure (2), the representation loss is low (≈ 0.07) for K = 1000. Importantly, it
implies that in practice, the representation loss is much lower than the worst case bound
given by Theorem 1.

E Detailed example for Section 4

We take the same attributes and same distribution as in Table 1, with ε′ = 1/6:



(a) Structure 1: weak dependence. (b) Structure 2: strong dependence.

Figure 3: Bayesian network structures for the Census Income dataset.

Figure 4: Effect of committee size K on sample complexity and representation loss for CMDP
(known p) and RL-CMDP (unknown p), on the two different Bayesian networks (1) and (2)
fitted on the Census Income dataset.

The target vectors are ρgender = (1/2, 1/2) and ρage = (1/2, 1/2), that is, an ideal committee
contains as many women as men and as many senior than junior.

We solve the linear program

max
π(MS, 1)

3
+
π(FS, 1)

4
+
µ(MJ, 1)

4
+
µ(FJ, 1)

6

u.c.
π(MS, 1)

3
+
π(FS, 1)

4
=
µ(MJ, 1)

4
+
µ(FJ, 1)

6
π(MS, 1)

3
+
µ(MJ, 1)

4
=
π(FS, 1)

4
+
µ(FJ, 1)

6

(15)

Its solution is



gender \ age S J
M 1/3 1/4
F 1/4 1/6

π∗(MS, 1) = 1/2

π∗(FJ, 1) = 1

π∗(MJ, 1) = 1

π∗(FS, 1) = 1

(16)

Thus, each time the current volunteer is a senior male, we select him with probability
1/2; all other volunteers are selected with probability 1. The expected final composition of
the pool is 30% of junior male, 30% of senior female, 20% of junior female and 20% of senior
male. As the policy selects in average 5/6 of the volunteers, the expected time until we select
K candidates is Ep,π∗ [τ ] = (6/5)K.


