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Abstract

In the apportionment problem, a fixed number of seats must be distributed among parties in
proportion to the number of voters supporting each party. We study a generalization of this
setting, in which voters cast approval ballots over parties, such that each voter can support mul-
tiple parties. This approval-based apportionment setting generalizes traditional apportionment
and is a natural restriction of approval-based multiwinner elections, where approval ballots
range over individual candidates. Using techniques from both apportionment and multiwinner
elections, we identify rules that generalize the D’Hondt apportionment method and that satisfy
strong axioms which are generalizations of properties commonly studied in the apportionment
literature. In fact, the rules we discuss provide representation guarantees that are currently out of
reach in the general setting of multiwinner elections: First, we show that core-stable committees
are guaranteed to exist and can be found in polynomial time. Second, we demonstrate that
extended justified representation is compatible with committee monotonicity (also known as
house monotonicity).

1 Introduction
The fundamental fairness principle of proportional representation is relevant in a variety of applica-
tions ranging from recommender systems (Lu and Boutilier, 2011) to digital democracy (Brill, 2018).
It features most explicitly in the context of political elections, which is the language we adopt for
this paper. In this context, proportional representation prescribes that the number of representatives
championing a particular opinion in a legislature be proportional to the number of voters who favor
that opinion.

In most democratic institutions, proportional representation is implemented via party-list
elections: Candidates are members of political parties and voters are asked to indicate their favorite
party; each party is then allocated a number of seats that is (approximately) proportional to the
number of votes it received. The problem of transforming a voting outcome into a distribution
of seats is known as apportionment. Analyzing the advantages and disadvantages of different
apportionment methods has a long and illustrious political history and has given rise to a deep and
elegant mathematical theory (Balinski and Young, 1982; Pukelsheim, 2014).

Unfortunately, forcing voters to choose a single party prevents them from communicating any
preferences beyond their most preferred alternative. For example, if a voter feels equally well
represented by several political parties, there is no way to express this preference within the voting
system. In the context of single-winner elections, approval voting has been put forward as a solution
to this problem as it strikes an attractive compromise between simplicity and expressivity (Brams
and Fishburn, 2007; Laslier and Sanver, 2010). Under approval voting, each voter is asked to specify
a set of candidates she “approves of,” i.e., voters can arbitrarily partition the set of candidates into
approved candidates and disapproved ones. Proponents of approval voting argue that its introduction
could increase voter turnout, “help elect the strongest candidate,” and “add legitimacy to the outcome”
of an election (Brams and Fishburn, 2007, pp. 4–8).

Due to the practical and theoretical appeal of approval voting in single-winner elections, a number
of scholars have suggested to also use approval voting for multiwinner elections, in which a fixed
number of candidates needs to be elected (Kilgour and Marshall, 2012). In contrast to the single-
winner setting, where the straightforward voting rule “choose the candidate approved by the highest
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number of voters” enjoys a strong axiomatic foundation (Fishburn, 1978), several ways of aggregating
approval ballots have been proposed in the multiwinner setting (Kilgour and Marshall, 2012; Lackner
and Skowron, 2020).

Most studies of approval-based multiwinner elections assume that voters directly express their
preference over individual candidates; we refer to this setting as candidate-approval elections. This
assumption runs counter to widespread democratic practice, in which candidates belong to political
parties and voters indicate preferences over these parties (which induce implicit preferences over
candidates). In this paper, we therefore study party-approval elections, in which voters express
approval votes over parties and a given number of seats must be distributed among the parties. We
refer to the process of allocating these seats as approval-based apportionment.

We believe that party-approval elections are a promising framework for legislative elections
in the real world. Allowing voters to express approval votes over parties enables the aggregation
mechanism to coordinate like-minded voters. For example, two blocks of voters might currently
vote for parties that they mutually disapprove of. Using approval ballots could reveal that the blocks
jointly approve a party of more general appeal; allocating more seats to this party leads to mutual
gain. This cooperation is particularly necessary for small minority opinions that are not centrally
coordinated. In such cases, finding a commonly approved party can make the difference between
being represented or votes being wasted because the individual parties receive insufficient support.

One aspect that makes it easier to transition from party-list elections to party-approval elections
(rather than to candidate-approval elections) is that party-approval elections can be implemented
as closed-list systems. That is, parties can retain the power to choose the ordering in which their
candidates are allocated seats, which parties have in many current democratic systems around the
world. By contrast, candidate-approval elections necessarily confer this power to the voters (leading
to an open-list system), which might give parties an incentive to oppose a change of the voting
system. Of course, party-approval elections are compatible with an open-list approach, since we can
run a secondary mechanism alongside the party-approval election to determine the order of party
candidates.

1.1 Related Work
To the best of our knowledge, this paper is the first to formally develop and systematically study
approval-based apportionment. That is not to say that the idea of expressing and aggregating approval
votes over parties has not been considered before. Indeed, several scholars have explored possible
generalizations of existing aggregation procedures.

For instance, Brams et al. (2019) study multiwinner approval rules that are inspired by classical
apportionment methods. Besides the setting of candidate approval, they explicitly consider the case
where voters cast party-approval votes. They conclude that these rules could “encourage coalitions
across party or factional lines, thereby diminishing gridlock and promoting consensus.”

Such desire for compromise is only one motivation for considering party-approval elections, as
exemplified by recent work by Speroni di Fenizio and Gewurz (2019). To allow for more efficient
governing, they aim to concentrate the power of a legislature in the hands of few big parties, while
nonetheless preserving the principle of proportional representation. To this end, they let voters cast
party-approval votes and transform these votes into a party-list election by assigning each voter to
one of her approved parties. One method for doing this (referred to as majoritarian portioning later
in this paper) assigns voters to parties in such a way that the strongest party has as many votes as
possible.

Several other papers consider extensions of approval-based voting rules to accommodate party-
approval elections: In their paper introducing the satisfaction approval voting rule, Brams and Kilgour
(2014) also discuss a variant based on party-approval votes. Mora and Oliver (2015) study a version
of Phragmén’s sequential rule (Phragmén, 1894) in which so-called “collective candidatures” can
be allocated more then one seat, and analyze the rule’s limit behavior as the number of seats grows
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Figure 1: Relations between the different settings of multiwinner elections. An arrow from X to Y signifies that
X is a generalization of Y . The relationship corresponding to arrow (iii) has been explored by Brill et al. (2018).
We establish and explore the relationship (i) in Section 3 and the relationship (ii) in Section 4.

large. This party version of Phragmén’s rule is further analyzed by Janson and Öberg (2019), who
also consider a party version of Thiele’s sequential rule (Thiele, 1895). Each of these papers studies a
specific rule, whereas our aim is to explore the party-approval setting in its own right.

1.2 Relation to Other Settings
Party-approval elections can be positioned between two well-studied voting settings (see Figure 1).

First, approval-based apportionment generalizes standard apportionment, which corresponds to
party-approval elections in which all approval sets are singletons. This relation (depicted as arrow
(i) in Figure 1) provides a generic two-step approach to define aggregation rules for approval-based
apportionment problems: transform a party-approval instance to an apportionment instance, and then
apply an apportionment method. In Section 3, we employ this approach to construct approval-based
apportionment methods satisfying desirable properties.

Second, our setting can be viewed as a special case of approval-based multiwinner voting, in
which voters cast candidate-approval votes. A party-approval election can be embedded in this setting
by replacing each party by multiple candidates belonging to this party, and by interpreting a voter’s
approval of a party as approval of all of its candidates. This embedding establishes party-approval
elections as a subdomain of candidate-approval elections (see arrow (ii) in Figure 1). In Section 4,
we explore the axiomatic and computational ramifications of this domain restriction.

1.3 Contributions
In this paper, we formally introduce the setting of approval-based apportionment and explore different
possibilities of constructing axiomatically desirable aggregation methods for this setting. Besides its
conceptual appeal, this setting is also interesting from a technical perspective.

Exploiting the relations described in Section 1.2, we resolve problems that remain open in the
more general setting of candidate-approval elections. First, we prove that committee monotonicity is
compatible with extended justified representation (a representation axiom proposed by Aziz et al.,
2017) by providing a rule that satisfies both properties. Second, we show that the core of an approval-
based apportionment problem is always nonempty, and that a popular multiwinner rule known as
Proportional Approval Voting (PAV) always returns a core-stable committee. In addition, we present
a polynomial-time algorithm that constructs a core-stable committee.



While some familiar multiwinner rules (in particular, PAV) provide stronger representation
guarantees when applied in the party-approval setting, this is not the case for most other known
rules. For a wide range of multiwinner voting rules, we give examples that show that their axiomatic
guarantees do not improve in the party-approval setting. From a computational complexity perspective,
we show that some rules known to be NP-hard in the candidate-approval setting remain NP-hard to
evaluate in the party-approval setting. While calculating voting rules does not appear to become easier
in party-approval, we find that it becomes computationally easier to reason about proportionality
axioms. In particular, we show that it becomes tractable to check whether a given committee is
proportional, in the sense of providing extended justified representation or the weaker axiom of
proportional justified representation. The analogs of these problems for candidate-approval elections
are NP-hard.

2 The Model
A party-approval election is a tuple (N,P,A, k) consisting of a set of voters N = {1, . . . , n}, a
finite set of parties P , a ballot profile A = (A1, . . . , An) where each ballot Ai ⊆ P is the set of
parties approved by voter i, and the committee size k ∈ N. We assume that Ai 6= ∅ for all i ∈ N .
When considering computational problems, we assume that k is encoded in unary (see Footnote 5).

A committee in this setting is a multiset W : P → N over parties, which determines the
number of seats W (p) assigned to each party p ∈ P . The size of a committee W is given by
|W | =

∑
p∈P W (p), and we denote multiset addition and subtraction by + and −, respectively. A

party-approval rule is a function that takes a party-approval election (N,P,A, k) as input and returns
a committee W of valid size |W | = k.1

In our axiomatic study of party-approval rules, we focus on axioms capturing proportional
representation: proportional justified representation (Sánchez-Fernández et al., 2017b), extended
justified representation, and core stability (Aziz et al., 2017). These axioms are derived from their
analogs in multiwinner elections (see Section 4.2) and can be defined in terms of quota requirements.

For a party-approval election (N,P,A, k) and a subset S ⊆ N of voters, define the quota of S as
q(S) = bk · |S|/nc. Intuitively, q(S) corresponds to the number of seats that the group S “deserves”
to be represented by (rounded down).

Definition 1. A committee W : P → N provides extended justified representation (EJR) for a
party-approval election (N,P,A, k) if there is no subset S ⊆ N of voters such that

⋂
i∈S Ai 6= ∅

and
∑

p∈Ai
W (p) < q(S) for all i ∈ S. W provides proportional justified representation (PJR), if

there is no subset S ⊆ N of voters such that
⋂

i∈S Ai 6= ∅ and
∑

p∈
⋃

i∈SAi
W (p) < q(S).

In words, EJR requires that for every voter group S with a commonly approved party, at least one
voter of the group should be represented by q(S) many candidates. The PJR requirement for such
groups is strictly weaker: the committee should contain at least q(S) candidates from parties approved
by some voter in S. Therefore, a committee providing EJR also provides PJR. A party-approval rule
is said to satisfy EJR (respectively, PJR) if it only produces committees providing EJR (respectively,
PJR).

We can obtain a stronger representation axiom by removing the requirement of a commonly
approved party.

Definition 2. A committee W : P → N is core stable for a party-approval election (N,P,A, k)
if there is no nonempty subset S ⊆ N and committee T : P → N of size |T | 6 q(S) such that∑

p∈Ai
T (p) >

∑
p∈Ai

W (p) for all i ∈ S. The core of a party-approval election is defined as the
set of all core-stable committees.

1This definition implies that rules are resolute, that is, only a single committee is returned. In the case of a tie between
multiple committees, a tiebreaking mechanism is necessary. Our results hold independently of the choice of a specific
tiebreaking mechanism.



Core stability requires adequate representation even for voter groups that cannot agree on a
common party, by ruling out the possibility that the group can deviate to a smaller committee that
represents all voters in the group strictly better. It follows from the definitions that core stability is a
stronger requirement than EJR: If a committee violates EJR, there is a group S that would prefer any
committee of size q(S) that assigns all seats to the commonly approved party.

A final, non-representational axiom that we will discuss is committee monotonicity (e.g., Barberà
and Coelho, 2008; Elkind et al., 2017). A party-approval rule f satisfies this axiom if, for all party-
approval elections (N,P,A, k), it holds that f(N,P,A, k) ⊆ f(N,P,A, k + 1). An analogous
property is known as house monotonicity in the apportionment literature. Committee monotonic rules
avoid the so-called Alabama paradox, in which a party loses a seat when the committee size increases.
Besides avoiding this paradox, committee monotonic rules have the advantage that they can be used
to construct proportional rankings (Skowron et al., 2017).

3 Constructing Party-Approval Rules via Portioning and Ap-
portionment

Party-approval elections are a generalization of party-list elections, which can be thought of as
party-approval elections in which all approval sets are singletons. Since there is a rich body of
research on apportionment methods, it is natural to examine whether we can employ these methods
for our setting as well. To use them, we will need to translate party-approval elections into the
party-list domain on which apportionment methods operate. This translation thus needs to transform
a collection of approval votes over parties into vote shares for each party. Motivated by time sharing,
Bogomolnaia et al. (2005) have developed a theory of such transformation rules, further studied by
Duddy (2015) and Aziz et al. (2019). We will refer to this framework as portioning.

The approach explored in this section, then, divides the construction of a party-approval rule into
two independent steps: (1) portioning, which maps a party-approval election to a vector of parties’
shares; followed by (2) apportionment, which transforms the shares into a seat distribution.

Both the portioning and the apportionment literature have discussed representation axioms similar
in spirit to EJR, PJR, and core stability. For both settings, several rules have been found to satisfy
these properties. One might hope that by composing two rules that are each representative, we obtain
a party-approval rule that is also representative (and satisfies, say, EJR). If we succeed in finding
such a combination, it is likely that the resulting voting rule will automatically satisfy committee
monotonicity since most apportionment methods satisfy this property. In the general candidate-
approval setting (considered in Section 4), the existence of a rule satisfying both EJR and committee
monotonicity is an open problem.

3.1 Preliminaries
We start by introducing relevant notions from the literature of portioning (Bogomolnaia et al., 2005;
Aziz et al., 2019) and apportionment (Balinski and Young, 1982; Pukelsheim, 2014), with notation
suitably adjusted to our setting.

Portioning

A portioning problem is a triple (N,P,A), just as in party-approval voting but without a committee
size. A portioning is a function r : P → [0, 1] with

∑
p∈P r(p) = 1. We interpret r(p) as the vote

share of party p. A portioning method maps each portioning problem (N,P,A) to a portioning.
Our minimum requirement on portioning methods will be that they uphold proportionality if all

approval sets are singletons, i.e., if we are already in the party-list domain. Formally, we say that a
portioning method is faithful if for all (N,P,A) with |Ai| = 1 for all i ∈ N , the resulting portioning



r satisfies r(p) = |{i ∈ N | Ai = {p}}|/n for all p ∈ P . Among the portioning methods considered
by Aziz et al. (2019), only three are faithful. They are defined as follows.

Conditional utilitarian portioning selects, for each voter i, pi as a party in Ai approved by the
highest number of voters. Then, r(p) = |{i ∈ N | pi = p}|/n for all p ∈ P .

Random priority computes n! portionings, one for each permutation σ ofN , and returns their average.
The portioning for σ = (i1, . . . , in) maximizes

∑
p∈Ai1

r(p), breaking ties by maximizing∑
p∈Ai2

r(p), and so forth.

Nash portioning selects the portioning r maximizing the Nash welfare
∏

i∈N
(∑

p∈Ai
r(p)

)
.

On first sight, Nash portioning seems particularly promising because it satisfies portioning versions
of core stability and EJR (Aziz et al., 2019; Guerdjikova and Nehring, 2014). Concretely, it satisfies
a property called average fair share introduced by Aziz et al. (2019), which requires that there is
no subset S ⊆ N of voters such that

⋂
i∈S Ai 6= ∅ and 1

|S|
∑

i∈S
∑

p∈Ai
r(p) < |S|/|N |. However,

despite these promising properties, we will see that Nash portioning does not work for our purposes.
Instead, we will need to make use of a more recent portioning approach, which was proposed by
Speroni di Fenizio and Gewurz (2019) in the context of party-approval voting.

Majoritarian portioning proceeds in rounds j = 1, 2, . . . . Initially, all parties and voters are active.
In iteration j, we select the active party pj that is approved by the highest number of active
voters. Let Nj be the set of active voters who approve pj . Then, set r(pj) to |Nj |/n, and mark
pj and all voters in Nj as inactive. If active voters remain, the next iteration is started; else, r
is returned.

Under majoritarian portioning, the approval preferences of voters who have been assigned to a party
are ignored in further iterations. Note that conditional utilitarian portioning can similarly be seen as a
sequential method, in which the preferences of inactive voters are not ignored.

Apportionment

An apportionment problem is a tuple (P, r, k), which consists of a finite set of parties P , a portioning
r : P → [0, 1] specifying the vote shares of parties, and a committee size k ∈ N. Committees are
defined as for party-approval elections, and an apportionment method maps apportionment problems
to committees W of size k.

An apportionment method satisfies lower quota if each party p is always allocated at least
bk · r(p)c seats in the committee. Furthermore, an apportionment method f is committee monotonic
if f(P, r, k) ⊆ f(P, r, k + 1) for every apportionment problem (P, r, k).

Among the standard apportionment methods, only two satisfy both lower quota and committee
monotonicity: the D’Hondt method (aka Jefferson method) and the quota method.2 The D’Hondt
method assigns the k seats iteratively, each time giving the next seat to the party p with the largest
quotient r(p)/(s(p) + 1), where s(p) denotes the number of seats already assigned to p. The quota
method (Balinski and Young, 1975) is identical to the D’Hondt method, except that, in the jth
iteration, only parties p satisfying s(p)/j < r(p) are eligible for the allocation of the next seat.

Composition

If we take any portioning method and any apportionment method, we can compose them to obtain a
party-approval rule. Formally, the composition of portioning method R and apportionment method
M maps each party-approval election (N,P,A, k) to a committee M(P,R(N,P,A), k). Note that if

2All other divisor methods fail lower quota, and the Hamilton method is not committee monotonic (Balinski and Young,
1982).



the apportionment method is committee monotonic then so is the composed rule, since the portioning
is independent of k.

3.2 Composed Rules That Fail EJR
Perhaps surprisingly, many pairs of portioning and apportionment methods fail EJR. This is certainly
true if the individual parts are not representative themselves. For example, if an apportionment
method M properly fails lower quota (in the sense that there is a rational-valued input r on which
lower quota is violated), then one can construct an example profile on which any composed rule using
M fails EJR: Construct a party-approval election with singleton approval sets in which the voter
counts are proportional to the shares in the counter-example r. Then any faithful portioning method,
applied to this election, must return r. Since M fails lower quota on r, the resulting committee will
violate EJR. By a similar argument, an apportionment method that violates committee monotonicity
on some rational portioning will, when composed with a faithful portioning method, give rise to a
party-approval rule that fails committee monotonicity.

As mentioned above, among the named and studied apportionment methods, only two satisfy
both lower quota and committee monotonicity: D’Hondt and the quota method. However, it turns
out that the composition of either option with the conditional-utilitarian, random-priority, or Nash
portioning methods fails EJR, as the following examples show.

Example 1. Let n = k = 6, P = {p0, p1, p2, p3}, and consider the ballot profile A =
({p0}, {p0}, {p0, p1, p2}, {p0, p1, p2}, {p1, p3}, {p2, p3}).

Then, the conditional utilitarian solution sets r(p0) = 4/6, r(p1) = r(p2) = 1/6, and r(p3) = 0.
Any apportionment method satisfying lower quota allocates four seats to p0, one each to p1 and p2,
and none to p3. The resulting committee does not provide EJR since the last two voters, who jointly
approve p3, have a quota of q({5, 6}) = 2 that is not met.

Example 2. Let n = k = 6, P = {p0, p1, p2, p3}, and consider the ballot profile A =
({p0}, {p0}, {p0, p1, p2}, {p0, p1, p3}, {p1}, {p2, p3}).

Random priority chooses the portioning r(p0) = 23/45, r(p1) = 23/90, and r(p2) = r(p3) =
7/60. Both D’Hondt and the quota method allocate four seats to p0, two seats to p1, and none
to the other two parties. This clearly violates the claim to representation of the sixth voter (with
q({6}) = 1).

Nash portioning produces a fairly similar portioning, with r(p0) ≈ 0.5302, r(p1) ≈ 0.2651, and
r(p2) = r(p3) ≈ 0.1023. D’Hondt and the quota method produce the same committee as above,
leading to the same EJR violation.

At first glance, it might be surprising that Nash portioning combined with a lower-quota appor-
tionment method violates EJR (and even the weaker axiom PJR). Indeed, Nash portioning satisfies
core stability in the portioning setting, which is a strong notion of proportionality, and the lower-quota
property limits the rounding losses when moving from the portioning to a committee. As expected,
in the election of Example 2, the portioning produced by Nash gives sufficient representation to the
sixth voter since r(p2) + r(p3) ≈ 0.2047 > 1/6. However, since both r(p2) and r(p3) are below
1/6 on their own, lower quota does not apply to either of the two parties, and the sixth voter loses all
representation in the apportionment step.

3.3 Composed Rules That Satisfy EJR
As we have seen, several initially promising portioning methods fail to compose to a rule that satisfies
EJR. One reason is that these portioning methods are happy to assign small shares to several parties.
The apportionment method may round several of those small shares down to zero seats. This can lead
to a failure of EJR when not enough parties obtain a seat. It is difficult for an apportionment method



to avoid this behavior since the portioning step obscures the relationships between different parties
that are apparent from the approval ballots of the voters.

Majoritarian portioning is designed to maximize the seat allocations to the largest parties. Thus,
it tends to avoid the problem we have identified. While it fails the strong representation axioms that
Nash portioning satisfies, this turns out not to be crucial: Composing majoritarian portioning with any
apportionment method satisfying lower quota yields an EJR rule. If we use an apportionment method
that is also committee monotonic, such as D’Hondt or the quota method, we obtain a party-approval
rule that satisfies both EJR and committee monotonicity.3

Theorem 1. Let M be a committee monotonic apportionment method satisfying lower quota. Then,
the party-approval rule composing majoritarian portioning and M satisfies EJR and committee
monotonicity.

Proof. Consider a party-approval election (N,P,A, k) and let r be the outcome of majoritarian
portioning applied to (N,P,A). Let N1, N2, . . . and p1, p2, . . . be the voter groups and parties in
the construction of majoritarian portioning, so that r(pj) = |Nj |/n for all j.

Consider the committee W = M(P, r, k) and suppose that EJR is violated, i.e., that there exists
a group S ⊆ N with

⋂
i∈S Ai 6= ∅ and

∑
p∈Ai

W (p) < q(S) for all i ∈ S.
Let j be minimal such that S ∩Nj 6= ∅. We now show that |S| 6 |Nj |. By the definition of j,

no voter in S approves of any of the parties p1, p2, . . . pj−1; thus, all those voters remain active in
round j. Consider a party p∗ ∈

⋂
i∈S Ai. In the jth iteration of majoritarian portioning, this party

had an approval score (among active agents) of at least |S|. Therefore, the party pj that is chosen
in the jth iteration has an approval score that is at least |S| (of course, p∗ = pj is possible). The
approval score of party pj equals |Nj |. Therefore, |Nj | > |S|.

Since |Nj | > |S|, we have q(Nj) > q(S). Since M satisfies lower quota, it assigns at least
bk · r(pj)c = bk (|Nj |/n)c = q(Nj) seats to party pj . Now consider a voter i ∈ S ∩Nj . Since this
voter approves party pj , we have

∑
p∈Ai

W (p) >W (pj) > q(Nj) > q(S), a contradiction.
This shows that EJR is indeed satisfied; committee monotonicity follows from the committee

monotonicity of M .

While the party-approval rules identified by Theorem 1 satisfy EJR and committee monotonicity,
they do not quite reach our gold standard of representation, i.e., core stability.4

Example 3. Let n = k = 16, P = {p0, . . . , p4}, and consider a ballot profile with the following
approval sets: 4 times {p0, p1}, 3 times {p1, p2}, once {p2}, 4 times {p0, p3}, 3 times {p3, p4}, and
once {p4}. Note the symmetry between p1 and p3, and between p2 and p4. Majoritarian portioning
allocates 1/2 to p0 and 1/4 each to p2 and p4. Any lower-quota apportionment method must translate
this into 8 seats for p0 and 4 seats each for p2 and p4. This committee is not in the core: Let S be the
coalition of all 14 voters who approve multiple parties, and let T allocate 4 seats to p0 and 5 seats
each to p1 and p3. This gives strictly higher representation to all members of the coalition.

The example makes it obvious why majoritarian portioning cannot satisfy the core: All voters
approving of p0 get deactivated after the first round, which makes p2 seem universally preferable
to p1. However, p1 is a useful vehicle for cooperation between the group approving {p0, p1} and
the group approving {p1, p2}. Since majoritarian portioning is blind to this opportunity, it cannot
guarantee core stability.

The example also illustrates the power of core stability: The deviating coalition does not agree on
any single party they support, but would nonetheless benefit from the deviation. There is room for
collaboration, and core stability is sensitive to this demand for better representation.

3As long as the apportionment method is computable in polynomial time (which is the case for D’Hondt and the quota
method), the same holds for the resulting party-approval rule.

4We will show later (see Section 4.3) that every party-approval election has a nonempty core. However, it remains an open
problem whether core stability and committee monotonicity are compatible in the party-approval setting.



4 Constructing Party-Approval Rules via Multiwinner Voting
Rules

In the previous section, we applied tools from apportionment, a more restrictive setting, to our
party-approval setting. Now, we go in the other direction, and apply tools from a more general
setting: As mentioned in Section 1.2, party-approval elections can be viewed as a special case
of candidate-approval elections, i.e., multiwinner elections in which approvals are expressed over
individual candidates rather than parties. After introducing relevant candidate-approval notions,
we show how party-approval elections can be translated into candidate-approval elections. This
embedding allows us to apply established candidate-approval rules to our setting. Exploiting this fact,
we will prove the existence of core-stable committees for party-approval elections.

4.1 Preliminaries
A candidate-approval election is a tuple (N,C,A, k). Just as for party-approval elections, N =
{1, . . . , n} is a set of voters, C is a finite set, A is an n-tuple of nonempty subsets of C, and k ∈ N is
the committee size. The conceptual difference is that C is a set of individual candidates rather than
parties. This difference manifests itself in the definition of a committee because a single candidate
cannot receive multiple seats. That is, a candidate committee W is now simply a subset of C with
cardinality k. (Therefore, it is usually assumed that |C| > k.) A candidate-approval rule is a function
that maps each candidate-approval election to a candidate committee.

A diverse set of such voting rules has been proposed since the late 19th century (Kilgour and
Marshall, 2012; Janson, 2016; Lackner and Skowron, 2020), out of which we will only introduce
the one which we use for our main positive result. Let Hj denote the jth harmonic number, i.e.,
Hj =

∑j
t=1 1/t. Given (N,C,A, k), the candidate-approval rule proportional approval voting

(PAV), introduced by Thiele (1895), chooses a candidate committee W maximizing the PAV score
PAV(W ) =

∑
i∈N H|W∩Ai|.

We now describe EJR, PJR, and core stability in the candidate-approval setting, from which our
versions of these axioms are derived. Recall that q(S) = bk |S|/nc. A candidate committee W
provides EJR if there is no subset S ⊆ N and no integer ` > 0 such that q(S) > `, |

⋂
i∈S Ai| > `,

and |Ai ∩W | < ` for all i ∈ S. A candidate committee W provides PJR if there is no subset
S ⊆ N and no integer ` > 0 such that q(S) > `, |

⋂
i∈S Ai| > `, and |

⋃
i∈S Ai ∩W | < `. (The

requirement |
⋂

i∈S Ai| > ` is often referred to as cohesiveness.) A candidate-approval rule satisfies
EJR (respectively, PJR) if it always produces EJR (respectively, PJR) committees.

The definition of core stability is even closer to the version in party-approval elections: A
candidate committee W is core stable if there is no nonempty group S ⊆ N and no set T ⊆ C of
size |T | 6 q(S) such that |Ai ∩ T | > |Ai ∩W | for all i ∈ S. The core consists of all core-stable
candidate committees.

4.2 Embedding Party-Approval Elections
We have informally argued in Section 1.2 that party-approval elections constitute a subdomain of
candidate-approval elections. We formalize this notion by providing an embedding of party-approval
elections into the candidate-approval domain. Our approach is similar to that of Brill et al. (2018),
who have formalized how apportionment problems can be phrased as candidate-approval elections.

For a given party-approval election (N,P,A, k), we define a corresponding candidate-approval
election (N,C,A′, k) with the same set of voters N and the same committee size k. The
set of candidates contains k many “clone” candidates p(1), . . . , p(k) for each party p ∈ P , so
C =

⋃
p∈P {p(1), . . . , p(k)}. Voter i approves a candidate p(j) in the candidate-approval elec-

tion if and only if she approves the corresponding party p in the party-approval election. Thus,
A′i =

⋃
p∈Ai
{p(1), . . . , p(k)}. This embedding establishes party-approval elections as a subdomain



of candidate-approval elections. As a consequence, we can apply rules and axioms from the more
general candidate-approval setting also in the party-approval setting.

In particular, the generic way to apply a candidate-approval rule for a party-approval election
consists in (1) translating the party-approval election into a candidate-approval election, (2) applying
the candidate-approval rule, and (3) counting the number of chosen clones per party to construct a
committee over parties. For computational purposes, note that since we insisted that k is encoded
in unary, the size of the candidate-approval election is bigger than the size of its corresponding
party-approval election by at most a polynomial factor.5

Having established party-approval elections as a subdomain of candidate-approval elections,
our variants of EJR and core stability (Definitions 1 and 2) are immediately induced by their
candidate-approval counterparts. In particular, any candidate-approval rule satisfying an axiom in the
candidate-approval setting will satisfy the corresponding axiom in the party-approval setting as well.
Note that, by restricting our view to party approval, the cohesiveness requirement of EJR is reduced
to requiring a single commonly approved party.

Since party-list elections constitute a subdomain of party-approval elections (and thus of candidate-
approval elections), candidate-approval rules can also be applied to apportionment problems (see
Figure 1). Several candidate-approval rules including PAV coincide with the D’Hondt method when
applied to party-list elections (Brill et al., 2018).

4.3 PAV Guarantees Core Stability
Core stability is particularly attractive because blocking coalitions are not required to unanimously
approve any single party. They only need to be able to coordinate for mutual gain. Our earlier
Example 3 illustrates how a coalition might deviate in spite of not agreeing on any approved party.

Unfortunately, it is still unknown whether core-stable candidate committees exist for all candidate-
approval elections.6 All standard candidate-approval rules either already fail weaker representation
axioms such as EJR, or are known to fail core stability. In particular, Aziz et al. (2017) have shown
that PAV satisfies EJR, but may produce non-core-stable candidate committees even for candidate-
approval elections for which core-stable candidate committees are known to exist. Peters and Skowron
(2020) show that a large class of candidate-approval rules (so-called welfarist rules) must all fail core
stability.

In contrast, we show that core stability can always be achieved in the party-approval setting. In
particular, the committee selected by PAV is always core stable for party-approval elections. Our
proof uses a similar technique to the existing proof that PAV satisfies EJR for candidate-approval
elections (Aziz et al., 2017, Theorem 10).

Theorem 2. For every party-approval election, PAV chooses a core-stable committee.

Proof. Consider a party-approval election (N,P,A, k) and let W : P → N be the committee
selected by PAV. Assume for contradiction that W is not core stable. Then, there is a nonempty
coalition S and a committee T : P → N such that |T | 6 k |S|/n and

∑
p∈Ai

T (p) >
∑

p∈Ai
W (p)

for every voter i ∈ S.
Let ui(W ) denote the number of seats in W that are allocated to parties approved by voter i,

i.e., ui(W ) =
∑

p∈Ai
W (p). Furthermore, for a party p with W (p) > 0, we let ∆(p,W ) denote

the marginal contribution to the PAV score of allocating a seat to p, i.e., ∆(p,W ) = PAV(W ) −
5For candidate-approval elections, it does not make sense to have more seats than candidates, whereas for party-approval

elections it is natural to have more seats than parties. If k was encoded in binary, then the derived candidate-approval instance
would have exponential size. Thus, even simple sequential candidate-approval algorithms would then have exponential
running time. This would complicate running-time comparisons between the candidate-approval and party-approval setting
and would blur the intuitive distinction between simple and complex algorithms. Encoding k in unary sidesteps this technical
complication.

6However, it is known that approximately core-stable committees exist, for several different ways of approximating the
core notion (Fain et al., 2018; Cheng et al., 2019; Jiang et al., 2020; Peters and Skowron, 2020).



PAV(W − {p}). Observe that ∆(p,W ) =
∑

i∈Np
1/ui(W ), where Np = {i ∈ N | p ∈ Ai}. The

sum of all marginal contributions satisfies∑
p∈P

W (p) ∆(p,W ) =
∑
p∈P

∑
i∈Np

W (p)

ui(W )

=
∑
i∈N

∑
p∈Ai

W (p)

ui(W )
= |{i ∈ N | ui(W ) > 0}| 6 n.

Note that terms ∆(p,W ) for W (p) = 0 and quotients 1/ui(W ) for ui(W ) = 0 are undefined in the
calculation above, but that they only appear with factor 0.

It follows that the average marginal contribution of all k seats in W is at most n/k, and conse-
quently, that there has to be a party p1 with a seat in W such that ∆(p1,W ) 6 n/k. Using a similar
argument, we show that there is also a party p2 with T (p2) > 0 which would increase the PAV score
by at least n/k if it received an additional seat in W :∑

p∈P
T (p) ∆(p,W + {p}) =

∑
i∈N

∑
p∈Ai

T (p)

ui(W + {p})

>
∑
i∈S

∑
p∈Ai

T (p)

ui(W + {p})
=
∑
i∈S

∑
p∈Ai

T (p)

ui(W ) + 1

>
∑
i∈S

∑
p∈Ai

T (p)

ui(T )
= |{i ∈ S | ui(T ) > 0}| = |S|.

The second inequality holds because every voter in S strictly increases their utility when deviating
from W to T ; the last equality holds because every voter in S must get some representation in T to
deviate. As desired, it follows that there has to be a party p2 in the support of T with ∆(p2,W +
{p2}) > |S|/|T | > n/k.

If any of these inequalities would be strict, that is, if ∆(p1,W ) < n/k or ∆(p2,W + {p2}) >
n/k, then the committee W − {p1}+ {p2} would have a PAV score of

PAV(W )−∆(p1,W ) + ∆(p2,W−{p1}+{p2})
> PAV(W )−∆(p1,W ) + ∆(p2,W + {p2}) (1)
> PAV(W ),

which would contradict the choice of W .
Else, suppose that ∆(p,W ) = n/k for all parties p in the support ofW and ∆(p,W+{p}) = n/k

for all parties p in the support of T . If there is a party p1 in W that is approved by some voter i ∈ S,
we can choose an arbitrary party p2 from the support of T that i approves as well. Then, for
voter i, the marginal contribution of p2 in W − {p1} + {p2} is 1

ui(W−{p1}+{p2}) = 1
ui(W ) , but

the marginal contribution of p2 in W + {p2} for i is only 1
ui(W+{p2}) = 1

ui(W )+1 . This implies
∆(p2,W−{p1}+{p2}) > ∆(p2,W+{p2}), which makes inequality (1) strict and again contradicts
the optimality of W .

Thus, one has to assume that no voter in S approves any party in the support of W . Pick an
arbitrary p in the support of T , and recall that ∆(p′,W + {p′}) = n/k for all p′ in the support of T .
Thus, all inequalities in the derivation of

∑
p∈P T (p) ∆(p,W + {p}) > |S| above must be equalities,

which implies that this increase in PAV score must solely come from voters in S. Thus, there are at
least n/k voters in S who are not represented at all in W , but commonly approve p. This would be a
violation of EJR, contradicting the fact that PAV satisfies this axiom.

We have thus obtained the main result of this paper.



Corollary 3. The core of a party-approval election is nonempty.

Theorem 2 motivates the question of whether other candidate-approval rules satisfy stronger
representation axioms when restricted to the party-approval subdomain. We have studied this question
for various rules besides PAV, and the answer was always negative; see Appendix C for details.7

An immediate follow-up question to Corollary 3 is whether core-stable committees can be
computed efficiently. PAV committees are known to be NP-hard to compute in the candidate-approval
setting, and we confirm in Appendix B that hardness still holds in the party-approval subdomain.

Equally confronted with the computational complexity of PAV, Aziz et al. (2018) proposed a
local-search variant of PAV, which runs in polynomial time and guarantees EJR in the candidate-
approval setting. Using the same approach, we can find a core-stable committee in the party-approval
setting. We defer the proof to Appendix A.

Theorem 4. Given a party-approval election, a core-stable committee can be computed in polynomial
time.

While the party-approval setting does not reduce the complexity of computing PAV, it allows
us to check efficiently check whether a given committee provides EJR or PJR; both problems are
coNP-hard in the candidate-approval setting (Aziz et al., 2015a, 2018). For EJR, this follows from
coherence becoming simpler for party-approval elections. Our algorithm for checking PJR employs
submodular minimization. For details, we refer to Appendix B.

5 Discussion
In this paper, we have initiated the axiomatic analysis of approval-based apportionment. On a
technical level, it would be interesting to see whether the party-approval domain allows us to satisfy
other combinations of axioms that are not known to be attainable in candidate-approval elections.
For instance, the compatibility between strong representation axioms and certain notions of support
monotonicity is an open problem (Sánchez-Fernández and Fisteus, 2019).

We have presented our setting guided by the application of apportioning parliamentary seats to
political parties. While we believe that this is an attractive application worthy of practical experi-
mentation, our formal setting has other interesting applications. An example would be participatory
budgeting settings in which the provision of items of equal cost is decided, where the items come in
different types. For instance, a university department could decide how to allocate Ph.D. scholarships
across different research projects, in a way that respects the preferences of funding organizations.

As another example, the literature on multiwinner elections suggests many applications to
recommendation problems (Skowron et al., 2016). For instance, one might want to display a limited
number of news articles, movies, or advertisements in a way that fairly represents the preferences
of the audience. These preferences might be expressed not over individual pieces of content, but
over content producers (such as newspapers, studios, or advertising companies), in which case our
setting provides rules that decide how many items should be contributed by each source. Expressing
preferences on the level of content producers is natural in repeated settings, where the relevant
pieces of content change too frequently to elicit voter preferences on each occasion. Besides, content
producers might reserve the right to choose which of their content should be displayed.

In the general candidate-approval setting, the search continues for rules that satisfy EJR and
committee monotonicity, or core stability. But for the applications mentioned above, these guarantees
are already achievable.

7We present relevant counterexamples for the candidate-approval rules seq-Phragmén, leximax-Phragmén, Eneström-
Phragmén, Rule X, and the Maximin Support Method. In addition, for the candidate-approval rules SeqPAV, RevSeqPAV,
var-Phragmén, Approval Voting (AV), SatisfactionAV, MinimaxAV, MonroeAV, GreedyMonroeAV, GreedyAV, HareAV, and
Chamberlin–CourantAV, existing counterexamples can easily be adjusted to the party-approval setting.
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E. Phragmén. Till frågan om en proportionell valmetod. Statsvetenskaplig Tidskrift, 2(2):297–305,
1899.

F. Pukelsheim. Proportional Representation: Apportionment Methods and Their Applications.
Springer, 2014.

L. Sánchez-Fernández and J. A. Fisteus. Monotonicity axioms in approval-based multi-winner voting
rules. In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 485–493, 2019.

L. Sánchez-Fernández, E. Elkind, and M. Lackner. Committees providing EJR can be computed
efficiently. Technical report, arXiv:1704.00356v3 [cs.GT], 2017a.

L. Sánchez-Fernández, E. Elkind, M. Lackner, N. Fernández, J. A. Fisteus, P. Basanta Val, and
P. Skowron. Proportional justified representation. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI), pages 670–676. AAAI Press, 2017b.

L. Sánchez-Fernández, N. Fernández, J. A. Fisteus, and M. Brill. The maximin support method: An
extension of the D’Hondt method to approval-based multiwinner elections. In Proceedings of the
35th AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, 2021. Forthcoming.

P. Skowron, M. Lackner, M. Brill, D. Peters, and E. Elkind. Proportional rankings. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI), pages 409–415. IJCAI,
2017.

P. K. Skowron, P. Faliszewski, and J. Lang. Finding a collective set of items: From proportional
multirepresentation to group recommendation. Artificial Intelligence, 241:191–216, 2016.

P. Speroni di Fenizio and D. A. Gewurz. The space of all proportional voting systems and the most
majoritarian among them. Social Choice and Welfare, 52(4):663–683, 2019.

T. N. Thiele. Om flerfoldsvalg. Oversigt over det Kongelige Danske Videnskabernes Selskabs
Forhandlinger, pages 415–441, 1895.



Markus Brill
Technische Universität Berlin
Berlin, Germany
Email: brill@tu-berlin.de

Paul Gölz
Carnegie Mellon University
Pittsburgh, PA, USA
Email: pgoelz@cs.cmu.edu

Dominik Peters
Harvard University
Cambridge, MA, USA
Email: dpeters@seas.harvard.edu

Ulrike Schmidt-Kraepelin
Technische Universität Berlin
Berlin, Germany
Email: u.schmidt-kraepelin@tu-berlin.de

Kai Wilker
Technische Universität Berlin
Berlin, Germany
Email: wilker@campus.tu-berlin.de

brill@tu-berlin.de
pgoelz@cs.cmu.edu
dpeters@seas.harvard.edu
u.schmidt-kraepelin@tu-berlin.de
wilker@campus.tu-berlin.de


A Proof of Theorem 4
In the following we prove that in the party-approval subdomain, core-stable committees can be
computed in polynomial time. We make use of a local search procedure, introduced for the candidate-
approval setting by Aziz et al. (2018), which approximates a local maximum of the PAV score
function. Aziz et al. (2018) show that their algorithm runs in polynomial time and returns committees
providing EJR. For party-approval elections, we show that, by a minor adjustment of the algorithm,
committees computed by LS-PAV satisfy core stability. In Algorithm 1 we slightly adjust the original
definition by parameterizing the procedure by the approximation threshold ε. Note that, once again,
the algorithm is defined in terms of candidate-approval elections; in Section 4.2 we show how to
apply candidate-approval rules to party-approval elections.

Algorithm 1 LS-PAV (Candidate-Approval Rule)

function LS-PAV(N,C,A, k, ε)
W←k arbitrary candidates from C
while ∃ c ∈W, c′ ∈ C\W such that PAV (W \{c}∪{c′}) > PAV (W )+ε do

W ←W \ {c} ∪ {c′}
end while
return W

end function

Theorem 4. Given a party-approval election, a core-stable committee can be computed in polynomial
time.

Proof. We show that LS-PAV with threshold ε = 1
(1+2(k−1))(k−1)k always selects a committee from

the core when k > 1 and that the procedure runs in polynomial time for this specific choice of ε. This
suffices to prove the Theorem as computing a core-stable committee for k = 1 is trivial. The proof is
an extension of the proof of Theorem 2.

We define the utility of voter i with respect to committeeW as ui(W ) =
∑

p∈Ai
W (p). For some

party-approval election (N,P,A, k) let W be a committee selected by LS-PAV with ε and assume
that W is not core stable. Hence, there exists S ⊆ N , T : P → N, ` ∈ [k] with |S| > ` n/k, |T | = `
and

ui(T ) > ui(W ) ∀ i ∈ S. (2)

We start by reproducing some observations which were done within the beginning of the proof of
Theorem 2. For more detailed arguments, we refer to this proof.

We define the marginal contribution of a party p to the PAV score of W

∆(p,W ) = PAV(W )− PAV(W − {p}) =
∑

i∈N : p∈Ai

1

ui(W )

and obtain an upper bound for the sum of the marginal contribution of all seats in W w.r.t. W , i.e.,∑
p∈P

W (p) ·∆(p,W ) 6 n (3)

and a lower bound for the sum of marginal contribution of all seats in T to W + {p}, where p is the
party corresponding to the seat, i.e.,

|S| 6
∑
p∈P

T (P ) ·∆(p,W + {p}). (4)



Hence, there exists a party p1 in the support of W for which

∆(p1,W ) 6 n/k (5)

holds and there exists a party p2 in the support of T for which

n/k 6 ∆(p2,W + {p2}) (6)

holds. We distinguish three cases:

Case 1: It holds that

1. there exists p1 in the support of W : ∆(p1,W ) 6 n/k − ε or
2. there exists p2 in the support of T : n/k + ε 6 ∆(p2,W + {p2}).

smallskip

First assume that the first condition is satisfied. Then, let p1 be a such a party from the support
of W and p2 such that (6) holds. We define the multiset W ′ = W − {p1}+ {p2} and observe
that

PAV(W ′) = PAV(W )−∆(p1,W ) + ∆(p2,W − {p1}+ {p2})
> PAV(W )−∆(p1,W ) + ∆(p2,W + {p2}) > PAV(W ) + ε,

a contradiction to the assumption that LS-PAV with parameter ε returnedW . The last inequality
follows from case condition 1 and (6).

If the second condition holds, an analogous argument yields a contradiction.

Case 2: It holds that

1. for all p1 in the support of W : ∆(p1,W ) > n/k − ε and
2. for all p2 in the support of T : ∆(p2,W+{p2})<n/k+ε and
3. there exists i ∈ S : ui(W ) > 0.

Applying (3) and case condition 1, we obtain an upper bound for ∆(p1,W ) for any p1 in the
support of W :

∆(p1,W ) 6 n−
∑

p∈P\p1

W (p)∆(p,W )− (W (p1)− 1) ∆(p1,W )

< n− (k − 1)
(n
k
− ε
)

=
n

k
+ (k − 1)ε. (7)

Analogously, applying (4) and case condition 2, we obtain an lower bound for ∆(p2,W+{p2})
for any p2 in the support of T . That is,

∆(p2,W + {p2}) > |S| −
∑

p∈P\p2

T (p) ∆(p,W + {p})− (T (p2)− 1) ∆(p2,W + {p2})

> |S| − (`− 1)
(n
k

+ ε
)
>
n

k
− (k − 1)ε. (8)

Subsequently, choose some i ∈ S with ui(W ) > 0 (existence guaranteed by case condition 3)
and a party p1 from the support of W which is also included in the approval set of voter i, Ai.
Then, choose a party p2 in the support of T which is also approved by voter i but W (p2) <



T (p2) (existence guaranteed by the fact that voter i prefers committee T to committee W ).
Note that in particular, the restrictions made by case conditions 1 and 2 already imply that p1
and p2 are different parties.8

For this choice of p1 and p2 we aim quantify the gap between the contribution of p2 with
respect to W − {p1} + {p2} and the contribution of p2 with respect to W + {p2}. More
precisely, we will show that

∆(p2,W − {p1}+ {p2}) > ∆(p2,W + {p2}) +
1

k(k − 1)
. (9)

To this end recall that voter i supports party p1 and hence

ui(W − {p1}) = ui(W )− 1. (10)

Moreover, for all remaining voters j ∈ N \ {i} it holds that

uj(W − {p1}) 6 uj(W ). (11)

Lastly, from i being in the deviator set S, we know that

ui(W ) 6 k − 1. (12)

Let Np = {i ∈ N : p ∈ Ai} denote the set of supporters of party p and N−ip = Np \ {i}.
Putting it all together, we get

∆(p2,W − {p1}+ {p2}) =
∑

j∈Np2

1

uj(W − {p1}) + 1

=
∑

j∈N−i
p2

1

uj(W − {p1}) + 1
+

1

ui(W − {p1}) + 1

>
∑

j∈N−i
p2

1

uj(W ) + 1
+

1

ui(W )

=
∑

j∈N−i
p2

1

uj(W ) + 1
+

1

ui(W ) + 1
+

1

(ui(W ) + 1)ui(W )

> ∆(p2,W + {p2}) +
1

k(k − 1)
.

The first inequality holds due to (10) and (11) and the second due to (12).

Finally, making use of (7),(8), and (9), we can show

PAV(W ′) = PAV(W )−∆(p1,W ) + ∆(p2,W − {p1}+ {p2})

> PAV(W )−∆(p1,W ) + ∆(p2,W + {p2}) +
1

k(k − 1)

> PAV(W )− n

k
− (k − 1)ε+

n

k
− (k − 1)ε+

1

k(k − 1)

= PAV(W )− 2(k − 1)ε+
1

k(k − 1)

= PAV(W ) + ε,

8Assume for contradiction that p1 and p2 are the same parties. Then, in particular it holds that ∆(p1,W ) = ∆(p2,W )
and ∆(p1,W+{p1}) = ∆(p2,W+{p2}). Consider the difference ∆(p1,W )−∆(p1,W+{p1}). Note that we do not do
any further assumptions in order to derive (9). Preempting (9), we know that ∆(p1,W )−∆(p1,W+{p1}) > 1

k(k−1)
holds,

but on the other hand we get from (7) and (8) that ∆(p1,W )−∆(p1,W + {p1}) 6 2(k− 1)ε = 1
1/2+k(k−1)

< 1
k(k−1)

holds, a contradiction.



a contradiction to the termination of LS-PAV. The first inequality is due to (9) and the second
due to (7) and (8).

Case 3: Finally, suppose that we are neither in Case 1 nor in Case 2. It follows that
∑

i∈S ui(W ) = 0
but
∑

i∈S ui(T ) > |S|. Hence, there exists some p2 in the support of T with at least |S|/|T | >
n/k supporters in S. This is a contradiction to the fact that LS-PAV satisfies EJR which was
shown by Aziz et al. (2018).9

Lastly, we show that LS-PAV for ε = 1
(1+2(k−1))(k−1)k runs in polynomial time in |P |, n, and k.

We follow the proof by Aziz et al. (2018) showing that LS-PAV runs in polynomial time for ε′ = n/k2.
Per iteration of the while loop, the algorithm computes at most mk PAV scores, which can be done
in polynomial time. In order to bound the number of while loops, observe that the PAV score of a
committee is upper bounded by nHk ∈ O(n ln k) and the algorithm improves the PAV score of the
best committee found so far in every iteration by at least ε. Hence, there are O(nk3 ln k) iterations of
the while loop, which suffices to prove the claim.

B Computational Aspects
PAV is NP-hard to compute in the candidate-approval setting (Aziz et al., 2015b). Since party-
approval is a restricted domain, it is in principle possible that PAV is easy for that domain, but, as we
show next, hardness still holds for party-approval elections.

We show NP-hardness by reduction from the NP-complete problem INDEPENDENT SET (Garey
and Johnson, 1979).

INDEPENDENT SET
Input: Undirected graph G = (V,E), t ∈ N.
Question: Is there a vertex subset V ′ ⊆ V of size |V ′| = t such that no two vertices in

V ′ are connected by an edge in G?

This problem is NP-hard even when restricted to cubic graphs (where every vertex has degree 3)
(Garey and Johnson, 1979). Our reduction is a simplified version of the reduction proposed by Aziz
et al. (2015b, Theorem 1).

Theorem 5. For a given threshold s ∈ R, deciding whether there exists a committee with PAV score
at least s is NP-hard in the party-approval subdomain.

Proof. For a given cubic graph G = (V,E) and independent set size t ∈ [|V |], we construct a
party-approval election (N,P,A, k) in the following. For each vertex v ∈ V , there is a party pv ∈ P .
For every edge e = {u, v} ∈ E, there is one voter in N who approves exactly pu and pv . Lastly, we
set k = t.

This construction is clearly polynomial in the size of G. We show that G has an independent set
of size t iff there is a committee W for the election (N,P,A, k) with PAV(W ) > s = 3t.

“⇒”: Assume that G has an independent set V ′ ⊆ V of size |V ′| = t. Consider the committee
W where for every vertex v ∈ V ′, the party pv receives exactly one seat (thus, the committee has
size k = t). Each party pv is approved by three voters, namely all those voters corresponding to
edges that are incident to v. Because V ′ is an independent set, no voter approves more than one party
in the committee, and thus only has a single seat on the committee belonging to an approved party.
Consequently, the total PAV score of W is exactly 3t.

“⇐”: Assume that W is a committee with PAV(W ) > 3t for the constructed election. The PAV
score of a given committee can be computed by starting with the empty committee and then iteratively

9Note that Aziz et al. (2018) show that LS-PAV satisfies EJR when ε′ = n
k2 . Since ε 6 ε′ for all k > 2, their result carries

over to LS-PAV with ε.



adding up the marginal PAV score of each seat within the committee. Every party pv is approved by
exactly three voters and therefore, giving one seat to pv in the committee can increase the PAV score
by at most three. As there are only t seats available, every seat assignment has to increase the PAV
score by exactly three. In order to achieve an increase of three when adding a seat to pv , all the voters
who approve pv must have been previously completely unrepresented. Thus, all parties present in W
receive only one seat and do not have any common approving voters. By construction, this implies
that the set of vertices {v ∈ V : W (pv) > 0} corresponding to W is an independent set of size t.

In the candidate-approval setting, checking whether a given committee satisfies PJR or EJR is
coNP-complete (Aziz et al., 2017, 2018). In other words, given a committee, it is hard to find a
cohesive coalition of voters that is underrepresented. Interestingly, this task is tractable in party-
approval elections. Intuitively, checking becomes easier in party-approval elections because groups
of voters are already cohesive when they have only one approved party in common.

Theorem 6. Given a party-approval election (N,P,A, k) and a committee W : P → N, it can be
checked in polynomial time whether W satisfies EJR.

Proof. We describe a procedure to check whether a given committee W violates EJR. For each party
p ∈ P and each ` ∈ [k], define

Sp,` = {i ∈ N | p ∈ Ai and
∑

p∈Ai
W (p) 6 `}

and check whether ` < q(Sp,`) holds. If so, the set Sp,` induces an EJR violation. This is because⋂
i∈Sp,`

Ai 6= ∅ and
∑

p∈Ai
W (p) 6 ` < q(Sp, `) holds for all i ∈ N .

Now, assume that the condition is not satisfied for any party p ∈ P and any ` ∈ [k]. We claim
that this proves the nonexistence of an EJR violation. Assume for contradiction that there exists
a group S ⊆ N inducing an EJR violation. Let p ∈

⋂
i∈S Ai and ` = maxi∈S{

∑
p∈Ai

W (p)}}.
By definition, S ⊆ Sp,` and hence q(Sp,`) > q(S) > `, a contradiction. A straightforward
implementation of this algorithm has polynomial running time O(|P | k n).

Checking PJR is more involved. We use techniques from submodular optimization. Recall that,
given a finite set U , a function f : 2U → R is submodular if for all subsets X,Y ⊆ U with X ⊆ Y
and for every x ∈ U \ Y , it holds that

f(X ∪ {x})− f(X) > f(Y ∪ {x})− f(Y ).

A submodular function f : 2U → Z can be minimized in time polynomial in |U |+ log max{|f(S)| :
S ⊆ U} (Korte and Vygen, 2018, Theorem 14.19). Applying this result, one can check whether a
party-approval committee provides PJR in polynomial time.

Theorem 7. Given a party-approval election (N,P,A, k) and a committee W : P → N, it can be
checked in polynomial time whether W satisfies PJR.

Proof. We fix a committee W : P → N and define the function h : 2N → N by

h(S) =
∑

p∈
⋃

i∈SAi

W (p),

i.e., for a voter group S ⊆ N , h(S) is the total number of seats that W allocates to parties approved
by some voter in S. Moreover, for each party p ∈ P , we let Np = {i ∈ N | p ∈ Ai} denote the set
of supporters of p. Observe that the committee W satisfies PJR if and only if there is no party p ∈ P
and group of voters S ⊆ Np with h(S) < q(S).

We show how to check in polynomial time for a fixed party p ∈ P , whether there exists such a
group of voters S ⊆ Np. Then, this procedure can be repeated for every party in P .



We define the function f : 2Np → R by

f(S) = h(S)− |S| k
n

and show that f is submodular. To this end let X,Y ⊆ Np with X ⊆ Y and x ∈ Np \ Y . Then,

f(X ∪ {x})− f(X) =
∑
p∈Ax

W (p)−
∑

p∈Ax∩(
⋃

i∈XAi)

W (p)− k

n

>
∑
p∈Ax

W (p)−
∑

p∈Ax∩(
⋃

i∈Y Ai)

W (p)− k

n

= f(Y ∪ {x})− f(Y ),

which suffices to prove the submodularity of f .
By multiplying f by n, we obtain an integer-valued submodular function with max{n · |f(S)| :

S ⊆ Np} 6 kn; thus, we can minimize f in time O(n+ log(kn)).
We show in the following that any S ⊆ Np is the witness of a PJR violation if and only if

f(S) 6 −1.
For the direction from left to right, assume that S ⊆ Np shows a violation of PJR, i.e., h(S) <

q(S). Since both values are integers, we know in particular that h(S) 6 q(S)− 1 =
⌊
|S| kn

⌋
− 1 6

|S| kn − 1 holds. This implies f(S) 6 −1.
For the direction from right to left, fix some S ⊆ Np with f(S) 6 −1. It follows that h(S) 6

|S| kn − 1 < q(S), a violation of PJR for the group S.
The above observation implies a natural procedure to check for a PJR violating group within the

supporters of some party p: Minimize the function f and check whether its minimum is larger than
−1. If not, we have found a violation. If the minimum of f is larger than −1 for all p ∈ P , then W
satisfies PJR. The described algorithm runs in time O

(
|P |(n+ log(kn))

)
.

C Results on Further Multiwinner Voting Rules
In this section we consider other approval-based multiwinner voting rules from the literature and
study their axiomatic properties in the party-approval subdomain. Note that we use the language of
the candidate-approval setting and in particular, W is a set (not a multiset) of candidates. In order to
apply the described rules in the party-approval setting, we can transform any party-approval election
to a candidate-approval election by introducing k clones of each party (see Section 4.2).

We focus on five rules that satisfy PJR in the candidate-approval setting, and briefly comment
on rules not satisfying PJR in Section C.4. For all five rules, we show that they do not satisfy
stronger proportionality axioms in the party-approval subdomain; see Table 1 for a summary of our
observations. Furthermore, we show that leximax-Phragmén remains computationally intractable
when restricting the domain to party-approval elections.

C.1 Phragmén’s Rules
The first three rules we consider are (at least partially) due to Swedish mathematician Lars Edvard
Phragmén.10 The first two rules, leximax-Phragmén and seq-Phragmén, are based on the concept
of load distributions: It is assumed that adding a candidate to the committee incurs one unit of
“load,” which needs to be distributed among the approvers of this candidate. The rules aim to select

10Phragmén’s original papers are written in French or Swedish (Phragmén, 1894, 1895, 1896, 1899); an English account of
this work was composed by Janson (2016).



Rule PJR EJR Core Stability

PAV 3 3 3
seq-Phragmén 3 - -
leximax-Phragmén 3 - -
Eneström-Phragmén 3 - -
Rule X 3 3 -
Maximin support method 3 - -

Table 1: The table contains a summary of the axiomatic properties of candidate-approval rules within the
subdomain of party-approval elections.

committees for which the associated load can be distributed as evenly as possible among the voters,
where the balancedness of a load distribution is measured by the maximal total load of a voter.

Formally, a real-valued vector (xi,c)i∈N,c∈C is a load distribution for a candidate-approval
election (N,C,A, k) if the following properties hold (Brill et al., 2017):

0 6 xi,c 6 1 for i ∈ N, c ∈ C, (13)
xi,c = 0 if c /∈ Ai, (14)∑
i∈N

∑
c∈C

xi,c = k, (15)∑
i∈N

xi,c ∈ {0, 1} for c ∈ C. (16)

In this definition, xi,c represents the load of candidate c that is assigned to voter i. The total load of
voter i is given by

∑
c∈C xi,c. Properties (15) and (16) ensure that each load distribution corresponds

to a committee of size k: candidate c is in the committee if and only if
∑

i∈N xi,c = 1.

The rule leximax-Phragmén globally minimizes the balancedness of load distributions and re-
turns committees corresponding to load distributions (xi,c) such that maxi∈N

∑
c∈Ai

xi,c is minimal.
(Ties are broken in a leximax fashion; for details, we refer to Brill et al. (2017)). In candidate-approval
elections, leximax-Phragmén satisfies EJR and is NP-hard to compute (Brill et al., 2017). We first
show that the computational intractability still holds for party-approval elections.

Theorem 8. Computing a winning committee for leximax-Phragmén is NP-hard in the party-approval
subdomain.

Proof. The notion of load distributions can be adapted in a straightforward manner to party-approval
elections, by replacing constraint (13) with 0 6 xi,p 6 k and constraint (16) with

∑
i∈N xi,p ∈ [k]

for all p ∈ P . We prove that the following problem is NP-hard:

PARTY APPROVAL LEXIMAX-PHRAGMÉN
Input: party-approval election (N,P,A, k), distribution bound s ∈ R
Question: Is there a load distribution (xi,p) such that maxi∈N

∑
p∈Ai

xi,p 6 s?

Similarly to the proof of Theorem 5, we use a polynomial reduction from INDEPENDENT SET
on cubic graphs. The reduction is a variant of the one by Brill et al. (2017), which shows that
leximax-Phragmén is NP-hard in the candidate-approval setting.

Given a cubic graph G = (V,E) and independent set size t ∈ N, we define the following
party-approval election: For every vertex v ∈ V , there is a party pv ∈ P . Additionally, for every
edge e = {u, v} ∈ E, there is a voter in N who approves exactly pu and pv. The committee
shall be as large as the independent set, that is, k = t. To prove that this reduction is sound, we



show that G has an independent set of size t if and only if there is a load distribution (xi,p) with
maxi∈N

∑
p∈Ai

xi,p 6 1
3 .

“⇒”: Assume G has an independent set V ′ ⊆ V of size |V ′| = t. Because G is cubic, every
party in the created election is approved by exactly 3 voters. We define a valid load distribution,
in which every party corresponding to a vertex in V ′ creates a load of 1

3 on every approving voter.
(This also implies that in the induced committee, the parties corresponding to V ′ receive exactly one
seat.) Because V ′ is an independent set, no voter receives load from multiple parties, and hence the
maximal total load of every voter is 1

3 .
“⇐”: Assume there is a load distribution (xi,p) such that maxi∈N

∑
p∈Ai

xi,p 6 1
3 . Since every

party is approved by exactly 3 voters, it follows that xi,p = 1
3 for a voter i who approves a party p

that receives a seat in the induced committee. Consequently, no party receives more than one seat
in the induced committee and no voter approves more than one party in the committee. Thus, the
committee induces the independent set {v ∈ V : xi,pv

>0 for some i ∈ N} of size t.

In order to prove that leximax-Phragmén does not satisfy EJR in the party-approval setting, we
use straightforward adaptation of an example by Aziz et al. (2017) (which also used by Sánchez-
Fernández et al. (2017b) and Brill et al. (2017)).

Proposition 9. leximax-Phragmén does not satisfy EJR for party-approval elections.

Proof. Let n = 8, k = 4, and P = {A,B,C,D,X}. The ballot profile is given by

1× {A,X}, 1× {B,X}, 1× {C,X}, 1× {D,X},
1× {A}, 1× {B}, 1× {C}, 1× {D}.

In this election, leximax-Phragmén gives one seat each to the parties A,B,C,D and thus achieves
a perfectly balanced load distribution. Consider the group consisting of the four voters approving
party X . This group has a quota of 2, but no voter in this group is represented twice in the leximax-
Phragmén committee.

The instance from the proof of Proposition 9 also shows that the incompatibility of EJR and
proportional representation (PR), a proportionality axiom proposed by Sánchez-Fernández et al.
(2017b), remains intact in the party-approval subdomain.

The rule seq-Phragmén constructs committee sequentially, starting with the empty committee
and iteratively adding a candidate that increases the maximum voter load the least. For a formal
definition, we again refer to Brill et al. (2017). Seq-Phragmén does not satisfy EJR in candidate-
elections, and the same is true for the party-approval subdomain.

Proposition 10. seq-Phragmén fails EJR for in party-approval elections.

Proof. Fix a natural number k > 282. We construct a party-approval election with parties
A,B,C,D,E,X . The ballot profile of the n = 2k many voters is as follows:

1× {A,X}, 1× {B,X}, 1× {C,X}, 1× {D,X},
7× {A,B,C,D}, (2k − 11)× {E}.

We first ignore the voters approving E and focus on the 11 remaining voters. Initially, adding a seat to
A,B,C, or D would increase the maximal voter load to 1

8 , while giving X one seat would increase it
to 1

4 . Without loss of generality, assume A receives this seat. Then, giving the next seat to B,C, or D
would increase the maximal load to ( 7

8 + 1) · 18 = 15
64 ; giving it to A would increase it to 1+1

8 = 16
64 ,

and giving the seat to X would increase it to
1
8+1

4 = 18
64 . Thus, we can assume B receives the seat.

Analogously, the next two seats are allocated to C and D, respectively—the exact computations can



Party Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

A 0.125 0.25 0.34570 0.42944 0.50272
B 0.125 0.23438 0.35938 0.44312 0.51639
C 0.125 0.23438 0.33008 0.45508 0.52835
D 0.125 0.23438 0.33008 0.41382 0.53882
X 0.25 0.28125 0.33984 0.42236 0.52582

Table 2: The seq-Phragmén computation for the profile in Proposition 10, when party E is ignored. The table
shows, for each iteration, the maximal voter load that would result from assigning the next seat to a given
party, rounded to five significant digits. The bold entries denote which party receives a seat (with lexicographic
tie-breaking).

Party Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

A 240.0 179.86 179.86 103.26 103.26 103.26 103.26
X1 242.0 120.71 120.71 120.71 120.71 120.71 60.14
X2 190.0 190.0 190.0 68.71 45.96 45.96 45.96
X3 183.0 121.86 121.86 121.86 121.86 121.86 0.57
X4 240.0 240.0 179.61 134.92 13.64 13.64 13.64
X5 241.0 241.0 119.71 119.71 66.13 7.86 7.86
X6 186.0 186.0 125.11 125.11 125.11 3.82 3.82

Table 3: The Eneström-Phragmén computation for the restricted profile in Proposition 11. The table shows the
scores of the parties in the first seven iterations. The bold entries denote the party with the highest score.

be found in Table 2. The fifth seat would then be allocated again to A, increasing the maximal voter
load to 16473

32768 ≈ 0.50272.
Taking the voters for E into account would not affect the computation above, because all voters

who approve E do not approve any other party. Thus, in every seq-Phragmén iteration, either E
receives a seat or one of A,B,C,D receives a seat, until A,B,C,D all have one seat. Adding a
seat to E increases the load of a voter approving E by 1

2k−11 . Thus, if k − 4 seats are allocated
to E, each E-voter would have a load of k−4

2k−11 . Observe that limk→∞
k−4

2k−11 = 1
2 and indeed,

k−4
2k−11 < 0.50272 for all k > 282. Therefore, seq-Phragmén returns a committee where A,B,C,D
each receive one seat and E receives the remaining k − 4 seats.

This is a contradiction to EJR: Since n/k = 2, EJR demands one of the four voters approving X
to be represented at least twice in the committee. This is not the case for the committee selected by
seq-Phragmén.

Additionally, Phragmén developed a voting rule which adapts the well-known single transferable
vote (STV) system to approval ballots. Following Camps et al. (2019), we refer to this method
as Eneström-Phragmén. Like seq-Phragmén, this method selects candidates iteratively. Initially,
every voter has weight of 1 and a candidate’s score is the sum of all approving voters’ weights. In
every round, the candidate with the highest score s is added to the committee. If a voter i with
weight fi approves the candidate who is added to the committee, then their weight will be updated to
fi · (s−n/k)/s if s > n/k, and to 0 otherwise. This process is repeated until all k seats are assigned.

The Eneström-Phragmén rule does not satisfy EJR in candidate-approval elections (Sánchez-
Fernández et al., 2017a; Camps et al., 2019), and the same holds for party-approval elections.

Proposition 11. Eneström-Phragmén fails EJR for in party-approval elections.



Proof. For k > 18, consider an election with n = 120k voters and k+ 1 parties A,X1, . . . , Xk. The
ballot profile is as follows:

120× {A,X1}, 120× {A,X2}, 122× {X1, X3},
70× {X2, X4}, 120× {X4, X5}, 121× {X5, X6},
61× {X3}, 50× {X4}, 65× {X6},
109× {Xj} for j ∈ {7, . . . , 15},
110× {Xj} for j ∈ {16, 17, 18}.

If k > 18, we also add 120 voters approving {Xj} for every j ∈ {19, . . . , k}.
First, consider the parties A,X1, . . . , X6 only. In Table 3, the Eneström-Phragmén calculation

for an election restricted to these parties is described. Note that in the first 6 iterations, the parties
X1, . . . , X6 receive one seat each and all have, when selected as winners, a score that exceeds 120.
Afterwards, every party has a score strictly smaller than 109.

Furthermore, observe that the parties X7, . . . , Xk are all approved by voters who only approve
this one particular party. As a result, their scores are not affected when other parties receive a seat.
The parties X7, . . . , X15 have a score of 109, X16, X17, X18 a score of 110, and X19, . . . , Xk (if
they exist) a score of 120. When any of these parties receive a seat, their score is decreased to 0, as
they are all approved by at most n/k voters.

Together, this shows that Eneström-Phragmén firstly allots one seat each to X1, . . . , X6. Then,
the score of the parties A,X1, . . . , X6 is always smaller than 109, and therefore, X7, . . . , Xk all
receive a seat, which fills the committee. Thus, in the committee selected by Eneström-Phragmén,
X1, . . . , Xk each receive one seat. However, the 240 = 2n/k voters who approve A form a cohesive
group, where at least one voter should be represented by at least two seats according to EJR. This is
not the case in the committee generated by Eneström-Phragmén .

C.2 Rule X
Rule X has been proposed by Peters and Skowron (2020). Rule X is similar to seq-Phragmén, but
satisfies stronger proportionality guarantees. In particular, Rule X satisfies EJR, but not core stability
(Peters and Skowron, 2020). The same holds for the party-approval setting.

Proposition 12. Rule X fails core stability in party-approval elections.

Proof. Consider again the party-approval election from Example 3. In this election, Rule X gives 8
seats to party p0 and 4 seats each to parties p2 and p4. As explained in Example 3, this committee is
not in the core.

C.3 Maximin Support Method
The maximin support method (MMS) has been proposed by Sánchez-Fernández et al. (2021). The
method has strong similarities to seq-Phragmén and selects candidates sequentially. Sánchez-
Fernández et al. (2021) show that MMS satisfies PJR, but not EJR. We adapt their EJR counterexample
to the party-approval setting.

Proposition 13. The maximin support method fails EJR in party-approval elections.

Proof. Let n = 8, k = 4, and P = {A,B,C,X}. The ballot profile is given by

5× {A,X}, 4× {B,X}, 3× {C,X},
2× {A}, 1× {B}, 1× {C}.

In this election, MMS gives one seat each to the parties A,B,C,X . Consider the group consisting of
the 12 voters approving party X . This group has a quota of 3, but no voter in this group is represented
three times in the leximax-Phragmén committee.



C.4 Other Rules
We also considered several other rules from the literature that are known to violate PJR in the candidate
setting: sequential PAV and reverse sequential PAV (Thiele, 1895; Janson, 2016), satisfaction approval
voting (Brams and Kilgour, 2014), minimax approval voting (Brams et al., 2007), var-Phragmén (Brill
et al., 2017), GreedyMonroeAV (Sánchez-Fernández et al., 2017b), Approval Voting, MonroeAV,
GreedyAV, HareAV, and Chamberlin–CourantAV (see (Aziz et al., 2017) for definitions of the latter
five rules). For each of these rules, we verified that they do not satisfy PJR in the party-approval
subdomain either. Since existing counterexamples can be easily adjusted to the party-approval setting,
we omit the details.
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