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Abstract

We introduce and analyze new envy-based fairness concepts for agents with weights
that quantify their entitlements in the allocation of indivisible items. We propose
two variants of weighted envy-freeness up to one item (WEF1): strong, where envy
can be eliminated by removing an item from the envied agent’s bundle, and weak,
where envy can be eliminated either by removing an item (as in the strong version)
or by replicating an item from the envied agent’s bundle in the envying agent’s bun-
dle. We show that for additive valuations, an allocation that is both Pareto optimal
and strongly WEF1 always exists and can be computed in pseudo-polynomial time;
moreover, an allocation that maximizes the weighted Nash social welfare may not
be strongly WEF1, but always satisfies the weak version of the property. Moreover,
we establish that a generalization of the round-robin picking sequence algorithm
produces in polynomial time a strongly WEF1 allocation for an arbitrary number
of agents; for two agents, we can efficiently achieve both strong WEF1 and Pareto
optimality by adapting the adjusted winner procedure. Our work highlights sev-
eral aspects in which weighted fair division is richer and more challenging than its
unweighted counterpart.

1 Introduction

The fair allocation of resources to interested parties is a central issue in economics and
has increasingly received attention in computer science in the past few decades [Brams and
Taylor, 1996, Moulin, 2003, Thomson, 2016, Markakis, 2017, Moulin, 2019]. The problem
has a wide range of applications, from reaching divorce settlements [Brams and Taylor, 1996]
and dividing land [Segal-Halevi et al., 2017] to sharing apartment rent [Gal et al., 2017].
Envy-freeness is one of the most commonly studied fairness criterion in the literature; it
stipulates that all agents find their assigned bundle to be the best among all bundles in the
allocation [Foley, 1967, Varian, 1974].

Envy-freeness is a compelling notion when all agents have equal entitlements—indeed,
in a standard envy-free allocation, no agent would rather take the place of another agent
with respect to the assigned bundles. However, in many division problems, agents may
have varying claims on the resource. For instance, consider a facility that has been jointly
funded by three investors—Alice, Bob, and Charlie—where Alice contributed 3/5 of the
construction expenses while Bob and Charlie contributed 1/5 each. One could then expect
Alice to envy either Bob or Charlie if she does not value her share at least three times as
much as each of the latter two investors’ share when they divide the usage of the facility.
Besides this interpretation as the cost of participating in the resource allocation exercise, the
weights may also represent other publicly known and accepted measures of entitlement such
as eligibility or merit. A prevalent example is inheritance division, wherein closer relatives
are typically more entitled to the bequest than distant ones. Likewise, different countries

1A preliminary version of the paper appeared in Proceedings of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). All omitted proofs can be found in the full version:
http://arxiv.org/pdf/1909.10502.pdf.
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have differing entitlements when it comes to apportioning humanitarian aid. Envy-freeness
can be naturally extended to the general setting in which agents have weights designating
their entitlements. When the resource to be allocated is infinitely divisible (e.g., time to use
a facility, or land in a real estate), it is known that a weighted envy-free allocation exists
for any set of agents’ weights and valuations [Robertson and Webb, 1998, Zeng, 2000].

In this paper, we initiate the study of weighted envy-freeness for the ubiquitous setting
where the resource consists of indivisible items. Indeed, inheritance division usually involves
discrete items such as real estate, cars, and jewelry; similarly, facility usage is often allocated
in fixed time slots (e.g., hourly). Since envy-freeness cannot always be fulfilled even in the
canonical setting without weights, for example when all agents agree that one particular
item is more valuable than the remaining items combined, recent works have focused on
identifying relaxations of envy-freeness that can be satisfied in the case of equal entitlements.
The most salient of these approximations is perhaps envy-freeness up to one item (EF1):
for any two agents i and j, if agent i envies agent j, then we can eliminate this envy by
removing a single item from j’s bundle [Budish, 2011]. Lipton et al. [2004] showed that
an EF1 allocation exists and can be computed efficiently for any number of agents with
monotone valuations.2 Our goal in this work is to extend EF1 to the general case with
arbitrary entitlements, and explore the relationship of these extensions to other important
justice criteria such as proportionality and Pareto optimality. The richness of the weighted
setting will be evident throughout our work; in particular, we demonstrate that while some
protocols from the unweighted setting can be generalized to yield strong guarantees, others
are less robust and cease to offer desirable properties upon the introduction of weights.

1.1 Our Contributions

We assume that agents have positive (not necessarily rational) weights representing their
entitlements and, with the exception of Propositions 3.2, 6.1, and 6.2, that they are endowed
with additive valuation functions. We begin in Section 2 by proposing two generalizations
of EF1 to the weighted setting: (strong) weighted envy-freeness up to one item (WEF1) and
weak weighted envy-freeness up to one item (WWEF1). While WEF1 may appear as the more
natural extension, we argue that it can impose a highly demanding constraint when the
weights vastly differ, so that WWEF1 is a useful alternative. In Section 3, we focus on two
classical EF1 protocols. On the one hand, we show that the envy cycle elimination algorithm
of Lipton et al. [2004] does not extend to the weighted setting except in the special case of
identical valuations. On the other hand, we construct a weight-based picking sequence which
allows us to compute a WEF1 allocation efficiently—this generalizes a folklore result from the
unweighted setting. The analysis of this algorithm is significantly more involved than for the
unweighted version and requires making intricate algebraic manipulations. Nevertheless, the
algorithm itself is simple both to explain and to implement, so we believe that it is suitable
for maintaining fairness in practice.

In Sections 4 and 5, we examine the interplay between fairness and Pareto optimality.
For two agents, we exhibit that a weighted variant of the adjusted winner procedure allows
us to compute an allocation that is both WEF1 and Pareto optimal in polynomial time—our
algorithm provides a natural discretization of the classical procedure, which was designed
for the divisible item setting. We then show by adapting an algorithm of Barman et al.
[2018] that a Pareto optimal and WEF1 allocation is guaranteed to exist and can be found
in pseudo-polynomial time for any number of agents. Furthermore, we prove that while an
allocation with maximum weighted Nash welfare may fail to satisfy WEF1, such an allocation

2EF1 is also remarkable for its robustness: it can be satisfied under cardinality constraints [Biswas and
Barman, 2018] and connectivity constraints [Bilò et al., 2019], and is computable using few queries [Oh
et al., 2019].
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is both Pareto optimal and WWEF1, thereby generalizing an important result of Caragiannis
et al. [2019]. Our proof for the WWEF1 result follows a similar outline as that of Caragiannis
et al., but we need to make a case distinction based on the comparison between weights.
Finally, we conclude in Section 6 by discussing some obstacles that we faced when trying to
extend our ideas and results beyond additive valuation functions; specifically, we show that
a WWEF1 allocation may not exist when agents have non-additive (submodular) valuations.

1.2 Related Work

There is a long line of work on the fair division of indivisible items; see, e.g., the surveys by
Bouveret et al. [2016] and Markakis [2017] for an overview. Prior work on the fair allocation
of indivisible items to asymmetric agents has tackled fairness concepts that are not based
on envy. Farhadi et al. [2019] introduced weighted maximin share (WMMS) fairness, a
generalization of an earlier fairness notion of Budish [2011]. Aziz et al. [2019] explored
WMMS fairness in the allocation of indivisible chores—items that, in contrast to goods, are
valued negatively by the agents—where agents’ weights can be interpreted as their shares of
the workload. Babaioff et al. [2019] studied competitive equilibrium for agents with different
budgets. Recently, Aziz et al. [2020] proposed a polynomial-time algorithm for computing
an allocation of a pool of goods and chores that satisfies both Pareto optimality and weighted
proportionality up to one item (WPROP1) for agents with asymmetric weights. Unequal
entitlements have also been considered in the context of divisible items with respect to
proportionality [Barbanel, 1995, Brams and Taylor, 1996, Cseh and Fleiner, 2020, Robertson
and Webb, 1998, Segal-Halevi, 2019]. We remark here that (weighted) proportionality is a
strictly weaker notion than (weighted) envy-freeness under additive valuations. However,
while PROP1 is also implied by EF1 in the unweighted setting, the relationship between
the corresponding weighted notions is much less straightforward, as we demonstrate in the
full version of our paper.

In addition to expressing the entitlement of individual agents, weights can also be ap-
plied to settings where each agent represents a group of individuals [Benabbou et al., 2019,
2020a]—here, the size of a group can be used as its weight.3 Specifically, in the model
of Benabbou et al. [2020a], groups correspond to ethnic groups (namely, the major ethnic
groups in Singapore, i.e., Chinese, Malay, and Indian). Maintaining provable fairness guar-
antees amongst the ethnic groups is highly desirable; in fact, it is one of the principal tenets
of Singaporean society.

2 Preliminaries

Throughout the paper, given a positive integer r, we denote by [r] the set {1, 2, . . . , r}. We
are given a set N = [n] of agents, and a set O = {o1, . . . , om} of items or goods. Subsets of O
are referred to as bundles, and each agent i ∈ N has a valuation function vi : 2O → R≥0 over
bundles; the valuation function for every i ∈ N is normalized (i.e., vi(∅) = 0) and monotone
(i.e., vi(S) ≤ vi(T ) whenever S ⊆ T ). We denote vi({o}) simply by vi(o) for any i ∈ N and
o ∈ O.

An allocation A of the items to the agents is a collection of n disjoint bundles A1, . . . , An

such that
⋃

i∈N Ai ⊆ O; the bundle Ai is allocated to agent i and vi(Ai) is agent i’s realized

valuation under A. Given an allocation A, we denote by A0 the set O \
(⋃

i∈N Ai

)
, and its

3Note that in this model, each group has a valuation function that represents the overall preference of
its members. Other group fairness notions do not assume the existence of such aggregate functions and
instead take directly into account the preferences of the individual agents in each group [Conitzer et al.,
2019, Segal-Halevi and Suksompong, 2019, Kyropoulou et al., 2020].
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elements are referred to as withheld items. An allocation A is said to be complete if A0 = ∅,
and incomplete otherwise.

In our setting with different entitlements, each agent i ∈ N has a fixed weight wi ∈ R>0;
these weights regulate how agents value their own allocated bundles relative to those of
other agents, and hence bear on the overall (subjective) fairness of an allocation. More
precisely, we define the weighted envy of agent i towards agent j under an allocation A as

max
{

0,
vi(Aj)
wj
− vi(Ai)

wi

}
. An allocation is weighted envy-free (WEF) if no agent has positive

weighted envy towards another agent. Intuitively, agent i being weighted envy-free towards
agent j means that i’s valuation for her share Ai, given that i’s entitlement is wi, is at least
as high as i’s valuation for Aj if i’s entitlement were wj . Weighted envy-freeness reduces
to traditional envy-freeness when wi = w, ∀i ∈ N for some positive real constant w. Since
a complete envy-free allocation does not always exist, it follows trivially that a complete
WEF allocation may not exist in general. We briefly remark here that with indivisible items,
it is possible to define variations of weighted envy-freeness—for example, if wi = 1 and
wj = 2, one could require that agent j’s bundle can be divided into two parts neither of
which agent i finds more valuable than her own bundle. Nevertheless, the definition that
we use is mathematically natural and can be directly applied to arbitrary (not necessarily
rational) weights.

We now state the main definitions of our paper, which naturally extend envy-freeness
up to one item (EF1) [Lipton et al., 2004, Budish, 2011] to the weighted setting.

Definition 2.1. An allocation A is said to be (strongly) weighted envy-free up to one item
(WEF1) if for any pair of agents i, j with Aj 6= ∅, there exists an item o ∈ Aj such that

vi(Ai)

wi
≥ vi(Aj \ {o})

wj
.

More generally, A is said to be weighted envy-free up to c items (WEFc) for an integer c ≥ 1
if for any pair of agents i, j, there exists a subset Sc ⊆ Aj of size at most c such that

vi(Ai)

wi
≥ vi(Aj \ Sc)

wj
.

Definition 2.2. An allocation A is said to be weakly weighted envy-free up to one item
(WWEF1) if for any pair of agents i, j with Aj 6= ∅, there exists an item o ∈ Aj such that

either
vi(Ai)

wi
≥ vi(Aj \ {o})

wj
or

vi(Ai ∪ {o})
wi

≥ vi(Aj)

wj
.

More generally, A is said to be weakly weighted envy-free up to c items (WWEFc) for an integer
c ≥ 1 if for any pair of agents i, j, there exists a subset Sc ⊆ Aj of size at most c such that

either
vi(Ai)

wi
≥ vi(Aj \ Sc)

wj
or

vi(Ai ∪ Sc)

wi
≥ vi(Aj)

wj
.

In other words, an allocation is WEF1 if any (weighted) envy from an agent i towards
another agent j can be eliminated by removing a single item from j’s bundle. Similarly,
WWEF1 requires that any such envy can be eliminated by either removing an item from j’s
bundle or adding a copy of an item from j’s bundle to i’s bundle.

A valuation function v : 2O → R≥0 is said to be additive if v(S) =
∑

o∈S v(o) for every
S ⊆ O. We will assume additive valuations for most of the paper; this is a very common
assumption in the fair division literature and offers a tradeoff between expressiveness and
simplicity [Bouveret and Lemâıtre, 2016, Caragiannis et al., 2019, Kurokawa et al., 2018].
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Under this assumption, both WEF1 and WWEF1 reduce to EF1 in the unweighted setting.
Moreover, one can check that under additive valuations, an allocation satisfies WWEF1 if and
only if for any pair of agents i, j with Aj 6= ∅, there exists an item o ∈ Aj such that

vi(Ai)

wi
≥ vi(Aj)

wj
− vi(o)

min{wi, wj}
.

The criterion WEF1 can be criticized as being too demanding in certain circumstances,
when the weight of the envied agent is much larger than that of the envying agent. To
illustrate this, consider a problem instance where agent 1 has an additive valuation function
and is indifferent among all items taken individually, e.g., v1(o) = 1 for every o ∈ O. Now,
if w1 = 1 and w2 = 100, then eliminating one item from agent 2’s bundle reduces agent 1’s
weighted valuation of this bundle by merely 0.01. As such, we may trigger a substantial
adverse effect on the overall welfare of the allocation by aiming to eliminate agent 1’s
weighted envy towards agent 2. This line of thinking was our motivation for introducing the
weak weighted envy-freeness concept. We also note that WWEF1 can be viewed as a stronger
version of what one could refer to as “transfer weighted envy-freeness up to one item”: agent
i is transfer weighted envy-free up to one item towards agent j under the allocation A if
there is an item o ∈ Aj that would eliminate the weighted envy of i towards j upon being
transferred from Aj to Ai, i.e., vi(Ai ∪ {o}) ≥ wi

wj
· vi(Aj \ {o}).

In addition to fairness, we often want our allocation to satisfy an efficiency criterion. One
important such criterion is Pareto optimality. An allocation A′ is said to Pareto dominate
an allocation A if vi(A

′
i) ≥ vi(Ai) for all agents i ∈ N and vj(A

′
j) > vj(Aj) for some agent

j ∈ N . An allocation is Pareto optimal (or PO for short) if it is not Pareto dominated by
any other allocation.

Allocations maximizing the Nash welfare—defined as NW(A) :=
∏

i∈N vi(Ai)—are known
to offer strong guarantees with respect to both fairness and efficiency in the unweighted
setting [Caragiannis et al., 2019]. For our weighted setting, we define a natural extension
called weighted Nash welfare—WNW(A) :=

∏
i∈N vi(Ai)

wi . Since it is possible that the maxi-
mum attainable WNW(A) is 0, we define a maximum weighted Nash welfare or MWNW allocation
along the lines of Caragiannis et al. [2019] as follows: given a problem instance, we find a
maximum subset of agents, say Nmax ⊆ N , to which we can allocate bundles of positive
value, and compute an allocation to the agents in Nmax that maximizes4

∏
i∈Nmax

vi(Ai)
wi .

To see why the notion of MWNW makes intuitive sense, consider a setting where agents have a
value of 1 for each item; furthermore, assume that the number of items is exactly

∑n
i=1 wi.

In this case, one can verify (using standard calculus) that an allocation maximizing MWNW

assigns to agent i exactly wi items. Indeed, following the interpretation of wi as the number
of members of group i (see Section 1.2), the expression vi(Ai)

wi can be thought of as each
member of group i deriving the same value from the set Ai; the group’s overall Nash welfare
is thus vi(Ai)

wi .

3 WEF1 allocations

We commence our exploration of weighted envy-freeness by considering extensions of two
standard methods for producing EF1 allocations in the unweighted setting: the envy cycle
elimination algorithm and the round-robin algorithm. As we will see, these two procedures
experience contrasting fortunes in the presence of weights: while the idea of eliminating
envy cycle fundamentally fails, the round-robin algorithm admits an elegant generalization
that can take into account arbitrary entitlements of the agents.

4There can be multiple maximum subsets Nmax having the same cardinality but different maximum
weighted Nash welfare. Our main positive result for MWNW (Theorem 5.1) holds for all such subsets Nmax.
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3.1 Envy Cycle Elimination Algorithm

Before we discuss the envy cycle elimination algorithm of Lipton et al. [2004], let us briefly
recap how it works in the unweighted setting. The algorithm allocates one item at a time
in an arbitrary order. It also maintains an “envy graph”, which captures the envy relation
between the agents with respect to the (incomplete) allocation at each stage. The next item
is allocated to an unenvied agent, and any envy cycle that forms as a result is eliminated
by letting each agent take the bundle of the agent that she envies. This cycle elimination
step allows the algorithm to ensure that there is an unenvied agent to whom it can allocate
the next item.

As far as envy in the traditional sense is concerned, what an agent actually “envies”
is an allocated bundle regardless of who owns that bundle. However, both the subjective
valuations of allocated bundles and the relative weights interact in non-trivial ways to de-
termine weighted envy. It is easy to see that weighted envy of i towards j does not imply
traditional envy of i towards j, and vice versa. A crucial implication is that even if agent
i’s bundle is replaced with the bundle of an agent j towards whom i has weighted envy, i’s
realized valuation, and hence the ratio of her realized valuation to her weight, may decrease
as a result. Indeed, consider a problem instance with n = 2 and O = {o1, o2, o3}, weights
w1 = 3 and w2 = 1, and identical, additive valuation functions such that vi(o) = 1 for all
i ∈ N and o ∈ O. Under the complete allocation with A1 = {o1, o2}, agent 1 has weighted
envy towards agent 2 since v1(A2)/w2 = 1/1 = 1 > 2/3 = v1(A1)/w1, but agent 1 would not
prefer to replace A1 with A2 since that reduces her realized valuation from 2 to 1. On the
other hand, agent 2 could benefit from replacing A2 with A1 even though she does not have
weighted envy towards agent 1. As such, the natural extension of the envy cycle elimination
algorithm, where an edge exists from agent i to agent j if and only if i has weighted envy
towards j, does not guarantee a complete WEF1 or even WWEF1 allocation.

Proposition 3.1. The weighted version of the envy cycle elimination algorithm may not
produce a complete WWEF1 allocation, even in a problem instance with two agents and additive
valuations.

Proof. Consider a problem instance with n = 2 and m = 12, weights w1 = 1 and w2 = 2,
and valuation functions defined by

v1(or) =


1 for r = 1;

0.1 for r = 12;

0.21 otherwise;

and v2(or) =


1.1 for r = 1;

0.1 for r = 12;

0.2 otherwise.

Suppose that the weighted envy cycle elimination algorithm iterates over o1, o2, . . . , o12,
and starts by allocating o1 to agent 1 due to, say, lexicographic tie-breaking. At this
point, agent 2 has weighted envy towards agent 1 and not vice versa; moreover, this
condition persists until items o2, . . . , o10 have all been allocated to agent 2. At this
point, item o11 also goes to agent 2, resulting in valuations v1(A1) = v1(o1) = 1 and
v2(A2) = v2({o2, . . . , o11}) = 2. Agent 2 still has weighted envy towards agent 1 since
v2(A2)/w2 = 1 < 1.1/1 = v2(A1)/w1; on the other hand, agent 1 also develops weighted
envy towards agent 2 since v1(A2)/w2 = 1.05 > 1 = v1(A1)/w1. Thus, there is a cycle in
the induced weighted envy graph. For an unweighted envy graph, we would “de-cycle” the
graph at this point by swapping bundles over the cycle and that would still maintain the
invariant that the allocation is EF1. However, if we swap the bundles in this example so
that the new allocated bundles are A′1 = A2 = {o2, . . . , o11} and A′2 = A1 = {o1}, agent 2
will end up having (weak) weighted envy up to more than one item towards agent 1 since
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v2(A′2)/w2 = 1.1/2 = 0.55 and v2(A′1 \ {o})/w1 = (0.2 × 9)/1 = 1.8 for every o ∈ A′1, and
this weighted envy persists no matter how we allocate o12.5

By replacing each of the items o2, . . . , o11 with c smaller items of equal value, one can
check that the envy cycle elimination algorithm cannot even guarantee WWEFc for any fixed
c. In spite of this negative result, the algorithm does work in the special case where the
agents all have the same valuations.

Proposition 3.2. The weighted version of the envy cycle elimination algorithm produces
a complete WEF1 allocation whenever agents have identical (not necessarily additive) valua-
tions, i.e., vi(S) = v(S) for some v : 2O → R≥0, ∀i ∈ N , ∀S ⊆ O.

3.2 Picking Sequence Protocols

We now turn our attention to protocols that let agents pick their favorite item according to
some predetermined sequence. When all agents have equal weight and additive valuations,
it is well-known that a round-robin algorithm, wherein the agents take turns picking an item
in the order 1, 2, . . . , n, 1, 2, . . . , n, . . . , produces an EF1 allocation. This is in fact easy to
see: If agent i is ahead of agent j in the ordering, then in every “round”, i picks an item
that she likes at least as much as j’s pick; by additivity, i does not envy j. On the other
hand, if agent i picks after agent j, then by considering the first round to begin at i’s first
pick, it follows from the same argument that i does not envy j up to the first item that j
picks.

We show next that in the general setting with weights, we can construct a weight-
dependent picking sequence which guarantees WEF1 for any number of agents and arbitrary
weights. The resulting algorithm is efficient, intuitive and can be easily explained to a
layperson, so we believe that it has a strong practical appeal. Unlike in the unweighted case,
however, the proof that the algorithm produces a fair allocation is much less straightforward
and requires making several intricate arguments.

Theorem 3.3. For any number of agents with additive valuations and arbitrary positive real
weights, there exists a picking sequence protocol that computes a complete WEF1 allocation
in polynomial time.

ALGORITHM 1: Weighted Picking Sequence Protocol

1: Remaining items Ô ← O.
2: Bundles Ai ← ∅, ∀i ∈ N .
3: ti ← 0, ∀i ∈ N . /*number of times each agent has picked so far*/

4: while Ô 6= ∅ do
5: i∗ ← arg mini∈N

ti
wi

, breaking ties lexicographically.
6: o∗ ← arg maxo∈Ô vi∗(o), breaking ties arbitrarily.
7: Ai∗ ← Ai∗ ∪ {o∗}.
8: Ô ← Ô \ {o∗}.
9: ti∗ ← ti∗ + 1.

10: end while

5Another interesting feature of this example is that the two agents have commensurable valuations, i.e.,
both agents have the same valuation for the entire collection of items O:

∑
o∈O v1(o) =

∑
o∈O v2(o) = 3.2.

This shows that the negative result of Proposition 3.1 holds even if we impose the additional restriction of
commensurability on the valuation functions.
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To prove Theorem 3.3, we construct a picking sequence such that in each turn, an agent
with the lowest weight-adjusted picking frequency picks the next item (Algorithm 1). We
claim that after the allocation of each item, for any agent i, every other agent is weighted
envy-free towards i up to the item that i picked first.

To this end, first note that choosing an agent who has had the minimum (weight-
adjusted) number of picks thus far ensures that the first n picks are a round-robin over
all of the agents; in this phase, the allocation is obviously WEF1 since each agent has at
most one item at any point. We will show that, after this phase, the algorithm generates a
picking sequence over the agents with the following property:

Lemma 3.4. Consider an agent i chosen by Algorithm 1 to pick an item at some iteration
t, and suppose that this is not her first pick. Let ti and tj be the numbers of times agent i
and some other agent j appear in the prefix of iteration t in the sequence respectively, not
including iteration t itself. Then

tj
ti
≥ wj

wi
.

Proof. Since agent i is picked at iteration t, it must be that i ∈ arg mink∈N
tk
wk

. This means

that ti
wi
≤ tj

wj
, i.e.,

tj
ti
≥ wj

wi
since ti > 0.

The property guaranteed by Lemma 3.4 is sufficient to ensure that the latest picker does
not attract weighted envy up to more than one item towards herself after her latest pick:

Lemma 3.5. Suppose that, for every iteration t in which agent i picks an item after her first
pick, the numbers of times that agent i and some other agent j appear in the prefix of the
iteration in the sequence, not including iteration t itself—call them ti and tj respectively—

satisfy the relation
tj
ti
≥ wj

wi
. Then, in the partial allocation up to and including i’s latest

pick, agent j is weighted envy-free towards i up to the first item i picked.

i j i j i i

1 2
3

1 2
3

2
3

Figure 1: Illustration of the intuition behind the proof of Lemma 3.5. Here, i < j, wi =
3, and wj = 2. The rectangles represent the agents’ buckets, and the numbers therein
correspond to their capacities. Note that agent i does not receive a bucket in her first pick.
Agent j’s buckets are filled, while those of agent i are empty.

We provide a high-level intuition of the proof of Lemma 3.5. Recall the argument for
the unweighted case at the beginning of Section 3.2. One way to visualize this argument
is that when we consider envy from agent j towards agent i, every time agent j picks an
item, we give her a bucket with 1 unit of water, while every time agent i picks an item from
the second time onwards, we give her an empty bucket of capacity 1. Agent j is allowed to
pour water from any of her buckets into any of i’s buckets that comes later in the sequence.
Since j values an item that she picks at least as much as any item that i picks in a later
turn, in order to establish EF1, it suffices to show that j can fill up all of i’s buckets using
such operations. A similar idea can be used in the weighted setting, except that in order
to account for the weights, every time agent i picks after the first time, we give her an
empty bucket of capacity wj/wi units (see Figure 1 for an example when wi > wj). Note
in particular that this bucket setup is entirely independent of the agents’ valuations for the
items. However, unlike in the unweighted setting, where agent j can accomplish the task
by simply pouring all the water from each of her buckets into i’s following bucket, in the
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weighted case, j may need to pour water from a bucket into several of i’s buckets, even
those coming after j’s subsequent bucket.

With Lemmas 3.4 and 3.5 in hand, we are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. It is easy to see that directly after an agent picks an item, her envy
towards other agents cannot get any worse than before. Since the partial allocation after
the initial round-robin phase is WEF1 and every agent is weighted envy-free up to one item
towards every subsequent picker due to Lemmas 3.4 and 3.5, the allocation is WEF1 at every
iteration, and in particular at the end of the algorithm. This establishes the correctness of
the algorithm.

For the time complexity, note that there are O(m) iterations of the while loop. In each
iteration, determining the next picker takes O(n) time, while letting the picker pick her
favorite item takes O(m) time. Since we may assume that m > n (otherwise it suffices to
allocate at most one item to every agent), the algorithm runs in time O(m2).

If wi equals a positive constant w for every i ∈ N , then Algorithm 1 degenerates into
the traditional round-robin procedure which is guaranteed to return an EF1 allocation for
additive valuations, but may not be Pareto optimal; as such, Algorithm 1 may not produce a
PO allocation either. This is easily seen in the following example: n = m = 2, w1 = w2 = 1,
v1(o1) = v1(o2) = 0.5, v2(o1) = 0.8, and v2(o2) = 0.2. With lexicographic tie-breaking for
both agents and items, our algorithm will give us A1 = {o1} and A2 = {o2}, which is Pareto
dominated by A′1 = {o2} and A′2 = {o1}. On the other hand, if each agent has the same value
for all items, the algorithm is equivalent to an apportionment method called Adams’ method
[Balinski and Young, 2001].6 In the apportionment setting, agents correspond to states of
a country, and items to seats in a parliament. Since all seats are considered identical, the
states can simply “pick” any seat from the remaining seats in apportionment, whereas for
item allocation it is important that each agent picks her favorite item in her turn.

4 WEF1 and PO allocations

As the picking sequence that we construct in Section 3.2 yields an allocation that is WEF1 but
may fail Pareto optimality, our next question is whether WEF1 can be achieved in conjunction
with the economic efficiency notion. We show that this is indeed possible, by generalizing
the classic adjusted winner procedure for two agents and an algorithm of Barman et al.
[2018] for higher numbers of agents.

4.1 Two Agents

When agents have equal entitlements, it is known that fairness and efficiency are compatible:
Caragiannis et al. [2019] showed that an allocation maximizing the Nash social welfare
satisfies both PO and EF1. Unfortunately, this approach is not applicable to our setting—
we show that the MWNW allocation may fail to be WEF1. In fact, we prove a much stronger
negative result: for any fixed c, the allocation may fail to be WEFc even for two agents with
identical valuations.

Proposition 4.1. Let c be an arbitrary positive integer. There exists a problem instance
with two agents having identical additive valuations for which any MWNW allocation is not
WEFc.

6We are grateful to Ulrike Schmidt-Kraepelin for pointing out this connection.

9



Proof. Suppose that n = 2, and the weights are w1 = 1 and w2 = k for some positive

integer k such that
(

1 + 1
k+c

)k
> 2; such an integer k exists because limk→∞

(
1 + 1

k+c

)k
=

e. Let m = k + c + 2, so O = {o1, o2, . . . , ok+c+2}. The agents have identical, additive

valuations defined by vi(o) = 1 for all i ∈ N and o ∈ O. Since
(

1 + 1
k+c

)k
> 2, we have

1 · (k + c+ 1)k > 2 · (k + c)k. Moreover, for 2 ≤ i ≤ k + c, we have(
1 +

1

k + c+ 1− i

)k

>

(
1 +

1

k + c

)k

> 2 >
i+ 1

i
,

and so i(k + c + 2 − i)k > (i + 1)(k + c + 1 − i)k. This means that any MWNW allocation
A must give one item to agent 1, say A1 = {o1}, and the remaining items to agent 2, i.e.,
A2 = {o2, . . . , ok+c+2}. However, even if we remove a set Sc of at most c items from A2,
we would still have v1(A2 \ Sc)/w2 ≥ 1 + 1/k > 1 = v1(A1)/w1, so the allocation is not
WEFc.

Given that a MWNW allocation may not be WEF1 in our setting, a natural question is
whether there is an alternative approach for guaranteeing the existence of a PO and WEF1

allocation. We first show that this is indeed the case for two agents: we establish that such
an allocation exists and can be computed in polynomial time for two agents, by adapting
the classic adjusted winner procedure [Brams and Taylor, 1996] to the weighted setting.

Theorem 4.2. For two agents with additive valuations and arbitrary positive real weights,
a complete WEF1 and PO allocation always exists and can be computed in polynomial time.

4.2 Any Number of Agents

Having resolved the existence question of PO and WEF1 for two agents, we now investigate
whether such an allocation always exists for any number of agents, answering the question
in the affirmative. To this end, we employ a weighted modification of the algorithm by
Barman et al. [2018], which finds a PO and EF1 allocation in pseudo-polynomial time for
agents with additive valuations in the unweighted setting. Like Barman et al., we consider
an artificial market where each item has a price and agents purchase a bundle of items with
the highest ratio of value to price, called “bang per buck ratio”. This allows us to measure
the degree of fairness of a given allocation in terms of the prices.

Formally, a price vector is an m-dimensional non-negative real vector p =
(p1, p2, . . . , pm) ∈ RO

≥0; we call po the price of item o ∈ O, and write p(X) =
∑

o∈X po
for a set of items X. Let A be an allocation and p be a price vector. For each i ∈ N , we call
p(Ai) the spending and 1

wi
p(Ai) the weighted spending of agent i. We now define a weighted

version of the price envy-freeness up to one item (pEF1) notion introduced by Barman et al.
[2018].

Definition 4.3. Given an allocation A and a price vector p, we say that A is weighted
price envy-free up to one item (WpEF1) with respect to p if for any pair of agents i, j, either
Aj = ∅ or 1

wi
p(Ai) ≥ 1

wj
mino∈Aj

p(Aj \ {o}).

The bang per buck ratio of item o for agent i is vi(o)
po

; we write the maximum bang per

buck ratio for agent i as αi(p). We refer to the items with maximum bang per buck ratio
for i as i’s MBB items and denote the set of such items by MBBi(p) for each i ∈ N . The
following lemma is a straightforward adaptation of Lemma 4.1 in [Barman et al., 2018] to
our setting; it ensures that one can obtain the property of WEF1 by balancing among the
spending of agents under the MBB condition.
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Lemma 4.4. Given a complete allocation A and a price vector p, suppose that allocation
A satisfies WpEF1 with respect to p and agents are assigned to MBB items only, i.e., Ai ⊆
MBBi(p) for each i ∈ N . Then A is WEF1.

It is also known that if each agent i only purchases MBB items, so that i maximizes her
valuation under the budget p(Ai), then the corresponding allocation is Pareto optimal.

Lemma 4.5 (First Welfare Theorem; Mas-Colell et al. [1995], Chapter 16). Given a com-
plete allocation A and a price vector p, suppose that agents are assigned to MBB items only,
i.e., Ai ⊆ MBBi(p) for each i ∈ N . Then A is PO.

With Lemmas 4.4 and 4.5, the problem of finding a PO and WEF1 allocation reduces to
that of finding an allocation and price vector pair satisfying the MBB condition and WpEF1.
We show that there is an algorithm that finds such an outcome in pseudo-polynomial time.
Our algorithm follows a similar approach as that of Barman et al. [2018]; thus the proof of
Theorem 4.6 is deferred to the full version of our paper.

Theorem 4.6. For any number of agents with additive valuations and arbitrary positive
real weights, there exists a WEF1 and PO allocation. Furthermore, such an allocation can
be computed in time poly(m,n, vmax, wmax) for any integer-valued inputs, where vmax :=
maxi∈N,o∈O vi(o) and wmax := maxi∈N wi.

The outline of the algorithm is as follows. Our algorithm alternates between two phases:
the first phase involves reallocating items from large to small spenders (where the “spending”
of an agent is defined as the ratio between the price for her bundle of items and her weight;
see the formal definition in our full version), and the second phase involves increasing the
prices of the items owned by small spenders. We show that by increasing prices gradually,
the algorithm converges to an allocation and price vector pair satisfying the desired criteria
when both input weights and valuations are expressed as integral powers of (1 + ε) for some
ε > 0. Similarly to Barman et al. [2018], we apply our algorithm to the ε-approximate
instance of the original input and show that for small enough ε, the output of the algorithm
satisfies the original MBB condition and WpEF1. We note that compared to Barman et al.
[2018], the analysis becomes more involved due to the presence of weights. In particular,
each price-rise phase takes into account not only the valuations but also the weights; as a
result, ε needs to be much smaller in order to ensure the equivalence.

5 WWEF1 and PO allocations: Maximum Weighted Nash
Welfare

In the previous section, we saw that MWNW allocations may fail to satisfy WEF1, showing
that the result of Caragiannis et al. [2019] from the unweighted setting does not extend to
the weighted setting via WEF1 (or even WEFc for any fixed c). Given that these allocations
maximize a natural objective, it is still tempting to ask whether they provide any fairness
guarantee. The answer is indeed positive: we show that a MWNW allocation satisfies WWEF1, a
weaker fairness notion that also generalizes EF1.

Theorem 5.1. For any number of agents with additive valuations and arbitrary positive
real weights, a MWNW allocation is always WWEF1 and PO.

The proof of Theorem 5.1 follows a similar outline as the corresponding proof of Cara-
giannis et al. [2019]. PO follows easily from the definition of MWNW. For WWEF1, we assume
for contradiction that an agent i weakly envies another agent j up to more than one item
in a MWNW allocation. If every agent has a positive value for every item, we pick an item
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in agent j’s bundle for which the ratio between i’s value and j’s value is maximized. By
distinguishing between the cases wi ≥ wj and wi ≤ wj , we show that we can achieve a
higher weighted Nash welfare upon transferring this item to agent i’s bundle, which yields
the desired contradiction. The case where agents may have zero value for items is then
handled separately.

6 Discussion and Future Work

In this paper, we have introduced and studied envy-based notions for the allocation of
indivisible items in a general setting where agents can have different entitlements. As most
of our results hold for additive valuation functions, the reader may wonder whether they can
be extended to more general classes—after all, in the absence of weights, an EF1 allocation
is known to exist for arbitrary monotone valuations [Lipton et al., 2004]. We therefore
point out some hurdles that we faced while trying to generalize our weighted envy concepts
beyond additive valuations. First, we show that even for simple non-additive valuations,
the existence of a WEF1 or WWEF1 allocation can no longer be guaranteed. Since WWEF1 is
weaker than WEF1, it suffices to prove the claim for WWEF1.

Proposition 6.1. There exists an instance with n = 2 agents such that one of the agents
has a (normalized and monotone) submodular valuation,7 the other agent has an additive
valuation, and a complete WWEF1 allocation does not exist.

By increasing the lower bound on the number of items in the instance of the proof of
Proposition 6.1 to 5c, one can show that a complete WWEFc allocation is also not guaranteed
to exist for any constant c.

One of the key ideas in our analysis of the maximum weighted Nash welfare allocation
(Theorem 5.1) is what we call the transferability property: If agent i has weighted envy
towards agent j under additive valuations, then there is at least one item o in j’s bundle
for which agent i has positive (marginal) valuation—in other words, the item o could be
transferred from j to i to augment i’s realized valuation.8 Unfortunately, this property no
longer holds for non-additive valuations.

Proposition 6.2. There exists an instance such that an agent i with a non-additive valu-
ation function has weighted envy towards an agent j under some allocation A, but there is
no item in j’s bundle for which i has positive marginal valuation—i.e., 6 ∃o ∈ Aj such that
vi(Ai ∪ {o}) > vi(Ai).

In light of these negative results, an important direction for future research is to identify
appropriate weighted envy notions for non-additive valuations. Other interesting directions
include establishing conditions under which WEF allocations are likely to exist, investigating
weighted envy in the allocation of chores (items with negative valuations), and considering
weighted versions of other envy-freeness approximations such as envy-freeness up to any
item (EFX) [Caragiannis et al., 2019, Plaut and Roughgarden, 2020]. From a broader point
of view, our work demonstrates that fair division with different entitlements is richer and
more challenging than its traditional counterpart in several ways, and much interesting work
remains to be done.

7A valuation function v : 2O → R≥0 is said to be submodular if for any O1 ⊆ O2 ⊆ O and any item
o ∈ O \O2, we have v(O1 ∪ {o})− v(O1) ≥ v(O2 ∪ {o})− v(O2).

8Transferability and related properties have been studied by Babaioff et al. [2020] and Benabbou et al.
[2020b] in the context of EF1 and PO allocations for a subclass of submodular valuations.
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Sylvain Bouveret and Michel Lemâıtre. Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2):259–
290, 2016.

Sylvain Bouveret, Yann Chevaleyre, and Nicolas Maudet. Fair allocation of indivisible goods.
In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia,
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