
Proportional Representation under Single-Crossing
Preferences Revisited

Andrei Constantinescu, Edith Elkind

Abstract

We study the complexity of determining a winning committee under the Chamberlin–Courant
voting rule when voters’ preferences are single-crossing on a line, or, more generally, on a
median graph (this class of graphs includes, e.g., trees and grids). For the line, Skowron et al.
[2015] describe an O(n2mk) algorithm (where n, m, k are the number of voters, the number
of candidates and the committee size, respectively); we show that a simple tweak improves
the time complexity to O(nmk). We then improve this bound for k = Ω(logn) by reducing
our problem to the k-link path problem for DAGs with concave Monge weights, obtaining a
nm2O(

√
log k log logn) algorithm for arbitrary misrepresentation functions and a nearly linear

algorithm for the Borda misrepresentation function. For trees, we point out an issue with the
algorithm proposed by Clearwater et al. [2015], and develop a O(nmk) algorithm for this
case as well. For grids, we formulate a conjecture about the structure of optimal solutions, and
describe a polynomial-time algorithm that finds a winning committee if this conjecture is true;
we also explain how to convert this algorithm into a bicriterial approximation algorithm whose
correctness does not depend on the conjecture.

1 Introduction
The problem of computing election winners under various voting rules is perhaps the most funda-
mental research challenge in computational social choice [Brandt et al., 2016]. While this problem
is typically easy for single-winner voting rules (with a few notable exceptions; see Hemaspaandra
et al. [1997], Rothe et al. [2003]), for many rules that are supposed to return a set of winners, the
winner determination problem is computationally demanding. In particular, this is the case for one
of the most prominent and well-studied multiwinner voting rules, namely, the Chamberlin–Courant
rule [Chamberlin and Courant, 1983]. Under this rule, each voter is assumed to assign a numerical
disutility to each candidate; these disutilities are then lifted to sets of candidates, so that a voter’s
disutility for a set of candidates S is his minimum disutility for a member of S, and the goal is
to identify a committee that minimizes the sum of voters’ disutilities given an upper bound on the
committee size (see Section 2 for formal definitions). It has been argued that this rule is well-suited
for a variety of tasks, ranging from selecting a representative student assembly to deciding which
movies to show on a plane [Faliszewski et al., 2017].

Decision problems related to winner determination under the Chamberlin–Courant rule have
been shown to be NP-hard even when the disutility function takes a very simple form [Procaccia
et al., 2008, Lu and Boutilier, 2011]. Accordingly, there is substantial body of work that focuses on
identifying special classes of voters’ preferences for which a winning committee can be determined
efficiently. In particular, polynomial-time algorithms have been obtained for various structured pref-
erence domains, such as single-peaked preferences [Betzler et al., 2011], single-crossing preferences
[Skowron et al., 2015], and preferences that are single-peaked on trees, as long as the underlying
trees have few leaves or few internal vertices [Yu et al., 2013, Peters and Elkind, 2016] (see also
Peters et al. [2020]). These results extend to preferences that are nearly single-peaked or nearly
single-crossing, for a suitable choice of distance measure [Cornaz et al., 2012, Skowron et al., 2015,
Misra et al., 2017]; see also the survey by Elkind et al. [2017] for a summary of results for re-
stricted domains and the survey by Faliszewski et al. [2017] for a discussion of other approaches to
circumventing hardness results for the Chamberlin–Courant rule.

Recently, Kung [2015] and, independently, Clearwater et al. [2015] introduced the domain of
preferences that are singe-crossing on trees, which considerably extends the domain of single-
crossing preferences, while sharing some if its desirable properties, such as existence of (weak) Con-
dorcet winners. Clearwater et al. [2015] also proposed an algorithm for computing the Chamberlin–
Courant winners when voters’ preferences belong to this domain. Unfortunately, a close inspection
of this algorithm shows that its running time scales with the number of subtrees of the underlying
tree, which may be exponential in the number of voters; we discuss this issue in Section 4.
Our Contribution In this paper, we revisit the problem of computing the winners under the
Chamberlin–Courant rule when the voters’ preferences are single-crossing, or, more broadly, single-
crossing on a tree. For the former setting, we observe that a simple tweak of the algorithm of
Skowron et al. [2015] improves the running time from O(n2mk) to O(nmk). We then reduce the
Chamberlin–Courant winner determination problem to the well-studied DAG k-LINK PATH prob-
lem, and show that the instances of the latter problem that are produced by our reduction have the
concave Monge property. We believe that the relationship between the single-crossing property and
concavity may be of independent interest; further, it can be used to show that for k = Ω(log n) our
problem admits an algorithm that runs in time nm2O(

√
log k log logn); also, for the Borda disutility

function (see Section 2), we obtain an algorithm that runs in timeO(nm log(nm)), i.e., nearly linear
in the input size. This improvement is significant, as in some of the applications we discussed (such
as movie selection) k can be quite large.

For preferences single-crossing on trees, we design a polynomial-time dynamic programming
algorithm; Interestingly, we can achieve a running time of O(nmk) for this case as well.

Finally, we venture beyond trees, and consider preferences single-crossing on grids. We formu-
late a conjecture about the structure of optimal solutions in this setting, and present a polynomial-
time algorithm whose correctness is guaranteed under this conjecture. We then show how to trans-
form it into a bicriterial approximation algorithm that is correct irrespective of the conjecture.

2 Preliminaries
For a positive integer n, we write [n] to denote the set {1, . . . , n}; given two non-negative integers
n, n′, we write [n : n′] to denote the set {n, . . . , n′}. Given a tree T , we write |T | to denote the
number of vertices of T .

We consider a setting with a set of voters V , where |V | = n, and a set of candidates C = [m].
Voters rank candidates from best to worst, so that the preferences of a voter v are given by a linear
order �v: given two distinct candidates i, j ∈ C we write i �v j when v prefers i to j. We write
P = (�v)v∈V ; the list P is referred to as a preference profile. We assume that we are also given a
misrepresentation function ρ : V × C → Q; we say that ρ is consistent with P if c �v c′ implies
ρ(v, c) ≤ ρ(v, c′) for each v ∈ V and all c, c′ ∈ C. Intuitively, the value ρ(v, c) indicates to what
extent candidate c misrepresents voter v. An example of a misrepresentation function is the Borda
misrepresentation function ρB given by ρB(v, c) = |{c′ ∈ C : c′ �v c}|: this function assigns value
0 to voter’s top choice, value 1 to his second choice, and value m− 1 to his last choice.
Multiwinner Rules A multiwinner voting rule maps a profileP over a candidate setC and a positive
integer k, k ≤ |C|, to a non-empty collection of subsets of C of size at most k; the elements of this
collection are called the winning committees1. In this paper, we focus on a family of multiwinner
voting rules known as Chamberlin–Courant rules [Chamberlin and Courant, 1983].

An assignment function is a mapping w : V → C; for each V ′ ⊆ V we write w(V ′) = {w(v) :
v ∈ V ′}. If |w(V)| ≤ k, then w is called a k-assignment function. Given a misrepresentation
function ρ and a profile P = (�v)v∈V , the total dissatisfaction of voters in V under a k-assignment

1Note that we allow committees of size less than k, as this simplifies the discussion, in particular in the context of of
assignment functions

w is given by Φρ(P, w) =
∑
v∈V ρ(v, w(v)). Intuitively, w(v) is the representative of voter v in

the committee w(V), and Φρ(P, w) measures to what extent the voters are dissatisfied with their
representatives. An optimal k-assignment function for ρ and P is a k-assignment function that
minimizes Φρ(P, w) among all k-assignment functions for P .

The Chamberlin–Courant multiwinner voting rule takes as input a preference profile P =
(�v)v∈V over a candidate set C, a misrepresentation function ρ : V × C → Q that is consis-
tent with P and a positive integer k ≤ |C|, and outputs all sets W such that W = w(V) for some
k-assignment function w that is optimal for ρ and P . In the CC-WINNER problem the goal is to
find some set W in the output of this rule. The decision version of this problem is known to be
NP-complete [Procaccia et al., 2008], even if ρ is the Borda misrepresentation function [Lu and
Boutilier, 2011]. We make the standard assumption that operations on values of ρ(v, c) (such as,
e.g., addition) can be performed in unit time; this assumption is realistic as the values of ρ are usually
small integers.

We say that a k-assignment w for a profile P and a misrepresentation function ρ is canonical
if w is optimal for P and ρ, and for each voter v ∈ V the candidate w(v) is v’s most preferred
candidate in w(V). If ρ(v, a) 6= ρ(v, b) for all v ∈ V and all pairs of distinct candidates (a, b) ∈
C × C, then every optimal assignment is canonical; however, if it may happen that ρ(v, a) =
ρ(v, b) for a 6= b, this need not be the case. An optimal k-assignment w can be transformed into a
canonical assignment ŵ by setting ŵ(v) to be v’s most preferred candidate in w(V); note that this
transformation weakly decreases misrepresentation and the committee size.
Single-Crossing Preferences A profile P = (�v)v∈V over C is single-crossing (on a line) if there
is a linear order C on V such that for any triple of voters v1, v2, v3 with v1 C v2 C v3 and every
pair of distinct candidates (c, c′) ∈ C × C it is not the case that c �v1 c′, c′ �v2 c, and c �v3 c′.
Intuitively, if we order the voters in V according to C and go through the list of voters V from left
to right, every pair of candidates ‘crosses’ at most once.

A profile P = (�v)v∈V over C is single-crossing on a tree if there exists a tree T with vertex set
V that has the following property: for any triple of voters v1, v2, v3 such that v2 lies on the path from
v1 to v3 in T and every pair of distinct candidates (c, c′) ∈ C × C it is not the case that c �v1 c′,
c′ �v2 c, and c �v3 c′. Note that if a profile P is single-crossing on a tree T that is a path, then P is
single-crossing on a line.

We say that an assignment function w for a profile P over C that is single-crossing on a tree T
is connected if for every candidate c ∈ C it holds that the inverse image w−1(c) defines a subtree
of T . The following lemma shows that, when considering profiles single-crossing on trees, we can
focus on connected assignment functions.

Lemma 1. For every profile P over C that is single-crossing on a tree T and every k ≤ |C| every
canonical k-assignment for P is connected.

Proof. Let w be a canonical k-assignment for P . To see that w is connected, fix a candidate c ∈ C
and let T ′ be the smallest subtree of T that contains the set w−1(c). If w is not connected, then
there is a voter v in T ′ such that w(v) = c′, c′ 6= c, and deleting v would disconnect T ′. Then there
are two voters x, y ∈ T ′ ∩ w−1(c) for which the unique simple x–y path contains v. Since w is a
canonical assignment, we have c �x c′, c �y c′, but c′ �v c, a contradiction.

The next lemma establishes a monotonicity property of canonical assignments.

Lemma 2. Consider a profile P = (�v)v∈V that is single-crossing on a tree T , and suppose that
voter v ranks the candidates as 1 �v . . . �v m. Let w be a canonical k-assignment and let P be a
simple path starting at v. Then, w is non-decreasing along P , in the sense that if voter x precedes
voter y on P then w(x) ≤ w(y).

Proof. Let x, y be two voters on P such that x precedes y on P . Suppose w(x) = a, w(y) = b with
a > b. Then b �v a, a �x b and b �y a, a contradiction with P being single-crossing on T .

The concept of single-crossing preferences can be extended beyond lines and trees to a class of
graphs known as median graphs, defined below [Puppe and Slinko, 2019].

Definition 1. An undirected graph G is called a median graph if for every triple of vertices a, b, c
there exists a unique vertex m(a, b, c), called the median of a, b, c, which is simultaneously on one
a–b, one b–c and one c–a shortest path. Given a median graph G with vertex set V , we say that
a preference profile P = (�v)v∈V is single-crossing with respect to G if for every pair of voters
s, t and for every shortest s–t path X in G, the restriction of P to the voters that appear on X is
single-crossing on a line with respect to the natural order induced by X .

It is not hard to check that paths and trees are median graphs. Another useful class of median
graphs are grid graphs: a two-dimensional grid graph is a graph with vertex set [n1]× [n2] for some
positive integers n1, n2 such that there is an edge between two vertices (i, j) and (i′, j′) if and only
if |i − i′| + |j − j′| = 1. (This definition and our results for grids extend beyond two dimensions,
but for readability we focus on the two-dimensional case).

We will be interested in solving CC-WINNER if voters’ preferences are single-crossing on a
line, on a tree or on a grid; we denote these special cases of our problem by CC-WINNER-SC,
CC-WINNER-SCT, and CC-WINNER-SCG, respectively. We assume that the respective order-
ing/tree/grid is given as part of the input; this assumption is without loss of generality as the re-
spective graph can be computed from the input profile in polynomial time [Doignon and Falmagne,
1994, Kung, 2015, Clearwater et al., 2015, Puppe and Slinko, 2019].
Rooted Trees and DAGs A rooted tree is a finite tree with a designated root vertex r. We say that
a vertex u is a parent of v (and v is a child of u) if u and v are adjacent and u lies on the path from v
to r. A vertex with no children is called a leaf. We denote the number of children of vertex v by nv ,
and represent the set of children of v as an array ch[v, 1], . . . , ch[v, nv]. We write Tv to denote the
subtree of T with vertex set {u : the path from u to r goes through v}. Similarly, for each v ∈ V
and i ∈ [1 : nv + 1], let Tv,i be the subtree obtained by starting with Tv and removing the subtrees
Tch[v,1], . . . , Tch[v,i−1]. Observe that Tv,1 = Tv and that Tv,nv+1 is just the singleton vertex v.

A directed acyclic graph (DAG) is a finite oriented graph whose vertices can be totally ordered
so that the tail of each arc precedes its head in the ordering. All DAGs we will consider have the
set [0 : n] as their set of vertices, and are ordered with respect to the natural ordering <. Moreover,
they are complete, i.e., have {(i, j) : i, j ∈ [0 : n], i < n} as their set of edges. A DAG is said to be
weighted if its arcs are given real values by a function ω. A complete weighted DAG on vertex set
[0 : n] satisfies the concave Monge property if for all vertices i, j such that 0 < i + 1 < j < n it
holds that ω(i, j) + ω(i+ 1, j + 1) ≤ ω(i, j + 1) + ω(i+ 1, j). We refer to the weight function ω
itself as being concave Monge in this case.

3 Improved Algorithms for Single-Crossing Preferences
We start by considering the setting where the voters’ preferences are single-crossing on a line. We
assume without loss of generality that the voter order C is given by v1 C . . . C vn and that the first
voter ranks the candidates in C = [m] as 1 �v1 . . . �v1 m.

The following lemma is implicit in the work of Skowron et al. [2015], and can be seen as an
instantiation of Lemmas 1 and 2.

Lemma 3. For every canonical assignment wopt for CC-WINNER-SC and every pair of voters
vi, vj with i < j it holds that wopt(vi) ≤ wopt(vj).

Skowron et al. [2015] use this lemma to develop a dynamic programming algorithm for CC-
WINNER-SC that runs in time O(n2mk). We will now present a faster dynamic programming
algorithm that uses auxiliary variables.

Theorem 1. Given an instance of CC-WINNER-SC with n voters, m candidates and committee
size k, we can compute an optimal solution in time O(nmk).

Proof. We will explain how to compute the minimum dissatisfaction; a winning committee can then
be computed using standard dynamic programming techniques.

We define the following subproblems for each i ∈ [n], c ∈ [m] and each ` = 1, . . . ,min{k,m−
c+ 1, n− i+ 1}:

• let dp0[i, `, c] be the minimum dissatisfaction of voters in {vi, . . . , vn} for a size-` committee
that is contained in [c : m];

• let dp1[i, `, c] be the minimum dissatisfaction of voters in {vi, . . . , vn} for a size-` committee
that is contained in [c : m] and represents vi by c.

To simplify presentation, we assume dpf [i, c, `] = ∞ for f ∈ {0, 1} if the triple (i, j, `) is
out-of-range, i.e., i 6∈ [n], c 6∈ [m], ` < 1, or ` > min{k,m− c+ 1, n− i+ 1}.

We have dp1[n, 1, c] = ρ(vn, c) for each c ∈ C. Also, dp0[n, 1,m] = ρ(vn,m), and for c < m
we have dp0[n, 1, c] = min{dp1[n, 1, c], dp0[n, 1, c+ 1]}.
For i = n− 1, . . . , 1 we have the following recurrence:

dp1[i, `, c] = ρ(vi, c) + min{dp1[i+ 1, `, c], dp0[i+ 1, `− 1, c+ 1]);

dp0[i, `, c] = min{dp1[i, `, c], dp0[i, `, c+ 1]}.

This recurrence enables us to compute all values dpf [−,−,−] for f ∈ {0, 1}; the minimum dis-
satisfaction in our instance is given by min1≤`≤k dp0[1, `, 1]. The dynamic program has O(nmk)
entries; each entry can be computed in time O(1) given the already-computed entries.

To improve over theO(nmk) bound, we will reduce CC-WINNER-SC to the well-studied DAG
k-LINK PATH problem with Monge concave weights (see, e.g., Bein et al. [1992]), and use the
powerful machinery developed for it to obtain faster algorithms for our setting.

Definition 2. Given a complete DAG with an arc weight function ω and two designated vertices s
and t, the k-LINK PATH problem (k-LPP) asks for a minimum total weight path starting at s, ending
at t and consisting of exactly k arcs.

There are a number of algorithmic results for the k-LINK PATH problem assuming a concave
Monge weight function [Bein et al., 1992, Aggarwal et al., 1994, Schieber, 1995]. We will first
present our reduction, and then discuss the implications for CC-WINNER-SC.

Given an instance of CC-WINNER-SC with a preference profile P = (�v)v∈V over C = [m],
we construct a DAG G with vertex set [0 : n] and the weight function ω given by

ω(i, j) = min
c∈C

(ρ(vi+1, c) + . . .+ ρ(vj , c)). (1)

That is, ω(i, j) represents the minimum total dissatisfaction that voters in {vi+1, . . . , vj} de-
rive from being represented by a single candidate c. Let cand(i, j) be some candidate in
arg minc∈C (ρ(vi+1, c) + . . .+ ρ(vj , c)).

First, we observe that an optimal solution to CC-WINNER-SC corresponds to a minimum cost
path in k-LPP.

Theorem 2. The minimum cost of a k-link 0–n path in G with respect to ω is equal to the minimum
total dissatisfaction for P and k.

Proof. Let P = 0→ `1 → . . .→ `k−1 → n be a minimum cost k-link path in G. Then P induces
an assignment of candidates to voters: if P contains an arc (i, j) we assign candidate cand(i, j) to
voters vi+1, . . . , vj . The total dissatisfaction under this assignment equals to the weight of P .

Conversely, let wopt be a canonical k-assignment. By Lemma 3 we know that wopt partitions
the voters into contiguous subsequences. To build a path P in G, we proceed as follows. For every
maximal contiguous subsequence of voters vi+1, . . . , vj represented by the same candidate in wopt ,
we add the arc i → j to P . By construction, the resulting set of arcs forms a k-link path from 0 to
n, and its total weight is at most Φρ(P, wopt).

Note, however, that Theorem 2 is insufficient for our purposes: the efficient algorithms for k-
LPP require the weight function ω to have the concave Monge property, so we need to prove that
the reduction in Theorem 2 always produces such instances of k-LPP.

We say that an instance of CC-WINNER-SC is concave Monge if the reduction in Theorem 2
maps it to an instance of k-LPP with the concave Monge property. Thus, we need to prove that each
instance of CC-WINNER-SC is concave Monge. To this end, we will first argue that if there is an
instance of CC-WINNER-SC that is not concave Monge, then there exists such an instance with
three voters. Then we prove that every three-voter instance is concave Monge.

Lemma 4. If there exists a non-concave Monge instance of CC-WINNER-SC, then there exists a
non-concave Monge instance of CC-WINNER-SC with three voters.

Proof. Consider a non-concave Monge instance of CC-WINNER-SC with n 6= 3 voters. Note that
n ≥ 4: indeed, for n < 3 there is no pair of vertices i, j that satisfies 0 < i + 1 < j < n. We can
assume that the (i, j) pair that violates the concave Monge property is (0, n−1): otherwise we could
just remove all voters before vi+1 and all voters after vj . Thus, we have ω(0, n − 1) + ω(1, n) >
ω(0, n) + ω(1, n− 1). Recall that

ω(0, n− 1) = min
c∈C

(ρ(v1, c) + . . .+ ρ(vn−1, c)); (2)

ω(1, n) = min
c∈C

(ρ(v2, c) + . . .+ ρ(vn, c)); (3)

ω(0, n) = min
c∈C

(ρ(v1, c) + . . .+ ρ(vn, c)); (4)

ω(1, n− 1) = min
c∈C

(ρ(v2, c) + . . .+ ρ(vn−1, c)). (5)

Now, consider a three-voter profile (�x,�y,�z) with misrepresentation function ρ′ constructed
as follows. Set �x =�v1 , �z =�vn and ρ′(x, c) = ρ(v1, c), ρ′(z, c) = ρ(vn, c) for all c ∈ C.
Further, set ρ′(y, c) = ρ(v2, c) +ρ(v3, c) + . . .+ρ(vn−1, c). and let a �y b if and only if ρ′(y, a) <
ρ′(y, b) or ρ′(y, a) = ρ′(y, b) and a �v1 b. One can verify that �y is a linear order. Moreover,
we claim that the profile (�x,�y,�z) is single-crossing with respect to the voter order x C y C z.
Indeed, consider two distinct candidates a, b. If x and z disagree on (a, b), then in (�x,�y,�z)
candidates a and b cross at most once, irrespective of y’s preferences. Now suppose that x and
z agree on (a, b); for concreteness, suppose that a �x b, a �z b. As the input profile is single-
crossing, all other voters also prefer a to b and hence ρ(v2, a) + ρ(v3, a) + . . . + ρ(vn−1, a) ≤
ρ(v2, b) + ρ(v3, b) + . . .+ ρ(vn−1, b), in which case a �y b. Hence, (�x,�y,�z) is indeed single-
crossing. Now, we can rewrite equations (2)–(5) as

ω(0, n− 1) = min
c∈C

(ρ′(x, c) + ρ′(y, c));

ω(1, n) = min
c∈C

(ρ′(y, c) + ρ′(z, c));

ω(0, n) = min
c∈C

(ρ′(x, c) + ρ′(y, c) + ρ′(z, c));

ω(1, n− 1) = min
c∈C

ρ′(y, c).

Hence, the instance of CC-WINNER-SC formed by x, y and z together with ρ′ is also non-concave
Monge.

Proposition 1. Every instance of CC-WINNER-SC is concave Monge.

Proof. By Lemma 4, it suffices to consider instances with three voters. Thus, consider a three-voter
profile that is single-crossing with respect to the voter order v1 C v2 C v3. We need to argue that

ω(0, 2) + ω(1, 3) ≤ ω(0, 3) + ω(1, 2).

Recall that cand(i, j) is an ‘optimal’ candidate for voters vi+1, . . . , vj . Let a = cand(1, 2); we can
assume that a is the top candidate of the second voter. Also, let b = cand(0, 3), c1 = cand(0, 2),
c2 = cand(1, 3).

Suppose first that b = a. Then

ω(0, 3) + ω(1, 2) = ρ(v1, a) + 2ρ(v2, a) + ρ(v3, a).

On the other hand, c1 = cand(0, 2) and c2 = cand(1, 3) implies that

ω(0, 2) = ρ(v1, c1) + ρ(v2, c1) ≤ ρ(v1, a) + ρ(v2, a),

ω(1, 3) = ρ(v2, c2) + ρ(v3, c2) ≤ ρ(v2, a) + ρ(v3, a).

Adding up these inequalities, we obtain the desired result.
Now, suppose that b 6= a. Then

ω(0, 3) + ω(1, 2) = ρ(v1, b) + ρ(v2, b) + ρ(v2, a) + ρ(v3, b).

As the second voter ranks a first, she ranks b below a. Hence, by the single-crossing property, at
least one other voter prefers a to b; we can assume without loss of generality that a �v3 b. Thus,
ρ(v3, b) ≥ ρ(v3, a) and hence

ω(0, 3) + ω(1, 2) ≥ ρ(v1, b) + ρ(v2, b) + ρ(v2, a) + ρ(v3, a).

Now, c1 = cand(0, 2) and c2 = cand(1, 3) implies that

ω(0, 2) = ρ(v1, c1) + ρ(v2, c1) ≤ ρ(v1, b) + ρ(v2, b),

ω(1, 3) = ρ(v2, c2) + ρ(v3, c2) ≤ ρ(v2, a) + ρ(v3, a).

Again, adding up these inequalities, we obtain the desired result.

It now follows that any fast algorithm for k-LPP with the concave Monge property translates
into an algorithm for CC-WINNER-SC, slowed down by a factor of O(m) required for computing
arc weights2.

Now, if individual dissatisfactions are non-negative integers in range [0 : U] (e.g. U = m for
the Borda misrepresentation function), then the weakly-polynomial algorithm of Bein et al. [1992]
and Aggarwal et al. [1994] leads to an O(nm log(nU)) algorithm for CC-WINNER-SC. Alterna-
tively, we can use the strongly-polynomial time algorithm of Schieber [1995] to get a runtime of
nm2O(

√
log k log logn), which improves on our earlier bound of O(nmk) for k = ω(log n). We

summarize these results in the following theorem.

Theorem 3. Given an instance of CC-WINNER-SC with n voters,m candidates and committee size
k, we can compute an optimal solution in time nm2O(

√
log k log logn). Moreover, if ρ is the Borda

misrepresentation function, we can compute an optimal solution in time O(nm log(nm)).
2Computing all arc weights in advance would be too expensive. Instead, we precompute the values

∑j
`=1 ρ(v`, c) for all

j ∈ [n], c ∈ C in time O(nm); then, when the algorithm needs to know ω(i, j), we compute
∑j

`=i+1 ρ(v`, c) for each c
as a difference of two precomputed quantities (i.e., in time O(1)), and then compute the minimum over C in time O(m).

4 Preferences Single-Crossing on a Tree
Clearwater et al. [2015] present an algorithm for CC-WINNER-SCT that proceeds by dynamic
programming, building a solution for the entire tree from solutions for various subtrees. Entries of
their dynamic program are indexed by subtrees of the input tree, and on some instances the algorithm
may need to consider all subtrees containing the root; and a tree on n vertices can have 2Ω(n) such
subtrees. We present a detailed example in the appendix.3

4.1 A Dynamic Programming Solution
We will now present a different dynamic programming algorithm, which provably runs in polyno-
mial time. This algorithm, too, builds a solution iteratively by considering subtrees of the original
tree, but it proceeds in such a way that it only needs to consider polynomially many subtrees.

Fix a misrepresentation function ρ, and consider a profileP = (�v)v∈V , |V | = n, overC = [m]
that is single-crossing on a tree T . We will view T as a rooted tree with v1 as its root, and assume
without loss of generality that 1 �v1 . . . �v1 m.

We first reformulate our problem as a tree partition problem using Lemma 1.

Definition 3. A p-partition of T is a partition of T into p subtrees F = {F1, . . . , Fp}. A p-
assignment w : V → C for a profile P = (�v)v∈V that is single-crossing on a tree T is a p-tree
assignment if there is a p-partition {F1, . . . , Fp} of T such that w(v) = w(v′) for each ` ∈ [p] and
v, v′ ∈ F`. In the CHAMBERLIN–COURANT TREE PARTITION (CCTP) problem the goal is to find
a value p ∈ [k] and a p-tree assignment wopt , together with the associated p-partition Fopt , such
that wopt minimizes Φρ(P, w) (here, the minimization is over all choices of p ∈ [k] and all p-tree
assignments for P).

By Lemma 1, an optimal assignment for CCTP is an optimal assignment for the associated instance
of CC-WINNER-SCT.

We start by presenting a dynamic programming algorithm for CCTP and proving a bound of
O(nmk2) on its running time; later, we will improve this bound to O(nmk).

Theorem 4. Given an instance of CCTP with n voters, m candidates and committee size k, we can
compute an optimal solution in time O(nmk2).

Proof. We will explain how to find the value of an optimal solution in time O(nmk2); an optimal
solution can then be recovered using standard dynamic programming techniques.

We define the following subproblems for each v ∈ V and c ∈ [m].

• For each ` = 1, . . . ,min{k, |Tv|}, let dp0[v, `, c] be the minimal dissatisfaction of voters in
Tv that can be achieved by partitioning Tv into ` subtrees using only candidates in [c : m] as
representatives.

• For each ` = 1, . . . ,min{k, |Tv|}, let dp1[v, `, c] be the minimal dissatisfaction of voters in
Tv that can be achieved by partitioning Tv into ` subtrees using only candidates in [c : m] as
representatives, with voter v represented by candidate c.

• For each i ∈ [nv + 1], and each ` = 1, . . . ,min{k, |Tv,i|}, let dp2[v, i, `, c] be the minimal
dissatisfaction of voters in Tv,i that can be achieved by partitioning Tv,i into ` subtrees using
only candidates in [c : m] as representatives, with voter v represented by candidate c.

To simplify presentation, we assume the quantities above to take value∞ for values of v, i, `,
and c for which they are not explicitly defined.

3We have contacted the authors of the paper, and they have acknowledged this issue.

Clearly, the value of an optimal solution to our instance of CCTP is min`∈[k] dp0[v1, `, 1]. It
remains to explain how to compute the intermediate quantities.

The following observations are immediate from the definitions of dp0, dp1, dp2:

dp2[v, nv + 1, 1, c] = ρ(v, c), (6)
dp1[v, `, c] = dp2[v, 1, `, c], (7)
dp0[v, `, c] = min{dp1[v, `, c], dp0[v, `, c+ 1]}. (8)

The next lemma explains how to compute dp2.

Lemma 5. Let u be the i-th child of v, and let s = |Tv,i+1|. Then dp2[v, i, `, c] =
min{DIFF, SAME}, where

DIFF = min{dp0[u, t, c+ 1] + dp2[v, i+ 1, `− t, c] :

1 ≤ t ≤ min{`, |Tu|}, 1 ≤ `− t ≤ min{`, s}},
SAME = min{dp1[u, t, c] + dp2[v, i+ 1, `− t+ 1, c] :

1 ≤ t ≤ min{`, |Tu|}, 1 ≤ `− t+ 1 ≤ min{`, s}}.

Proof. Throughout this proof we will make implicit use of Lemma 2 to justify always having can-
didates with a higher index be further down in the tree. Let (Fopt , wopt) be an optimal connected
`-tree partition of Tv,i such that voter v is assigned candidate c. There are two cases to consider:

• Voter u is represented by a candidate c′ > c. Then each subtree in Fopt is either fully
contained in Tu or fully contained in Tv,i+1, so there is a number t ∈ [`] such that Fopt

partitions Tu into t subtrees and Tv,i+1 into `− t subtrees. Hence, to minimize dissatisfaction,
we take the minimum over all t ∈ [`]. For a fixed t ∈ [`] we choose (i) an optimal t-partition
of Tu that uses candidates in [c + 1 : m] only and (ii) an optimal (` − t)-partition of Tv,i+1

that uses candidates in [c : m] only and assigns c to v. The optimal values of the former and
the latter are given by dp0[u, t, c+ 1] and dp2[v, i+ 1, `− t, c], respectively.

• Voter u is represented by candidate c. In this case the subtree in Fopt that contains v may
partly reside in both Tu and Tv,i+1. Therefore, there is a number t ∈ [`] such that Fopt

partitions Tu into t subtrees and Tv,i+1 into ` − t + 1 subtrees. Once again, we take the
minimum over all t ∈ [`]. For a fixed t ∈ [`] we choose (i) an optimal t-partition of Tu that
uses candidates in [c : m] only and assigns c to u and (2) an optimal (` − t + 1)-partition of
Tv,i+1 that uses candidates in [c : m] only and assigns c to v. By definition, the optimal values
for these subproblems are given by dp1[u, t, c] and dp2[v, i+ 1, `− t+ 1, c], respectively.

Note that the assignment implicitly computed by our dynamic programming algorithm is not
necessarily connected; however, this is not required for optimality.

Our dynamic program proceeds from the leaves to the root of T , computing the quantities
dp0, dp1 and dp2; we process a vertex after its children have been processed. Computing all
these quantities is trivial if v is a leaf; if v is not a leaf, we first compute dp2[v, i, `, c] for all
i = |nv| + 1, . . . , 1 and all relevant values of ` and c using (6) and Lemma 5, and then compute
dp1[v, `, c] (using (7)) and dp0[v, `, c] (using (8)) for c = m, . . . , 1. To bound the running time, note
that (i) there are O(nmk) subproblems of the form dp0[−,−,−] and dp1[−,−,−], each requiring
constant time to solve; (ii) there are O(nmk) subproblems of the form dp2[−,−,−,−] (this is be-
cause pairs of the form (v, i) such that 1 ≤ i ≤ nv correspond to edges of the tree and there are
precisely n − 1 of them), and each of these subproblems can be solved in time O(k) by Lemma 5;
(iii) the tree can be traversed in time O(n). Altogether, we get a time bound of O(nmk2).

The bound on the running time of our algorithm can be improved to O(nmk); see Appendix B.

5 Preferences Single-Crossing on a Grid
In this section we will discuss the challenges we face when trying to extend our results for CC-
WINNER beyond trees. In particular, we present a useful lemma for preferences single-crossing on
grids, which enables us to design a bicriterial approximation algorithm for CC-WINNER-SCG, as
well as a polynomial-time algorithm under an additional (plausible) conjecture.

This section is structured as follows. First, we introduce the concept of laminar tilings for grid
graphs. Then we provide a polynomial-time dynamic programming algorithm for CC-WINNER-
SCG on grid graphs under the assumption that optimal solutions correspond to laminar tilings.
Finally, we drop this assumption and argue that our dynamic programming algorithm can be trans-
formed into a bicriterial approximation algorithm for our problem.

Assume that C = [m] and that the set of voters is V = [n1]× [n2], so that the preference profile
P = (�v)v∈V is single-crossing on the n1 × n2 grid. For readability, we will write ρ(i, j, c) to
denote the dissatisfaction of voter (i, j) with candidate c.

We begin by proving an analogue of Lemma 1 for grid graphs.

Lemma 6. For every profile P over C that is single-crossing on the grid V = [n1] × [n2], every
k ≤ |C|, every canonical k-assignment wopt for P and every candidate c, it holds that its pre-image
w−1
opt(c) forms an axis-aligned subrectangle of V .

Proof. Let R be the smallest rectangle that contains the set of voters w−1
opt(c) (i.e. their bounding

box). Assume for the sake of contradiction that there is a voter (i, j) ∈ R such that wopt(i, j) =
c′ 6= c. Then, there are two voters v0, v1 ∈ R ∩ w−1

opt(c) such that there is a shortest v0–v1 path P
passing through (i, j). Since wopt is a canonical assignment, it means that c �v0 c′ and c �v1 c′,
but c′ �(i,j) c, contradicting the assumption that P is single-crossing on [n1]× [n2].

Lemma 6 establishes that a canonical k-assignment wopt can be viewed as a partition of the grid
into a collection Fopt of at most k rectangles. All voters in a given rectangle R ∈ Fopt share a
common representative c, which minimizes their total dissatisfaction. Let us call any partition of V
into at most k subrectangles a k-tiling (i.e. Fopt is a k-tiling). Now, just as in Section 4, where we
reduced CC-WINNER-SCT to CCTP, from now on we will focus on the problem of finding a k-tiling
Fopt that minimizes the total dissatisfaction of the voters in the implicitly associated k-assignment.

Next, we define a class of tilings that are particularly convenient for our purposes.

Definition 4. Let F be a k-tiling of V . We say that F is laminar if at least one of the following
conditions holds:

• F consists of a single rectangle.

• F can be partitioned into two sets of rectangles F← and F→ such that F← is a laminar tiling
of [n1]× [1 : j] and F→ is a laminar tiling of [n1]× [j + 1 : n2], for some j ∈ [n2 − 1].

• F can be partitioned into two sets of rectangles F↑ and F↓ such that F↑ is a laminar tiling of
[1 : i]× [n2] and F↓ is a laminar tiling of [i+ 1 : n1]× [n2], for some i ∈ [n1 − 1].

Intuitively, F is laminar if it can be recursively subdivided by vertical/horizontal lines until we
get to singleton rectangles. We now state a conjecture, which we will then show to imply that
CC-WINNER-SCT is polynomial-time solvable.

Conjecture 1. For every instance of CC-WINNER-SCG there exists an optimal k-tiling that is
laminar.

There is empirical evidence that this conjecture is plausible: we have experimentally checked
that it always holds for n1 ≤ 4, n2 ≤ 5 and k ≤ 5, as well as for some other small instances.
Additionally, for k ≤ 4 there is a direct proof that our conjecture always holds. Furthermore, it can

be shown to hold under the additional assumption that the preferences of every pair of voters that
are adjacent in the grid differ in at most one pair of candidates.

Assuming that the conjecture holds, we now propose a dynamic programming algorithm for CC-
WINNER-SCG. We consider subproblems of the form dp[i0, i1, j0, j1, `], representing the minimal
possible dissatisfaction of voters in [i0 : i1] × [j0 : j1] for an `-tiling. These quantities are defined
for 1 ≤ i0 ≤ i1 ≤ n1, 1 ≤ j0 ≤ j1 ≤ n2 and 1 ≤ ` ≤ k.

The following lemma presents the base case and recurrence relations that will be used to evaluate
the dynamic program (we omit the straigntforward proof):

Lemma 7. Define the following three quantities:

VERT = min{dp[i0, i1, j0, j, `
′] + dp[i0, i1, j + 1, j1, `− `′] : j0 ≤ j < j1, 1 ≤ `′ < `};

HOR = min{dp[i0, i, j0, j1, `
′] + dp[i+ 1, i1, j0, j1, `− `′] : i0 ≤ i < i1, 1 ≤ `′ < `};

CONST = min

 ∑
i0≤i≤i1

∑
j0≤j≤j1

ρ(i, j, c) : c ∈ [m]

.
Then, it holds that dp[i0, i1, j0, j1, `] = min{VERT,HOR,CONST}.

Note that, just as in the case of trees, the recurrences in Lemma 7 do not forbid a given candidate
from being assigned to more than one rectangle in a tiling.

Theorem 5. Assuming that Conjecture 1 holds, SC-WINNER-SCG can be solved in time polyno-
mial in n1, n2, m, k.

Proof. We process the subproblems in increasing order of i1 − i0 + j1 − j0 + `, solving each
subproblem by directly applying the recurrence relations in Lemma 7. For the time complexity,
consider a fixed subproblem and note that computing VERT and HOR together takes time O(n1k +
n2k) and that computing CONST takes time O(n1n2m). Therefore, the total time complexity can
be bounded as O(n2

1n
2
2k(n1k + n2k + n1n2m)), which is polynomial in the input size. One can

improve this bound by tighter analysis (in particular, by being more diligent about how CONST is
computed), but we omit these details for now.

The usefulness of Theorem 5 is limited, as we do not know at this point whether Conjecture 1
is true. However, we will now show that we can transform our dynamic programming algorithm
into a bicriterial approximation algorithm for our problem even without assuming the conjecture.
Specifically, we can use our algorithm to find a k2-assignment w such that the voters’ dissatisfaction
under w is at most their dissatisfaction under an optimal k-assignment. We begin by introducing
some definitions and notation:

Definition 5. Let F and F ′ be two tilings of V . We say that F ′ refines F if every rectangle in F
can be represented as a union of some rectangles in F ′.

The following proposition follows immediately from Definition 5.

Proposition 2. Let F and F ′ be tilings of V such that F ′ refines F . Then the total dissatisfaction
of F ′ is at most that of F (i.e. refinement can not increase dissatisfaction).

Definition 6. Given a tiling F of V and a vertical/horizontal line L between two columns/rows
of the grid, let splitL(F) be the tiling obtained from F by replacing each rectangle whose interior
intersects L with the two rectangles that L splits it into.

Observe that splitL(F) refines F . Also, if F is a k-tiling, then splitL(F) is a 2k-tiling.
Given a tiling F , we can think of its rectangles as geometric objects in Z2. In particular, a given

rectangle [i0 : i1]× [j0 : j1] ∈ F has corners at coordinates (x, y) ∈ {(i0 − 1, j0 − 1), (i0 − 1, j1),

(i1, j0 − 1), (i1, j1)}.4 With this in mind, define P (F) to be the set of all corners of all rectangles
in F . Likewise, define x(F) = {x : (x, y) ∈ P (F)} and y(F) = {y : (x, y) ∈ P (F)}.

Lemma 8. Let F be a k-tiling of V . Then there exists a laminar k2-tiling F ′ which refines F .

Proof. Let `x = |x(F)|, `y = |y(F)|, and assume that x(F) = {x1, . . . , x`x} and y(F) =
{y1, . . . , y`y}, where x1 < . . . < x`x and y1 < . . . < y`y . Initialize F ′ to F and perform the
following steps:

1. For each vertical line L defined by an element of y(F), replace F ′ by splitL(F ′).

2. For each horizontal line L defined by an element of x(F), replace F ′ by splitL(F ′).

Clearly, F ′ refines F , since each individual operation is a refinement. Furthermore, F ′ consists
of precisely (`x − 1)(`y − 1) rectangles, each with a lower left corner at (xi, yj) and an upper right
corner at (xi+1, yj+1), for some 1 ≤ i < `x and 1 ≤ j < `y . Since F is a k-tiling, it follows that
`x ≤ k + 1 and `y ≤ k + 1, implying that (`x − 1)(`y − 1) ≤ k2, and so F ′ is a k2-tiling. By
construction, F ′ is laminar, hence completing the proof.

An approximation guarantee now follows as a direct consequence:

Corollary 1. By executing our dynamic programming algorithm with the target committee size set
to k2 instead of k, we obtain a committee that is at least as good as an optimal one for k.

Note that Corollary 1 generalizes to d-grids with d > 2. However, the required committee size
becomes kd, making this result less attractive for higher dimensions.

6 Conclusions and Future Work
We have improved the state of the art concerning the algorithmic complexity of the Chamberlin–
Courant rule, both for preferences single-crossing on a line and for preferences single-crossing on a
tree. For the former setting, the performance of our algorithms makes them suitable for a broad range
of practical applications; for the latter setting, we identify an issue in prior work and present the
first poly-time algorithm. It is instructive to contrast the algorithmic results for preferences single-
crossing on trees and preferences single-peaked on trees: for the latter domain, positive results hold
only if the underlying tree has a special structure, and the problem remains hard for general trees
[Peters et al., 2020], whereas our positive result holds for all trees. For the grids, while we do
not have an unconditional proof of correctness for our algorithm, we have collected some evidence
that our conjecture is true, and also found a way to leverage our approach to design a bicriterial
approximation algorithm.

In our paper, we focused on the utilitarian version of the Chamberlin–Courant rule, where the
goal is to minimize the sum of voters’ dissatisfactions; however, both of our O(nmk) algorithms
can be modified to compute winners under the egalitarian version of this rule, where the goal is to
minimize the dissatisfaction of the most misrepresented voter, simply by replacing ‘+’ with max in
the respective dynamic programs. This is no longer the case for our reduction to the k-LPP problem;
however, by using binary search to reduce the egalitarian problem to the utilitarian problem, we can
nevertheless find solutions for the former in time O(nm log(n) log(nm)) using this approach.

It would be very interesting to extend our algorithmic results to general median graphs, or prove
that such an extension is unlikely, by establishing an NP-hardness result. Resolving the conjecture
about grid graphs would be a natural first step in this direction.

4To keep consistent with the way grids are normally drawn, the OX axis should be regarded as going from north to south
and the OY axis from east to west.

References
Alok Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a minimum-weight k-link path in

graphs with the concave monge property and applications. Discrete and Computational Geometry,
12:263–280, 12 1994.

Wolfgang Bein, Lawrence Larmore, and James Park. The d-edge shortest-path problem for a monge
graph. UNT Digital Library, 1992.

Nadja Betzler, Arkadii Slinko, and Johannes Uhlmann. On the computation of fully proportional
representation. Journal of Artificial Intelligence Research, 47, 11 2011.

Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors. Hand-
book of Computational Social Choice. Cambridge University Press, 2016.

John Chamberlin and Paul Courant. Representative deliberations and representative decisions: Pro-
portional representation and the borda rule. American Political Science Review, 77(3):718–733,
1983.

Adam Clearwater, Clemens Puppe, and Arkadii Slinko. Generalizing the single-crossing property
on lines and trees to intermediate preferences on median graphs. In IJCAI’15, pages 32–38, 2015.

Denis Cornaz, Lucie Galand, and Olivier Spanjaard. Bounded single-peaked width and proportional
representation. In ECAI’12, pages 270–275, 2012.

Marek Cygan. Barricades. In Krzysztof Diks, Tomasz Idziaszek, Jakub Lacki, and Jakub Ra-
doszewski, editors, Looking for a Challenge?, pages 63–67. 2012.

Jean-Paul Doignon and Jean-Claude Falmagne. A polynomial time algorithm for unidimensional
unfolding representations. Journal of Algorithms, 16(2):218–233, 1994.

Edith Elkind, Martin Lackner, and Dominik Peters. Structured preferences. In Ulle Endriss, editor,
Trends in Computational Social Choice, chapter 10, pages 187–207. AI Access, 2017.

Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Multiwinner voting: A new
challenge for social choice theory. In Ulle Endriss, editor, Trends in Computational Social Choice,
chapter 2, pages 27–47. AI Access, 2017.

Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg Rothe. Exact analysis of dodgson elections:
Lewis carroll’s 1876 voting system is complete for parallel access to np. Journal of the ACM, 44
(6):806–825, 1997.

Fan-Chin Kung. Sorting out single-crossing preferences on networks. Social Choice and Welfare,
44(3):663–672, 2015.

Tyler Lu and Craig Boutilier. Budgeted social choice: From consensus to personalized decision
making. In Proceedings of IJCAI’11, pages 280–286, 01 2011.

Neeldhara Misra, Chinmay Sonar, and PR Vaidyanathan. On the complexity of chamberlin-courant
on almost structured profiles. In ADT’17, pages 124–138. Springer, 2017.

Dominik Peters and Edith Elkind. Preferences single-peaked on nice trees. In AAAI’16, pages
594–600, 2016.

Dominik Peters, Lan Yu, Hau Chan, and Edith Elkind. Preferences single-peaked on a tree: Multi-
winner elections and structural results. CoRR, abs/2007.06549, 2020.

Ariel Procaccia, Jeffrey Rosenschein, and Aviv Zohar. On the complexity of achieving proportional
representation. Social Choice and Welfare, 30:353–362, 02 2008.

Clemens Puppe and Arkadii Slinko. Condorcet domains, median graphs and the single-crossing
property. Economic Theory, 67(1):285–318, 2019.

Jörg Rothe, Holger Spakowski, and Jörg Vogel. Exact complexity of the winner problem for young
elections. Theory of Computing Systems, 36(4):375–386, 2003.

Baruch Schieber. Computing a minimum-weight k-link path in graphs with the concave monge
property. J. Algorithms, 29:204–222, 1995.

Piotr Skowron, Lan Yu, Piotr Faliszewski, and Edith Elkind. The complexity of fully proportional
representation for single-crossing electorates. Theoretical Computer Science, 569:43–57, 2015.

Lan Yu, Hau Chan, and Edith Elkind. Multiwinner elections under preferences that are single-peaked
on a tree. In IJCAI’13, pages 425–431, 2013.

Andrei Costin Constantinescu
University of Oxford
Oxford, United Kingdom
Email: andrei.costin.constantinescu@gmail.com

Edith Elkind
University of Oxford
Oxford, United Kingdom
Email: eelkind@gmail.com

A The Previous Algorithm for CC-WINNER-SCT

Clearwater et al. [2015] present an algorithm for CC-WINNER-SCT that proceeds by dynamic
programming, building a solution for the entire tree from solutions for various subtrees. In this
section we take a close look at their algorithm, showing how its runtime can be exponential in some
cases.

We start by presenting the algorithm of Clearwater et al. [2015] (with a few typos corrected, and
using our notation and terminology), and then show that its runtime can be exponential in the worst
case, by exhibiting an explicit instance for which this occurs.

A.1 A Recap of the Algorithm
Fix a misrepresentation function ρ, and consider a profile P = (�v)v∈V , |V | = n, over C = [m]
that is single-crossing on a tree T . We will view T as a rooted tree with v1 as its root. A subtree
T ′ ⊆ T is a terminal subtree if T \ T ′ is also a subtree of T .

For any subtree of voters T ′ ⊆ T with vertex set V ′ and a, b ∈ C such that a 6= b we define
V ′ab = {v ∈ V ′ : a �v b}; let T ′ab denote the subtree of T ′ induced by V ′ab (note that T ′ab is a
terminal subtree of T ′ by the single-crossing property).

The following lemma proves key to the correctness of the algorithm.

Lemma 4.5 (original number). For some k ∈ [m] let wopt be a canonical k-assignment for P and
let b ∈ C be the least favorite candidate of v1. Then the vertices of w−1

opt(b) form a terminal subtree
of T ′ ⊆ T . Moreover, unless T ′ = T , we also have that T ′ = Tba, for some a ∈ C with b 6= a.

See the original paper for the proof. Note that the lemma generalizes to subinstances where T
has been replaced by some S ⊆ T that contains voter v1 and/or some of the candidates in C have
been removed. From now on, without loss of generality assume that 1 �v1 . . . �v1 m.

For all S ⊆ T such that v1 ∈ S and j ∈ [m], ` ∈ [k] define dp[S, j, `] to be the minimal
dissatisfaction of voters in S that can be achieved by selecting a size-` committee out of candidates
in [j]. For values of S, j and ` other than the ones mentioned, we let dp[S, j, `] = ∞ for ease of
explanation.

We omit the base cases; for the general case assume that ` ≥ 2, then following recurrence holds:

dp[S, j, `] = min{dp[S, j − 1, `], X},

where
X = min

1≤a<j
(dp[Saj , j − 1, `− 1] +

∑
v∈Sja

ρ(v, j))

Subproblems are solved in increasing order of |S|, breaking ties by increasing j. The overall
minimum dissatisfaction is given by dp[T,m, k] and a winning committee can be computed using
standard dynamic programming techniques. The recurrence essentially stipulates that one will either
not elect candidate j in the sought size-k committee (the dp[S, j− 1, `] term), or they will, in which
case candidate j will represent a terminal subtree Sja ⊆ S, as in Lemma 4.5 (the X term).

The correctness of this approach is immediate from Lemma 4.5. On the other hand, it is already
clear from this description that the number of values of S may be exponential in n, leading to
an exponential number of subproblems described above. However, this does not yet establish our
claim: it might still be the case that only polynomially many subproblems would be considered
in a top-down memoized implementation of the recurrence. We will now rule out this possibility,
by presenting an explicit input instance where an exponential number of subproblems need to be
considered.

Figure 1: Voter v1 at the top; voters v2, . . . , vn following below it, in order from left to right. For
each voter v’s vertex, if its contents read c1c2c3c4c5, then c1 �v c2 �v c3 �v c4 �v c5. The
labels on each edge denote preference cuts. Namely, if an edge is labelled with (cc′), then that edge
partitions T into Tcc′ and Tc′c.

A.2 An Exponential Instance
Our tree T is a star graph, i.e., a graph with vertex set V , |V | = n, in which all vertices other than v1

are leaves, and each leaf is connected to v1. Let v1 be the root vertex of this tree. Let C = [n] and let
v1’s preferences be given by 1 �v1 . . . �v1 n. The other voters’ preferences are defined as follows:
for each i ∈ [2 : n], voter vi ranks candidate i ∈ C first, followed by all other candidates, which are
ranked in the same way as in v1’s vote. It is immediate that the resulting profile is single-crossing
on T . Figure 1 illustrates this construction for n = 5.

Following the execution of the algorithm, it is not difficult to see that for k = n we will need
to consider all subtrees of T that contain v1, proving our claim. Indeed, consider the first step of
a recursive implementation of the recurrence, where S = T , j = n and ` = k. There are two
possibilities: in one, j is not picked to be part of the size-` committee, in which case S is left
unchanged, j is decremented and ` is left unchanged. In the other, j is chosen to represent Sja for
some a ∈ [j − 1]. By construction, observe that Sja = {vj} regardless of the value of a, so S
changes to S \{vj}, j is decremented and ` is decremented. Observe how S is either left unchanged
or vj is removed from it, with j being decremented in both cases. This will happen recursively with
j−1, and so on, showing that, ultimately, S will range over all subsets of V that contain v1 and have
size at least |V | − k + 1. There are

∑k−1
i=0

(
n−1
i

)
such subsets. For k = n, this quantity becomes

2n−1, proving our claim.
Of course, one can argue that k = n is a degenerate special case, as for this value of k we can

simply include the top choice of every voter in the committee. However, the running time of the
algorithm remains exponential for smaller values of k as well: e.g., if n is odd and k = (n − 1)/2,
we would need to consider all subtrees that can be obtained from T by deleting at most half of the
children of v1, and there are 2n−2 such subtrees.

The original paper comes with an additional stipulation: “pick the root v1 to be a leaf in T ”,
which does not seem to be used implicitly or explicitly later on. In any case, to account for this,
since our construction does not satisfy this requirement, one can add to T an additional voter v′1,
duplicating v1’s preferences, as well as an additional edge v′1–v1. Since duplicated preferences are
also disallowed by the original paper, we can then add an additional candidate m + 1 to C. This
candidate will be the most preferred candidate of v′1, and the least preferred candidate of everyone
else. With v′1 now as the root of T , we obtain a tree that satisfies the assumptions of the original
proof, and on which the running time is still exponential.

We leave open whether this algorithm can be revised so that only polynomially many subprob-
lems need to be considered while preserving correctness.

B Tighter Analysis of the Running Time on Trees
We will now show how to improve the bound on the running time of our algorithm for CC-WINNER-
SCT to O(nmk). To do so, it suffices to establish that all subproblems of the form dp2[−,−,−,−]
can be solved in time O(nmk).

The following technical lemma is an important building block in our analysis.

Lemma 9. Consider a voter v and a candidate c, and let u be the i-th child of v for some
i ∈ [nv]. Then all subproblems of the form dp2[v, i,−, c] can be solved in time O(min{k, |Tu|} ·
min{k, |Tv,i+1|}).

Proof. We first look at the time required to compute DIFF from Lemma 5 for all ` with 1 ≤ ` ≤
min{k, |Tv,i|}. For each such ` define a set of pairs

M` = {(`, t) : 1 ≤ t ≤ min{`, |Tu|} and 1 ≤ `− t ≤ min{`, |Tv,i+1|}};

the pairs in M` appear in the expression for DIFF when solving subproblems of the form
dp2[v, i, `, c]. Clearly, the time it takes to compute DIFF for all values of ` is asymptotically bounded
by the total size of these sets. Now, apply the bijective map (`, t) 7→ (` − t, t) to each M` to get a
new collection of sets

M ′` = {(`− t, t) : 1 ≤ t ≤ min{`, |Tu|} and 1 ≤ `− t ≤ min{`, |Tv,i+1|}}

with the same total cardinality. Their union is a set

M ′ = {(`− t, t) : 1 ≤ ` ≤ min{k, |Tv,i|},
1 ≤ t ≤ min{`, |Tu|} and
1 ≤ `− t ≤ min{`, |Tv,i+1|}}

= {(`− t, t) : 1 ≤ `− t+ t ≤ min{k, |Tv,i|},
1 ≤ t ≤ min{`− t+ t, |Tu|} and
1 ≤ `− t ≤ min{`− t+ t, |Tv,i+1|}}

= {(x, y) : 1 ≤ x+ y ≤ min{k, |Tv,i|},
1 ≤ y ≤ min{x+ y, |Tu|} and
1 ≤ x ≤ min{x+ y, |Tv,i+1|}}

= {(x, y) : x+ y ≤ k, 1 ≤ y ≤ |Tu|, 1 ≤ x ≤ |Tv,i+1|}.

To obtain the last equality we make use of the fact that |Tv,i| = |Tu| + |Tv,i+1|. We can
now relax the constraints x, y ≥ 1, x + y ≤ k to 1 ≤ x, y ≤ k to conclude that |M ′| ≤
min{k, |Tu|} ·min{k, |Tv,i+1|}. Similar analysis shows that the same bound also holds for SAME,
hence completing the proof.

Before proving the stronger O(nmk) bound, we first show an easier bound of O(n2m), which
is tight when k = n and better than O(nmk2) whenever k = ω(n1/2). Proving this is both infor-
mative in itself, helping to build intuition, and will also provide us with a tool useful for the general
argument. The O(n2m) bound is immediate from the following lemma (inspired by Cygan [2012]).

Lemma 10. For each candidate c ∈ C solving all subproblems of the form dp2[−,−,−, c] using
Lemma 5 takes time O(n2).

Proof. By Lemma 9, the time required to solve all subproblems of the form dp2[−,−,−, c] is
asymptotically bounded by ∑

v∈V,1≤i≤nv

(
|Tch[v,i]| · |Tv,i+1|

)
.

The quantity |Tch[v,i]| · |Tv,i+1| can be interpreted as the number of pairs of vertices (v1, v2)
such that v1 ∈ Tch[v,i] and v2 ∈ Tv,i+1. Note that for all such pairs, the lowest common ancestor
of v1 and v2 is v. Thus, if we sum this quantity over all i ∈ [nv], we get precisely the number of
unordered pairs of distinct vertices whose lowest common ancestor is v. It is now immediate that, if
we further sum this quantity over all v ∈ V , we get precisely

(
n
2

)
, which is the number of unordered

pairs of distinct nodes in a tree with n vertices, completing the proof.

By summing up the O(n2) terms from Lemma 10 over all c ∈ C, and observing that CCTP
becomes trivial if k ≥ n (we can then afford to include the top choice of each voter), we obtain the
following bound.

Theorem 6. Solving all subproblems of the form dp2[−,−,−,−] using Lemma 5 takes time
O(n2m). Hence, CCTP can be solved in time O(n2m).

We are now ready to prove the O(nmk) time bound. Just as in Lemma 10, it suffices to bound
the time required to solve all subproblems of the form dp2[−,−,−, c] for each c ∈ C.

Lemma 11. For each candidate c ∈ C solving all subproblems of the form dp2[−,−,−, c] takes
time O(nk).

Proof. Let us revisit the expression for the time S needed to solve all subproblems of this form:

S =
∑

v∈V,1≤i≤nv

(min{k, |Tch[v,i]|} ·min{k, |Tv,i+1|}). (9)

Note that the pairs (v, i) in the summation index correspond to the edges of the tree. This observa-
tion suggests a new way of computing S based on incrementally building the tree starting from n
singleton vertices. Namely, we start with S = 0 and an empty graph G consisting of n disconnected
singleton vertices, and repeat the next two steps until G becomes isomorphic to T :

1. Pick an edge {v, v′} of T that has not been chosen before (where v′ is a child of v in T) and
connect v and v′ in G. This edge corresponds to a pair (v, i) such that v′ is the i-th child of
v. We call this operation a (v, i)-join. A (v, i)-join can only take place if all (v, i′)-joins with
i′ > i have already been performed and the connected component of v′ in G is isomorphic
to Tv′ .

2. Increase S by min{k, |Tv′ |} ·min{k, |Tv,i+1|}.

We observe that at each step of this procedure the graph G is a forest, and each component tree of
G is of the form Tv,i for some v ∈ V and 1 ≤ i ≤ nv + 1. Moreover, valid orders of joining
the connected components of G correspond to valid orders of solving all the subproblems of the
form dp2[−,−,−, c], and the final value of S (given in equation (9)) does not depend on the order
selected. In particular, for the purposes of our analysis it will be convenient to split the process into
two phases: in the first phase, we will only join two connected components if each of them has
at most k vertices, and in the second phase we will perform the remaining joins. Accordingly, let
S1 and S2 denote the amounts added to S in the first and the second phase, respectively, so that
S = S1 + S2. We will now argue that S1 = O(nk) and S2 = O(nk).

Claim 1. S1 = O(nk).

Proof. At the end of the first phase, the graph G is a forest consisting of p trees
Tu1,i1 , Tu2,i2 , . . . , Tup,ip . This state of G corresponds to having solved all subproblems of the form
dp2[v, i,−, c] on which dp2[u1, i1,−, c], . . . , dp2[up, ip,−, c] depend (possibly indirectly, and in-
cluding the problems themselves), and no others. This is the same as performing the complete
algorithm restricted to each of Tu1,i1 , Tu2,i2 , . . . , Tup,ip individually. Thus, we can bound S1 by
applying Lemma 10 to each connected component and summing up the results:

S1 ≤ |Tu1,i1 |2 + |Tu2,i2 |2 + . . .+ |Tup,ip |2.

Since each such connected component has been generated by joining two connected components of
size at most k, we can bound their individual sizes by 2k. It follows that

S1 ≤ 2k · (|Tu1,i1 |+ |Tu2,i2 |+ . . .+ |Tup,ip |) ≤ 2nk.

Claim 2. S2 = O(nk).

Proof. Given a sequence of p integers (a1, . . . , ap), let

λ(a1, . . . , ap) = min{k, a1}+ min{k, a2}+ . . .+ min{k, ap}.

Suppose that at the start of the second phase the graph G has s components, and let (b1, . . . , bs) be
the list of sizes of these components. Note that b1 + · · · + bs = n and hence λ(b1, . . . , bs) ≤ n.
Further, suppose that at some point during the second phase the list of sizes of the components ofG is
given by (f1, . . . , fq), and consider a join operation merging together two connected components of
sizes fi and fj . At least one of these components has size greater than k; without loss of generality,
assume that fi > k. This operation removes fi and fj from the list (f1, . . . , fq). This changes
the value of λ by removing a min{k, fi} + min{k, fj} = k + min{k, fj} term and adding back
a min{k, fi + fj} = k term, thus decreasing λ by min{k, fj}. On the other hand, this operation
increases S2 by min{k, fi} ·min{k, fj} = k ·min{k, fj}. Therefore, whenever λ decreases by ∆,
S2 increases by k∆. Since λ can only ever decrease, starts off bounded from above by n and never
becomes negative, S2 is bounded from above by nk, completing the proof.

Now Lemma 11 follows by combining Claims 1 and 2.

As argued earlier in the paper, Lemma 11 immediately implies the desired bound on the perfor-
mance of our algorithm.

Theorem 7. CC-WINNER-SCT can be solved in time O(nmk).

