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Abstract

We study a generic framework that provides a unified view on two important classes
of problems: (i) extensions of the k-Median problem where clients are interested
in having multiple facilities in their vicinity (e.g., due to the fact that, with some
small probability, the closest facility might be malfunctioning and so might not be
available for use), and (ii) finding winners according to some appealing multiwinner
election rules, i.e., election systems aimed for choosing representatives bodies, such as
parliaments, based on preferences of a population of voters over individual candidates.
Each problem in our framework is associated with a vector of weights: we show
that the approximability of the problem depends on structural properties of these
vectors. We specifically focus on the harmonic sequence of weights, since it results
in particularly appealing properties of the considered problem. In particular, the
objective function interpreted in a multiwinner election setup corresponds to the
well-known Proportional Approval Voting (PAV) rule.
Our main result is that, due to the specific (harmonic) structure of weights, the
problem allows constant factor approximation. This is surprising since the problem
can be interpreted as a variant of the k-Median problem where we do not assume that
the connection costs satisfy the triangle inequality. To the best of our knowledge this
is the first constant factor approximation algorithm for a variant of k-Median that
does not require this assumption. The algorithm we propose is based on dependent
rounding [Srinivasan, FOCS’01] applied to the solution of a natural LP-relaxation
of the problem. The rounding process is well known to produce distributions over
integral solutions satisfying Negative Correlation (NC), which is usually sufficient
for the analysis of approximation guarantees offered by rounding procedures. In our
analysis, however, we need to use the fact that the carefully implemented rounding
process satisfies a stronger property, called Negative Association (NA), which allows
us to apply standard concentration bounds for conditional random variables.

1 Introduction

This paper considers a general unified framework for two classes of problems: (i) extensions
of the k-Median problem where clients care about having multiple facilities in their vicinity,
and (ii) finding winning committees according to a number of well-known, but hard-to-
compute multiwinner election systems1. Let us first formalize our framework; we will discuss
motivation and explain the relation to k-Median and to multiwinner elections later on.

For a natural number t ∈ N, by [t] we denote the set {1, . . . , t}. Let F = {F1, . . . , Fm} be
the set of m facilities and let D = {D1, . . . , Dn} be the set of n clients (demands). The goal is
to pick a set of k facilities that altogether are most satisfying for the clients. Different clients
can have different preferences over individual facilities—by ci,j we denote the cost that client
Dj suffers when using facility Fi (this can be, e.g., the communication cost of client Dj to
facility Fi, or a value quantifying the level of personal dissatisfaction of Dj from Fi). Following
Yager [46], we use ordered weighted average (OWA) operators to define the cost of a client for a

1We note that multiwinner election rules have many applications beyond the political domain—such
applications include finding a set of results a search engine should display [21], recommending a set of
products a company should offer to its customers [36, 37], allocating shared resources among agents [41, 39],
solving variants of segmentation problems [34], or even improving genetic algorithms [24].



bundle of k facilities C. Formally, let w =
(
w1, . . . , wk

)
be a non-increasing vector of k weights.

We define the w-cost of a client Dj for a size-k set of facilities C as w(C, j) =
∑k
i=1 wic

→
i (C, j),

where c→(C, j) = (c→1 (C, j), . . . , c→k (C, j)) = sortASC

({
ci,j : Fi ∈ C

})
is a non-decreasing

permutation of the costs of client Dj for the facilities from C. Informally speaking, the
highest weight is applied to the lowest cost, the second highest weight to the second lowest
cost, etc. In this paper we study the following computational problem.

Definition 1.1 (OWA k-Median). In OWA k-Median we are given a set D =
{D1, . . . , Dn} of clients, a set F = {F1, . . . , Fm} of facilities, a collection of clients’ costs(
ci,j
)
i∈[m],j∈[n], a positive integer k (k ≤ m), and a vector of k non-increasing weights

w =
(
w1, . . . , wk

)
. The task is to compute a k-element subset C of F that minimizes the

following value

w(C) =

n∑
j=1

w(C, j) =

n∑
j=1

k∑
i=1

wic
→
i (C, j).

Note that OWA k-Median with weights (1, 0, 0, . . . , 0) is the k-Median problem [9, 15].
Sometimes the costs represent distances between clients and facilities. Formally, this means
that there exists a metric space M with a distance function d : M×M→ R≥0, where each
client and each facility can be associated with a point in M so that for each Fi ∈ F and
each Dj ∈ D we have d(i, j) = ci,j . When this is the case, we say that the costs satisfy the
triangle inequality, and use the terms “costs” and “distance” interchangeably. Then, we use
the prefix Metric for the names of our problems. E.g., by Metric OWA k-Median we
denote the variant of OWA k-Median where the costs satisfy the triangle inequality.

We are specifically interested in the following two sequences of weights:

(1) harmonic: whar =
(
1, 1/2, 1/3, . . . , 1/k

)
. By Harmonic k-Median we denote the OWA

k-Median problem with the harmonic vector of weights.

(2) p-geometric: wgeom =
(
1, p, p2, . . . , pk−1

)
, for some p < 1.

The two aforementioned sequences of weights, whar and wgeom, have their natural interpreta-
tions, which we discuss later on (for instance, see Examples 1 and 2).

1.1 Motivation

In this subsection we discuss the applicability of the studied model in two settings.

Multiwinner Elections Different variants of the OWA k-Median problem are very
closely related to the preference aggregation methods and multiwinner election rules studied
in the computational social choice, in particular, and in AI, in general—we summarize this
relation in Table 1 and in Figure 1. In particular, one can observe that each “median”
problem is associated with a corresponding “winner” problem. Specifically, the k-Median
problem is known in computational social choice as the Chamberlin–Courant rule. Let us now
explain the differences between the winner (“election”) and the median (“facility location”)
problems:

1. The election problems are usually formulated as maximization problems, where instead
of (negative) costs we have (positive) utilities. The two variants, the minimization
(with costs) and the maximization (with utilities) have the same optimal solutions.
Yet, there is a substantial difference in their approximability.

Approximating the minimization variant is usually much harder. For instance, consider
the Chamberlin–Courant (CC) rule which is defined by using the sequence of weights



k-Median problem election rule comment

OWA k-Median OWA-Winner [41] Finding winners according to OWA-Winner
rules is the maximization variant of OWA k-
Median (utilities instead of costs).

Thiele rules [8, 45] Thiele rules are OWA-Winner rules for 0/1
costs.

Harmonic k-Median PAV [45] In PAV we assume the 0/1 costs. So far, only
the maximization variant was considered in the
literature.

k-Median Chamberlin–Courant [14] In CC, usually some specific form of utilities is
assumed—different utilities have been consid-
ered, but always in the maximization variant
(utilities instead of costs).

Table 1: The relation between k-Median problems and the corresponding problems studied
in AI, in particular in the computational social choice community.

OWA ��median

Harmonic ��median

(harmonic weights)

Proportional Approval Voting

(0-1 costs)

d�Hondt method
�approvals for a single party)

Figure 1: The relation between the considered
models. OWA k-Median is the most general
model. Proportional Approval Voting
and Harmonic k-Median due to the use of
harmonic weights can be viewed as natural
extensions of the well known and commonly
used D’Hondt method of apportionment [8].

(1, 0, 0, . . . , 0). In the maximization variant standard arguments can be used to prove
that a greedy procedure yields the approximation ratio of (1− 1/e). This stands in a
sharp contrast to the case when the same rule is expressed as the minimization one; in
such a case we cannot hope for virtually any approximation [42] (we will extend this
result in Theorem E.1). Approximating the minimization variant is also more desired.
E.g., a 1/2-approximation algorithm for (maximization) CC can effectively ignore half of
the population of clients, whereas it was argued [42] that a 2-approximation algorithm
for the minimization (if existed) would be more powerful. In this paper we study the
harder minimization variant, and give the first constant-factor approximation algorithm
for the minimization OWA-Winner with the harmonic weights.

2. In facility location problems it is usually assumed that the costs satisfy the triangle
inequality. This relates to the previous point: since the problem cannot be well
approximated in the general setting, one needs to make additional assumptions. One
of our main results is showing that there is a k-Median problem (OWA k-Median
with harmonic weights) that admits a constant-factor approximation without assuming
that the costs satisfy the triangle inequality; this is the first known result of this kind.

The special case of Harmonic k-Median where each cost belongs to the binary set
{0, 1} is equivalent to finding winners according to Proportional Approval Voting.
The harmonic sequence whar = (1, 1/2, 1/3, . . . , 1/k) is in a way exceptional: indeed, PAV can
be viewed as an extension of the well known D’Hondt method of apportionment (used for



electing parliaments in many contemporary democracies) to the case where the voters can
vote for individual candidates rather than for political parties [8]. Further, PAV satisfies
several other appealing properties, such as extended justified representation [5]. This is one
of the reasons why we are specifically interested in the harmonic weights. For more discussion
on PAV and other approval-based rules, we refer the reader to the survey of Kilgour [33].

OWA k-Median as an Extension of k-Median Intuitively, our general formulation
extends k-Median to scenarios where the clients not only use their most preferred facilities,
but when there exists a more complex relation of “using the facilities” by the clients. Similar
intuition is captured by the Fault Tolerant version of the k-Median problem introduced
by Swamy and Shmoys [44] and recently studied by Hajiaghayi et al. [27]. There, the idea is
that the facilities can be malfunctioning, and to increase the resilience to their failures each
client needs to be connected to several of them.

Definition 1.2 (Fault Tolerant k-Median). In Fault Tolerant k-Median problem
we are given the same input as in k-Median, and additionally, for each client Dj we are
given a natural number rj ≥ 1, called the connectivity requirement. The cost of a client Dj

is the sum of its costs for the rj closest open facilities. Just as in k-Median, we aim at
choosing at most k facilities so that the sum of the costs is minimized.

When the values
(
rj
)
j∈[n] are all the same, i.e., if rj = r for all j, then Fault Tolerant

k-Median is called r-Fault Tolerant k-Median and it can be expressed as OWA k-
Median for the weight vector w with r ones followed by k − r zeros. Yet, in the typical
setting of k-Median problems one additionally assumes that the costs between clients and
facilities behave like distances, i.e., that they satisfy the triangle inequality. Indeed, the
(2.675 + ε)-approximation algorithm for k-Median [9], the 93-approximation algorithm for
Fault Tolerant k-Median [27], the 2-approximation algorithm for k-center [29], and
the 6.357-approximation algorithm for k-means [2], all use the triangle inequality. Moreover
it can be shown by straightforward reductions from the Set Cover problem that there are
no constant factor approximation algorithms for all these settings with general (non-metric)
connection costs unless P = NP.

Using harmonic or geometric OWA weights is also well-justified in case of facility location
problems, as illustrated by the following examples.

Example 1 (Harmonic weights: proportionality). Assume there are ` ≤ k cities, and for
i ∈ [`] let Ni denote the set of clients who live in the i-th city. For the sake of simplicity, let
us assume that k · |Ni| is divisible by n. Further, assume that the cost of traveling between
any two points within a single city is negligible (equal to zero), and that the cost of traveling
between different cities is equal to one. Our goal is to decide in which cities the k facilities
should be opened; naturally, we set the cost of a client for a facility opened in the same city
to zero, and—in another city—to one. Let us consider OWA k-Median with the harmonic
sequence of weights whar. Let ni denote the number of facilities opened in the i-th city in

the optimal solution. We will show that for each i we have ni = k|Ni|
n , i.e., that the number

of facilities opened in each city is proportional to its population. Towards a contradiction

assume there are two cities, i and j, with ni ≥ k|Ni|
n + 1 and nj ≤ k|Nj |

n − 1. By closing one
facility in the i-th city and opening one in the j-th city, we decrease the total cost by at least:

|Nj | · wnj+1 − |Ni| · wni =
|Ni|
nj + 1

− |Ni|
ni

>
|Nj |n
k|Nj |

− |Ni|n
k|Ni|

= 0.

Since, we decreased the cost of the clients, this could not be an optimal solution. As a result

we see that indeed for each i we have ni = k|Ni|
n .



Example 2 (Geometric weights: probabilities of failures). Assume that we want to select k
facilities and that each client will be using his or her favorite facility only. Yet, when a client
wants to use a facility, it can be malfunctioning with some probability p; in such a case the
client goes to her second most preferred facility; if the second facility is not working properly,
the client goes to the third one, etc. Thus, a client uses her most preferred facility with
probability 1− p, her second most preferred facility with probability p(1− p), the third one
with probability p2(1− p), etc. As a result, the expected cost of a client Dj for the bundle of
k facilities C is equal to w(C, j) for the weight vector w =

(
1− p, (1− p)p, . . . , (1− p)pk−1

)
.

Finding a set of facilities that minimize the expected cost of all clients is equivalent to solving
OWA k-Median for the p-geometric sequence of weights (in fact, the sequence that we use
is a p-geometric sequence multiplied by (1− p), yet multiplication of the weight vector by a
constant does not influence the structure of the optimal solutions).

1.2 Our Results and Techniques

Our main result is showing that there exists a 2.3589-approximation algorithm for Harmonic
k-Median for general connection costs (not assuming the triangle inequality). This is in
contrast to the innaproximability of most clustering settings with general connection costs.

Our algorithm is based on dependent rounding of a solution to a natural linear program
(LP) relaxation of the problem. We use the dependent rounding (DR) studied by Srinivasan
et al. [43, 25], which transforms in a randomized way a fractional vector into an integral one.
The sum-preservation property of DR ensures that exactly k facilities are opened.

DR satisfies, what is well known as negative correlation (NC)—intuitively, this implies
that the sums of subsets of random variables describing the outcome are more centered
around their expected values than if the fractional variables were rounded independently.
More precisely, negative correlation allows one to use standard concentration bounds such as
the Chernoff-Hoeffding bound. Yet, interestingly, we find out that NC is not sufficient for our
analysis in which we need a conditional variant of the concentration bound. The property
that is sufficient for conditional bounds is negative association (NA) [31]. In fact its special
case that we call binary negative association (BNA), is sufficient for our analysis. It captures
the capability of reasoning about conditional probabilities. Thus, our work demonstrates
how to apply the (B)NA property in the analysis of approximation algorithms based on
DR. To the best of our knowledge, Harmonic k-Median is the first natural computational
problem, where it is essential to use BNA in the analysis of the algorithm.

We additionally show that the 93-approximation algorithm of Hajiaghayi et al. [27] can
be extended to OWA k-Median (our technique is summarized in Section 3)—this time we
additionally need to assume that the costs satisfy the triangle inequality. Indeed, without
this assumption the problem is hard to approximate for a large class of weight vectors; for
instance, for p-geometric sequences with p < 1/e (Theorem E.2 and Corollary E.3) or for
sequences where there exists λ ∈ (0, 1) such that clients care only about the λ-fraction of
opened facilities (Theorem E.1). Due to space constraints the formulation and the discussion
on these hardness results are redelegated to Appendix E.

For the paper to be self-contained, in Appendix A we discuss in detail the process of
dependent rounding (including a few illustrative examples); in particular, we provide an
alternative proof that DR satisfies binary negative association. Our proof is more direct and
shorter than the proofs known in the literature [35].



2 Harmonic k-Median and Proportional Approval
Voting: a 2.3589-Approximation Algorithm

In this section we demonstrate how to use the Binary Negative Association (BNA) property
of Dependent Rounding (DR) to derive our main result—a randomized constant-factor
approximation algorithm for Harmonic k-Median. In Appendix A we provide a detailed
discussion on DR and BNA, including a proof that DR satisfies BNA, and several examples.

Theorem 2.1. There exists a polynomial time randomized algorithm for Harmonic k-
Median that gives 2.3589-approximation in expectation.

Corollary 2.2. There exists a polynomial time randomized algorithm for the minimization
Proportional Approval Voting that gives 2.3589-approximation in expectation.

In the remainder of this section we will prove the statement of Theorem 2.1. Consider
the following linear program (1–5) that is a relaxation of a natural ILP for Harmonic
k-Median.

min

n∑
j=1

k∑
`=1

m∑
i=1

w` · x`ij · cij (1)

m∑
i=1

yi = k (2)

k∑
`=1

x`ij ≤ yi ∀i ∈ [m], j ∈ [n] (3)

m∑
i=1

x`ij ≥ 1 ∀j ∈ [n], ` ∈ [k] (4)

yi, x
`
ij ∈ [0, 1] ∀i ∈ [m], j ∈ [n], ` ∈ [k] (5)

The intuitive meaning of the variables and constraints of the above LP is as follows.
Variable yi denotes how much facility Fi is opened. Integral values 1 and 0 correspond
to, respectively, opening and not opening the i-th facility. Constraint (2) encodes opening
exactly k facilities. Each client Dj ∈ D has to be assigned to each among k opened facilities
with different weights. For that we copy each client k times: the `-th copy of a client Dj is
assigned to the `-th closest to Dj open facility. Variable x`ij denotes how much the `-th copy

of Dj is assigned to facility Fi. In an integral solution we have x`ij ∈ {0, 1}, which means that
the `-th copy of a client can be either assigned or not to the respective facility. The objective
function (1) encodes the cost of assigning all copies of all clients to the opened facilities,
applying proper weights. Constraint (3) prevents an assignment of a copy of a client to a
not-opened part of a facility. In an integer solution it also forces assigning different copies of
a client to different facilities. Observe that, due to non-increasing weights w`, the objective
(1) is smaller if an `′-th copy of a client is assigned to a closer facility than an `′′-th copy,
whenever `′ < `′′. Constraint (4) ensures that each copy of a client is served by some facility.

Just like in most facility location settings it is crucial to select the facilities to open,
and the later assignment of clients to facilities can be done optimally by a simple greedy
procedure. We propose to select the set of facilities in a randomized way by applying the
DR procedure to the y vector from an optimal fractional solution to linear program (1–5).
This turns out to be a surprisingly effective methodology for Harmonic k-Median.

2.1 Analysis of the Algorithm

Let OPTLP be the value of an optimal solution (x∗, y∗) to the linear program (1–5). Let OPT
be the value of an optimal solution (xOPT, yOPT) for Harmonic k-Median. Easily we can
see that (xOPT, yOPT) is a feasible solution to the linear program (1–5), so OPTLP ≤ OPT.
Let Y = (Y1, . . . , Ym) be the random solution obtained by applying the DR procedure
described in Appendix A to the vector y∗. Recall that DR preserves the sum of entries (see
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Figure 2: Ordering of the facilities by ci,j for the chosen client Dj . Definitions of the
variables Yi, Zr and of the indices sub(i) and submax(i).

Appendix A), hence we have exactly k facilities opened. It is straightforward to assign clients
to the open facilities, so the variables X = (X`

ij)j∈[n],i∈[m],`∈[k] are easily determined.

We will show that E[cost(Y )] ≤ 2.3589 ·OPTLP. In fact, we will show that E[costj(Y )] ≤
2.3589 ·OPTLP

j , where the subindex j extracts the cost of assigning client Dj to the facilities
in the solution returned by the algorithm. In our analysis we focus on a single client
Dj ∈ D. Next, we reorder the facilities {F1, F2, . . . , Fm} in the non-decreasing order of their
connection costs to Dj (i.e., in the non-decreasing order of cij). Thus, from now on, facility
Fi is the i-th closest facility to client Dj ; ties are resolved in an arbitrary but fixed way.

The ordering of the facilities is depicted in Figure 2, which also includes information
about the fractional opening of facilities in y∗, i.e., facility Fi is represented by an interval of
length y∗i . The total length of all intervals equals k. Next, we subdivide each interval into a
set of (small) ε-size pieces (called ε-subintervals); ε is selected so that 1/ε, and y∗i/ε for each
i, are integers. Note that the values y∗i , which originate from the solution returned by an
LP solver, are rational numbers. The subdivision of [0, k] into ε-subintervals is shown in
Figure 2 on the ”(Zr)r∈{1,2,...,k/ε}” level.

The idea behind introducing the ε-subintervals is the following. Although computationally
the algorithm applies DR to the y∗ variables, for the sake of the analysis we may think that
the DR process is actually rounding z variables corresponding to ε-subinterval under the
additional assumption that rounding within individual facilities is done before rounding
between facilities. Formally, we replace the vector Y = (Y1, Y2, . . . , Ym) by an equivalent
vector of random variables Z = (Z1, Z2, . . . , Zk/ε). Random variable Zr represents the r-th
ε-subinterval. We will use the following notation to describe the bundles of ε-subintervals
that correspond to particular facilities:

submax(0) = 0 and submax(i) = submax(i− 1) +
y∗i
ε
, (6)

sub(i) = {submax(i− 1) + 1, . . . , submax(i)}. (7)

Intuitively, sub(i) is the set of indexes r such that Zr represents an interval belonging to



the i-th facility. Examples for both definitions are shown in Figure 2 in the upper level.
Formally, the random variables Zr are defined so that:

Yi =
∑

r∈sub(i)

Zr and Yi = 1 =⇒ ∃! r ∈ sub(i) Zr = 1. (8)

For each r ∈ {1, 2, . . . , k/ε} we can write that:

Pr[Zr = 1] = Pr[Zr = 1
∣∣Ysub−1(r) = 1] · Pr[Ysub−1(r) = 1] =

ε

y∗
sub−1(r)

· y∗sub−1(r) = ε (9)

and Pr[Zr = 0] = 1− ε, hence E[Zr] = ε. Also we have:

Pr [Yi = 1] = Pr

 ∑
r∈sub(i)

Zr = 1

 = Pr

 ∨
r∈sub(i)

Zr = 1

 =
∑

r∈sub(i)

Pr [Zr = 1] . (10)

When Yi = 1 its representative is chosen randomly among (Zr)r∈sub(i) independently of the
choices of representatives of other facilities. Therefore

∀i∈[m] ∀r∈sub(i) E [f(Y ) | Yi = 1] = E [f(Y ) | Yi = 1 ∧ Zr = 1] , (11)

for any function f on vector Y = (Y1, Y2, . . . , Ym). Now we are ready to analyze the expected
cost for any client Dj ∈ D. Here we use the special assumption on the harmonic weights.

E[costj(Y )] ≤
m∑
i=1

(
E

[
cij

1 +
∑i−1

i′=1 Yi′

∣∣∣∣∣Yi = 1

]
· Pr [Yi = 1]

)

(10)
=

m∑
i=1

cij · E[ 1

1 +
∑i−1

i′=1 Yi′

∣∣∣∣∣Yi = 1

]
·
∑

r∈sub(i)

Pr [Zr = 1]


=

m∑
i=1

cij · ∑
r∈sub(i)

E

[
1

1 +
∑i−1

i′=1 Yi′

∣∣∣∣∣Yi = 1

]
· Pr [Zr = 1]


(11)
=

m∑
i=1

cij · ∑
r∈sub(i)

E

[
1

1 +
∑i−1

i′=1 Yi′

∣∣∣∣∣Yi = 1 ∧ Zr = 1

]
· Pr [Zr = 1]


(8),(9)

=

m∑
i=1

ε · cij · ∑
r∈sub(i)

E

 1

1 +
∑submax(i−1)

r′=1 Zr′

∣∣∣∣∣Zr = 1


(8)
=

m∑
i=1

ε · cij · ∑
r∈sub(i)

E

[
1

1 +
∑r−1

r′=1 Zr′

∣∣∣∣∣Zr = 1

] (12)

W.l.o.g., assume that OPTLP
j > 0. Hence the approximation ratio for any client Dj is

E[costj(Y )]

OPTLP
j

(7),(12)

≤

k/ε∑
r=1

ε · csub−1(r),j · E
[

1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1

]
k/ε∑
r=1

ε · csub−1(r),j · 1
drεe

=



note that sub−1(r) is an index of a facility that contains Zr. Now we convert the sum over
facilities into a sum over unit intervals. A unit interval is represented as a sum of 1/ε many
ε-subintervals:

=

k∑
`=1

/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · E
[

1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1

]
k∑
`=1

/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · 1`

≤

W.l.o.g., we can assume that first interval has non-zero costs:
∑1/ε
r=1 csub−1(r),j > 0, otherwise

the LP pays 0 and our algorithm pays 0 in expectation on intervals from non-empty prefix
of (1, 2, . . . , k). With this assumption we can take maximum over intervals:

Lemma B.2
≤ max

`∈[k]



/̀ε∑
r=(`−1)/ε+1

csub−1(r),j · E
[

1

1 +
∑r−1
r′=1 Zr′

∣∣∣∣Zr = 1

]
/̀ε∑

r=(`−1)/ε+1

csub−1(r),j · 1`

 ≤

Costs csub−1(r),j can be general and they could be hard to analyze. Therefore we would
like to remove costs from the analysis. We will use Lemma B.3 for which the technique of
splitting variables Yi into Zr was needed. We are using the fact that the variables Zr have
the same expected values; otherwise the coefficient in front of the expected value would be
cij · y∗i , i.e., not monotonic. Thus

Lemma B.3
≤ max

`∈[k]

ε · ` · /̀ε∑
r=(`−1)/ε+1

E

[
1

1 +
∑r−1

r′=1 Zr′

∣∣∣∣Zr = 1

] . (13)

Consider the expected value in the above expression for a fixed r ∈ {(`−1)/ε + 1, . . . , /̀ε}:

Er = E

[
1

1 +
∑r−1

r′=1 Zr′

∣∣∣∣Zr = 1

]
=

k∑
t=1

1

t
Pr

 r−1∑
r′=1

Zr′ = t− 1

∣∣∣∣Zr = 1

 =

=

`∑
t=1

1

t
Pr

 r−1∑
r′=1

Zr′ = t− 1

∣∣∣∣Zr = 1

+

k∑
t=`+1

1

t
Pr

 r−1∑
r′=1

Zr′ = t− 1

∣∣∣∣Zr = 1

 . (14)

For t ∈ {1, 2, . . . , `} we consider the conditional probability in the above expression, denote
it by pr(t− 1), and analyze the corresponding cumulative distribution function Hr(t− 1):

pr(t− 1) = Pr

 r−1∑
r′=1

Zr′ = t− 1

∣∣∣∣Zr = 1

 , (15)

Hr(t− 1) = Pr

 r−1∑
r′=1

Zr′ ≤ t− 1

∣∣∣∣Zr = 1

 =

t−1∑
t′=0

pr(t
′), (16)

We continue the analysis of Er:

Er
(14),(15)

=

`∑
t=1

1

t
pr(t− 1) +

k∑
t=`+1

1

t
pr(t− 1)



(16)
= Hr(0) +

`∑
t=2

1

t
(Hr(t− 1)−Hr(t− 2)) +

k∑
t=`+1

1

t
pr(t− 1)

= Hr(0) +

`∑
t=2

1

t
Hr(t− 1)−

`∑
t=2

1

t
Hr(t− 2) +

k∑
t=`+1

1

t
pr(t− 1)

=

`∑
t=1

1

t
Hr(t− 1)−

`−1∑
t=1

1

t+ 1
Hr(t− 1) +

k∑
t=`+1

1

t
pr(t− 1)

=

`−1∑
t=1

1

t
Hr(t− 1)−

`−1∑
t=1

1

t+ 1
Hr(t− 1) +

1

`
Hr(`− 1) +

k∑
t=l+1

1

t
pr(t− 1)

≤
`−1∑
t=1

(
1

t
− 1

t+ 1

)
Hr(t− 1) +

1

`

Hr(`− 1) +

k∑
t=`+1

pr(t− 1)


=

`−1∑
t=1

1

t(t+ 1)
Hr(t− 1) +

1

`

Hr(`− 1) +

k∑
t=`+1

pr(t− 1)


≤

`−1∑
t=1

1

t(t+ 1)
Hr(t− 1) +

1

`
. (17)

Lemma 2.3. For any ` ∈ [k], t ∈ [`− 1] and r ∈ {(`−1)/ε + 1, (`−1)/ε + 2, . . . , /̀ε} we have

Hr(t− 1) ≤ e−r·ε ·
(e · r · ε

t

)t
.

The proof of Lemma 2.3 combines the use of the BNA property of variables
{Z1, Z2, . . . , Zk/ε} with applications of Chernoff-Hoeffding bounds. Due to the space con-
straints, the proof is moved to the Appendix C. In the end, we get the following bound on
the approximation ratio.

Lemma 2.4. For any j ∈ [n] we have

E[costj(Y )]

OPTLP
j

≤ 2.3589.

A proof uses inequalities (13), (17) as well as Lemma 2.3 with an upper bound derived by
an integral of the function ft(x) = e−x. We made numerical calculation for ` ∈ {1, 2, . . . , 88}
and for other case we used Stirling formula and Taylor series for e` to derive analytical
upper bound. Full proof, including a plot of numericaly obtained values, is presented in the
Appendix C.

3 OWA k-Median with Costs Satisfying the Triangle In-
equality

In this section we construct an algorithm for OWA k-Median with costs satisfying the
triangle inequality. Thus, the problem we address in this section is more general than
Harmonic k-Median (i.e., the problem we have considered in the previous section) in a



Reduction. Let us take an instance I of OWA k-Median
(
D,F , k, w, {cij}Fi∈F,Dj∈D

)
where wi = pi

qi
, i ∈ [k] are rational numbers in the canonical form. We construct an

instance I ′ of Fault Tolerant k-Median with Clients Multiplicities with the
same set of facilities and the same number of facilities to open, k. Each client Dj ∈ D is
replaced with clients Dj,1, Dj,2, . . . , Dj,k with requirements 1, 2, . . . , k, respectively. For

Q =
∏k
r=1 qr, the multiples of the clients are defined as follows:

• mj,` = (w` − w`+1) ·Q, for each ` ∈ [k − 1], and

• mj,k = wk ·Q.

Figure 3: Reduction from OWA k-Median to Fault Tolerant k-Median with
Clients Multiplicities.

sense that we allow for arbitrary non-increasing sequences of weights. On the other hand, it
is less general in a sense that we require the costs to form a specific structure (a metric).

In our approach we first adapt the algorithm of Hajiaghayi et al. [27] for Fault Tolerant
k-Median so that it applies to the following, slightly more general setting: for each client
Dj we introduce its multiplicity mj ∈ N—intuitively, this corresponds to cloning Dj and co-
locating all such clones in the same location as Dj . However, this will require a modification
of the original algorithm for Fault Tolerant k-Median, since we want to allow the
multiplicities {mj}Dj∈D to be exponential with respect to the size of the instance (otherwise,
we could simply copy each client a sufficient number of times, and use the original algorithm
of Hajiaghayi et al.).

Next, we provide a reduction from OWA k-Median to such a generalization of Fault
Tolerant k-Median. The resulting Fault Tolerant k-Median with Clients Multi-
plicities problem can be cast as the following integer program:

min

n∑
j=1

m∑
i=1

mj · xij · cij

m∑
i=1

yi = k

m∑
i=1

xij = rj ∀j ∈ [n]

xij ≤ yi ∀i ∈ [m], j ∈ [n]

yi, xij ∈ {0, 1} ∀i ∈ [m]

mj ∈ N ∀j ∈ [n]

Theorem 3.1. There is a polynomial-time 93-approximation algorithm for Metric Fault
Tolerant k-Median with Clients Multiplicities.

Proof can be found in the Appendix D.

Consider reduction from OWA k-Median to Fault Tolerant k-Median with
Clients Multiplicities depicted on Figure 3.

Lemma 3.2. Let I be an instance of OWA k-Median, and let I ′ be an instance of Fault
Tolerant k-Median with Clients Multiplicities constructed from I through reduction
from Figure 3. An α-approximate solution to I ′ is also an α-approximate solution to I.

Proof can be found in the Appendix D.

Corollary 3.3. There exists a 93-approximation algorithm for Metric OWA k-Median
that runs in polynomial time.



4 Concluding Remarks and Open Questions

We have introduced a new family of k-Median problems, called OWA k-Median, and we have
shown that our problem with the harmonic sequence of weights allows for a constant factor
approximation even for general (non-metric) costs. In the analysis of our approximation
algorithm for Harmonic k-Median, we used the fact that the dependent rounding procedure
satisfies Binary Negative Association.

We showed that any Metric OWA k-Median can be approximated within a factor
of 93 via a reduction to Fault Tolerant k-Median with Clients Multiplicities.
We also obtained that OWA k-Median with p-geometric weights with p < 1/e cannot be
approximated without the assumption of the costs being metric. The status of the non-metric
problem with p-geometric weights with p > 1/e remains an intriguing open problem.

Using approximation and randomized algorithms for finding winners of elections requires
some comment. First, the multiwinner election rules such as PAV have many applications in
the voting theory, recommendation systems and in resource allocation. Using (randomized)
approximation algorithms in such scenarios is clearly justified. However, even for other high-
stake domains, such as political elections, the use of approximation algorithms is a promising
direction. One approach is to view an approximation algorithm as a new, full-fledged voting
rule (for more discussion on this, see the works of Caragiannis et al. [12, 13], Skowron et
al. [42], and Elkind et al. [22]). In fact, the use of randomized approximation algorithms
in political elections has been advocated in the literature as well—e.g., one can arrange an
election where each participant is allowed to suggest a winning committee, and the best
out of the suggested committees is selected; in such case the approximation guaranty of
the algorithm corresponds to the quality of the outcome of elections (for a more detailed
discussion see [42]).2 Nonetheless, we think that it would be beneficial to learn whether our
algorithm can be efficiently derandomized.

Recently, a polynomial-time 0.79-approximation algorithm for Proportional Approval
Voting has been achieved [20] (improving previous best 1− 1/e ≈ 0.63 [40, 41]) and this
approximation factor is tight unless P 6= NP. The algorithmic technique used therein is
called Pipage Rounding [1] and it is very related to dependent rounding studied in this paper.
Barman et al. [6, 7] provided analogous tight results for almost all sequences of weights but
also assuming 0/1 utilities (i.e., Thiele rules [8, 45]). We believe that it is an important
future direction to establish analogous tight lower bounds for the approximability of the
studied minimization versions of the problem.
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A Dependent Rounding and Negative Association

Consider a vector of m variables (yi)i∈[m], and let y∗i denote the initial value of the variable
yi. For simplicity we will assume that 0 ≤ y∗i ≤ 1 for each i, and that k =

∑
i∈[m] y

∗
i is an

integer. A rounding procedure takes this vector of (fractional) variables as an input, and
transforms it into a vector of 0/1 integers. We focus on a specific rounding procedure studied
by Srinivasan [43] which we refer to as dependent rounding (DR).

DR works in steps: in each step it selects two fractional variables, say yi and yj , and
changes the values of these variables to y′i and y′j so that y′i + y′j = yi + yj , and so that y′i
or y′j is an integer. Thus, after each iteration at least one additional variable becomes an
integer. The rounding procedure stops, when all variables are integers. In each step the
randomization is involved: with some probability p variable yi is rounded to an integer value,
and with probability 1 − p variable yj becomes an integer. The value of the probability
p is selected so as to preserve the expected value of each individual entry yi. Clearly, if
yi + yj ≥ 1, then one of the variables is rounded to 1; otherwise, one of the variables is
rounded to 0. For example, if yi = 0.4 and yj = 0.8, then with probability 0.25 the values
of the variables yi and yj change to, respectively, 1 and 0.2; and with probability 0.75 they
change to, respectively, 0.2 and 1. If yi = 0.3 and yj = 0.2, then with probability 0.4 the
values of the two variables change to, respectively, 0 and 0.5; and with probability 0.6, to,
respectively, 0.5 and 0.

Let Yi denote the random variable which returns one if yi is rounded to one after the
whole rounding procedure, and zero, otherwise. It was shown [43] that the DR generates
distributions of Yi which satisfy the following three properties:

Marginals. Pr[Yi = 1] = y∗i ,

Sum Preservation. Pr[
∑
i Yi = k] = 1,

Negative Correlation. For each S ⊆ [m] it holds that Pr[
∧
i∈S(Yi = 1)] ≤∏i∈S Pr[Yi =

1], and Pr[
∧
i∈S(Yi = 0)] ≤∏i∈S Pr[Yi = 0].

These three properties are often used in the analysis of approximation algorithms based on
dependent rounding for various optimization problems—see, e.g., [25]. In fact, DR satisfies
an even stronger property than NC, called conditional negative association (CNA) [35],
yet, to the best of our knowledge, this property has never been used before for analyzing
algorithms based on the DR procedure.

For two random variables, X and Y , by cov[X,Y ] we denote the covariance between X
and Y . Recall that cov[X,Y ] = E[XY ]− E[X] · E[Y ].

Negative Association [31]. For each S,Q ⊆ [m] with S ∩ Q = ∅, s = |S|, and q = |Q|,
and each two nondecreasing functions, f : [0, 1]s → R and g : [0, 1]q → R, it holds that:

cov
[
f(Yi : i ∈ S), g(Yi : i ∈ Q)

]
≤ 0.

Conditional Negative Association. We say that the sequence of random variables
(Yi)i∈[m] satisfies the CNA property if the conditional variables (Y[m]\S |YS = a) satisfy
NA for any S ⊆ [m] and any a = (ai)i∈S . For S = ∅, CNA is equivalent to NA. It
was shown by Dubhashi et al. [19] that if one rounds the variables according to a
predefined linear order over the variables � (i.e., if one always chooses for rounding
the two fractional variables which are earliest in �), then the resulting distribution
satisfies CNA. Yet, the requirement of following a predefined linear order of variables
is too restrictive for our needs. Then, Kramer et al. [35] showed that DR following a
predefined order on pairs of variables that implements a tournament tree returns a
distribution satisfying CNA.



In our analysis we will use a simpler version of the NA property, which nevertheless is
expressive enough for our needs. We introduce the following property.

Binary Negative Association (BNA). For each S,Q ⊆ [m] with S∩Q = ∅, s = |S|, and
q = |Q|, and each two nondecreasing functions, f : {0, 1}s → {0, 1} and g : {0, 1}q →
{0, 1}, we have:

cov
[
f(Yi : i ∈ S), g(Yi : i ∈ Q)

]
≤ 0.

From the definitions it is easy to see that CNA =⇒ NA =⇒ BNA.

A.1 BNA is Strictly Stronger than NC

We now argue that BNA is a strictly stronger property than NC. First we show a straightfor-
ward inductive argument that BNA implies NC. Next we provide an example of a distribution
that satisfies NC but not BNA. In fact, this distribution is generated by a not-careful-enough
implementation of DR.

Lemma A.1. For two binary random variables X, and Y , X,Y ∈ {0, 1}, the condition
cov[X,Y ] ≤ 0 is equivalent to Pr[X = 1 ∧ Y = 1] ≤ Pr[X = 1] · Pr[Y = 1].

Proof. Observe that for binary variables, X and Y , it holds that E[X] = Pr[X = 1],
E[Y ] = Pr[Y = 1], and E[XY ] = Pr[X = 1 ∧ Y = 1].

Lemma A.2. Binary Negative Association of (Yi)i∈[m] implies their Negative Correlation.

Proof. We will prove the NC property by induction on |S|. Clearly, the property holds for
|S| = 1. For an inductive step, we define two non-decreasing functions f(Yi : i ∈ S/{j}) =∧
i∈S/{j}(Yi = 1) and g(Yj) = (Yj = 1) for any j ∈ S.

Pr

[∧
i∈S

(Yi = 1)

]
= Pr

 ∧
i∈S/{j}

(Yi = 1) ∧ Yj = 1


BNA, Lemma A.1

≤ Pr

 ∧
i∈S/{j}

(Yi = 1)

 · Pr [Yj = 1]

inductive assum.
≤

∏
i∈S

Pr[Yi = 1].

In order to bound the probability of
∧
i∈S(Yi = 0) we define two other non-decreasing

functions f(Yi : i ∈ S/{j}) =
∨
i∈S/{j}(Yi > 0) and g(Yj) = (Yj > 0) for any j ∈ S.

Pr
[∧

i∈S(Yi = 0)
]

= 1− Pr

[∨
i∈S

(Yi > 0)

]

= 1−

Pr

 ∨
i∈S/{j}

(Yi > 0)

+ Pr [Yj > 0]− Pr

 ∨
i∈S/{j}

(Yi > 0) ∧ Yj > 0


= Pr

 ∧
i∈S/{j}

(Yi = 0)

− Pr [Yj > 0] + Pr

 ∨
i∈S/{j}

(Yi > 0) ∧ Yj > 0





y1 y2 y3 y4
1/2 1/2 1/2 1/2

y5 y6 y7 y8
1/2 1/2 1/2 1/2

y1 y2 y3 y4
1 1 1/2 1/2

y5 y6 y7 y8
0 0 1/2 1/2

y1 y2 y3 y4
1 0 1/2 1/2

y5 y6 y7 y8
0 1 1/2 1/2

y1 y2 y3 y4
0 1 1/2 1/2

y5 y6 y7 y8
1 0 1/2 1/2

y1 y2 y3 y4
0 0 1/2 1/2

y5 y6 y7 y8
1 1 1/2 1/2

Pr [α] = 3/4 Pr [α] = 0 Pr [α] = 1 Pr [α] = 1/4

β¬β

Figure 4: An illustration of Example 3.

BNA, Lemma A.1

≤ Pr

 ∧
i∈S/{j}

(Yi = 0)

− Pr [Yj > 0] + Pr

 ∨
i∈S/{j}

(Yi > 0)

 · Pr [Yj > 0]

= Pr

 ∧
i∈S/{j}

(Yi = 0)

− Pr [Yj > 0] · Pr

 ∧
i∈S/{j}

(Yi = 0)


= Pr

 ∧
i∈S/{j}

(Yi = 0)

 · Pr [Yj = 0]
inductive assum.

≤
∏
i∈S

Pr[Yi = 0].

Note that the general formulation of DR does not specify how the pairs of fractional
variables are selected. The proof in [43] that DR satisfies NC is independent of the method
in which these pairs of fractional variables are selected. We will now show that, if these
pairs are selected by an adaptive adversary who may take into account the way in which the
previous pairs were rounded, then the BNA property may not hold (so, also neither NA nor
CNA). Consider the following example.

Example 3. Consider m = 8, k = 4, and the vector of variables (yi)i∈[8], all with the same
initial value 1/2. Let S = {2, 3, 4}, Q = {5}, and:

f(Y2, Y3, Y4) =

{
1 if Y2 + Y3 + Y4 ≥ 2

0 otherwise
g(Y5) = Y5.

Let α and β denote the events that Y2 +Y3 +Y4 ≥ 2 and that Y5 = 1, respectively. BNA would
require that Pr[α ∧ β] ≤ Pr[α] · Pr[β]. Consider DR procedure as depicted in the following
diagram (the paired variables are enclosed in rounded rectangles). First, we pair variables
y1 with y5 and y2 with y6. The way in which the remaining variables are paired depends on
the result of rounding within pairs (y1, y5) and (y2, y6). If y1 and y2 are both rounded to the
same integer, then we pair y3 with y7 and y4 with y8. Otherwise, we pair y3 with y4 and y7
with y8.



⊥

y1 = 0.2

y1 = 0.2

y1 = 0.7 y2 = 0.5

⊥

y3 = 0.5 y4 = 0.5

y6 = 0.8

y5 = 0.2 y6 = 0.6

Figure 5: An example run of DR using a tournament tree structure. In this example the
result is: y2, y3, y6 = 1, and y1, y4, y5 = 0.

Note that according to DR each rounding decision is taken with the same probability (e.g.,
when we pair variables y1 with y5, then the probabilities of y1 and y5 rounded to one is the
same). Thus, we observe that Pr[α] = 1/2, Pr[β] = 1/2, but Pr[α ∧ β] = 1/4 + 1/16.

Example 3 is simpler than the one given by Kramer et al. [35]. Both examples show that
NA is a strictly stronger property than NC. Kramer et al. use the set of 7 variables with
initial values equal to 3/7, k = 4, and a predefined order on pairs of variables. Our example
uses an adaptive adversary who decides which pair of variables should be rounded in each
step of the rounding procedure. Our example cannot be implemented by fixing an order on
pairs of variables (hence it also cannot be implemented by fixing a tournament tree). Our 8
variables have marginal probabilities equal to 1/2, thus the example can be easily understood,
and one does not need to calculate probabilities of choosing all

(
7
4

)
4-element sets.

A.2 Fixed Tournament Pairings Ensure BNA

The method in which fractional elements are paired together can be thought of as a subset
of rules of a sports tournament, in which losers drop out of the game, but winners remain
and are being paired up for the following games. The above example shows that an awkward
adaptive pairing of remaining players may influence the value of certain functions on the
subsets of players. We will show that if the competition is organized by a standard fixed
upfront tournament tree, then such manipulations are not possible, which allows to prove
BNA for the outcome of the DR process following such tree.

Intuitively, the way in which the variables are paired should be, in some sense, independent
of the result of previous roundings. We consider a fixed binary tree with m leaves—each
leaf containing one variable yi with value y∗i , so that each variable is put in exactly one leaf;
the other nodes are temporarily empty. In each step, the algorithm selects two nonempty
nodes, say n1 and n2, with a common empty parent, and applies the basic step of the DR
procedure to the two variables in nodes n1 and n2. As a result at least one of the variables
becomes an integer. If one of the variables is still fractional, we promote this variable with
its new value to the parent node. If both variables become integers (which happens when
their sum is equal to one), we promote a fake variable ⊥ to the parent node. When we
compare any variable v with ⊥, we always promote v with its current value to the parent
node. An example run of such implementation of the DR procedure is depicted in Figure 5.

Hereinafter we assume that the DR procedure uses a fixed tournament tree structure, as
described above.



Theorem A.3. The DR algorithm using a tournament tree structure guarantees BNA.

The proof follows from Theorem 5 in [35]. The theorem says that DR using a tournament
tree structure produces distributions satisfying the NA property; clearly, NA implies BNA.
However, to make the paper self-contained, we provide our inductive proof of Theorem A.3 in
the remainder of the section. Our proof uses induction on the number of fractional variables;
Kramer et al. [35] use induction on the number of leaves in the tournament tree. While the
two proofs use similar ideas and are of a similar difficulty, our proof is slightly more direct
and shorter.

Proof of Theorem A.3. Recall that Yi is a random variable that indicates whether or not
the described DR procedure rounds yi to 1. Let S,Q ⊆ [m] with S ∩Q = ∅, s = |S|, and
q = |Q|, and let f : {0, 1}s → {0, 1} and g : {0, 1}q → {0, 1} be two nondecreasing functions.
Let α and β denote the events that f(Yi : i ∈ S) = 1 and g(Yi : i ∈ Q) = 1, respectively.

For a vector y of m values, which represents the values of the variables (yi)i∈[m] that
appear during our rounding procedure by Pr [E|y] we denote the probability that an event E
occurs under the condition that we have reached the point of the rounding algorithm where
the variables (yi)i∈[m] have values indicated by y. By Lemma A.1 it is sufficient to show that
the following inequality holds for each y:

Pr [α ∧ β|y] ≤ Pr [α|y] · Pr [β|y] . (18)

We will prove this statement by induction on the number of fractional variables in y. If y
contains only integer variables, then it is clear that Inequality (18) is satisfied. Now assume
that Inequality (18) is satisfied whenever y contains at most ` fractional values. We will
show that Inequality (18) is also satisfied when y contains `+ 1 fractional values. Let y be
such vector. Consider a single step of our algorithm, where the two variables yi and yj are
paired. Let Ei and Ej denote the events that, respectively, yi and yj , is increased. Similarly,

let y(i) and y(j) denote the vectors of the values of the variables (yi)i∈[m] when, respectively,
yi and yj is increased. We have:

Pr [α ∧ β|y] = Pr
[
α ∧ β|y(i)

]
· Pr [Ei] + Pr

[
α ∧ β|y(j)

]
· Pr [Ej ] .

By our inductive assumption, it holds that:

Pr [α ∧ β|y] ≤ Pr
[
α|y(i)

]
· Pr

[
β|y(i)

]
· Pr [Ei] + Pr

[
α|y(j)

]
· Pr

[
β|y(j)

]
· Pr [Ej ] . (19)

Now, we consider the following cases:

Case 1: i, j /∈ S. Observe that either the fake variable ⊥ is promoted to the parent node
or one of the variables: yi and yj . Observe that irrespectively of which of the two
variables is promoted to the parent, the promoted variable will always hold the same
new value. Further, observe that the subsequent rounding steps do not depend on
which variable has been promoted to the parent node, but only on the value of the
promoted variable. Thus, the rounding within the pair of variables, yi and yj , affects
only the probability of events including Yi or Yj (here we use the assumption that the
tournament tree is fixed; the way in which the variables are paired does not depend

on the result of rounding within the pair (yi, yj)). In particular, Pr
[
α|y(i)

]
= Pr [α|y]

and Pr
[
α|y(j)

]
= Pr [α|y]. We can rewrite Inequality (19) as follows:

Pr [α ∧ β|y] ≤ Pr [α|y] · Pr
[
β|y(i)

]
· Pr [Ei] + Pr [α|y] · Pr

[
β|y(j)

]
· Pr [Ej ]



= Pr [α|y]
(

Pr
[
β|y(i)

]
· Pr [Ei] + Pr

[
β|y(j)

]
· Pr [Ej ]

)
= Pr [α|y] · Pr [β|y] .

Case 2: i, j /∈ Q. The same reasoning but applied to β rather than to α, leads to the same
conclusion.

Case 3: i ∈ S and j ∈ Q (the case when i ∈ Q and j ∈ S is symmetric). As a result
of rounding, one of the variables, yi and yj , increases, and the other one decreases. Let
us analyze what happens when yi increases and yj decreases, i.e., when event Ei occurs.
By the same reasoning as in Case 1, we infer that the fact that yi is increased does not
influence the further process of rounding other variables than yi and yj . At the same
time when yi is increased, it becomes more likely that this variable will eventually
become one, in comparison to the case when yj is increased:

(i) If yi + yj ≥ 1, then yi being increased means that yi becomes one right away.

(ii) Otherwise, i.e., if yi + yj < 1: if yi is increased, it is still positive so it is still
possible that it will eventually become one. On the other hand, if yj is increased,
then yi is rounded down to zero, which makes it impossible for yi to become one.

Since the function f is nondecreasing we infer that Pr
[
α|y(i)

]
≥ Pr

[
α|y(j)

]
. The same

reasoning allows us to conclude that Pr
[
β|y(i)

]
≤ Pr

[
β|y(j)

]
. This is summarized in

the following claim:

Claim 1. Pr
[
α|y(i)

]
≥ Pr

[
α|y(j)

]
and Pr

[
β|y(i)

]
≤ Pr

[
β|y(j)

]
.

At the same time:

Pr
[
β|y(i)

]
· Pr [Ei] + Pr

[
β|y(j)

]
· Pr [Ej ] = Pr [β|y]

= Pr [β|y]
(
Pr [Ei] + Pr [Ej ]

)
.

(20)

Claim 2. It holds that:

(i) Pr
[
β|y(i)

]
Pr [Ei] ≤ Pr [β|y] Pr [Ei], and

(ii) Pr
[
β|y(j)

]
Pr [Ej ] ≥ Pr [β|y] Pr [Ej ].

Proof of Claim 2. For the sake of contradiction, let us assume that one of these in-

equalities is not satisfied, say assume that Pr
[
β|y(i)

]
Pr [Ei] > Pr [β|y] Pr [Ei]. By

Equality (20) we get that also Pr
[
β|y(j)

]
Pr [Ej ] < Pr [β|y] Pr [Ej ]. In these two

conditions we can reduce the factors Pr [Ei] and Pr [Ej ], respectively, and obtain that

Pr
[
β|y(i)

]
> Pr [β|y] and Pr

[
β|y(j)

]
< Pr [β|y]. By combining these two inequalities,

we get that Pr
[
β|y(i)

]
> Pr

[
β|y(j)

]
, which contradicts Claim 1.

Now, we continue the proof of Theorem A.3. We will apply Lemma B.4 with:

(i) a1 = Pr
[
α|y(i)

]
, a2 = Pr

[
α|y(j)

]
,

(ii) b1 = Pr
[
β|y(i)

]
Pr [Ei], b2 = Pr

[
β|y(j)

]
Pr [Ej ],



(iii) c1 = Pr [β|y] Pr [Ei], and c2 = Pr [β|y] Pr [Ej ].

(a1 ≥ a2 by Claim 1; c1 ≥ b1 and b2 ≥ c2, by Claim 2; b1+b2 = c1+c2 by Equality (20)).
We get that:

Pr
[
α|y(i)

]
· Pr

[
β|y(i)

]
· Pr [Ei] + Pr

[
α|y(j)

]
· Pr

[
β|y(j)

]
· Pr [Ej ] ≤

Pr
[
α|y(i)

]
· Pr [β|y] · Pr [Ei] + Pr

[
α|y(j)

]
· Pr [β|y] · Pr [Ej ] .

Combining the above inequality with Inequality (19), we infer that:

Pr [α ∧ β|y] ≤ Pr
[
α|y(i)

]
· Pr [β|y] · Pr [Ei] + Pr

[
α|y(j)

]
· Pr [β|y] · Pr [Ej ]

= Pr [β|y]
(

Pr
[
α|y(i)

]
· Pr [Ei] + Pr

[
α|y(j)

]
· Pr [Ej ]

)
= Pr [β|y] · Pr [α|y]

This proves the inductive step and completes the proof.

B Useful Lemmas

Theorem B.1 (Theorem 1.16 from [4]). Let X1, X2, . . . , Xn be negatively correlated binary
random variables. Let X =

∑n
i=1Xi. Then X satisfies the Chernoff-Hoeffding bounds for

δ ∈ [0, 1]:

Pr [X ≤ (1− δ)E[X]] ≤
(

e−δ

(1− δ)(1−δ)
)µ

.

Lemma B.2. For any sequence (ai)i∈[n] and (bi)i∈[n], bi > 0, it holds:∑n
i=1 ai∑n
i=1 bi

≤ max
i∈{1,2,...,n}

ai
bi
.

Proof.∑n
i=1 ai∑n
i=1 bi

=

n∑
j=1

aj∑n
i=1 bi

=

n∑
j=1

aj
bj
· bj∑n

i=1 bi
≤

n∑
j=1

(
max

i∈{1,2,...,n}

ai
bi

)
bj∑n
i=1 bi

=

=

(
max

i∈{1,2,...,n}

ai
bi

) n∑
j=1

bj∑n
i=1 bi

= max
i∈{1,2,...,n}

ai
bi
.

Lemma B.3 (Chebyshev’s sum inequality, Theorem 43 in [28]). For any non-decreasing
sequence (ci)i∈{1,2,...,n}, ci > 0 and any non-increasing sequence (ai)i∈{1,2,...,n} it holds:∑n

i=1 aici∑n
i=1 ci

≤ 1

n

n∑
i=1

ai.

Lemma B.4. Let a1, a2, b1, b2, c1, c2 ∈ R be such that a1 ≥ a2, c1 ≥ b1, b2 ≥ c2, and
b1 + b2 = c1 + c2. It holds that: a1c1 + a2c2 ≥ a1b1 + a2b2.

Proof. We have that b2 − c2 = c1 − b1 ≥ 0, and so a2(b2 − c2) ≤ a1(c1 − b1), which can be
reformulated as a1(c1 − b1) + a2(c2 − b2) ≥ 0. Thus:

a1c1 + a2c2 = a1b1 + a2b2 + a1(c1 − b1) + a2(c2 − b2) ≥ a1b1 + a2b2.



C Omitted Proofs from Section 2

Lemma C.1. Distribution of {Z1, Z2, . . . , Zk/ε} satisfies Binary Negative Association.

Proof sketch. Note that DR procedure on (Yi)i∈[m] and then independent choice of
(Zr)r∈sub(i) for each i ∈ [m] is equivalent to the following implementation of DR on
(Zr)r∈{1,2,...,k/ε}. First, for each i ∈ [m] (Zr)r∈sub(i) are processed until obtaining a sin-
gle non-zero variable that is equivalent to yi. Then, in the second phase the rounding
proceeds as if it had started from the yi variables. Since this process altogether is an imple-
mentation of a single DR procedure with fixed tournament tree starting from (Zr)r∈{1,2,...,k/ε}
variables, we can simply apply Theorem A.3 and get the statement of the lemma.

At this point we note that the result of Dubhashi et al. [19] is not sufficient for proving
our lemma. They have proved that DR following a predefined order of variables (which can
be viewed as a linear tournament tree) returns distributions satisfying the CNA property.
Here, however, we need to have at least a ”two-stage” linear tournament: the first linear
tournament on variables (Zr)r∈sub(i) and the second tournament on winning variables from
the first tournament.

Proof of Lemma 2.3. Let us fix ` ∈ [k], t ∈ [` − 1] and r ∈ {(`−1)/ε + 1, (`−1)/ε + 2, . . . , /̀ε}.
We have

Hr(t− 1)
(16)
= Pr

 r−1∑
r′=1

Zr′ ≤ t− 1

∣∣∣∣ Zr = 1

 = Pr

 k/ε∑
r′=r

Zr′ ≥ k − (t− 1)

∣∣∣∣ Zr = 1

 =

= Pr

 k/ε∑
r′=r+1

Zr′ ≥ k − t
∣∣∣∣ Zr = 1

 . (21)

We now exploit Binary Negative Association of variables Zi (Lemma C.1). By setting

S = {r + 1, r + 2, . . . , k/ε}, Q = {r}, f(a1, a2, . . . as) = 1

{∑|S|
i=1 ai ≥ k − t

}
and g(a) = a we

obtain:

0 ≥ cov
[
f(Zr′ : r

′ ∈ S), g(Zr′ : r
′ ∈ Q)

]
= cov

1


k/ε∑
r′=r+1

Zr′ ≥ k − t

 , Zr

 .
Since f, g are binary and non-decreasing we can use Lemma A.1 to obtain an equivalent
inequality:

Pr

 k/ε∑
r′=r+1

Zr′ ≥ k − t ∧ Zr = 1

 ≤ Pr

 k/ε∑
r′=r+1

Zr′ ≥ k − t

 · Pr [Zr = 1] . (22)

Therefore,

Hr(t− 1)
(21)

≤ Pr

 k/ε∑
r′=r+1

Zr′ ≥ k − t
∣∣∣∣ Zr = 1



=

Pr

 k/ε∑
r′=r+1

Zr′ ≥ k − t ∧ Zr = 1


Pr [Zr = 1]



(22)

≤ Pr

 k/ε∑
r′=r+1

Zr′ ≥ k − t

 = Pr

 r∑
r′=1

Zr′ ≤ t

 . (23)

Using Lemma C.1 and Lemma A.2 we know that (Zr)r∈{1,2,...,k/ε} are negatively correlated.
What is more, t is smaller than the expected value of the sum

t ≤ `− 1 = (`− 1 + ε)− ε ≤ r · ε− ε < r · ε (9)
= E

 r∑
r′=1

Zr′

 ,
Therefore, we can use Chernoff-Hoeffding bounds as follows

Hr(t− 1)
(23)

≤ Pr

 r∑
r′=1

Zr′ ≤ t


= Pr

 r∑
r′=1

Zr′ < r · ε ·
(

1−
(

1− t

r · ε

))
Theorem B.1
≤

 e
t
r·ε−1(
t
r·ε
) t
r·ε

r·ε

=
et−r·ε · (r · ε)t

tt

= e−r·ε ·
(e · r · ε

t

)t
.

Proof of Lemma 2.4.

E[costj(Y )]

OPTLP
j

(13),(14),(17)

≤ max
`∈[k]

ε · ` ·
/̀ε∑

r=(`−1)/ε+1

 `−1∑
t=1

(
1

t(t+ 1)
·Hr(t− 1)

)
+

1

`


= 1 + max

`∈[k]
ε · ` ·

/̀ε∑
r=(`−1)/ε+1

 `−1∑
t=1

1

t(t+ 1)
·Hr(t− 1)


Lemma 2.3
≤ 1 + max

`∈[k]
ε · ` ·

/̀ε∑
r=(`−1)/ε+1

 `−1∑
t=1

1

t(t+ 1)
· e−r·ε ·

(e · r · ε
t

)t
= 1 + max

`∈[k]
` ·

`−1∑
t=1

1

t(t+ 1)
· e

t

tt
·

 /̀ε∑
r=(`−1)/ε+1

ε · e−r·ε · (r · ε)t


= 1 + max
`∈[k]

` ·
`−1∑
t=1

1

t(t+ 1)
· e

t

tt
·

 /̀ε−1∑
r=(`−1)/ε+1

∫ r·ε

r·ε−ε
e−r·ε · (r · ε)t dx

 ≤
we now use an upper bound on the most interior sum by an integral of the function
ft(x) = e−x · xt. Note that f ′t(x) = e−x · xt−1 · (t − x) ≤ 0 for 1 ≤ t ≤ ` − 1 ≤ x, so the
function f is non-increasing. Therefore

≤ 1 + max
`∈[k]

` ·
`−1∑
t=1

1

t(t+ 1)
· e

t

tt
·
(∫ `

`−1
e−x · xtdx

)
. (24)



To bound the above expression we first numerically evaluate it for ` ∈ {1, 2, . . . , 88} and
obtain

1 + max
`∈{1,2,...,88}

` ·
`−1∑
t=1

1

t(t+ 1)
· e

t

tt
·
(∫ `

`−1
e−x · xtdx

)
< 2.3589.

It remains to bound the expression for ` ∈ {89, 90, . . . , k}, which we do by the following
estimation:

1 + ` ·
`−1∑
t=1

1

t(t+ 1)
· e

t

tt
·
(∫ `

`−1
e−x · xtdx

)
≤ 1 + ` ·

`−1∑
t=1

1

t(t+ 1)
· e

t

tt
· e−(`−1) · `t

Stirling

≤ 1 + ` ·
`−1∑
t=1

1

t(t+ 1)
·
√

2πt · e 1
12t

t!
· e−(`−1) · `t

≤ 1 +
√

2π · e 1
12 · e−(`−1) · 1√

`
·
`−1∑
t=1

`t+1

(t+ 1)!
·
√
`√
t

≤ 1 +
√

2π · e 13
12 · e−` · 1√

`
·
`−1∑
t=1

`t+1

(t+ 1)!
· `
t

≤ 1 + 3
√

2π · e 13
12 · e−` · 1√

`
·
`−1∑
t=1

`t+1

(t+ 1)!
· `

t+ 2

Taylor series for e`

≤ 1 + 3
√

2π · e 13
12 · e−` · 1√

`
· e`

= 1 + 3
√

2π · e 13
12 · 1√

`
< 2.3551 < 2.3589.

The maximum is obtained for ` = 4 (see Figure 6).

D Omitted Proofs from Section 3

Proof of Theorem 3.1. We reduce an instance of Fault Tolerant k-Median with
Clients Multiplicities to an instance of Fault Tolerant k-Median by replacing
the multiple mj of a client Dj with mj clients in the same location and with the same
connectivity requirement (we will call such clients clones of Dj). Observe that there exists an
optimal solution in which each clone of the same client is connected to the same set of open
facilities. Next, we run the 93-approximation algorithm of Hajiaghayi et al. [27] on such a
constructed instance with clones. It is apparent that the solution that we obtain by following
this procedure approximates the original instance with the ratio of 93. However, the issue
is that mj can be exponential in the number of clients in the original instance, and so the
most straightforward implementation of our reduction does not run in polynomial-time. To
deal with that we will efficiently encode the reduced instance, and we will show that the
algorithm of Hajiaghayi et al. can be adapted to run on such encoded instances. We proceed
as follows.

First, we solve the LP part of the original algorithm [27] with the additional multiplicative
factors {mj}Dj∈D added to the objective function. From the solution to the LP, (yi)i∈[m]



1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

l

a
p
p
ro

x
. 
ra

ti
o

1 10 20 30 40 50 60 70 80 90 1004

2.3589 −− achieved approx. ratio

analytical upper bound

numerical calculation

` ratio
1 1
2 1.90
3 2.32
4 2.3589
5 2.26
6 2.11
7 1.98
8 1.86
9 1.78
10 1.70
11 1.65
12 1.60

Figure 6: The numerical and the analytical upper bound on the approximation ratio on
intervals (`− 1, `), for each ` ∈ [k].

with
∑m
i=1 yi = k, we construct an optimal assignment of the clients to the facilities. We

encode such an assignment efficiently by grouping all clones of the same client into a single
cluster and storing an assignment for a single client for each cluster only (we call such a
client the representative of the cluster). In particular, note that all clones in the same cluster
have the same assignments and so, they all have the same average and maximal assignment
costs. We use this property in the next step of the original algorithm: creating bundles of
volume 1 [27, Algorithm 1]. By a careful analysis of this algorithm we can observe that no
new bundles are created for a cloned client (lines 5 and 6 of [27, Algorithm 1]) and so that
the cloned clients can be considered in bunches.

Next, as in the original algorithm, we divide the clients into safe and dangerous by
the criterion on the ratio of the maximal and the average cost in the assignment vector.
Intuitively, if the maximum is much higher than the average then the client is marked as
dangerous (for a formal definition see [27, Section 2.2]), otherwise it is considered safe. Hence,
the clones of the same client are either all safe or all dangerous. In the latter case they
are also in conflict: they are close and they have the same connectivity requirements (for
a definition also see [27, Section 2.2]). Thus, in the filtering phase [27, Algorithm 2] either
all the dangerous clones of the same client are filtered out or exactly one of them survives;
without loss of generality we can assume that the representative of the cluster survives. In
fact, this is the main reason why we can quite easy adapt the algorithm. The next step, that
is building a laminar family [27, Algorithm 3], is independent on clients that were filtered
out, and so it can be performed on our efficiently encoded instance. The safe clients are
not used later on by the algorithm (they are only the side effect of creating bundles and
later on they only appear in the algorithm’s analysis). Finally, the rounding process of the
algorithm ([27, Section 2.3]) depends on the set of constructed bundles and on the set of
filtered dangerous clients (and the induced laminar family), and as we discussed it is possible
to construct each of the two families with efficient encoding. This completes the proof.

Proof of Lemma 3.2. Let C be an α-approximate solution to I ′. By FT-k-Med-multi(C, j)



we denote be the total cost of the clients Dj,1, Dj,2, . . . , Dj,k constructed through reduction
from Figure 3. Similarly, let OWA-k-Med(C, j) be the cost of the client Dj for C in I. For
each client Dj we have:

FT-k-Med-multi(C, j) =

k∑
r=1

mj,r ·
(

r∑
i=1

c→i (C, j)

)
=

k∑
r=1

r∑
i=1

mj,r · c→i (C, j)

=

k∑
r=1

r∑
i=1

mj,r · c→i (C, j) =

k∑
i=1

k∑
r=i

mj,r · c→i (C, j)

=

k∑
i=1

(
c→i (C, j) ·

k∑
r=i

mj,r

)

=

k∑
i=1

c→i (C, j) · wi ·Q = Q ·OWA-k-Med(C, j).

Let C∗I and C∗I′ be optimal solutions for I and I ′, respectively. By the same reasoning, we
have that:

FT-k-Med-multi(C∗I , j) = Q ·OWA-k-Med(C∗I , j).

And, thus, that:∑
Dj∈D

OWA-k-Med(C, j) =
∑
Dj∈D

1

Q
FT-k-Med-multi(C, j)

≤ α 1

Q

∑
Dj∈D

FT-k-Med-multi(C∗I′ , j) ≤ α
1

Q

∑
Dj∈D

FT-k-Med-multi(C∗I , j)

= α
∑
Dj∈D

OWA-k-Med(C∗I , j).

This completes the proof.

E Hardness of approximation

In the main text we have shown that the OWA k-Median problem with the harmonic
sequence of weights admits very good approximations. In this section we show that for many
other natural sequences of weights, the considered problem is hard to approximate, unless we
introduce additional assumptions, such as the assumptions that the costs satisfy the triangle
inequality. Our hardness results hold already for 0/1 costs.

Let us start by considering the OWA k-Median problem for a certain specific class of

weights. For each k ∈ N, let w(k) =
(
w

(k)
1 , . . . , w

(k)
k

)
be a sequence of weights used in OWA

k-Median. Fix λ ∈ (0, 1). We say that the clients care only about the λ-fraction of facilities

if for each k it holds that w
(k)
i = 0 whenever i > λk. For instance, we say that the clients

care only about 90% of facilities if the cost of each client from a set C does not depend on
the 10% of worst facilities in C.

First, we prove a simple result which says that if there exists λ such that the clients
care only about the λ-fraction of facilities, and if the costs of clients from facilities can be
arbitrary, in particular if they cannot be represented as distances satisfying the triangle
inequality, then the problem does not admit any approximation.



Theorem E.1. Fix λ ∈ (0, 1) and consider the problem OWA k-Median where clients care
only about the λ-fraction of facilities. For any positive computable function α, there exists
no polynomial-time α-approximation algorithm for OWA k-Median, unless P = NP.

Proof. Let us fix a function α and for the sake of contradiction, let us assume that there
exists a polynomial time α-approximation algorithm A for OWA k-Median. We will show
that A can be used to find exact solutions to the exact set cover problem, X3C. This will
stay in contradiction with the fact that X3C is NP-hard [26].

Let I be an instance of X3C, where we are given a set of 3n elements E = {e1, . . . , e3n},
and a collection S of subsets of E such that each set in S contains exactly 3 elements from
E. We ask if there exists a subcollection C of n subsets from S such that each element from
E belongs to exactly one set from C.

From I we construct an instance of OWA k-Median in the following way. First, we

set the size of the committee k =
⌈

n
1−λ

⌉
. Let p be the index of the last positive weight in

the sequence w(k). Since clients care only about the λ-fraction of facilities, we know that
k − p > k − λk ≥ n. Our set of facilities consists of three groups F = S ∪H ∪H ′, i.e., we
have facilities which correspond to subsets from S and two groups of dummy facilities. We
set |H| = p− 1 and |H ′| = k− n− p+ 1. Our set of clients consist of two groups D = E ∪G,
where G is the set of dummy clients with |G| = |H ′|. Let us now describe the preferences of
clients over facilities. For each client j ∈ F and each dummy facility i ∈ H we set ci,j = 0.
Further, for each non-dummy client j ∈ E and a non-dummy facility i ∈ S we set ci,j = 0 if
and only if j ∈ i. Finally, we match dummy clients from G with dummy facilities from H ′

so that each client is matched to exactly one facility and each facility to exactly one client,
and set ci,j = 0 whenever i and j are matched. For all remaining pairs (i, j) we set ci,j = 1.

Let C∗ be an optimal set of facilities. We will show that the total cost of clients from C∗

is 0 if and only if there exists an exact cover for our initial instance I.
( =⇒ ) Assume there exists an exact cover in I—let C denote the collection of n subsets

covering all the elements. If we set C∗ = C ∪H ∪H ′, then each client has exactly p facilities
with distance 0. Note that |C∗| = n+ p− 1 + k − n− p+ 1 = k. For the remaining k − p
facilities the weights are equal to zero. Thus, the total cost of clients from C∗ is equal to 0.

(⇐= ) Assume the total cost of clients from C∗ is equal to 0. In particular, the clients
from G need to have cost equal to 0, so H ∪H ′ must be the part of a winning committee.
Similarly, the remaining n facilities must correspond to the cover of E.

If there exists a winning committee with the total cost of clients equal to 0, then algorithm
A would find such committee. This completes the proof.

Hence any approximation for OWA k-Median can recognize whether the instance is YES-
instance. Next, we prove a more specific hardness result for the p-geometric sequence of
weights.

Theorem E.2. Consider the OWA k-Median problem for the p-geometric sequence of
weights. For each c < 1, there exists no polynomial-time (n−c ln(p)−1)-approximation algorithm
for the problem unless P = NP.

Proof. Let us fix c < c′ < 1. For the sake of contradiction, let us assume that there exists
a polynomial-time (n−c ln(p)−1)-approximation algorithm A for our problem. We will show
that this algorithm can be used as an c′ ln(n)-approximation algorithm for the Set Cover
problem, which, unless P = NP, will stay in contradiction with the approximation threshold
established by Dinur et al. [18].

Let us take an instance I of the Set Cover problem. In I we are given a set of n elements
E, a collection S of subsets of E. We ask about minimal k such that there is a subcollection



C of k subsets from S such that each element from E belongs to some set from C. Without
loss of generality we can assume that n is big enough to satisfy c ln(n) + 1 < c′ ln(n).

From I we construct an instance I ′ of OWA k-Median as follows. We set P =
∑k
i=1 p

i−1

and x = dc ln(n) + 1e, thus c ln(n) + 1 ≤ x ≤ c′ ln(n). For each element e ∈ E we introduce
one client. Further, for each set S ∈ S we introduce x facilities S1, . . . , Sx. The cost of
a client e for a facility Si is equal to 0 if and only if e ∈ S; otherwise, it is equal to one.
Finally, we guess the optimal solution k to I, and set the size of the desired set of facilities
to kfac = k · x.

Let us assume that there exist a set cover C of size k for the original instance I. What is
the cost of the clients in the optimal solution for I ′? Let us consider the set of kfac facilities
C ′ constructed in the following way: for each set from the cover S ∈ C we take all x facilities
that correspond to S and add them to C ′. Observe that each client has cost equal to zero
from at least x facilities from C ′. Thus, the total cost of clients from C ′ is at most equal to
(recall that P =

∑K
i=1 p

i−1):

wdis(C
′) =

n∑
j=1

wdis(C
′, j) ≤ n

(
px + px+1 + . . .+ pK−1

)
≤

≤ n
(
pc ln(n)+1 + pc ln(n)+2 + . . .+ pK−1

)
< npc ln(n) · P =

= n · eln(p)·c·ln(n) · P = n · nc ln(p) · P = Pnc ln(p)+1.

Now, let us take the set of kfac facilities C ′′ such that some client has cost equal to one
from each facility from C ′′. Then, wdis(C

′′) ≥ P . Thus, an (n−c ln(p)−1)-approximation
algorithm for OWA k-Median with the p-geometric sequence of weights needs to return
a solution where each client has cost equal to zero from at least one facility. From such
solution, however, we can extract at most kfac sets which form a cover of the original instance.
Thus, our algorithm A can be used to find x-approximation solutions for the Set Cover
problem (recall that x < c′ ln(n)), which is impossible under the standard complexity theory
assumptions [18]. This completes the proof.

Using that we obtain

Corollary E.3. There is no polynomial-time constant-factor approximation algorithm for
the OWA k-Median problem for the p-geometric sequence of weights when p < 1/e.
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