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Abstract

Electing a single committee of a small size is a classical and well-understood voting
situation. Being interested in a sequence of committees, we introduce and study two
time-dependent multistage models based on simple scoring-based voting. Therein,
we are given a sequence of voting profiles (stages) over the same set of agents and
candidates, and our task is to find a small committee for each stage of high score.
In the conservative model we additionally require that any two consecutive commit-
tees have a small symmetric difference. Analogously, in the revolutionary model we
require large symmetric differences. We prove both models to be NP-hard even for a
constant number of agents, and, based on this, initiate a parameterized complexity
analysis for the most natural parameters and combinations thereof. Among other
results, we prove both models to be in XP yet W[1]-hard regarding the number of
stages, and that being revolutionary seems to be “easier” than being conservative:
If the (upper- resp. lower-) bound on the size of symmetric differences is constant,
the conservative model remains NP-hard while the revolutionary model becomes
polynomial-time solvable.
Keywords: Computational social choice · Plurality · SNTV · symmetric difference ·
parameterized complexity.

1 Introduction
In well-studied classical committee election scenarios, given a set of candidates, we aim at
selecting a small committee that is, in a certain sense, most suitable for a given collection of
preferences over the candidates [7, 14, 26]. However, typically these scenarios concentrate
solely on electing a committee in a single election to the neglect of a time dimension. This
neglect results in serious limitations of the model. For instance, it is not possible to ensure
a relationship (e.g., a small number of changes) between any two consecutive committees.
We tackle this issue by introducing a multistage [21] variant of the problem. In this variant,
a sequence of voting profiles is given, and we seek a sequence of small committees, each
collecting a reasonable number of approvals, such that the difference between consecutive
committees is upper-bounded.

For instance, assume a research community to seek organizers of a series of events (say
those scheduled for next year/term). The organizers must be fixed in advance to allow
enough preparation time. Since events may differ in location and type, not every candidate
fits equally well to every event. Thus, each member (voter) of the community is asked to
name one suitable organizer for each event and, based on this, the goal is to determine
a sequence of organizing committees (one for each event). Naturally, there are three con-
straints: (i) each committee is bounded in size, (ii) each committee has enough support
from the voters, and (iii) at least a certain number of candidates in consecutive committees
overlap to avoid a lack of knowledge transfer jeopardizing effectiveness. We arrive at our
main problem (where SNTV comes from the multiwinner rule “single non-transferable vote”
to which our model boils down in case of just one stage) which is formally defined next.1

1Although most of our result do transfer to the setting of general approval profiles as we will discuss in
the conclusion of the paper, we restrict our voting profiles to be simple “Plurality profiles”, where each agent
approves exactly one candidate, for three reasons. (I) Aiming for positive algorithmic results, it is most
natural to start with the simplest relevant scenario. In the conclusion we discuss that many results actually
transfer to more complex profiles. (II) Plurality profiles are widely accepted in practice. They are used as



Model and Notation. We denote by N and N0 the natural numbers excluding and
including zero, respectively. For a function f : A → B, let f−1(B′) = {a ∈ A | f(a) ∈
B′} for every B′ ⊆ B. We use basic notation from graph theory [11] and parameterized
algorithmics [10]. We are ready to define the main problem of this work as follows.

Multistage SNTV (MSNTV)
Input: A set of agents A = {a1, . . . , an}, a set of candidates C = {c1, . . . , cm}, a se-

quence U = (u1, . . . , uτ ) of τ voting profiles with ut : A → C ∪ {∅}, t ∈ {1, . . . , τ}, and
three integers k ∈ N, ` ∈ N0, and x ∈ N.

Question: Is there a sequence (C1, . . . , Cτ ) of committees Ct ⊆ C such that for all t ∈
{1, . . . , τ} it holds true that |Ct| ≤ k and scoret(Ct) := |u−1t (Ct)| ≥ x, and

|Ct4Ct+1| ≤ ` (1)

holds true for all t ∈ {1, . . . , τ − 1}?

In fact, MSNTV models various practical scenarios, for example in context of buffet selec-
tion and exhibition composition.

Buffet Selection. Suppose we are asked to organize the venue’s breakfast buffet of a mul-
tiday event (like a workshop seminar). We offer different disjoint food bundles (candidates)
for breakfast and ask the participants of the event to share their preferences of which bundle
is their favorite for which day. Due to space constraints, we can offer only at most some
number of bundles in the buffet (committee) simultaneously. Moreover, to stay at low cost
and to avoid food waste, we want that the bundles changing from one day to the next to be
of small number. Clearly, under these constraints, given the collected preferences (voting
profiles) we want at all days to have a high number of participants whose voted bundle made
it into the buffet.

Exhibition Composition. As another example, when planning a multiday exhibition of
sculptures (candidates) in a lobby of a hotel where we are enabled neither to show at once
all the sculptures that we want to exhibit, nor to exchange arbitrarily many sculptures be-
tween consecutive exhibitions days (due to, e.g., limited capacity of transporting sculptures
between some depot and the hotel). To nevertheless offer an enjoyable experience for nu-
merous visitors, we ask the visitors to vote for each day they plan to visit for their favorite
sculpture to be exhibited (to keep the poll simple and robust).

Our main goal is to study MSNTV from a computational complexity and parameterized
algorithmics perspective to detect tractable cases.

Note that if we drop condition (1) (or, equivalently, setting ` = n), then on the one hand,
we have no control over changes between consecutive committees, yet on the other hand,
we obtain a linear-time solvable problem. Thus, control comes with a computational cost,
bound in the value of `. As a side goal, we aim at a better understanding of condition (1).
To this end, we additionally study a problem variant of MSNTV, referred to as Revolu-
tionary Multistage SNTV (RMSNTV), obtained by replacing (1) by |Ct4Ct+1| ≥ `.
In words, in RMSNTV we request a change of size at least ` between consecutive com-
mittees. By this, while we complemented the meaning of `, it still expresses a control over
the changes, and hence comes possibly again with a computational cost. We intend to un-
derstand whether the “conservative” (MSNTV) and the revolutionary (RMSNTV) variant
differ, and if so, then how and why.

basis for complex voting procedures such as S(N)TV, as well as the two-vote or two-stage voting systems
used for the German or French parliament. (III) For the agents to select just their favorite candidate for
each time step seems to be only a weak (cognitive) barrier for applicability of the model. Obviously, our
definition can be easily extended to more expressive scoring-based voting profiles.
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Figure 1: Overview of our results. PK, noPK, p-NP-h, and W[1]-h respectively abbreviate “poly-
nomial kernel,” “no polynomial kernel unless NP ⊆ coNP / poly,” para-NP-hard, and W[1]-hard.
An arrow from one parameter p to another parameter p′ indicates that p can be upper bounded by
some function in p′ (e.g., ` ≤ 2k, k ≤ m, or x ≤ n). “?” indicates that a classification as FPT or
W-hard is unknown. On below right, a spiderweb diagram depicts our results (solid: conservative;
dashed: revolutionary). a(Th. 3 & 4) b(Th. 4 & 6) c(Th. 5 & 6)

Related work. Our model follows the recently proposed multistage model [12, 21], that
led to several multistage problems [3, 6, 16, 17, 2, 9, 22, 5, 4] next to ours. Graph problems
considered in the multistage model often study classic problems on temporal graphs (a
sequence of graphs over the same vertex set). While all the multistage problems known
from literature cover the variant we call “conservative,” our revolutionary variant forms a
novel submodel herein.

Although, to the best of our knowledge our model is novel, another aspects of selecting
multiple (sub)committees have also been studied in (computational) social choice theory.
The closest related to ours is a recent work of Bredereck et al. [8], who augment classic
multiwinner elections with a time dimension. Accordingly, they consider selecting a sequence
of committees. However, the major differences with our work are, first, that they do not
allow agents (voters) to change their ballots over time and, second, that there are no explicit
constraints on the differences between two successive committees. Freeman et al. [19],
Lackner [23], and Parkes and Procaccia [24] allow this but they consider an online scenario
(in contrary to our problem that is offline). Finally, Aziz and Lee [1] study a so-called
subcommittee voting, where a final committee is a collection of several subcommittees.
Their model, however, does not take into account time and requires that all subcommittees
are mutually disjoint.

Our Contributions. We present the first work in the multistage model that studies a
problem from computational social choice and that compares the two cases that we call
conservative and revolutionary. We prove MSNTV and RMSNTV to be NP-complete,
even for two agents. We present a full parameterized complexity analysis of the two prob-
lems (see Figure 1 for an overview of our results). MSNTV and RMSNTV are almost
indistinguishable regarding their parameterized complexity, but when parameterized by `,



MSNTV is NP-hard and RMSNTV is contained in XP. Moreover, both problems are
contained in XP and W[1]-hard regarding the parameter number τ of stages; Note that for
many natural multistage problems (and even temporal graph problems), such a classification
is unknown—τ usually leads to para-NP-hardness. Our results further indicate that efficient
data reductions (see Section 6 for the definition) in terms of polynomial-size problem kernel-
izations require a combination with τ : While combining the number of agents with the num-
ber of candidates allows for no polynomial-size problem kernel (unless NP ⊆ coNP /poly),
combining any of the two with τ yields kernels of polynomial size.

Due to the space constraints, many details are deferred to an appendix (marked by F).

2 Hardness even for few agents
We first settle the classical computational complexity of both MSNTV and RMSNTV. We
prove that both problems are NP-complete, even for two agents (and hence for x ≤ 2).

Theorem 1. MSNTV with ` = 0 and RMSNTV with ` = 2k are NP-complete even for
two agents.

We prove the statements of Theorem 1 separately, starting with a specific, computationally
intractable case of MSNTV, which follows by a reduction from a Vertex Cover variant.2

Proposition 1 (F). MSNTV is NP-hard even for two agents, ` = 0, x = 1, and k = |C|/2.

NP-hardness of RMSNTV follows from the fact that we can reduce the specific variant
of MSNTV that we proved to be NP-hard in Proposition 1 to RMSNTV without increasing
the number of agents.

Lemma 1 (F). There is an algorithm that, on every instance (A,C,U, k, `, x) with ` = 0
and k = |C|/2 of MSNTV, computes an equivalent instance (A,C ′, U ′, k′, `′, x) of RM-
SNTV with k′ = |C ′|/2, `′ = 2k′, and |U ′| = 2|U |+ 1 in polynomial time.

Combining Lemma 1 and Proposition 1, we get the following.

Corollary 1. RMSNTV is NP-hard even for two agents, ` = 2k, x = 1, and k = |C|/2.

Theorem 1 now follows from Proposition 1 and Corollary 1. In fact, ` = 0 (MSNTV)
and ` = 2k (RMSNTV) are not the only intractable cases. We also get the following.

Proposition 2 (F). MSNTV with ` = 1 and RMSNTV with ` = m − 1 = 2k − 2
are NP-hard.

3 Role of `
We investigate the role of ` for our two problem variants. To start with, we have the
following easy observation.

Observation 1. MSNTV is polynomial-time solvable if ` = 2k and RMSNTV is
polynomial-time solvable if ` = 0.

Observation 1 suggests that while MSNTV is NP-hard even for constant ` (Theorem 1),
this seems to be different for RMSNTV. In fact, next we prove that RMSNTV is contained
in XP regarding `.

2We remark that x = 1 allows that most of the candidate can have no support. At least in the conservative
setting, however, there can be situations with small ` where this is unavoidable. Moreover, we can modify
the reduction to include at each stage for each candidate one (additional) supporter and increase x by k.
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Figure 2: Illustration of an in-out graph from Definition 1.

Theorem 2. Every instance I = (A,C,U, k, `, x) of RMSNTV with n agents, m candi-
dates, and τ voting profiles can be decided in O(τ ·m4`+1 · n) time.

Note that we can assume that ` ≤ 2k. The crucial observation behind the XP-algorithm
comes from the structure of every solution C = (C1, . . . , Cτ ): Since |Ci4Ci+1| ≥ `, there
are X ⊆ Ci \Ci+1 and Y ⊆ Ci+1 \Ci such that X ∩ Y = ∅ and |X ∪ Y | ≥ `. This allows us
to build a directed graph D as follows (see Figure 2 for an illustration).

Definition 1. Given an instance I = (A,C,U, k, `, x) of RMSNTV, the in-out graph of I
is a directed graph DI with vertex set V = V 1 ∪ · · · ∪ V τ−1 ∪ {s, t} where V i = {viX,Y |
X,Y ⊆ C, |X|, |Y | ≤ `,X ∩ Y = ∅, |X ∪ Y | ≥ `} for every i ∈ {1, . . . , τ − 1}, containing
the arcs (s, v1X,Y ) if and only if there is a k-sized committee at time step 1 containing X
being disjoint from Y with score at least x, the arcs (t, vτ−1X,Y ) if and only if there is a k-sized
committee at time step τ containing Y being disjoint from X with score at least x, and an
arc (viX,Y , v

j
X′,Y ′) if and only if (i) j = i+ 1, X ∩X ′ = Y ′∩Y = ∅, and (ii) there is a k-sized

committee at time step i + 1 containing Y ∪ X ′ being disjoint from X ∪ Y ′ with score at
least x.

With an XP-running time (regarding `), we can compute the in-out graph for every given
instance.

Lemma 2 (F). Given an instance of RMSNTV with n agents, m candidates, and τ voting
profiles, the in-out graph DI of I can be computed in O(τ ·m4`+1n) time.

We prove that deciding an instance of RMSNTV can be done through deciding whether
there is an s-t path in the instance’s in-out graph.

Lemma 3 (F). Let I be an instance of RMSNTV and DI its in-out graph. Then, there
is an s-t path in DI if and only if I is a yes-instance.

Given Lemmas 2 & 3, we are set to prove Theorem 2.

Proof of Theorem 2. Let I = (A,C,U, k, `, x) be an instance of RMSNTV with n agents, m
candidates, and τ voting profiles. First, construct the in-out graphDI of I inO(τ ·`4m4`+1n)
time (due to Lemma 2). Next, in time linear in the size of DI check for an s-t path in DI .
Due to Lemma 3, if an s-t path is found, then report that I is a yes-instance, and otherwise,
if no such s-t path is found, then report that I is a no-instance,

We remark that the proof of Lemma 3 contains the description of how to make the algorithm
constructive (that is, if one requires to return a solution).



4 Size of a Committee and of Their Sequence
In this section, we investigate the role of the committee size k and the parameter k + τ
describing the size k · τ of the solution—a sequence of committees. Firstly, we prove that
MSNTV and RMSNTV are contained in XP when parameterized by k.

Theorem 3 (F). MSNTV and RMSNTV both admit an O(τ ·m2k+1 ·n)-time algorithm
and hence are contained in XP when parameterized by k.

The proof of Theorem 3 is based on computing in XP-running time an auxiliary directed
graph in which we then check for the existence of an s-t path witnessing a yes-instance.
Clearly, since k ≤ m, Theorem 3 proves both problem variants to be fixed-parameter
tractable when parameterized by m.

Corollary 2. MSNTV and RMSNTV both are solvable in time 2O(m log(m)) · τn.

Given Corollary 2, the question arises whether Theorem 3 can be improved to show fixed-
parameter tractability regarding k. Next we first prove that this seems unlikely for MSNTV
and then discuss the question for RMSNTV.

We first state Theorem 4 and then prove it using several intermediate lemmas.

Theorem 4. MSNTV is W[1]-hard when parameterized by k + τ , even if ` = 0.

In the reduction behind the proof of Theorem 4, we employ Sidon sets defined subsequently.

Definition 2. A Sidon set is a set S = {s1, s2, . . . , sb} of b natural numbers such that every
pairwise sum of the elements in S is different.

Sidon sets can be computed efficiently.

Lemma 4. A Sidon set of size b can be computed in O(b) time if b is encoded in unary.

Proof. Suppose we aim at obtaining a Sidon set S = {s1, . . . , sb}. For every i ∈ {1, . . . , b},
we compute si := 2b̂i+(i2 mod b̂), where b̂ is the smallest prime number greater than b [13].
Thus, given b̂, one can compute S in linear time.

It remains to show how to find b̂ in linear time. Due to the Bertrand-Chebyshev [27]
theorem, we have that b̂ < 2b. Searching all prime numbers smaller than 2b is doable in
O(b) time (see, for example, an intuitive algorithm by Gries and Misra [20]).

We are set to prove Theorem 4.

Proof of Theorem 4. We reduce from Multicolored Clique that is W[1]-complete when
parameterized by the solution size [25, 15]. An instance Î of Multicolored Clique
consists of a q-partite graph G = (V1 ] V2 ] · · · ] Vq, E) and the task is to decide whether
there is a set K of q pairwise connected vertices, each from a distinct part. For brevity,
for some i, j ∈ {1, . . . , q}, i < j, let Eji be a set of edges connecting vertices from parts Vi
and Vj ; thus, E =

⋃
i,j∈{1,...,q},i<j E

j
i .

Construction. In the corresponding instance I of MSNTV, we let all vertices and edges
in G be candidates. Then, we define three gadgets (see Figure 3 for an illustration): the
vertex selection gadget, the edge selection gadget, and the coherence gadget. Further, we
show how to use the gadgets to construct I. Instance I will be constructed in a way that
its solution is a single committee of size exactly q+

(
q
2

)
corresponding to vertices and edges

of a clique witnessing a yes-instance of Î (if one exists). To define the gadgets, we use a
value x that we explicitly define at the end of the construction.
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Figure 3: Illustration of the construction in the proof of Theorem 4, exemplified with edge e =
{v, w} ∈ Ej

i with v ∈ Vi and w ∈ Vj . A column represents a stage (which in turn represents an
vertex or edge selection gadget for some vertex or edge set, respectively, or a coherence gadget of
a pair of colors) and a row represents an agent (approving either a vertex or an edge).

Vertex selection gadget : Fix some part Vi, i ∈ {1, . . . , q}. The vertex selection gadget
for i ensures that exactly one vertex from Vi is selected. We construct the gadget by forming
a preference profile p(Vi) consisting of x · |Vi| agents such that each vertex v ∈ Vi is approved
by exactly x agents.

Edge selection gadget : Similarly, for each two parts Vi and Vj such that i < j, we con-
struct the edge selection gadget that allows to select exactly one edge from Eji . Accordingly,
we build a preference profile p(Eji ) consisting of x · |Eji | agents. Again, each edge in Eji is
approved by exactly x agents.

Coherence gadget : For the construction of the coherence gadget, let h := |
⋃
i∈{1,...,q} Vi|

and let S = {s1, . . . , sh} be a Sidon set computed according to Lemma 4. We define a
bijective function id :

⋃
i∈{1,...,q} Vi → S associating each vertex of G with its (unique) id.

Now, the construction of the coherence gadget for some pair {Vi, Vj} of parts such that i < j
goes as follows. We introduce two preference profiles p((i, j)) and p′((i, j)). In preference
profile p((i, j)), (i) each candidate v ∈ Vi ∪ Vj is approved by exactly id(v) agents and (ii)
each edge e = {v, v′} ∈ Eji is approved by exactly (x− id(v)− id(v′)) agents. In preference
profile p′((i, j)), (i) each candidate v ∈ Vi ∪ Vj is approved by exactly x

2 − id(v) agents and
(ii) each edge e = {v, v′} ∈ Eji is approved by exactly (id(v) + id(v′)) agents.

Having all the gadgets defined it remains to use them to form the agents and the pref-
erence profiles of instance I; and to define x, `, and k. Since we want to have a committee
consisting of q vertices and

(
q
2

)
edges, we let k := q+

(
q
2

)
. We aim at a single committee, thus

we set ` = 0, which enforces that the committee must stay the same over time. Further,
we set x = 2sh. Finally, to form the preference profiles of I we put together, in any order,
vertex selection gadgets for every part Vi, i ∈ {1, . . . , q} as well as edge selection gadgets
and coherence gadgets for every pair {Vi, Vj} of parts such that i < j. As for the agents
of I, with each gadget G we add a separate set of agents needed to implement G making sure
that all other agents introduced by all other gadgets are approving no candidate in their
voting profiles occurring in G.

The running time analysis and correctness proof are deferred to the appendix (F).

Interestingly, we can transfer the intractability result to RMSNTV only regarding τ .

Theorem 5. RMSNTV parameterized by τ is W[1]-hard.



To prove Theorem 5, we aim for employing Lemma 1, which forms a parameterized
reduction regarding τ . To this end, we need firstly to reduce any instance with ` = 0
of MSNTV to an equivalent instance of MSNTV with k = |C|/2 and ` = 0 such that the
number of resulting voting profiles only depends on τ .

Lemma 5 (F). There is an algorithm that, on every instance (A,C,U, k, `, x) with ` =
0 of MSNTV, computes in polynomial time an equivalent instance (A′, C ′, U ′, k′, `′, x′)
of MSNTV with k′ = |C ′|/2, `′ = 0, and |U ′| = |U |.

Theorem 5 now follows from Lemmas 1 & 5 and Theorem 4 (F). We leave open whether
RMSNTV is fixed-parameter tractable when parameterized by k or even by `.

5 Tractability with Few Stages
Now, we study the complexity regarding the parameter lifetime τ . Known results for mul-
tistage or temporal (graph) problems suggest that either the problems are NP-hard for
constant lifetime or they are (trivially) fixed-parameter tractable regarding the lifetime.
We prove that for MSNTV and RMSNTV, this is different: Both are W[1]-hard (Theo-
rems 4 & 5), yet contained in XP due to the following.

Theorem 6 (F). When parameterized by τ , MSNTV and RMSNTV are contained in XP.

6 On Efficient Data Reduction
In this section, we investigate the complexity regarding the parameter combinations m+ n
(Section 6.1), m + τ (Section 6.2), and n + τ (Section 6.3). Since we already know we
have fixed-parameter tractability (Corollary 2) regarding m for both problem variants, we
focus on efficient and provably effective data reduction, namely problem kernelization. A
problem kernelization for a parameterized problem L is a polynomial-time algorithm that
maps any instance (x, p) ∈ Σ∗×N0 of L to an equivalent instance (x′, p′) of L (the problem
kernel) such that |x′| + p′ ≤ f(p) for some function f only depending on the parameter p.
Preferably, we want f to be some polynomial, in which case we call the problem kernelization
polynomial. We prove that m + τ allows for and m + n disallows for polynomial problem
kernelization (under some complexity theoretic assumption in the latter case). We further
prove that n + τ allows for polynomial problem kernelization; surprisingly, since for each
parameter alone we have para-NP-hardness (for n) and W[1]-hardness (for τ).

6.1 Number of candidates and agents combined
When parameterized by m + n polynomial problem kernelization turns out to be unlikely,
which may surprise, since one parameterizes by all dimensions of an input except for the
time aspect (number of stages).

Theorem 7 (F). Each of MSNTV and RMSNTV admits no problem kernel of size
polynomial in m+ n unless NP ⊆ coNP /poly.

Proof (Sketch). To prove Theorem 7, we are going to prove that both, MSNTV and RM-
SNTV, when parameterized bym+n are AND-compositional. That is, there is an algorithm
taking p instance I1, . . . , Ip, each with the same number n of agents, m of candidates, and τ
of profiles, and constructs in time polynomial in

∑p
i=1 |Ii| an instance I such that the num-

ber of agents and candidates is in (m+n)O(1), and that I is a yes-instance if and only if each
of I1, . . . , Ip is yes-instance. When a parameterized problem admits an AND-composition,
then it admits no polynomial kernel unless NP ⊆ coNP / poly.



Construction 1 (MSNTV). Consider p instances I1, . . . , Ip of MSNTV such that k, x ∈
N and ` = 1, each with n agents Ai = {ai1, . . . , ain}, m candidates Ci = {ci1, . . . , cim},
and τ voting profiles. Add the agent set A = {a1, . . . , an} ∪ {â1, . . . , ân} and candidate
set C = {c1, . . . , cn} ∪ {z}. Arrange the p voting profiles consecutively, where we identify
each agent aij with aj and each candidate cij with cj . Moreover, each agent âj approves z.
Next, between the last voting profile and the first voting profile of two consecutive instances,
add 2k profiles where all agents approve z (we call them transfer profiles). Set x′ = x+ n,
k′ = k + 1, and `′ = 1. Note that τ ′ = pτ + 2k(p− 1). �

The correctness proof and discussion of RMSNTV is deferred to the Appendix E.1.

6.2 Number of candidates and lifetime combined
In the previous section, we have seen that efficient data reduction for all dimensions but τ is
unlikely. This indicates that the lifetime is crucial for efficient data reduction. In fact, con-
sideringm+τ , we can first reduce our problem to a weighted version, shrink the weights, and
then reduce it back to our problem, thereby obtaining a problem kernel of size polynomial
in m+ τ .

Theorem 8. MSNTV and RMSNTV admit problem kernels of size polynomial in m+ τ .

The weighted version of each problem takes number m of candidates many agents,
where ai assigns a weight to candidate i (this corresponds to the number of agents approv-
ing candidate i in the unweighted variant). Formally, for MSNTV the weighted version is
defined as follows:

Weighted MSNTV (W-MSNTV)
Input: A set W of weight vectors w1, . . . , wτ ∈ Nm0 , and three integers k, `, x.
Question: Are there subsets C1, . . . , Cτ of {1, . . . ,m} each of size at most ≤ k with

(i)
∑
i∈Ct w

t
i ≥ x for all t ∈ {1, . . . , τ}, and (ii) |Ct4Ct+1| ≤ ` for all t ∈ {1, . . . , τ − 1}?

The reduction from MSNTV to W-MSNTV is obvious (the sum of weights equals n).

Observation 2 (F). There is a polynomial-time many-one reduction from MSNTV to
W-MSNTV with τ weight vectors from {0, . . . , n}m.

Lemma 6 (F). There is an algorithm that, given an instance I = (W,k, `, x) of W-
MSNTV, computes in polynomial time an instance I ′ := (W ′ = {ŵ1, . . . , ŵτ}, k, `, x̂) such
that (i) ‖ŵt‖∞, |x̂| ∈ 2O(m3τ3) for all t ∈ {1, . . . , τ}, and (ii) C is a solution to I if and only
if it is a solution to I ′.

It is not hard to see that W-MSNTV is NP-complete. We are set to prove our main result.

Proof of Theorem 8. Let I = (A,C, k, `, x) be an instance of MSNTV. Compute in poly-
nomial time an instance J = (W,k, `, x) of W-MSNTV being equivalent to I. Next ap-
ply Lemma 6 to J to obtain an equivalent instance J ′ of W-MSNTV of encoding length
in O((mτ)4). Finally, reduce J ′ back to an instance I ′ of MSNTV in polynomial time.
Hence, the encoding length of I ′ is in (mτ)O(1), proving I ′ to be a polynomial problem
kernel. For RMSNTV, the proof works analogously.

6.3 Number of agents and lifetime combined
In this section, we prove effective preprocessing regarding the parameter n + τ (and
hence fixed-parameter tractability).



Theorem 9. MSNTV and RMSNTV admit problem kernels of size polynomial in n+ τ .

Firstly, we note that there are at most n · τ approvals in any instance. Hence, we have the
following.

Observation 3. There are at least max{0,m−n · τ} candidates which are never approved.

Upon Observation 3, we will next discuss deleting candidates which are never approved, in
order to upper-bound the number m of candidates by some polynomial function in n + τ .
With the latter, together with Theorem 8 we will obtain the polynomial-size problem kernels.
We treat each of MSNTV and RMSNTV separately.

Observation 3 allows us to reduce any instance of MSNTV to an equivalent instance
with m ≤ n · τ .

Proposition 3. There is a polynomial-time algorithm that computes for any given in-
stance I = (A,C,U, k, `, x) of MSNTV an equivalent instance I ′ = (A,C ′, U, k, `, x)
with |C ′| ≤ |A| · |U |.

To obtain Proposition 3, we employ the following.

Reduction Rule 1 (F). If m > nτ , delete a candidate which is never approved.

Intuitively, Reduction Rule 1 is correct because selecting a candidate which is never approved
into a committee at some stage is not beneficial: it only increases the symmetric difference
at the respective stage but not the committee’s score.

We can safely apply Reduction Rule 1 exhaustively in polynomial-time, hence we
get Proposition 3.

For RMSNTV, a similar approach applies. However, we need to carefully adjust `. We
first note that if k < `/2, then we are trivially facing a no-instance. Thus, in the following we
assume that k ≥ `/2. Additionally, we assume that m > nτ ; otherwise, the polynomial-time
algorithm from Proposition 3 simply outputs the original instance.

We start with the following reduction rule that allows us to upper-bound the number of
candidates by nτ or kτ , depending on which of n and k is larger.

Reduction Rule 2 (F). If m > max{n, k} · τ , then delete a candidate that is never
approved.

Reduction Rule 2 can be applied in polynomial time; thus, in the case of k ≤ n, applying
this rule exhaustively already yields the result from Theorem 9. Yet, the case of k > n still
needs to be refined, which we do in the following Lemma 7.

Lemma 7. There is a polynomial-time algorithm that, given an instance of RMSNTV
with k > n and m = kτ , computes an equivalent instance of RMSNTV with m = nτ .

Proof. Let I = (A,C,U, k, `, x) be an instance of RMSNTV with m = kτ candidates,
|A| = n agents and k > n. We give a polynomial-time reduction that transforms I into
an equivalent instance I ′ = (A,C ′, U, k′, `′, x) with |C ′| = nτ candidates, where k′ = n
and `′ = ` − 2(k − n). Precisely, denoting the number of approved candidates by α (note
that α ≤ nτ), the set C ′ ⊂ C consists of all approved candidates and nτ − α arbitrary
never-approved candidates.

(⇒) Let I be a yes-instance with solution C = (C1, C2, . . . , Cτ ). Without loss of
generality, we assume that each committee of C has at least n members. If this is not
the case, then we select an arbitrary committee with fewer than n candidates and we add
arbitrarily chosen unused candidates to reach n members. We repeat this procedure for
all committees that have fewer than n members. We can afford this because we always



have enough unused candidates. Indeed, suppose that for some iteration of the procedure,
we need y ≤ n candidates to fill up the corresponding committee C∗ ∈ C. Then, at most
k(τ − 1) candidates are used in other committees. Comparing the number of all candidates
with the upper-bound on the number of used candidates as follows

|C| − (k(τ − 1) + n− y) = kτ − (k(τ − 1) + n− y) = k − n+ y > n− n+ y = y

shows that we have even more than y unused candidates that the procedure can use to fill
up committee C∗. The updates carried out by the procedure clearly do not lower the scores
of the altered committees.
For each i ∈ {1, . . . , τ} we order Ci’s members decreasingly with respect to the number
of approvals the members get (breaking ties arbitrarily). Then, we select top n of them
forming a set trunc(Ci). We claim that C′ = (trunc(C1), trunc(C2), . . . , trunc(Cτ )) is a
solution to I ′. Indeed, the committees of C′ are of size n and their score is at least x. The
latter follows from the fact that x ≤ n and thus n candidates is always enough to yield score
at least x. In order to show that |trunc(Ci)4trunc(Ci+1)| ≥ `′, for all i ∈ {1, . . . , τ − 1},
assume for contradiction this is not the case. That is, suppose |trunc(Cj)4trunc(Cj+1)| < `′

for some j ∈ {1, . . . , τ − 1}. Let C̄i := Ci \ trunc(Ci), for i ∈ {j, j + 1}. Observe that
|C̄j | ≤ (k − n) and |C̄j+1| ≤ (k − n). Thus, |C̄j4C̄j+1| ≤ 2(k − n). Recognizing that

|Cj4Cj+1| = |trunc(Cj)4trunc(Cj+1)|+ |C̄j4C̄j+1| < `′ + 2(k − n) = `

gives that |Cj4Cj+1| < `, which contradicts the fact that C is a solution to I.
(⇐) Let I ′ be a yes-instance, C′ = (C ′1, C

′
2, . . . , C

′
τ ) be a solution to I ′, and C̄ := C\C ′.

A solution to instance I is then C = (C1, C2, . . . , Cτ ) where each of sets Ct is a copy of C ′t
with k − n unique candidates from C̄ added; formally, for each t ∈ {1, . . . , τ}, Ct = C ′t ∪ C̄t
such that |C̄t| = k − n and

⋂τ
i=1 C̄i = ∅. Since∣∣∣∣ τ⋃

t=1

C̄t

∣∣∣∣ = (k − n)τ = kτ − nτ = |C| − |C ′| = |C̄|,

such a solution C can be constructed. Naturally, it holds for all t ∈ {1, . . . , τ} that
scoret(Ct) ≥ scoret(C

′
t) ≥ x and that |Ct| ≤ k. Furthermore, for each t ∈ {1, . . . , τ − 1},

|Ct4Ct+1| ≥ `. This is due to the fact that

|Ct4Ct+1| = |C ′t4C ′t+1|+ |C̄t4C̄t+1| = |C ′t4C ′t+1|+ 2(k − n) ≥ `′ + 2(k − n) = `.

Lemma 7 concludes the case of k > n and so the proof of Theorem 9 for RMSNTV.

7 Conclusion
At first glance, our multivariate analysis with several hardness results may appear as overly
negative. We emphasize, however, that we identified some practically relevant tractable
cases. In natural applications, such as electing committees serving for only few days/events,
the number τ of stages is usually small. Furthermore, in many elections the committee
size k is not very large and either the number n of voters or the number m of candidates
is expected to be small. Hence, our results for τ and for k (polynomial-time solvability for
constant values) as well as for τ +n, for τ +m, or for m alone (fixed-parameter tractability)
appear very promising. Moreover, the tractability result for τ seems generally insightful for
the multistage community where problems usually remain computationally hard even a for
constant number of stages. Additionally, we think that the revolutionary multistage model



may be relevant on its own and that it paves the way for studying more new models where
consecutive changes are both lower- and upper-bounded.

Although it is naturally justified to start with the simplest meaningful model variant, our
focus on SNTV might look restrictive. We stress that most results transfer easily to general
Approval profiles (see W-MSNTV): Replace each voter approving multiple candidates by
multiple voters, each approving one candidate. Also basic scoring rules can be modeled:
Create for each candidate c that receives score s(c) exactly s(c) votes for c. The main
drawback is that now the parameter number n of voters corresponds to the total number
of approvals or the total score sum, respectively; yet, most positive results still hold. It
remains open whether a direct modeling of more complex preferences instead of blowing up
in the number of voters can avoid blowing up the running time as well. Motivated by this,
we consider investigations of even more complex voting rules promising.

As opposed to the single-stage case, conservative and revolutionary committee election
over multiple stages are NP-complete problems, even for a constant number of agents. From
a parameterized algorithmic point of view, computing a revolutionary multistage commit-
tee is easier than a conservative one: When asking for committees to change for all but
constantly many candidates, RMSNTV is polynomial time solvable, yet when asking for
committees to change for only constant many candidates, MSNTV remains NP-hard. Fac-
ing a constant number of stages, both MSNTV and RMSNTV become polynomial-time
solvable. Moreover, for both MSNTV and RMSNTV, while efficient data reduction to
size polynomial in the number of agents and the number of candidates we proved to be
unlikely, combining any of the two parameters with the number of stages allows for efficient
polynomial-sized data reduction. This underlines the importance of the time aspect for
preprocessing and forms a positive message: If there are few stages—which seems likely in
reality, where planning too far in advance usually increases uncertainty—then our problems
might be efficiently solvable.

We left open whether RMSNTV is fixed-parameter tractable or W-hard regarding the
parameters k and `. Further future work may include studying approximate or randomized
algorithms for MSNTV and RMSNTV. Moreover, further concepts and problems (e.g.,
bribery and manipulation) from computational social choice may be studied in the (con-
servative and revolutionary) multistage model. Note that, for instance, 2-Approval (each
agent approves up to two candidates) in the conservative multistage setup is already NP-
hard for one agent (follows from the proof of Proposition 1). Additionally, we think that
the revolutionary multistage model may be relevant on its own.

Importantly, our model is applicable for offline scenarios, in which preferences are col-
lected in advance, which nowadays is realized frequently by social media polls, Internet
profiling, customer targeting, and the like. However, considering online scenarios is also an
interesting research direction, yet requiring significant changes in our original models. To
observe this, consider an online scenario of selecting two committees such that in the first
profile all committees are scoring equally high and in the second profile there is exactly one
such a committee. In the worst case, any algorithm returns a solution requiring exchanging
all candidates between the two selected committees; thus, no reasonable guarantee concern-
ing the number of changes is achievable. To avoid such trivial cases, when studying the
online setting, one needs to carry out significant model modifications. One way to proceed
(following approaches from the multistage literature [5, 21, 4]) is to introduce a goal func-
tion that takes into account the quality of the selected committees as well as the symmetric
difference of each two consecutive committees. Another way to study online variants of our
problems would be to restrict the differences of consecutive profiles (analogously to Parkes
and Procaccia [24]). Such a correlation between consecutive profiles, which restricts the
model significantly, provides necessary information usable to achieve some guarantees on
the solution.
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Appendix

A Additional Material for Section 2

A.1 Proof of Proposition 1
In the following proof, we give a polynomial-time many-one reduction from a special vari-
ant Half Vertex Cover of the Vertex Cover problem, where r is set to half the number
of vertices:

Vertex Cover
Input: An undirected graph G and an integer r ∈ N.
Question: Is whether there is a set X ⊆ V (G) of size at most r such that G−X contains

no edge.

It is not difficult to see that Half Vertex Cover is NP-complete: We can reduce any
instance (G, r) of Vertex Cover to Half Vertex Cover by adding a clique on |V (G)|−
2r + 2 vertices to G if r < |V (G)|/2, or adding enough isolated vertices to G until r =
|V (G)|/2.

Proof. Let I = (G = (V,E)) be an instance of Half Vertex Cover, and let E =
{e1, . . . , em} without loss of generality. We construct an instance I ′ = (A,C, u, k, `, x)
of MSNTV in polynomial time as follows.
Construction: Set the set C of candidates equal to V , and the set A of agents equal
to {a1, a2}. Next, construct m voting profiles as follows. For profile ut, t ∈ {1, . . . ,m},
set ut(a1) = {v} and ut(a2) = {w}, where et = {v, w}. Finally, set k = |V |/2, ` = 0,
and x = 1. This finishes the construction.
Correctness: We claim that I is yes-instance if and only if I ′ is a yes-instance.

(⇒) Let X ⊆ V be a vertex cover of size at most |V |/2. We claim that the sequence
(C1, . . . , Cm) with Ct = X for every t ∈ {1, . . . ,m} is a solution to I ′. Suppose towards
a contradiction that this is not the case. Firstly, observe that Ct4Ct+1 = ∅ for every t ∈
{1, . . . ,m− 1}, and that |Ct| ≤ k for every t ∈ {1, . . . ,m}. Hence, there is a t ∈ {1, . . . ,m}
such that scoret(Ct) = 0. This means that for edge et = {v, w}, both v, w 6∈ X, contradicting
the fact that X is a vertex cover of G. Hence, (C1, . . . , Cm) is a solution to I ′.

(⇐) Let (C1, . . . , Cm) be a solution to I ′. Note that since ` = 0, Ci = Cj for every i, j ∈
{1, . . . ,m}. We claim that X := C1 is a vertex cover of G (note that |X| ≤ k). Let t ∈
{1, . . . ,m} be arbitrary but fixed. Since scoret(Ct) ≥ 1, we know that Ct ∩ et 6= ∅. Hence,
since X = Ct, edge et is covered by X. Since t was chosen arbitrarily, it follows that X is a
vertex cover of G of size at most k.

A.2 Proof of Lemma 1
Proof. Let I = (A,C,U, k, `, x) with ` = 0, k = |C|/2, and τ voting profiles be an instance
of MSNTV. We construct instance I ′ = (A,C ′, U ′, k′, `′, x) of RMSNTV with `′ = 2k′ in
polynomial time as follows.
Construction: Set the set of candidates C ′ = C]{z, y}, where z, y are new candidates not
in C. Next, construct 2 · τ + 1 voting profiles as follows. For all a ∈ A and all t ∈ {1, . . . , τ}
set u′2t−1(a) = u2t−1(a) and u′2t(a) = {y}. Moreover, set u′2τ+1(a) = {z} for all a ∈ A.
Finally, set k′ = k + 1 and `′ = 2k′ = |C ′|. This finishes the construction.
Correctness: We claim that I is a yes-instance if and only if I ′ is a yes-instance.

(⇒) Let (C1, . . . , Cτ ) be a solution to I such that |C1| = k. Since ` = 0, we have
that Ct = Ct′ for every t, t′ ∈ {1, . . . , τ}. LetX := C1∪{z} and Y := C ′\X. Note that |X| =
|Y | = |C ′|/2. We claim that (C ′1, . . . , C

′
2τ+1) with C ′2t−1 = X for every t ∈ {1, . . . , τ + 1}



and C ′2t = Y for every t ∈ {1, . . . , τ} is a solution to I ′. Since y ∈ Y , score2t(Y ) = |A| ≥ x
for every t ∈ {1, . . . , τ}. Since u′2t−1(a) = u2t−1(a) for every a ∈ A and t ∈ {1, . . . , τ},
and (C1, . . . , Cτ ) is a solution to I, we have score2t−1(X) ≥ x. Moreover, since z ∈ X, we
have score2τ+1(X) = |A| ≥ x. Lastly, as C ′t4C ′t+1 = C ′ for every t ∈ {1, . . . , 2τ}, the claim
follows.

(⇐) Let (C1, . . . , C2τ+1) be a solution to I ′. First observe that, due to ` = |C|, we have
that Ct4Ct+1 = C for every t ∈ {1, . . . , 2τ}. It follows that C2t−1 = C2t′−1 and z ∈ C2t−1
for every t, t′ ∈ {1, . . . , τ + 1}, and C2t = C2t′ and y ∈ C2t for every t, t′ ∈ {1, . . . , τ}.
We claim that (C ′1, C

′
2, . . . , C

′
τ ) with C ′i := C1 \ {z} is a solution to I. By construction,

scorei(C
′
i) ≥ x, and as C ′i = C ′j and |C ′i| ≤ k, the claim follows.

A.3 Proof of Proposition 2
Lemma 8. MSNTV is NP-hard for ` = 1.

Proof. Let I = (A,C,U, k, `, x) be an instance of MSNTV with A = {a1, a2}, x = 1,
and ` = 0. We construct an instance I ′ = (A′, C ′, U ′, k′, `′, x′) of MSNTV with A′ =
{a1, . . . , a6}, C ′ = C ∪ {v′, v, w}, k′ = k + 2, `′ = 1, and x′ = x + 4 in polynomial time as
follows.
Construction: For each 1 ≤ t ≤ τ := τ(U), let a1, a2 approve the same candidates as
in ut. If t is even, then let a3, a4 approve v′ if t is divisible by four, and approve v otherwise.
If t is odd, then let a3, a4 approve w. Agents a5, a6 approve always w. This finishes the
construction.
Correctness: We claim that I is a yes-instance if and only if I ′ is a yes-instance.

(⇒) Let (C1, . . . , Cτ ) be a solution to C. We claim that the sequence (C ′1, . . . , C
′
τ )

with Ct := Ct ∪ {w} if t is odd, Ct := Ct ∪ {v′, w} if t is even and divisible by four,
and Ct := Ct ∪ {v, w} if t is even and not divisible by four. Observe that |Ct| ≤ k + 2
and C ′t4C ′t+1 = {v′} or C ′t4C ′t+1 = {v}. Moreover, since in time step t, at least one
candidate of Ct is a approved by a1, a2, by construction we have scoret(C

′
t) ≥ 5. This

proves the claim.
(⇐) Let (C ′1, . . . , C

′
τ ) be a solution to I ′. Observe that every solution to I ′, w must be

in every committee, v′ must be in every committee in an even time step divisible by four,
and v must be in every committee in an even time step not divisible by four. Hence,
C ′t4C ′t+1 = {v′} or C ′t4C ′t+1 = {v} for every t ∈ {1, . . . , τ −1}. We claim that (C1, . . . , Cτ )
with Ct = C ′t∩C is a solution to I. Observe that |Ct| ≤ k and that Ct4Ct+1 = (C ′t4C ′t+1)∩
C = ∅. Moreover, since for every t ∈ {1, . . . , τ} we have that scoret(C

′
t) ≥ 5, at least one

of a1, a2 must approve a candidate in C ′t ∩ C = Ct. Thus, scoret(Ct) ≥ 1, and the claim
follows.

Similarly, having ` = 2k is not necessary for RMSNTV to be NP-hard.

Lemma 9. RMSNTV is NP-hard for ` = m− 1 = 2k − 2.

Proof. Let I = (A,C,U, k, `, x) be an instance of RMSNTV with A = {a1, a2}, ` = 2k,
x = 1, and k = |C|/2. We construct an instance I ′ = (A′, C ′, U ′, k′, `′, x′) of MSNTV
with A′ = {a1, . . . , a4}, C ′ = C ∪{w}, k′ = k+ 1, `′ = 2k′− 2, and x′ = x+ 2 in polynomial
time as follows.
Construction: For each 1 ≤ t ≤ τ := τ(U), let a1, a2 approve the same candidates as in ut,
and a3, a4 approve w. Let u′1, . . . , u′τ denote the obtained voting profiles.
Correctness: We claim that I is a yes-instance if and only if I ′ is a yes-instance.

(⇒) Let (C1, . . . , Cτ ) be a solution to instance I. We claim that (C ′1, . . . , C
′
τ ) with C ′t =

Ct ∪ {w} is a solution to I ′. Note that |C ′t| ≤ k + 1, and that |C ′t4C ′t+1| = |Ct4Ct+1| ≥
2k = 2k′ − 2 = `′. Moreover, note that since x′ = 3, for each t ∈ {1, . . . , τ} we have



that a1, a2 approve a candidate from C ′t, which is different to w. Hence, by construction,
scoret(Ct) ≥ 1.

(⇐) Let (C ′1, . . . , C
′
τ ) be a solution to I ′. Observe that for every solution to I ′, w must

be in every committee. Moreover, since `′ = |C ′|−1 = |C|, we have that (Ct∪Ct+1)\{w} =
C. We claim that (C1, . . . , Cτ ) with Ct = C ′t \ {w} is a solution to I. Note that |Ct| ≤ k,
|Ct4Ct+1| = |C ′t4C ′t+1| ≥ `, and that scoret(Ct) = scoreC ′t − 2 ≥ x. Thus, the claim
follows.

B Additional Material for Section 3

B.1 Proof of Lemma 2
Proof. We can compute each V i in O(m2`) time by brute forcing every pair of candidate
subsets each of size at most `. Hence, we can compute V in O(τ · m2`) time. The arcs
incident with s and t can be computed in O(n + m) time, same for conditions (i) and (ii),
resulting in an overall running time in O(τ ·m4`+1n).

B.2 Proof of Lemma 3
Proof. Let I = (A,C,U, k, `, x) be an instance of RMSNTV, and DI the in-out graph for I.

(⇒) By construction, we know that if there is an s-t path in DI , then it is of the
form P = (s, v1X1,Y1

, . . . , vτ−1Xτ−1,Yτ−1
, t). Since arc (s, v1X1,Y1

) exists, by construction there is
a k-size committee C1 containing X but disjoint from Y of score at least x (similar for Cτ ).
Since the arc (viXi,Yi , v

i+1
Xi+1,Yi+1

) exists, at time step i + 1 there is a k-size committee Ci+1

containing Yi∪Xi+1 but disjoint from Xi∪Yi+1 of score at least x. Observe that Ci4Ci+1 ⊇
Xi ∪ Yi and thus, of size at least `. Then we find in each time step a committee of score x,
and consecutive committees differ in at least ` elements.

(⇐) Assume there is a solution C = (C1, . . . , Cτ ). For every i ∈ {1, . . . , τ − 1},
let Xi ⊆ Ci \ Ci+1, Yi ⊆ Ci+1 \ Ci. Note that C1 is a committee containing X but disjoint
from Y of score at least x in time step one, and thus arc (s, v1X1,Y1

) exists (analogously
for Cτ and arc (vτ−1Xτ−1,Yτ−1

, t)). We claim that there is an arc from viXi,Yi to v
i+1
Xi+1,Yi+1

for
every i ∈ {1, . . . , τ −2}. Note that since Xi∩Ci+1 = ∅, we have Xi∩Xi+1 = ∅ (analogously
for Y ). Moreover, Ci+1 is a k-size committee with score at least x (since C is a solution),
and it contains Yi ∪Xi+1, and is disjoint from Xi ∪ Yi+1. Hence, the arc exists. It follows
that P = (s, v1X1,Y1

, . . . , vτ−1Xτ−1,Yτ−1
, t) forms an s-t path in DI .

C Additional Material for Section 4

C.1 Proof of Theorem 3
Proof. Let I = (A,C,U, k, `, x) be an instance of MSNTV (or RMSNTV) with n agents,
m candidates, and τ voting profiles. We compute the following directed graph D = (V,A)
with vertex set V = {s, t} ] V 1 ] · · · ] V τ , where V t = {vtX | X ⊆ C, |X| ≤ k, scoret(X) ≥
x}, and arc set A composed of the sets {(s, v) | v ∈ V 1}, {(v, t) | v ∈ V τ}, and for
each t ∈ {1, . . . , τ − 1} the sets {(vtX , v

t+1
Y ) | |X4Y | ≤ `} in the conservative variant

(and {(vtX , v
t+1
Y ) | |X4Y | ≥ `} in the revolutionary variant). Note that there are at

most τ ·mk+2 vertices and at most (τ −1) · (mk)2 +2mk arcs. Hence, D can be constructed
in O(τ · k2m2k+1n) time. We claim that I is a yes-instance if and only if D admits an s-t
path. Note that we can check for an s-t path in D in time linear in the size of D.



(⇒) Let (C1, . . . , Cτ ) be a solution to I. We claim that P = (s, v1C1
, . . . , vτCτ , t) is an

s-t path in D. Clearly, the arcs (s, v1C1
) and (vτCτ , t) are in A. For each t ∈ {1, . . . , τ − 1},

the arc (vtCt , v
t+1
Ct+1

) exists since |Ct4Ct+1| ≤ ` (≥ ` in the revolutionary case). Hence, P is
an s-t path in D.

(⇐) Let P = (s, v1C1
, . . . , vτCτ , t) be an s-t path in D. We claim that (C1, . . . , Cτ ) is

a solution to I. First observe that |Ct| ≤ k and scoret(Ct) ≥ x. Moreover, we have that
|Ct4Ct+1| ≤ ` (≥ ` in the revolutionary case) for each t ∈ {1, . . . , τ − 1}. The claim thus
follows.

C.2 Proof of Theorem 4
Running Time. The reduction builds a polynomial number (with respect to the input
size) of copies of gadgets. However, the construction time of the coherence gadget heavily
depends on the computation of Sidon set S (of size h) and the value of its largest element sh.
Since h is linearly bounded in the size of the input, due to Lemma 4, we get a polynomial
running time (with respect to the input size) of computing S. As a by-product we get that
the largest element of S is also polynomially upper-bounded (with respect to the input size).
Correctness. Naturally, if instance I of MSNTV is a yes-instance, then there is a com-
mittee that is witnessing this fact; otherwise, such a committee does not exist. Since the
candidates are all vertices and edges of graph G, we refer to edges and vertices being part
of some committee as, respectively, selected vertices and edges.

On the way to prove the correctness of the reduction, we state the following lemma about
the coherence gadget.

Lemma 10. For a pair {Vi, Vj} of parts such that i < j, let C be a committee selecting
exactly one vertex from either of them, v, v′ respectively, and exactly one edge e ∈ Eji
connecting some vertices of parts Vi and Vj . Then, the scores of C for the profiles of the
coherence gadget for parts Vi and Vj are at least x if and only if e = {v, v′}.

Proof. Assume that a selected edge connects vertices u and u′ from, respectively, part Vi and
part Vj . Let us compute the scores of C for profiles p((i, j)) and p′((i, j)) of the coherence
gadget for i and j (note that due to assumptions on C only candidates v, v′, and e contribute
to the scores):

scorep((i,j))(C) = id(v) + id(v′) + x− id(u)− id(u′), (2)

scorep′((i,j))(C) =
x

2
− id(v) +

x

2
− id(v′) + id(u) + id(u′). (3)

If both of the scores are at least x, after simplifying the equations we arrive at:

id(v) + id(v′) ≥ id(u) + id(u′)

∧ id(u) + id(u′) ≥ id(v) + id(v′).

This, in turn, simply means that:

id(u) + id(u′) = id(v) + id(v′). (4)

Recall that the image of bijective function id(·) is a Sidon set. Thus, by the definition of
the Sidon set, Equation (4) is true if and only if {v, v′} = {u, u′} = e.

The opposite direction follows directly from the definition of Sidon sets because all id(·)-
terms in Equation (2) and Equation (3) cancel out resulting in both scores being x.

Analogously, we provide the following lemma that describes the role of the vertex and
edge selection gadgets.



Lemma 11. Every committee witnessing a yes-instance selects exactly one vertex from each
part of G and exactly

(
q
2

)
edges, one for each distinct pair {Vi, Vj} of parts. Additionally,

the scores of such a committee C in all vertex and edge selection gadgets are exactly x.

Proof. Let us fix a committee C witnessing a yes-instance. Towards a contradiction, assume
that there exists a part Vi a vertex of which is not selected. Then, since in profile p(Vi)
only vertices from part Vi are approved, the score of C in p(Vi) is zero; the contradiction.
Similarly, assume that there is a pair {Vi, Vj} of parts such that no edge in Eji is selected
by C. Again, by an analogous argument, if this is the case, then the scores of C in pro-
files p(Eji ) and p′(Eij) are zero which gives a contradiction. From the fact that there are
exactly q vertex selection gadgets and exactly

(
q
2

)
edge selection gadgets, it follows that C

selects exactly one vertex from each part of G and exactly one edge for a pair of parts. By
the construction of the vertex and edge selection gadgets, indeed each of them gives score
exactly x.

Having the above lemmas, we finally show the correctness of our reduction. In one
direction, suppose K is a clique of size q in graph G of an instance Î of Multicolored
Clique. We construct a committee C selecting all vertices of K and all edges connecting
the vertices in K. Indeed, the necessary condition from Lemma 11 is met because of the
definition of a clique and the fact that K is a clique of size q. Again by the definition of a
clique, for every two vertices from distinct parts, committee C selects the edge that connects
them; thus, by Lemma 10, committee C is witnessing the positive answer.

For the opposite direction, suppose there is no clique in G of Î. We show that there is
no committee C witnessing a yes-instance. Due to Lemma 11 it follows that C selects a
vertex for each part of G and an edge for each pair of parts. However, since there is no
clique in G every committee C there exists at least one pair {v, v′} of vertices from distinct
parts that are not connected with an edge. Thus, due to Lemma 10 at least in one coherence
gadget there is at least one profile for which the score of C is below x; which finishes the
argument.

C.3 Proof of Lemma 5
Proof. Let I = (A,C,U, k, `, x) with ` = 0 be an instance of MSNTV. We construct an
instance I ′ = (A′, C ′, U ′, k′, `′, x′) of MSNTV with k′ = |C ′|/2, `′ = 0, and |U ′| = |U |, as
follows.
Construction: Initially, we set I ′ to I. If k = |C|/2, we are done. If k > |C|/2, then we
add 2k − |C| candidates to C, forming C ′. If k < |C|/2, then we add |C| − 2k candidates
to C, say set C∗, forming C ′ = C ∪ C∗. Moreover, we add |A| · (|C| − 2k) agents to A,
say A∗, forming A′ = A ∪ A∗, where for each c ∈ C∗, in each stage, exactly |A| of the
new agents approve c (this forms U ′). Note that |U ′| = |U |. Set k′ = |C ′|/2, `′ = 0,
and x′ = x + |A|(|C| − 2k). Since correctness for the cases k = |C|/2 and k > |C|/2 is
immediate, we prove in the following correctness for the case of k < |C|/2.
Correctness: In the case of k < |C|/2, we claim that I is a yes-instance if and only if I ′
is a yes-instance. yes-instance (⇒) Let C = (C1, . . . , Cτ ) be a solution to I. We claim
that (C ′1, . . . , C

′
τ ) with C ′i = Ci∪C∗ is a solution to I ′. First note that |C ′t| ≤ |Ct|+|C|−2k ≤

|C| − k = |C ′|/2. Moreover, we have that |C ′t4C ′t+1| = |Ct4Ct+1| = 0. Finally, we have
that scoret(C

′
t) = scoret(Ct) + |A|(|C| − 2k) ≥ x+ |A|(|C| − 2k) = x′.

(⇐) Let C′ = (C ′1, . . . , C
′
τ ) be a solution to I ′. First observe that C∗ ⊆ C ′t for

all i ∈ {1, . . . , τ}. Suppose not, that is, there is a t ∈ {1, . . . , τ} and c ∈ C∗ such that c 6∈ C ′t.
Then the score of C ′t is at most |A|+|A|(|C|−2k−1) = |A|(|C|−2k) < x′, a contradiction to
the fact that C′ is a solution. We claim that (C1, . . . , Cτ ) with Ct = C∗t \C∗ a solution to I.
Note that |Ct| = |C ′t| − (|C| − 2k) ≤ (2|C| − 2k)/2− (|C| − 2k) = k, and that |Ct4Ct+1| =



|C ′t4C ′t+1| = 0. Finally, note that scoret(Ct) = scoret(C
′
t) − |A|(|C| − 2k) ≥ x + |A|(|C| −

2k)− |A|(|C| − 2k) = x.

C.4 Proof of Theorem 5
Proof of Theorem 5. Lemma 5 followed by Lemma 1 gives a parameterized reduction
from MSNTV to RMSNTV regarding the parameter τ . Theorem 4 then finishes the
proof.

D Additional Material for Section 5

D.1 Proof of Theorem 6
Proof. We describe a dynamic programming algorithm using the key insight that there are
only 2τ possible subsets of committees for a single candidate to be part of. With τ being
constant, we can effort to iterate through all these possibilities. Even more importantly,
when building up all committees simultaneously in m phases, with increasing i, we consider
in each phase i only committee members among the first i candidates. Herein, we keep track
of the sizes, symmetric differences, and scores of all τ committees using only polynomially
many table entries.

To implement the above idea, we define a boolean dynamic programming table T [i,
k1, . . . , kτ , d1, . . . , dτ−1, s1, . . . , sτ ] with 0 ≤ i ≤ m, 0 ≤ kt ≤ k, 0 ≤ dt ≤ 2k, 0 ≤ st ≤ n and
the following interpretation. Let T [i, k1, . . . , kτ , d1, . . . , dτ−1, s1, . . . , sτ ] be true if and only
if there are committees C1, . . . , Cτ ⊆ {c1, . . . , ci} with

• |Ct| = kt for each t ∈ {1, . . . , τ},

• |Ct4Ct+1| = dt for each t ∈ {1, . . . , τ − 1}, and

• scoret(Ct) = st for each t ∈ {1, . . . , τ}.

It can be easily verified (using the definition of the boolean table), that there exists a
solution to our problem if and only if T [m, k′1, . . . , k

′
τ , d
′
1, . . . , d

′
τ−1, s

′
1, . . . , s

′
τ ] is true for

some combination of k′1, . . . , k′τ , d′1, . . . , d′τ−1, s′1, . . . , s′τ with k′t ≤ k for each t ∈ {1, . . . , τ},
d′t ≤ ` (respectively d′t ≥ `, in the revolutionary case) for each t ∈ {1, . . . , τ − 1}, and s′t ≥ x
for each t ∈ {1, . . . , τ}. The table is of size O(m · k2τ · nτ ). It remains to show how to fill
the table and that each table entry can be computed efficiently.

As initialization, we set T [0, 0, . . . , 0] to true and all other table entries T [0, . . . ] to
false. For each i > 0, we compute all entries T [i, . . . ] as follows, assuming that the entries
T [i − 1, . . . ] have been computed. For each candidate fingerprint F ⊆ 2{1,...,τ} we set
T [i+ 1, k1, . . . , kτ , d1, . . . , dτ−1, s1, . . . , sτ ] to true if T [i, k′1, . . . , k

′
τ , d′1, . . . , d′τ−1, s′1, . . . , s′τ ]

is true where for each t ∈ {1, . . . , τ} we have

k′t =

{
kt − 1 if t ∈ F,
kt otherwise,

d′t =

{
dt − 1 if t ∈ F xor t+ 1 ∈ F,
dt otherwise, and

s′t =

{
st − |u−1t (ci+1)| if t ∈ F,
st otherwise.

We set all other entries T [i+ 1, . . . ] to false.



Running time. Computing all table entries T [i, . . . ] for some i costs O(2τ ) time steps for
setting the “true”-entries and another O(k2τ · nτ ) time steps for setting the “false”-entries.
Hence, the whole table can be computed in O(m · k2τ · nτ ) time.

The correctness is deferred to the appendix (F).

E Additional Material for Section 6.1

E.1 Proof of Theorem 7
By construction, we have the following.

Observation 4. Let I ′ from Construction 1 be a yes-instance of MSNTV. Then in every
solution (C1, . . . , Cτ ′) it holds true that z ∈ Ct in all t ∈ {1, . . . , τ ′}.

Proof. Let C = (C1, . . . , Cτ ′) be a solution to I ′. Assume there is i ∈ {1, . . . , τ ′} such
that z 6∈ Ci. Then, scorei(Ci) ≤ |A| − n = n < n + x = x′, contradicting that C is a
solution.

Lemma 12. Let I ′ be the instance obtained from Construction 1 given I1, . . . , Ip. Then I ′
is a yes-instance if and only if each instance of I1, . . . , Ip a yes-instance.

Proof. (⇒) Let C = (C1, C1,2, C2, . . . , Cp) be a solution for I ′, where Ci is sequence of
committee for the voting profiles obtained from instance Ii, and Ci,i+1 is a sequence of
committees for the transfer voting profiles between the consecutive instances Ii and Ii+1.
We claim that Ci without z forms a solution to instance Ii for every i ∈ {1, . . . , p}. Due
to Observation 4, we have that z is contained in each committee in Ci. Moreover, each
committee admits a score of at least x′ = x+ n, and hence as z contributes n to the score,
each committee admits a score of at least x in the respective voting profile in instance Ii.

(⇐) Let each of I1, . . . , Ip be a yes-instance, and let Cq = (C1
q , . . . , C

τ
q ) be a solution

to Iq for each q ∈ {1, . . . , p}. Note that Ĉq = (Ĉ1
q , . . . , Ĉ

τ
q ) where Ĉtq contains the set {cj |

cqj ∈ Ctq} and z is a sequence of committees that is a partial solution to I ′ on the voting
profiles corresponding to Iq. It remains to construct a sequence Cq,q+1 = (C1

q,q+1, . . . , C
2k
q,q+1)

for each q ∈ {1, . . . , p− 1}. Let Ĉτq = {z} ∪ {b1, . . . , br} and let Ĉ1
q+1 = {z} ∪ {d1, . . . , ds}.

Initially, set Ctq,q+1 = {z} for all t ∈ {1, . . . , 2k}. For t ≤ r, set Ctq,q+1 = Ĉτq \
⋃t
i=1 bi. For t ≥

2k− s+ 1, and Ctq,q+1 = Ĉ1
q+1 \

⋃2k−t+1
i=1 di. Clearly, |Ctq,q+1| ≤ k′ and since each contains z,

each admits a score of 2n. Finally, by construction we have that |Ctq,q+14Ct+1
q,q+1| ≤ 1 for

every t ∈ {1, . . . , 2k − 1}, |Cτq4C1
q,q+1| ≤ 1, and |C1

q+14C2k
q,q+1| ≤ 1. Altogether, it holds

that C := (Ĉ1, C1,2, Ĉ2, . . . , Ĉp) forms a solution to I ′.

For RMSNTV, the construction is similar to Construction 1 in the sense of using tran-
sition profiles; However, this time, we only need three.

Construction 2. Consider p instances I1, . . . , Ip of RMSNTV such that k, x ∈ N and ` =
2k, each with n agents Ai = {ai1, . . . , ain}, m = ` candidates Ci = {ci1, . . . , cim}, and τ voting
profiles. Add the agent set A = {a1, . . . , an} ∪ {âij | 0 ≤ i ≤ `, 1 ≤ j ≤ n} and candidate
set C = {c1, . . . , cn} ∪ {z, y1, . . . , y`}. Arrange the p voting profiles consecutively, where
we identify each agent aij with aj and each candidate cij with cj . Moreover, each agent â0j
approves z, and each âij approves yi. Next, between the last voting profile and the first
voting profile of two consecutive instances, add one profile where all agents approve z (we
call it again transfer profile). Set x′ = x + n · (` + 1), k′ = k + ` + 1, and `′ = `. Note
that τ ′ = pτ + (p− 1). �



Again, similar to the case of MSNTV, we observe that z must be contained in each
committee when we are facing a solution.

Observation 5. Let I ′ from Construction 2 be a yes-instance of RMSNTV. Then in every
solution (C1, . . . , Cτ ′) it holds true that z ∈ Ct in all t ∈ {1, . . . , τ ′} and {y1, . . . , y`} ∈ Ct
if Ct is no transition profile.

Lemma 13. Let I ′ be the instance obtained from Construction 2 given I1, . . . , Ip. Then I ′
is a yes-instance if and only if each instance of I1, . . . , Ip a yes-instance.

Proof. (⇒) Let C = (C1, C1,2, C2, . . . , Cp) be a solution for I ′, where Ci is sequence of
committee for the voting profiles obtained from instance Ii, and Ci,i+1 is a sequence of
committees for the transfer voting profiles between the consecutive instances Ii and Ii+1.
We claim that Ci without z forms a solution to instance Ii for every i ∈ {1, . . . , p}. Due
to Observation 5, we have that z and {y1, . . . , y`} are contained in each committee in Ci.
Moreover, each committee admits a score of at least x′ = x+ n · (`+ 1), and hence as each
of z, y1, . . . , y` contributes n to the score, each committee admits a score of at least x in the
respective voting profile in instance Ii.

(⇐) Let each of I1, . . . , Ip be a yes-instance, and let Cq = (C1
q , . . . , C

τ
q ) be a solu-

tion to Iq for each q ∈ {1, . . . , p}. Note that Ĉq = (Ĉ1
q , . . . , Ĉ

τ
q ) where Ĉtq contains the

set {cj | cqj ∈ Ctq} and z is a sequence of committees that is a partial solution to I ′

on the voting profiles corresponding to Iq. It remains to construct the transition pro-
files Cq,q+1 for each q ∈ {1, . . . , p − 1}. Let Ĉτq = {z} ] {y1, . . . , y`} ] {b1, . . . , br} and
let Ĉ1

q+1 = {z}] {y1, . . . , y`}] {d1, . . . , ds}. Set Cq,q+1 = {z}. Clearly, |Cq,q+1| ≤ k′, More-
over, since in the transition profiles all agents approve z, committee Cq,q+1 has score A′ ≥ x′.
Finally, observe that {y1, . . . , y`} is a subset of each of Ĉτq4Cq,q+1 and of Cq,q+14Ĉ1

q+1, and
hence each symmetric difference is of size at least `. Altogether, C := (Ĉ1, C1,2, Ĉ2, . . . , Ĉp)
forms a solution to I ′.

F Additional Material for Section 6.2

F.1 Proof of Observation 2
Proof. For each t ∈ {1, . . . , τ}, set wti equal to the number of approvals of candidate ci in
the tth utility function, that is, wti = |u−1t (ci)|.

We can shrink the weights of the weighted version of each of our problems the following
result due to Frank and Tardos [18].

Proposition 4 ([18, Section 3]). There is an algorithm that, on input w ∈ Qd and integerN ,
computes in polynomial time a vector ŵ ∈ Zd with
(i) ‖ŵ‖∞ ≤ 24d

3

Nd(d+2) such that
(ii) sign(w>b) = sign(ŵ>b) for all b ∈ Zd with ‖b‖1 ≤ N − 1.

Proposition 4 now gives the following.

F.2 Proof of Lemma 6
Proof. Let ω ∈ Nm·τ0 the concatenation of the weight vectors in W , and let w := (ω, x).
Apply Proposition 4 to w with N = k + 2 (note that d = m · τ + 1) to obtain a vector ŵ =
(ω̂, x̂). Property (i) holds true by Proposition 4(i). Let C = (C1, . . . , Cτ ) be a sequence of
subsets of {1, . . . ,m}. Let bt ∈ {0, 1}m be the vector associated with Ct (that is, bti = 1 if



and only if i ∈ Ct). Then, by Proposition 4(i) (since ‖bt‖1 ≤ k), (bt,−1)>(wt, x) ≥ 0 if and
only if (bt,−1)>(ŵt, x̂) ≥ 0. Hence, C is a solution to I if and only if it is to I ′, proving
property (ii).

G Additional Material for Section 6.3

G.1 Proof of Reduction Rule 1
Proof. Let I ′ be the instance obtained from I by Reduction Rule 1 deleting z ∈ C which is
never approved (its existence follows from Observation 3). If C′ is a solution to I ′, then it
is also to I. Conversely, if there is a solution that does not contain z, then this is a solution
to I ′. So, assume that every solution contains z.

Let C = (C1, . . . , Cτ ) be a solution to I such that the first appearance of z in the sequence
is the latest. Let z ∈ Ct1 , where t1 is the smallest index with this property. Let t2 > t1 be
the largest index such that z ∈ Ct2 for all t1 ≤ t ≤ t2. We claim that deleting z from Ct
for t1 ≤ t ≤ t2 constructs another solution with the first appearance of z being later,
contradicting our choice of C. It holds true that for all t1 ≤ t ≤ t2, we have |Ct \ {z}| =
|Ct| − 1 < k and, since z is never approved, we have that scoret(Ct \ {z}) ≥ x. Moreover,
for each |Ct4Ct+1| ≤ ` for each t1 ≤ t < t2. Finally, we have that |Ct1−14(Ct1 \ {z})| <
|Ct1−14Ct1 | ≤ `, since z 6∈ Ct1−1. Similarly, |(Ct2 \ {z})4Ct2+1| < |Ct24Ct2+1| ≤ `,
since z 6∈ Ct2+1. Hence, we constructed a solution where the first appearance of z is later
than for C, contradicting the choice of C. It follows that there is a solution not containing z,
witnessing that I is a yes-instance. Thus, the correctness of the rule follows.

The claimed running time is immediate: in linear time, identify m− nτ candidates that
are never approved and delete them from the candidate set.

G.2 Proof of Reduction Rule 2
Proof. Let I = (A,C,U, k, `, x) be an instance of RMSNTV such that m > max{n, k} · τ ,
and let I ′ = (A,C ′, U, k, `, x) be the instance of RMSNTV obtained from applying the
reduction rule to I, where C ′ = C \ {z} (z is a candidate that is never approved, which
exists since m > nτ). We claim that I is a yes-instance if and only if I ′ is a yes-instance.

(⇐) Immediate.
(⇒) Let I be a yes-instance. We claim that there is a solution C′ = (C ′1, . . . , C

′
τ )

such that z 6∈
⋃τ
t=1 C

′
t. Suppose not, and let C = (C1, . . . , Cτ ) be a solution to I which

contains z. Since |Ct| ≤ k, there is y ∈ C such that y 6∈
⋃τ
t=1 Ct, as m > kτ . We claim

that Ĉ = (Ĉ1, . . . , Ĉτ ) with

Ĉt =

{
Ct, z 6∈ Ct
(Ct \ {z}) ∪ {y}, otherwise,

is a solution to I (roughly, Ĉ is obtained from C by replacing each occurrence of z by y).
Clearly, |Ĉt| ≤ k, scoret(Ĉt) ≥ x, and even |Ĉt4Ĉt+1| ≥ `, since whenever z ∈ (Ct4Ct+1),
we now have y ∈ (Ĉt4Ĉt+1). It follows that Ĉ is a solution not containing z. Hence, C′
exists and is a solution to I ′.
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