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Abstract

We study (coalitional) exchange stability , which Alcalde [Economic Design, 1995]
introduced as an alternative solution concept for matching markets involving prop-
erty rights, such as assigning persons to two-bed rooms. Here, a matching of a given
Stable Marriage or Stable Roommates instance is called coalitional exchange-
stable if it does not admit any exchange-blocking coalition, that is, a subset S of
agents in which everyone prefers the partner of some other agent in S. The match-
ing is exchange-stable if it does not admit any exchange-blocking pair , that is, an
exchange-blocking coalition of size two.
We investigate the computational and parameterized complexity of the Coalitional
Exchange-Stable Marriage (resp. Coalitional Exchange Roommates) prob-
lem, which is to decide whether a Stable Marriage (resp. Stable Roommates)
instance admits a coalitional exchange-stable matching. Our findings resolve an open
question and confirm the conjecture of Cechlárová and Manlove [Discrete Applied
Mathematics, 2005] that Coalitional Exchange-Stable Marriage is NP-hard
even for complete preferences without ties. We also study bounded-length preference
lists and a local-search variant of deciding whether a given matching can reach an
exchange-stable one after at most k swaps, where a swap is defined as exchanging
the partners of the two agents in an exchange-blocking pair.

1 Introduction
An instance in a matching market consists of a set of agents that each have preferences over
other agents with whom they want to be matched with. The goal is to find a matching, i.e., a
subset of disjoint pairs of agents, which is fair . A classical notion of fairness is stability [13],
meaning that no two agents can form a blocking pair , i.e., they would prefer to be matched
with each other rather than with the partner assigned by the matching. This means that a
matching is fair if the agents cannot take local action to improve their outcome. If we assign
property rights via the matching, however, then the notion of blocking pairs may not be
actionable, as Alcalde [3] observed: For example, if the matching represents an assignment
of persons to two-bed rooms, then two persons in a blocking pair may not be able to deviate
from the assignment because they may not find a new room that they could share. Instead,
we may consider the matching to be fair if no two agents form an exchange-blocking pair ,
that is, they would prefer to have each other’s partner rather than to have the partner
given by the matching [3]. In other words, they would like to exchange their partners. Note
that such an exchange would be straightforward in the room-assignment problem mentioned
before. We refer to Alcalde [3], Cechlárová [8], and Cechlárová and Manlove [9] for more
discussion and examples of markets involving property rights.

If a matching does not admit an exchange-blocking pair, then we say the matching is
exchange-stable. If we also want to exclude the possibility that several agents may collude to
favorably exchange partners, then we arrive at coalitional exchange-stability [3], a concept
that is more stringent than the exchange-stability. In contrast to classical stability and
exchange-stability for perfect matchings (i.e., everyone is matched), it is not hard to observe
that coalitional exchange-stability implies Pareto-optimality , another fairness concept
which asserts that no other matching can make at least one agent better-off without making
some other agent worse-off (see also Abraham and Manlove [2]). Note that, in contrast, the
classical Gale/Shapley stability and Pareto-optimality are incompatible to each other.



Cechlárová and Manlove [9] showed that the problem of deciding whether an exchange-
stable matching exists is NP-hard, even for the marriage case (where the agents are parti-
tioned into two subsets of equal size such that each agent of either subset has preferences
over the agents of the other subset) with complete preferences but without ties. They left
open whether the NP-hardness transfers to the case with coalitional exchange-stability, but
observed NP-containment.

We study the algorithmic complexity of problems revolving around (coalitional)
exchange-stability. In particular, we establish a first NP-hardness result for deciding coali-
tional exchange-stability, confirming a conjecture of Cechlárová and Manlove [9]. The NP-
hardness reduction is based on a novel switch-gadget wherein each preference list contains
at most three agents. Utilizing this, we can carefully complete the preferences so as to prove
the desired NP-hardness. We then investigate the impact of the maximum length d of a pref-
erence list. We find that NP-hardness for both exchange-stability and coalitional exchange-
stability starts already when d = 3, while it is fairly easy to see that the problem becomes
polynomial-time solvable for d = 2. For d = 3, we obtain a fixed-parameter algorithm for
exchange-stability regarding a parameter which is related to the number of switch-gadgets.

Finally, we look at a problem variant, called Path to Exchange-Stable Marriage,
for uncoordinated (or decentralized) matching markets. Starting from an initial matching,
in each iteration the two agents in an exchange-blocking pair may exchange their partners.
An interesting question regarding the behavior of the agents in uncoordinated markets is
whether such iterative exchange actions can reach a stable state, i.e., exchange-stability,
and how hard is it to decide. It is fairly straight-forward to verify that if the number k
of exchanges is bounded by a constant, then we can decide in polynomial-time whether
an exchange-stable matching is reachable since there are only polynomially many possible
sequences of exchanges to be checked. In terms of parameterized complexity, this is an XP
algorithm for k, that is, the exponent in the polynomial running time depends on k. We show
that this dependency is unlikely to be removed by showing W[1]-hardness with respect to k.

Related work. Alcalde [3] introduced (coalitional) exchange stability and discussed re-
stricted preference domains where (coalitional) exchange stability is guaranteed to exist.
Abizada [1] showed a weaker condition (on the preference domain) to guarantee the exis-
tence of exchange stability. Cechlárová and Manlove [9] proved that it is NP-complete to
decide whether an exchange-stable matching exists, even for the marriage case with com-
plete preferences without ties. Aziz and Goldwasser [4] introduced several relaxed notions
of coalitional exchange-stability and discussed their relations.

The Path to Exchange-Stable Marriage (P-ESM) problem is inspired by the
Path-to-Stability via Divorces (PSD) problem as originally introduced by Knuth [16],
see also Biró and Norman [5] for more background. Very recently, Chen [10] showed that
PSD is NP-hard and W[1]-hard when parameterized by the number of divorces. P-ESM
can also be considered a local search problem and is a special case of the Local Search
Exchange-Stable Seat Arrangement (Local-STA) problem as introduced by
Bodlaender et al. [6]: Given a set of agents, each having cardinal preferences (i.e., real
values) over the other agents, an undirected graph G with the same number of vertices as
agents, and an initial assignment (bijection) of the agents to the vertices in the graph, is
it possible to swap two agents’ assignments iteratively so as to reach an exchange-stable
assignment? Herein an assignment is called exchange-stable if no two agents can each
have a higher sum of cardinal preferences over the other’s neighboring agents. If the given
graph solely consists of disjoint edges, then Path to Exchange-Stable Marriage is
equivalent to Local-STA. Bodlaender et al. [7] showed that their problem is W[1]-hard
when parameterized by the number k of swaps. Their reduction relies on the fact that
the given graph contains cliques and stars and the preferences of the agents may contain



ties. We strengthen their result by showing that Local-STA is W[1]-hard even if the
given graph consists of disjoint edges and the preferences do not have ties. Finally, we
mention that Irving [15] and McDermid et al. [17] studied the complexity of computing
stable matchings in the marriage setting with preference lists, requiring additionally that
the matching be man-exchange stable, that is, no two men form an exchange-blocking pair.

Organization. In Section 2, we introduce relevant concepts and notation, and define
our central problems. In Section 3, we investigate the complexity of deciding (coalitional)
exchange-stability, both when the preferences are complete and when the preferences length
are bounded. In Section 4, we provide algorithms for profiles with preference length bounded
by three. In Section 5, we turn to the local search variant of reaching exchange-stability.
Due to space constraints, results marked by ? are deferred to a full version [11].

2 Basic Definitions and Observations
For each natural number t, we denote the set {1, 2, . . . , t} by [t].

Let V = {1, 2, . . . , 2n} be a set of 2n agents. Each agent i ∈ V has a nonempty subset
of agents Vi ⊆ V which it finds acceptable as a partner and has a strict preference list �i
on Vi (i.e., a linear order on Vi). The length of preference list �i is defined as the number
of acceptable agents of i, i.e., |Vi|. Here, x �i y means that i prefers x to y.

We assume that the acceptability relation among the agents is symmetric, i.e., for each
two agents x and y it holds that x is acceptable to y if and only if y is acceptable to x.
For two agents x and y, we call x most acceptable to y if x is a maximal element in the
preference list of y. For notational convenience, we write X � Y to indicate that for each
pair of agents x ∈ X and y ∈ Y it holds that x � y.

A preference profile P is a tuple (V, (�i)i∈V ) consisting of an agent set V and a
collection (�i)i∈V of preference lists for all agents i ∈ V . For a graph G, by V (G) and
G(G) we refer to its vertex set and edge set, respectively. Given a vertex v ∈ V (G), by
NG(v) and dG(v) we refer to the neighborhood of v and degree of v in G, respectively. To a
preference profile P with agent set V we assign an acceptability graph G(P) which has V as
its vertex set and two agents are connected by an edge if they find each other acceptable.
A preference profile P may have the following properties:
– It is bipartite, if the agent set V can be partitioned into two agent sets U and W of size n

each, such that each agent from one set has a preference list over a subset of the agents
from the other set.

– It has complete preferences if the underlying acceptability graph G(P) is a complete graph
or a complete bipartite graph on two disjoint sets of vertices of equal size; otherwise it
has incomplete preferences.

We say that P has bounded length d if each preference list in P has length at most d.

(Coalitional) exchange-stable matchings. A matching M for a given profile P is a
subset of disjoint edges from the underlying acceptability graph G(P). Given a matchingM
for P, and two agents x and y, if it holds that {x, y} ∈M , then we use M(x) (resp. M(y))
to refer to y (resp. x), and we say that x and y are their respective assigned partners
under M and that they are matched to each other; otherwise we say that {x, y} is an
unmatched pair under M . If an agent x is not assigned any partner by M , then we say
that x is unmatched by M and we put M(x) = x. We assume that each agent x prefers
to be matched than remaining unmatched. To formalize this, we will always say that x
prefers all acceptable agents from Vx to himself x.



A matching M is perfect if every agent is assigned a partner. It is maximal if for each
unmatched pair {x, y} ∈ E(G(P)) \M it holds that x or y is matched under M . For two
agents x, u, we say that x envies y under M if x prefers the partner of y, i.e., M(y), to his
partner M(x). We omit the “under M ” if it is clear from the context.

Matching M admits an exchange-blocking coalition (in short ebc) if there exists a
sequence ρ = (x0, x1, . . . , xr−1) of r agents, r ≥ 2, such that each agent xi envies her
successor xi+1 in ρ (index i + 1 taken modulo r). The size of an ebc is defined as the
number of agents in the sequence. An exchange-blocking pair (in short ebp) is an ebc of
size two. A matching M of P is exchange-stable (resp. coalitional exchange-stable) if it
does not admit any ebp (resp. ebc.) Note that an coalitional exchange-stable matching is
exchange-stable. As already observed by Cechlárová and Manlove [9], exchange-stable (and
hence coalitional exchange-stable) matchings may not exist, even for bipartite profiles with
complete preferences. A matching that is coalitional exchange-stable is also maximal (?).

We are interested in the computational complexity of deciding whether a given profile
admits a coalitional exchange-stable matching.

Coalitional Exchange-Stable Roommates (CESR)
Input: A preference profile P.
Question: Does P admit a coalitional exchange-stable matching?

The bipartite restriction of CESR, called Coalitional Exchange-Stable Mar-
riage (CESM), has as input a bipartite preference profile. Exchange-Stable Room-
mates (ESR) and Exchange-Stable Marriage (ESM) are defined analogously.

We are also interested in the case when the preferences have bounded length. In this case,
not every coalitional exchange-stable (or exchange-stable) matching is perfect. In keeping
with the literature [8, 9], we focus on the perfect case.

d-Coalitional Exchange-Stable Roommates (d-CESR)
Input: A preference profile P with preferences of bounded length d.
Question: Does P admit a coalitional exchange-stable and perfect matching?

We analogously define the bipartite restriction d-Coalitional Exchange-Stable Mar-
riage (d-CESM), d-Exchange-Stable Roommates (d-ESR), and d-Exchange-Stable
Marriage (d-ESM). Note that the above problems are contained in NP [9].

Finally, we investigate a local search variant regarding exchange-stability. To this
end, given two matchings M and N of the same profile P, we say that M is one-swap
reachable from N if there exists an exchange-blocking pair (x, y) of N such that M =
(N\{{x,N(x)}, {y,N(y)}})∪{{x, y}, {N(x), N(y)}}. Accordingly, we say thatM is k-swaps
reachable from N if there exists a sequence (M0,M1, · · · ,Mk′) of k′ matchings of profile P
such that (a) k′ ≤ k, M0 = N , Mk′ =M , and (b) for each i ∈ [k′], Mi is one-swap reachable
from Mi−1. The local search problem variant that we are interested in is defined as follows:

Path to Exchange-Stable Marriage (P-ESM)
Input: A bipartite preference profile P, a matching M0 of P, and an integer k.
Question: Is there an exchange-stable matching M for P that is k-swap reachable
from M0?

3 Deciding (Coalitional) Exchange-Stability is NP-hard
Cechlárová and Manlove [9] proved NP-completeness for deciding whether a profile with
complete and strict preferences admits an exchange-stable matching, by reducing from the
NP-complete R-3SAT problem, where each clause has at most three literals and each literal
appears at most two times [14]. It is not immediate how to adapt Cechlárová and Manlove’s



proof to show hardness for coalitional exchange-stability since their constructed exchange-
stable matching is not always coalitional exchange-stable. To obtain a hardness reduction
for coalitional exchange-stable, we first study the case when the preferences have length
bounded by three, and show that 3-Coalitional Exchange-Stable Marriage is NP-
hard, even for strict preferences. The idea is different than that by Cechlárová and Manlove.
To simplify the reduction, we will reduce from an NP-complete (?) variant of R-3SAT:

(2,2)-3SAT
Input: A Boolean formula φ(X) with variable set X in 3CNF, i.e., a set of clauses
each containing at most 3 literals, such that no clause contains both the positive and
the negated literal of the same variable and each literal appears exactly two times.
Question: Is φ satisfiable?

A crucial ingredient for our reduction is the following switch-gadget which enforces that each
exchange-stable matching results in a valid truth assignment. The gadget and its properties
are summarized in the following lemma.

Lemma 1 (?). Let P be a bipartite preference profile on agent sets U and W . Let A =
{az | z ∈ {0, 1, . . . , 6}} and B = {bz | z ∈ {0, 1, . . . , 6}} be two disjoint sets of agents, and
let Q = {α, β, γ, δ} be four further distinct agents with A∪{α, γ} ⊆ U and B ∪{β, δ} ⊆W .
The preferences of the agents from A and B are as follows; the preferences of the other
agents are arbitrary but fixed.

a0 : b1 � β , b0 : a1 � α ,

a1 : b0 � b2 � b1, b1 : a0 � a2 � a1,

a2 : b3 � b1 � b2, b2 : a2 � a3 � a1 ,

a3 : b2 � b3 � b4 , b3 : a4 � a3 � a2 ,

a4 : b4 � b3 � b5 , b4 : a3 � a5 � a4,

a5 : b6 � b4 � b5, b5 : a6 � a4 � a5,

a6 : b5 � δ , b6 : a5 � γ .

Define the following matchings:

N1 := {{α, b0}, {a6, δ}} ∪ {{az−1, bz} | z ∈ [6]},
N2 := {{a0, β}, {γ, b6}} ∪ {{az, bz−1} | z ∈ [6]},
ND := {{α, b0}, {a0, β}, {a6, δ}, {γ, b6}, {a1, b2}, {a2, b1}, {a3, b3}, {a4, b5}, {a5, b4}}.

Then, every perfect matching M of P satisfies the following.
(1) If M is exchange-stable, then (i) either N1 ⊆M , or (ii) N2 ⊆M , or (iii) ND ⊆M .
(2) If N1 ⊆ M , then every ebc of M which involves an agent from A (resp. B) also in-

volves α (resp. δ).
(3) If N2 ⊆M , then every ebc ofM which involves an agent from A (resp. B) also involves γ

(resp. β).
(4) If ND ⊆M , then every ebc of M which involves an agent from A (resp. B) also involves

an agent from {α, γ} (resp. {β, δ}).

Using Lemma 1, we are able to show NP-completeness for bounded preference length.



∀i ∈ [n̂] : vi : yi � yi , wi : xi � xi ,

xi : wi � b0i,o1(xi)
, yi : vi � a6i,o2(xi)

,

xi : wi � b0i,o1(xi)
, yi : vi � a0i,o2(xi)

,

∀j ∈ [m̂] : cj : [Ej ], dj : [Fj ],

∀liti ∈ X ∪X, ∀j ∈ [m̂] with liti ∈ Cj :
f ij : dj � b6i,j eij : cj � a0i,j

a0i,j : b1i,j � eij , b0i,j : a1i,j � αi,j ,

a1i,j : b0i,j � b2i,j � b1i,j , b1i,j : a0i,j � a2i,j � a1i,j ,

a2i,j : b3i,j � b1i,j � b2i,j , b2i,j : a
2
i,j � a3i,j � a1i,j ,

a3i,j : b2i,j � b3i,j � b4i,j , b3i,j : a4i,j � a3i,j � a2i,j ,

a4i,j : b
4
i,j � b3i,j � b5i,j , b4i,j : a3i,j � a5i,j � a4i,j ,

a5i,j : b6i,j � b4i,j � b5i,j , b5i,j : a6i,j � a4i,j � a5i,j ,

a6i,j : b5i,j � δi,j , b6i,j : a5i,j � f ij .

Figure 1: The preferences constructed in the proof for Theorem 1. Recall that for each
variable xi ∈ X, the indices o1(xi) and o2(xi) (resp. o1(xi) and o2(xi)) denote the two indices
j < j′, of the clauses that contain xi (resp. xi). For each clause Cj ∈ φ, the expression [Ej ]
(resp. [Fj ]) denotes an arbitrary but fixed order of the agents in Ej (resp. Fj).

Theorem 1. 3-CESM, 3-ESM, 3-CESR, and 3-ESR are NP-complete.

Proof. As already mentioned by Cechlárová and Manlove [9], by checking for cycles in the
envy graph all discussed problems are in NP (?). For the NP-hardness, it is enough to
show that 3-CESM and 3-ESM are NP-hard. We use the same reduction from (2,2)-3SAT
for both. Let (X,C) be an instance of (2,2)-3SAT where X = {x1, x2, · · · , xn̂} is the set
of variables and φ = {C1, C2, · · · , Cm̂} the set of clauses.

We construct a bipartite preference profile on two disjoint agent sets U and W . The
set U (resp. W ) will be partitioned into three different agent-groups: the variable-agents,
the switch-agents, and the clause-agents. The general idea is to use the variable-agents
and the clause-agents to determine a truth assignment and satisfying literals, respectively.
Then, we use the switch-agents from Lemma 1 to make sure that the selected truth
assignment is consistent with the selected satisfying literals. For each liti ∈ X ∪ X that
appears in two different clauses Cj and Ck with j < k, we use o1(liti) and o2(liti) to refer
to the indices j and k; recall that in φ each literal appears exactly two times.

For illustration of the construction below, refer to Figure 1.
The variable-agents. For each variable xi ∈ X, introduce 6 variable-agents vi, wi, xi, xi,
yi, yi. Add vi, xi, xi to U , and wi, yi, yi to W . For each literal liti ∈ X ∪ X let y(liti)
denote the corresponding Y -variable-agent, that is, y(xi) = yi and y(xi) = yi. Define
X := {xi | i ∈ [n̂]}, and Y := {yi | i ∈ [n̂]}.



The clause-agents. For each clause Cj ∈ C, introduce two clause-agents cj , dj . Further,
for each literal liti ∈ Cj with lit ∈ {x, x}, introduce two more clause-agents eij , f ij . Add
cj , f

i
j to U , and dj , e

i
j to W . For each clause Cj ∈ φ, define Ej := {eij | liti ∈ Cj}, and

Fj := {f ij | liti ∈ Cj}. Moreover, define E :=
⋃
Cj∈φEj and F :=

⋃
Cj∈φ Fj

The switch-agents. For each each clause Cj ∈ C, and each literal liti ∈ Cj introduce
fourteen switch-agents azi,j , bzi,j , z ∈ {0, 1, · · · , 6}. Define Ai,j = {azi,j | z ∈ {0, 1, . . . , 6}}
and Bi,j = {bzi,j | z ∈ {0, 1, . . . , 6}}. Add Ai,j to U and Bi,j to W .

In total, we have the following agent sets:

U := {vi | i ∈ [n̂]} ∪X ∪X ∪ {cj | j ∈ [m̂]} ∪ F ∪
⋃

Cj∈φ∧liti∈Cj

Ai,j ,

W := {wi | i ∈ [n̂]} ∪ Y ∪ Y ∪ {dj | j ∈ [m̂]} ∪ E ∪
⋃

Cj∈φ∧liti∈Cj

Bi,j .

Note that we use the same symbol xi for both the variable and the variable-agent to
strengthen the connection. The meaning will, however, be clear from the context.
The preference lists. The preference lists of the agents are shown in Figure 1. Herein, the
preferences of the switch-agents of each occurrence of the literal correspond to those given
in Lemma 1. Note that all preferences are specified up to defining the agents αi,j and δi,j ,
which we do now. Defining them in an appropriate way will connect the two groups of
switch-agents that correspond to the same literal as well as literals to clauses. For each
literal liti ∈ X∪X, recall that o1(i) and o2(i) are the indices of the clauses which contain liti
with o1(i) < o2(i). Define the agents αi,o1(liti), δi,o1(liti), αi,o2(liti), and δi,o2(liti) as follows:

αi,o1(liti) := liti, δi,o1(liti) := b0i,o2(liti), αi,o2(liti) := a6i,o1(liti), δi,o2(liti) := y(liti). (1)

This completes the construction of the instance for 3-Coalitional Exchange-Stable
Marriage, which can clearly be done in polynomial-time. Let P denote the constructed
instance with P = (U ]W, (�x)x∈U∪W ). It is straight-forward to verify that P is bipartite
and contains no ties and that each preference list �x has length bounded by three.

Before we give the correctness proof, for each literal liti ∈ X ∪ X and each clause Cj
with liti ∈ Cj we define the following three matchings:

N1
i,j := {{αi,j , b0i,j}, {a6i,j , δi,j}} ∪ {{az−1i,j , bzi,j} | z ∈ [6]},

N2
i,j := {{a0i,j , eij}, {b6i,j , f ij}} ∪ {{azi,j , bz−1i,j } | z ∈ [6]},

ND
i,j := {{αi,j , b0i,j}, {a0i,j , eij}, {a6i,j , δi,j}, {f ij , b6i,j},

{a1i,j , b2i,j}, {a2i,j , b1i,j}, {a3i,j , b3i,j}, {a4i,j , b5i,j}, {a5i,j , b4i,j}}.

(2)

Now we show the correctness, i.e, φ admits a satisfying assignment if and only if P admits
a perfect and coalitional exchange-stable (resp. exchange-stable) matching. For the “only
if” direction, assume that σ : X → {t, f} φ is a satisfying assignment for φ. Then, we define
a perfect matching M as follows.
– For each variable xi ∈ X, let M(xi) := wi and M(vi) := yi if σ(xi) = t; otherwise, let
M(xi) := wi and M(vi) := yi.

– For each clause Cj ∈ φ, fix an arbitrary literal whose truth value satisfies Cj and denote
the index of this literal as s(j). Then, let M(cj) := e

s(j)
j and M(f

s(j)
j ) := dj .

– Further, for each literal liti ∈ X ∪X and each clause Cj with liti ∈ Cj , do the following:
(a) If s(j) = i, then add to M all pairs from N1

i,j .
(b) If s(j) 6= i and liti is set true under σ (i.e., σ(xi) = t iff. liti = xi), then add to M all

pairs from ND
i,j .



(c) If s(j) 6= i and liti is set to false under σ (i.e., σ(xi) = t iff. liti = xi), then add to M
all pairs from N2

i,j .
One can verify that M is perfect. Hence, it remains to show that M is coalitional
exchange-stable. Note that this would also imply that M is exchange-stable.

Suppose, for the sake of contradiction, that M admits an exchange-blocking coalition ρ.
First, observe that for each variable-agent z ∈ X ∪X ∪ Y ∪ Y it holds that M(z) either is
matched with his most-preferred partner (i.e., either vi or wi) or only envies someone who
is matched with his most-preferred partner. Hence, no agent from X ∪X ∪Y ∪Y is involved
in ρ. Analogously, no agent from E ∪ F is involved in ρ. Next, we claim the following.

Claim 1 (?). For each literal liti ∈ X ∪X and each clause Cj with liti ∈ Cj, it holds that
neither αi,j nor δi,j is involved in ρ.

Now, using the above observations and claim, we continue with the proof. We
successively prove that no agent is involved in ρ, starting with the agents in U .
– If vi is involved in ρ for some i ∈ [n̂], then he only envies someone who is matched with yi.

By the definition of M , this means that M(yi) = a6i,o2(xi)
and that vi envies a6i,o2(xi)

.
Hence, a6i,o2(xi)

is also involved in ρ. Moreover, sinceM(a6i,o2(xi)
) = yi, we have N1

i,o2(xi)
⊆

M or ND
i,o2(xi)

⊆M . By Lemma 1(2) and Lemma 1(4) (setting α = αi,o2(xi), β = eio2(xi)
,

γ = f io2(xi)
, and δ = δi,o2(xi)), ρ involves an agent from {αi,o2(xi), f

i
o2(xi)

}. Since no agent
from F is involved in ρ, it follows that ρ involves αi,o2(xi), a contradiction to Claim 1.

– Analogously, if cj ∈ ρ for some j ∈ [m̂], then this means that Ej contains two agents eij and
etj such thatM(cj) = etj but cj prefers eij to etj , andM(eij) ∈ ρ. SinceM is perfect and cj is
not available, it follows thatM(eij) = a0i,j , implying that a0i,j ∈ ρ. Moreover, by the defini-
tion of M we have that N2

i,j ⊆M or ND
i,j ⊆M . By Lemma 1(3) and Lemma 1(4) (setting

α = αi,j , β = eij , γ = f ij , and δ = δi,j), ρ involves an agent from {αi,j , f ij}, a contradiction
since no agent from Fj is involved in ρ and by Claim 1 αi,j is not in ρ.

– Analogously, we can obtain a contradiction if wi with i ∈ [n̂] is in ρ: By the definition
of M , if wi ∈ ρ, then M(xi) = b0i,o1(xi)

and wi envies b0i,o1(xi)
. Hence, b0i,o1(xi)

is also
involved in ρ. Moreover, since M(b0i,o1(xi)

) = xi, it follows that N1
i,o1(xi)

⊆ M or
ND
i,o1(xi)

⊆ M . By Lemma 1(2) and Lemma 1(4) (setting α = αi,o1(xi), β = eio1(xi)
,

γ = f io1(xi)
, and δ = δi,o1(xi)), ρ involves an agent from {eio1(xi)

, δi,o1(xi)}. Since no agent
from E is involved in ρ, it follows that ρ involves δi,o1(xi), a contradiction to Claim 1.

– Again, analogously, if dj ∈ ρ for some j ∈ [m̂], then we obtain that δi,j is involved in ρ,
which is a contradiction to Claim 1.

– Finally, if ρ involves an agent from Ai,j (resp. Bi,j), then by Lemma 1(2)–(4) (setting
α = αi,j , β = eij , γ = f ij , and δ = δi,j), it follows that ρ involves an agent from {αi,j , f ij}
(resp. {βi,j , eij}), a contradiction to our observation and to Claim 1.

Summarizing, we have shown that M is coalitional exchange-stable and exchange-stable.
For the “if” direction, assume that M is a perfect and exchange-stable matching for P.

We show that there is a satisfying assignment for φ. Note that this then also implies that,
if M is perfect and coalitional exchange-stable, then there is a satisfying assignment for φ.

We claim that the selection of the partner of wi defines a satisfying truth assignment
for φ. More specifically, define a truth assignment σ : X → {t, f} with σ(xi) = t if
M(wi) = xi, and σ(xi) = f otherwise. We claim that σ satisfies φ. To this end, consider an
arbitrary clause Cj and the corresponding clause-agent. Since M is perfect, it follows that
M(cj) = eij for some liti ∈ Cj . Since eij is not available, it also follows that M(a0i,j) = b1i,j .
By Lemma 1(1) (setting α = αi,j , β = eij , γ = f ij , and δ = δi,j), it follows that N1

i,j ⊆ M .
In particular, M(αi,j) = b0i,j so that αi,j is not available to other agents anymore.



We aim to show that αi,o1(liti) is matched to b0i,o1(i), which implies that liti is not
available to wi since αi,o1(liti) = liti. We distinguish between two cases;
– If j = o1(liti), then by definition, it follows that that αi,o1(liti) is matched to b0i,o1(liti).
– If j = o2(liti), then by definition, it holds that αi,j = a6i,o1(liti) and δi,o1(liti) = b0i,j . In

other words, M(a6i,o1(liti)) = δi,o1(lit1). By Lemma 1(1) (setting α = αi,o1(liti), β = eio1(liti),
γ = f io1(liti), and δ = δi,o1(liti)), it follows that N1

i,j ⊆ M or ND
i,j ⊆ M . In both cases, it

follows that αi,o1(i) is matched to b0i,o1(i).
We have just shown that liti is not available to wi. SinceM is perfect, we haveM(wi) = xi if
liti = xi, andM(wi) = xi otherwise. By definition, we have σ(xi) = t if liti = xi and σ(xi) =
f otherwise. Thus, Cj is satisfied under σ, implying that σ is a satisfying assignment.

Next, we show how to complete the preferences of the agents constructed in the proof of
Theorem 1 to show hardness for complete and strict preferences.

Theorem 2. CESM and CESR are NP-complete even for complete and strict preferences.

Proof. We adapt the proof of Theorem 1. Recall that in that proof, for a given R-3SAT
instance (X,φ) with X = {x1, x2, · · · , xn̂} and φ = {C1, C2, · · · , Cm̂}, we construct two
disjoint agent sets Ũ and W̃ (for notational issues with use the symbols from Ũ and W̃
instead of U and W , respectively) with

Ũ := {vi | i ∈ [n̂]} ∪X ∪X ∪ {cj | j ∈ [m̂]} ∪ F ∪
⋃

Cj∈φ∧liti∈Cj

Ai,j ,

W̃ := {wi | i ∈ [n̂]} ∪ Y ∪ Y ∪ {dj | j ∈ [m̂]} ∪ E ∪
⋃

Cj∈φ∧liti∈Cj

Bi,j , where

X := {xi | i ∈ [n̂]}, Y := {yi | i ∈ [n̂]}, Ai,j = {azi,j | z ∈ {0, 1, . . . , 6}} Bi,j = {bzi,j |
z ∈ {0, 1, . . . , 6}}, Ej := {eij | liti ∈ Cj}, Fj := {f ij | liti ∈ Cj}, and E :=

⋃
Cj∈φEj

and F :=
⋃
Cj∈φ Fj . For each agent z ∈ Ũ ∪ W̃ let Lz denote the preference list of z

constructed in the proof. The basic idea is to extend the preference list Lz by appending to
it the remaining agents appropriately.

We introduce some more notations. Define V := {vi | i ∈ [n̂]}, C := {cj | j ∈ [m̂]},
W := {wi | i ∈ [n̂]}, andD := {dj | j ∈ [m̂]}. Let BŨ and BW̃ denote two arbitrary but fixed
linear orders of the agents in Ũ and W̃ , respectively. Now, for each subset of agents S ⊆ Ũ
(resp. S ⊆ W̃ ), let [S]B denote the fixed order of the agents in S induced by BŨ (resp. BW̃ ),
and let S \ Lz denote the subset {t ∈ S | t /∈ Lz}, where z ∈ W̃ (resp. z ∈ Ũ). Finally, for
each agent z ∈ Ũ (resp. z ∈ W̃ ), let Rz denote the subset of agents which do not appear
in Lz or in Y ∪ Y ∪ E (resp. X ∪X ∪ F ). That is, Rz :=

(
W̃ \ (Y ∪ Y ∪ F )

)
\ Lz (resp.

Rz :=
(
Ũ \ (X ∪ Y ∪ F )

)
\ Lz).

Now, we define the preferences of the agents as follows.

∀z ∈ Ũ , z : Lz � [Y ∪Y ∪E \Lz]B � [Rz]B, and ∀z ∈ W̃ , z : Lz � [X∪X∪F \Lz]B � [Rz]B.

For instance, the complete preference list of an agent called a0i,j (corresponding to the
literal liti which appears in clause Cj) is

a0i,j : b1i,j � eij � [X ∪X ∪ F \ {eij}]B � [

6⋃
k=0

Bk ∪ C ∪ V \ {b1i,j}]B.

Let P ′ denote the newly constructed preference profile. Clearly, the constructed preferences
are complete and strict. It remains to show the correctness. Towards this, we claim the
following for each coalitional exchange-stable matching of P ′.



Claim 2 (?). If M is a coalitional exchange-stable matching for P ′, then
(i) for each agent z ∈ Ũ ∪ W̃ it holds that M(z) /∈ Rz, and
(ii) for each agent z ∈ Ũ ∪ W̃ \ (X ∪X ∪ F ∪ Y ∪ Y ∪ E) it holds that M(z) ∈ Lz.

With Claim 3 we are ready to show the correctness, i.e., φ admits a satisfying assignment
if and only if P ′ admits a coalitional exchange-stable matching.

For the “only if” direction, assume that φ admits a satisfying assignment,
say σ : X → {t, f}. We claim that the coalitional exchange-stable matchingM for P that we
defined in the “only if” direction of the proof for Theorem 1 is a coalitional exchange-stable
matching for P ′. Clearly,M is a perfect matching for P ′ sinceG(P ′) is a supergraph ofG(P).
Since each agent z ∈ Ũ ∪W̃ hasM(z) ∈ Lz, for each two agents z, z′ ∈ Ũ (resp. W̃ ), it holds
that z envies z′ only if M(z′) ∈ Lz. In other words, if M would admit an exchange-blocking
coalition ρ = (z0, z1, · · · , zr−1) (r ≥ 2) for P ′, then for each i ∈ {0, 1, . . . , r − 1} it must
hold that M(zi) ∈ Lz−1 (z − 1 taken modulo r). But then, ρ is also an exchange-blocking
coalition for P, a contradiction to our “only if” part of the proof for Theorem 1.

For the “if” direction, let M be a coalitional exchange-stable matching for P ′. Note
that in the “if” part of the proof of Theorem 1 we heavily utilize the properties given in
Lemma 1(1). Now, to construct a satisfying assignment for φ from M , we will prove that
the lemma also holds for profile P ′. To this end, for each literal liti ∈ X ∪ X and each
clause Cj with liti ∈ Cj , recall the three matchings N1

i,j , N2
i,j , ND

i,j and the agents αi,j and
δi,j that we have defined in equations (2) and (1).

Claim 3 (?). Matching M satisfies that for each literal liti ∈ X ∪X and each clause Cj ∈ φ
with liti ∈ Cj, either (i) N1

i,j ⊆M , or (ii) N2
i,j ⊆M , or (iii) ND

i,j ⊆M .

Now we show that the function σ : X → {t, f} with σ(xi) = t if M(wi) = xi, and
σ(xi) = f otherwise is a satisfying truth assignment for φ. Clearly, φ is a valid truth
assignment since by Claim 2(ii) every variable agent wi is matched to either xi or xi. We
claim that σ satisfies φ. To this end, consider an arbitrary clause Cj and the corresponding
clause-agent cj . By Claim 2(ii), we know that M(cj) = eij for some liti ∈ Cj . Since eij is
not available, by Claim 2(ii), it also follows that M(a0i,j) = b1i,j . By Claim 3, it follows that
N1
i,j ⊆M . In particular,M(αi,j) = b0i,j so that αi,j is not available to other agents anymore.
We aim to show that αi,o1(liti) is matched to b0i,o1(liti) by M , which implies that liti is not

available to wi since αi,o1(liti) = liti by the definition of αi,o1(liti). We distinguish two cases:
– If j = o1(liti), then by the definition of αi,j , it follows that αi,oliti is matched to b0i,o1(liti).
– If j = o2(liti), then by the definition of αi,j we have αi,j = a6i,o1(liti) and by the definition

of δi,o1(liti) we have δi,o1(liti) = b0i,o2(liti) = b0i,j . In particular, since M(αi,j) = b0i,j we have
M(a6i,o1(liti)) = δi,o1(lit1). By Claim 3, it follows that N1

i,o1(liti)
⊆ M or ND

i,o1(liti)
⊆ M . In

both cases, it follows that αi,o1(liti) is matched to b0i,o1(liti).
We have just shown that liti is not available to wi. Hence, by Claim 2(ii),M(wi) = xi if liti =
xi, andM(wi) = xi otherwise. By definition, we have that σ(xi) = t if liti = xi and σ(xi) = f
otherwise. Thus, Cj is satisfied under σ, implying that σ is a satisfying assignment.

4 Algorithms for Bounded Preferences Length
We first observe that when bounding the preference length by two (coalitional) exchange-
stability can be decided in linear time.

Theorem 3 (?). 2-ESM, 2-ESR, 2-CESM, and 2-CESR can be solved in linear time.



The reason is that for preference lengths at most two the acceptability graph becomes a
disjoint union of paths and cycles. Since we are looking for perfect matchings, they have
to be of even length. Moreover, since the agents involved in an exchange-blocking coalition
(together with their partners) form a cycle in the acceptability graph, it suffices to check
for each cycle whether one of its two perfect matchings is coalitional exchange-stable.

Fixed-parameter algorithm for 3-ESR. We now turn to preference length at most
three. In Theorem 1 we have seen that even this case remains NP-hard, even for bipartite
preference profiles. Moreover, the proof suggests that a main obstacle that one has to deal
with when solving 3-ESM (and hence 3-ESR) are the switch gadgets. Here we essentially
show that they are indeed the only obstacles, that is, if there are few of them present in
the input, then we can solve the problem efficiently. We capture the essence of the switch
gadgets with the following structure that we call hourglasses.

Definition 1. Let P be a preference profile and VH ⊆ V a subset of 2h agent with VH =
{ui, wi | 0 ≤ i ≤ h − 1}. We call the subgraph G(P)[VH ] induced by VH an hourglass of
height h if it satisfies the following:
– For each i ∈ {0, h− 1} the vertex degree of ui and wi are both at least two in G(P)[VH ];
– For each i ∈ [h− 2], the vertex degree of ui and wi are exactly three in G(P)[VH ];
– For each i ∈ {0, 1, . . . , h− 1} we have {ui, wi} ∈ E(G(P)[VH ]);
– For each i ∈ {0, 1, . . . , h− 2} we have {ui, wi+1}, {ui+1, wi} ∈ E(G(P)[VH ]).
We refer to the agents ui and wi from VH as layer-i agents. We call an hourglass H maximal
if no larger agent subset V ′ ) V (H) exists that induces an hourglass.

Given a matching M for P and an hourglass H in G(P), we say that M is perfect for H
if for each agent v ∈ V (H) it holds that M(v) ∈ V (H) \ {v}. Further, we say that M is
exchange-stable for H if no two agents from V (H) can form an exchange-blocking pair.

Notice that the smallest hourglass has height two and is a four-cycle. We are ready to
show the following fixed-parameter tractability result.

Theorem 4 (?). An instance of 3-ESR with 2n agents and ` maximal hourglasses can be
solved in O(6` · n

√
n) time.

The main ideas are as follows. The first observation is that a matching for a maximal
hourglass can interact with the rest of the graph in only six different ways: The only agents
in an hourglass H of height h that may have neighbors outside are the layer-0 and layer-h−1
agents; let us call them connecting agents of H. MatchingM may match these agents either
to agents inside or outside H. Requiring M to be perfect means that an even number of
the connecting agents has to be matched inside H. This then gives a bound of at most six
different possibilities of the matching M with respect to whether the connecting agents are
matched inside or outside H. Let us call this the signature of M with respect to H. Hence,
we may try all 6` possible combinations of signatures for all hourglasses and check whether
one of them leads to a solution (i.e., exchange-stable matching).

The second crucial observation is that each exchange-blocking pair of a perfect matching
yields a four-cycle and hence, is contained in some maximal hourglass. Thus, the task
of checking whether a combination of signatures leads to a solution decomposes into
(a) checking whether each maximal hourglass H allows for an exchange-stable matching
adhering to the signature we have chosen for H and (b) checking whether the remaining
acceptability graph after deleting all agents that are in hourglasses or matched by the
chosen signatures admits a perfect matching.

Task (b) can clearly be done in O(n ·
√
n) time by performing any maximum-cardinality

matching algorithm (note that the graph G(P) has O(n) edges). We then prove that task



(a) for all six signatures can be reduced to checking whether a given hourglass admits a
perfect and exchange-stable matching. This, in turn, we show to be linear-time solvable
by giving a dynamic program that fills a table, maintaining some limited but crucial facts
about the structure of partial matchings for the hourglass.

5 Paths to Exchange-Stability
We now study the parameterized complexity of P-ESM with respect to the number of
swaps. Observe that it is straightforward to decide an instance of P-ESM with 2n agents in
O((2n)2k+2) time by trying k times all of the O(n2) possibilities for the next swap and then
checking whether the resulting matching is exchange-stable. The next theorem shows that
the dependency of the exponent in the running time cannot be removed unless FPT = W[1].

Theorem 5 (?). Path to Exchange-Stable Marriage is W[1]-hard with respect to the
number k of swaps.

Proof sketch. We provide a parameterized reduction from the W[1]-complete Independent
Set problem, parameterized by the size of the independent set [12]. Therein, we are given
a graph H and an integer h and want to decide whether there is an h-vertex independent
set, i.e., a subset of h pairwise nonadjacent vertices.

Let I = (H,h) be an instance of Independent Set with V (H) = {v1, v2, . . . , vn} being
the set of vertices and E(H) the set of edges. We construct an instance I ′ = (P,M0, 2h) of
P-ESM where P has two disjoint agent sets U and W , each of size 2n+ h. Both U and W
consist of h selector-agents and 2n vertex-agents with preferences which encode the adja-
cency of the vertices in V (H). More precisely, for each j ∈ [h], we create two selector-agents,
called sj and tj , and add them to U and W , respectively. For each i ∈ [n], we create four
vertex-agents, called xi, ui, yi, wi, add xi and ui to U , and add yi and wi to W . Altogether,
we have U = {sj | j ∈ [h]} ∪ {ui, xi | i ∈ [n]} and W = {tj | j ∈ [h]} ∪ {wi, yi | i ∈ [n]}.

Now, we define the preferences of the agents from U ∪W . For notational convenience, we
define two subsets of agents which shall encode the neighborhood of a vertex: For each ver-
tex vi ∈ V (H), define Y (vi) := {yz | {vi, vz} ∈ E(H)} and U(vi) := {uz | {vi, vz} ∈ E(H)}.

∀j ∈ [h] : sj : w1 � · · · � wn � tj ,
∀i ∈ [n] : xi : t1 � · · · � th � yi,
∀i ∈ [n] : ui : wi � [Y (vi)] � yi � t1 � · · · � th,

tj : u1 � · · · � un � x1 � · · · � xn � sj ,
yi : ui � xi � [U(vi)],

wi : s1 � · · · � sh � ui.

Herein, [Y (vi)] (resp. [U(vi)]) denotes the unique preference list where the agents in Y (vi)
(resp. U(vi)) are ordered ascendingly according to their indices.
Observe that the acceptability graph G(P) includes the following edges:
– For all i ∈ [h] and j ∈ [n], the edges {si, ti}, {si, wj}, {ti, xj}, {ti, uj}, {wj , uj}, {yj , xj},
{yj , uj} are in E(G(P)).

– For all edges {vi, vi′} ∈ E(G), the edges {ui, yi′} and {ui′ , yi} are in E(G(P)).
We define an initial matching M0 on G(P) as M0 = {{sj , tj} | j ∈ [h]}

∪{{wi, ui}, {yi, xi} | i ∈ [n]}. This completes the construction of I ′, which can clearly be
done in polynomial time. It is straight-forward to check that that P is bipartite and the con-
struction can be done in linear time. The correctness proof is given in a full version [11]. �
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