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Abstract

Social choice functions (SCFs) map the preferences of a group of agents over some
set of alternatives to a non-empty subset of alternatives. The Gibbard-Satterthwaite
theorem has shown that only extremely unattractive single-valued SCFs are strate-
gyproof when there are more than two alternatives. For set-valued SCFs, or so-called
social choice correspondences, the situation is less clear. There are miscellaneous�
mostly negative�results using a variety of strategyproofness notions and additional
requirements. The simple and intuitive notion of Kelly-strategyproofness has turned
out to be particularly compelling because it is weak enough to still allow for positive
results. For example, the Pareto rule is strategyproof even when preferences are
weak, and a number of attractive SCFs (such as the top cycle, the uncovered set,
and the essential set) are strategyproof for strict preferences. In this paper, we show
that, for weak preferences, only indecisive SCFs can satisfy strategyproofness. In
particular, (i) every strategyproof rank-based SCF violates Pareto-optimality, (ii)
every strategyproof support-based SCF (which generalize Fishburn's C2 SCFs) that
satis�es Pareto-optimality returns at least one most preferred alternative of every
voter, and (iii) every strategyproof non-imposing SCF returns a Condorcet loser in
at least one pro�le.

1 Introduction

Whenever a group of multiple agents aims at reaching a joint decision in a fair and princi-
pled way, they need to aggregate their individual preferences using a social choice function
(SCF). SCFs are traditionally studied by economists and mathematicians, but have also
come under increasing scrutiny from computer scientists who are interested in their compu-
tational properties or want to utilize them in computational multiagent systems (see, e.g.,
Brandt et al., 2016b; Endriss, 2017).

An important phenomenon in social choice is that agents misrepresent their preferences
in order to obtain a more preferred outcome. An SCF that is immune to strategic misrep-
resentation of preferences is called strategyproof. Gibbard (1973) and Satterthwaite (1975)
have shown that only extremely restricted single-valued SCFs are strategyproof: either the
range of the SCF is restricted to only two outcomes or the SCF always returns the most
preferred alternative of the same voter. Perhaps the most controversial assumption of the
Gibbard-Satterthwaite theorem is that the SCF must always return a single alternative (see,
e.g., Gärdenfors, 1976; Kelly, 1977; Barberà, 1977b; Duggan and Schwartz, 2000; Nehring,
2000; Barberà et al., 2001; Ching and Zhou, 2002; Taylor, 2005). This assumption is at vari-
ance with elementary fairness conditions such as anonymity and neutrality. For instance,
consider an election with two alternatives and two voters such that each alternative is favored
by a di�erent voter. Clearly, both alternatives are equally acceptable, but single-valuedness
forces us to pick a single alternative based on the preferences only.

We therefore study the manipulability of set-valued SCFs (or so-called social choice
correspondences). When SCFs return sets of alternatives, there are various notions of strat-
egyproofness, depending on the circumstances under which one set is considered to be pre-
ferred to another. When the underlying notion of strategyproofness is su�ciently strong, the
negative consequences of the Gibbard-Satterthwaite theorem remain largely intact (see, e.g.,



Duggan and Schwartz, 2000; Barberà et al., 2001; Ching and Zhou, 2002; Benoît, 2002; Sato,
2014).1 In this paper, we are concerned with a rather weak�but natural and intuitive�
notion of strategyproofness attributed to Kelly (1977). Several attractive SCFs have been
shown to be strategyproof for this notion when preferences are strict (Brandt, 2015; Brandt
et al., 2016a). These include the top cycle, the uncovered set, the minimal covering set,
and the essential set. However, when preferences are weak, these results break down and
strategyproofness is not well understood in general.

Feldman (1979) has shown that the Pareto rule is strategyproof according to Kelly's
de�nition, even when preferences are weak. Moreover, the omninomination rule and the
intersection of the Pareto rule and the omninomination rule are strategyproof as well (Brandt
et al., 2021, Remark 1). These results are encouraging because they rule out impossibilities
using Pareto-optimality and other weak properties.2 In the context of strategic abstention
(i.e., manipulation by deliberately abstaining from an election), even more positive results
can be obtained. Brandl et al. (2019) have shown that all of the above mentioned SCFs
that are strategyproof for strict preferences are immune to strategic abstention even when
preferences are weak.

A number of negative results were shown for severely restricted classes of SCFs. Kelly
(1977) and Barberà (1977b) have shown independently that there is no strategyproof SCF
that satis�es quasi-transitive rationalizability. However, this result su�ers from the fact that
quasi-transitive rationalizability is almost prohibitive on its own (see, e.g., Mas-Colell and
Sonnenschein, 1972).3 In subsequent work by MacIntyre and Pattanaik (1981) and Bandy-
opadhyay (1983), quasi-transitive rationalizability has been replaced with weaker conditions
such as minimal binariness or quasi-binariness, which are still very demanding and violated
by most SCFs. Barberà (1977a) has shown that positively responsive SCFs fail to be strat-
egyproof under mild assumptions. However, positively responsive SCFs are almost always
single-valued and of all commonly considered SCFs only Borda's rule and Black's rule sat-
isfy this criterion. Taylor (2005, Th. 8.1.2) has shown that every SCF that returns the
set of all weak Condorcet winners whenever this set is non-empty fails to be strategyproof.
This result was strengthened by Brandt (2015), who showed that every SCF that returns
a (strict) Condorcet winner whenever one exists fails to be strategyproof. More recently,
Brandt et al. (2021) have shown with the help of computers that every Pareto-optimal SCF
whose outcome only depends on the pairwise majority margins can be manipulated.

In this paper, we study strategyproofness in three broad classes of SCFs. These classes
are rank-based SCFs (which include all scoring rules), support-based SCFs (which generalize
Fishburn's C2 SCFs), and non-imposing SCFs (which return every alternative as the unique
winner for some preference pro�le). An overview of the three classes and typical examples
of SCFs belonging to these classes are given in Figure 1. The classes are unrelated in a
set-theoretic sense: for any pair of classes, their intersection is non-empty, and Borda's rule
is contained in all three classes. Taken together, they cover virtually all SCFs commonly
considered in the literature.

For rank-based and support-based SCFs, we show that Pareto-optimality and strate-
gyproofness imply that every voter is a nominator, i.e., the resulting choice sets contain
at least one most preferred alternative of every voter. In the case of ranked-based SCFs,
this entails an impossibility whereas for support-based SCFs it demonstrates a high degree
of indecisiveness. For non-imposing SCFs, we show that strategyproofness implies that a

1We refer to Barberà (2010) and Brandt et al. (2021) for a more detailed overview over this extensive
stream of research.

2For example, Brandt et al. (2021) have shown that Pareto-optimality is incompatible with anonymity
and a notion of strategyproofness that is slightly stronger than Kelly's.

3This is acknowledged by Kelly (1977) who writes that �one plausible interpretation of such a theorem
is that, rather than demonstrating the impossibility of reasonable strategy-proof social choice functions, it
is part of a critique of the regularity [rationalizability] conditions.�
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Figure 1: The classes of rank-based, support-based, and non-imposing SCFs and typical
examples. 2-plurality, 2-Copeland, and 2-Borda return all alternatives whose respective
score is at least as large as the second-highest score. All scoring rules except Borda's
rule are rank-based, non-imposing, but not support-based. Common Condorcet extensions
include the top cycle, the uncovered set, the minimal covering set, the essential set, the
Simpson-Kramer rule, Nanson's rule, Schulze's rule, and Kemeny's rule.

Condorcet loser has to be returned in at least one preference pro�le. The latter result re-
markably holds without imposing fairness conditions such as anonymity or neutrality and
can again be phrased in terms of indecisiveness: every strategyproof SCF that satis�es the
Condorcet loser property will never return certain alternatives as unique winners. Even
though these results are rather negative, they are important to improve our understanding
of strategyproof SCFs. Much more positive results are obtained by making minuscule adjust-
ments to the assumptions such as restricting the domain of preferences to strict preferences,
weakening the underlying notion of strategyproofness, or replacing strategic manipulation
with strategic abstention (see, e.g., Nehring, 2000; Brandt, 2015; Brandl et al., 2019). In
all of these cases, a small number of support-based Condorcet extensions such as the top
cycle, the uncovered set, the minimal covering set, and the essential set constitute appealing
positive examples.

Our results can also be interpreted in the context of randomized social choice.
When transferred to this setting, Kelly-strategyproofness is weaker than weak SD-
strategyproofness and we thus obtain three strong impossibilities.

2 The Model

Let N = {1, . . . , n} denote a �nite set of voters and let A = {a, b, . . . } denote a �nite set
of m alternatives. Moreover, let [x . . . y]= {i ∈ N : x ≤ i ≤ y} denote the subset of voters
from x to y and note that [x . . . y] is empty if x > y. Every voter i ∈ N is equipped with
a weak preference relation %i, i.e., a complete, transitive, and re�exive binary relation on
A. We denote the strict part of %i by �i, i.e., x �i y if and only if x %i y and y 6%i x, and
the indi�erence part by ∼i, i.e., if x ∼i y if and only if x %i y and y %i x. We compactly



represent a preference relation as a comma-separated list, where sets of alternatives express
indi�erences. For example, x � y ∼ z is represented by x, {y, z}. Furthermore, we call a
preference relation % strict if its irre�exive part is equal to its strict part �. The set of
all weak preference relations on A is called R. A preference pro�le R ∈ Rn is an n-tuple
containing the preference relation of every voter i ∈ N . When de�ning preference pro�les,
we specify a set of voters who share the same preference relation by writing the set directly
before the preference relation. For instance, [x . . . y]: a, b, c means that all voters i ∈ [x . . . y]
prefer a to b and b to c. We omit the brackets for singleton sets. For two alternatives
x, y ∈ A, the pairwise support of x over y is de�ned as the number of voters who strictly
prefer x to y, i.e., sxy(R) = |{i ∈ N : x �i y}|. Our central objects of study are social
choice functions (SCFs), or so-called social choice correspondences, which map a preference
pro�le to a non-empty set of alternatives, i.e., functions of the form f : Rn 7→ 2A \ ∅. The
mere mathematical description of SCFs is so general that it allows for rather undesirable
functions. We now introduce a number of axioms in order to narrow down the set of SCFs.
The most basic fairness condition is anonymity, which requires that all voters are treated
equally: an SCF f is anonymous if f(R) = f(R′) for all preference pro�les R,R′ for which
there is a permutation π : N → N such that Ri = R′π(i) for all i ∈ N .

Perhaps one of the most prominent axioms in economic theory is Pareto-optimality, which
is based on the notion of Pareto-dominance: an alternative x Pareto-dominates another
alternative y if x %i y for all i ∈ N and there is a voter j ∈ N with x �j y. An alternative is
Pareto-optimal if it is not Pareto-dominated by any other alternative. This idea leads to the
Pareto rule which returns all Pareto-optimal alternatives. An SCF f is Pareto-optimal if
it never returns Pareto-dominated alternatives. An axiom that is closely related to Pareto-
optimality is near unanimity, as introduced by Benoît (2002). Near unanimity requires that
f(R) = {x} for all alternatives x ∈ A and preference pro�les R in which at least n−1 voters
uniquely top-rank x. The more voters there are, the more compelling near unanimity is. A
natural weakening of these axioms is non-imposition which requires that for every alternative
x ∈ A, there is a pro�le R such that f(R) = {x}. For single-valued SCFs, non-imposition
is almost imperative because it merely requires that the SCF is onto. For set-valued SCFs,
as considered in this paper, this is not necessarily the case. For example, every SCF that
always returns at least two alternatives fails non-imposition (see, for example, 2-plurality,
2-Borda, and 2-Copeland in Figure 1).

An in�uential concept in social choice theory is that of a Condorcet winner, which is
an alternative a ∈ A that wins all pairwise majority comparisons, i.e., sax(R) > sxa(R) for
all x ∈ A \ {a}. An SCF is Condorcet-consistent or a so-called Condorcet extension if it
uniquely returns a Condorcet winner whenever one exists. Analogously, one can de�ne a
Condorcet loser by requiring that sxa(R) > sax(R) for all x ∈ A\{a}. An SCF f satis�es the
Condorcet loser property if x 6∈ f(R) whenever x is a Condorcet loser in R. While there are
Condorcet extensions that violate the Condorcet loser property (e.g., the Simpson-Kramer
rule) and SCFs that satisfy the Condorcet loser property but fail Condorcet-consistency
(e.g., Borda's rule), the Condorcet loser property �feels� weaker. This could be justi�ed by
arguing that both properties a�ect exactly the same number of preference pro�les, but the
Condorcet loser property only excludes a single alternative (and leaves otherwise a lot of
freedom) whereas Condorcet-consistency completely determines the (singleton) choice set.

While the axioms so far make reference to the entire preference pro�le, there are also
concepts that only refer to the preferences of a single voter. One such concept that is
particularly important in our context is that of a nominator. A voter is a nominator if
f(R) always contains at least one of his most preferred alternatives. A nominator is a weak
dictator in the sense that he can always force an alternative into the choice set by declaring
it his uniquely most preferred one.



2.1 Rank-Basedness and Support-Basedness

In this section, we introduce two classes of anonymous SCFs that capture many of the SCFs
commonly studied in the literature: rank-based and support-based SCFs. The basic idea
of rank-basedness is that voters assign ranks to the alternatives and that an SCF should
only depend on the ranks of the alternatives, but not on which voter assigns which rank
to an alternative. In order to formalize this idea, we �rst need to de�ne the rank of an
alternative. In the case of strict preferences, this is straightforward. The rank of alternative
x according to %i is r̄(%i, x) = |{y ∈ A : y %i x}| (Laslier, 1996). In contrast, there are
multiple possibilities how to de�ne the rank in the presence of ties. We de�ne a very weak
notion of ranked-basedness for weak preferences, making our results only stronger. To this
end, de�ne the rank tuple of x with respect to %i as

r(%i, x) = (r̄(�i, x), r̄(∼i, x))

= (|{y ∈ A : y �i x}|, |{y ∈ A : y ∼i x}|).

The rank tuple contains more information than many other generalizations of the rank
and therefore, it leads to a more general de�nition of rank-basedness. Next, we de�ne the
rank vector of an alternative a which contains the rank tuple of a with respect to every
voter in increasing lexicographic order, i.e., r∗(R, x) = (r(%i1 , x), r(%i2 , x), . . . , r(%in , x))
where r̄(�ij , x) ≤ r̄(�ij+1

, x) and if r̄(�ij , x) = r̄(�ij+1
, x), then r̄(∼ij , x) ≤ r̄(∼ij+1

, x).
Finally, the rank matrix r∗(R) of the preference pro�le R contains the rank vectors as rows.
An SCF f is called rank-based if f(R) = f(R′) for all preference pro�les R,R′ ∈ Rn with
r∗(R) = r∗(R′). The class of rank-based SCFs contains many popular SCFs such as all
scoring rules or the omninomination rule, which returns all top-ranked alternatives.

A similar line of thought leads to support-basedness, which is based on the pairwise
support of an alternative x against another one y. We de�ne the support matrix s∗(R) =
(sxy(R))x,y∈A which contains the supports for all pairs of alternatives. Finally, an SCF
f is support-based if it yields f(R) = f(R′) for all preference pro�les R,R′ ∈ Rn with
s∗(R) = s∗(R′). Note that support-basedness generalizes Fishburn's C2 to weak preferences
(Fishburn, 1977). Hence, many well-known SCFs such as Borda's rule, Kemeny's rule, the
Simpson-Kramer rule, Nanson's rule, Schulze's rule, and the essential set are support-based.
Support-basedness is less restrictive than pairwiseness, which requires that f(R) = f(R′)
for all preference pro�les R,R′ ∈ Rn with sab(R)−sba(R) = sab(R

′)−sba(R′) for all a, b ∈ A
(see, e.g., Brandt et al., 2021). For example, the Pareto rule is support-based, but fails to
be pairwise.

2.2 Strategyproofness

One of the central problems in social choice theory is manipulation, i.e., voters may lie
about their true preferences to obtain a more preferred outcome. For single-valued SCFs,
it is clear what constitutes a more preferred outcome. In the case of set-valued SCFs, there
are various ways to de�ne manipulation depending on what is assumed about the voters'
preferences over sets of alternatives. Here, we make a simple and natural assumption: a
voter i weakly prefers a set X to another set Y , denoted by X %i Y , if and only if x %i y
for all x ∈ X, y ∈ Y . Thus, the strict part of this preference extension is

X �i Y if and only if for all x ∈ X, y ∈ Y, x %i y and

there are x′ ∈ X, y′ ∈ Y with x′ �i y′.

An SCF is manipulable if a voter can improve his outcome by lying about his preferences.
Formally, an SCF f is manipulable if there are a voter i ∈ N and preference pro�les R, R′



such that %j=%′j for all j ∈ N \ {i} and f(R′) �i f(R). Moreover, f is strategyproof if it
is not manipulable.

These assumptions can, for example, be justi�ed by considering a randomized tie-
breaking procedure (a so-called lottery) that is used to select a single alternative from
every set of alternatives returned by the SCF. We then have that X �i Y if and only if all
lotteries with support X yield strictly more expected utility than all lotteries with support
Y for all utility functions that are ordinally consistent with %i (see, e.g., Gärdenfors, 1979;
Brandt et al., 2021).

3 Results

The unifying theme of our results is that strategyproofness requires a large degree of in-
decisiveness. In more detail, we show that every voter is a nominator for all ranked-based
and support-based SCFs that satisfy Pareto-optimality and strategyproofness. For the very
broad class of non-imposing SCFs, we show that every strategyproof SCF violates the Con-
dorcet loser property. Due to space restrictions, we defer the proofs of all lemmas, theorems,
and non-trivial claims in the remarks to the appendix. Instead, we give some intuition for
the proofs by discussing proof sketches.

In order to prove the claim for rank-based and support-based SCFs, we focus on its con-
trapositive, i.e., we assume that there is a rank-based or support-based SCF f that satis�es
Pareto-optimality and strategyproofness and for which a voter i ∈ N is not a nominator.
Our �rst lemma shows that these assumptions imply that f satis�es near unanimity.

Lemma 1. Let f be an anonymous, Pareto-optimal, and strategyproof SCF that is de�ned
for m ≥ 3 alternatives and n ≥ 2 voters. If a voter is not a nominator for f , then f satis�es
near unanimity.

Proof sketch. Consider an arbitrary SCF f that satis�es all required axioms and a voter i
who is not a nominator for f . The last assumption means that there is a pro�le R such that
f(R) does not contain any of voter i's most preferred alternatives. As �rst step, we construct
a pro�le R′ in which f(R′) = {a} but a is not among the most preferred alternatives of voter
i. This is helpful because strategyproofness becomes much more restrictive when there is
only a single winner. Based on the pro�le R′, we derive then that n−1 voters can ensure that
a is the unique winner by submitting it as a uniquely most preferred alternative. Finally, we
show that f satis�es near unanimity by generalizing this observation from a single alternative
to all alternatives.

Lemma 1 can be interpreted in various appealing ways. For instance, one can see it as a
push-down lemma that allows a single voter to weaken the unique winner in his preference
relation. Moreover, this lemma shows that, under the given assumptions, indecisiveness for
a single preference pro�le of a particularly simple type entails a large degree of indecisiveness
for the entire domain of preference pro�les. More precisely, if an alternative is not chosen
uniquely even if n− 1 voters prefer it uniquely the most, then all voters are nominators.

Remark 1. There is also a variant of Lemma 1 without anonymity. Then, an alternative
is the unique winner if all voters but the non-nominator prefer it uniquely the most. Thus,
requiring the absence of nominators for a strategyproof and Pareto-optimal SCF implies
near unanimity.

Remark 2. Remarkably, many impossibility results rule out that every voter is a nominator.
For instance, Duggan and Schwartz (2000), Benoît (2002), and Sato (2008) invoke axioms
prohibiting that every voter is a nominator. Moreover, a crucial step in the computer-
generated proofs of Theorem 3.1 by Brandl et al. (2018) and Theorem 1 by Brandt et al.



(2021) is to show that there is a voter who is not a nominator. Lemma 1 gives intuition
about why these assumptions and observations are important.

3.1 Rank-Based SCFs

In this section, we discuss our �rst impossibility theorem: no rank-based SCF satis�es
Pareto-optimality and strategyproofness. This result follows from the observation that
Pareto-optimality, strategyproofness, and rank-basedness require that every voter is a nom-
inator, but Pareto-optimality and rank-basedness do not allow for such SCFs.

Theorem 1. There is no rank-based SCF that satis�es Pareto-optimality and strategyproof-
ness if m ≥ 4 and n ≥ 3.

Proof sketch. The proof of this theorem works by contradiction, i.e., we assume that there
is a rank-based SCF for m ≥ 4 alternatives and n ≥ 3 voters that satis�es Pareto-optimality
and strategyproofness and prove two con�icting implications. In particular, we show the
following two claims, which clearly contradict each other. Thus, no rank-based SCF can
satisfy both Pareto-optimality and strategyproofness.

Claim 1: Not every voter is a nominator for a rank-based SCF that satis�es Pareto-
optimality if m ≥ 4 and n ≥ 3.

Claim 2: Every voter is a nominator for a rank-based SCF that satis�es Pareto-optimality
and strategyproofness if m ≥ 4 and n ≥ 3.

For proving Claim 1, we construct three pro�les with the same rank matrix but di�erent
Pareto-dominated alternatives. As a consequence, a rank-based and Pareto-optimal SCF can
only choose a single alternative, even though the voters do not agree on a best alternative.
Hence, it follows that there is a voter who is not a nominator.

Claim 2 follows from another proof by contradiction: we assume that there is a rank-
based SCF f that satis�es Pareto-optimality and strategyproofness and for which a voter
is no nominator. As a consequence of the last assumption, Lemma 1 applies and shows
that f is nearly unanimous, i.e., f(R) = {a} if all voters but one report a as uniquely best
alternative in R. Starting from such a pro�le R, we show that the voters who uniquely
top-rank a can also report a and b as their most preferred alternatives without a�ecting
the outcome. By repeatedly applying this argument, we arrive at a pro�le R′ for which
f(R′) = {a}, n− 1 voter report a and b as their best alternatives, and the last voter reports
a as his uniquely least preferred alternative. Hence, a is Pareto-dominated by b in R′ and
f violates therefore Pareto-optimality.

Remark 3. The axioms used in Theorem 1 are independent: the Pareto rule satis�es all
axioms except rank-basedness, the trivial SCF which always returns all alternatives only
violates Pareto-optimality, and Borda's rule only violates strategyproofness.4 Furthermore,
the Pareto rule is rank-based if m ≤ 3, and if m = 4 and n ≤ 2, which entails that the
bounds on m and n are tight if considered simultaneously. By contrast, the theorem is also
true if m ≥ 5 and n = 2. More details can be found in the appendix.

Remark 4. Theorem 1 is only an impossibility because of the lack of compatibility of
rank-basedness and Pareto-optimality in Claim 1, independently of strategyproofness. In
contrast, the main consequence of strategyproofness is indecisiveness as captured in Claim

4We de�ne Borda's rule as the SCF that chooses all alternatives that maximize m · n −
∑

i∈N r̄(�i, a).
This de�nition agrees with the standard notation used in literature on the strict domain and generalizes it
to the weak domain.



2. This follows as Theorem 1 breaks down once we weaken Pareto-optimality to weak
Pareto-optimality (which only excludes alternatives for which another alternative is strictly
preferred by every voter) as the omninomination rule satis�es then all required axioms
(Brandt et al., 2021, Remark 6). In contrast, the proof of Claim 2 shows that more deci-
sive rank-based SCFs violate strategyproofness as near unanimity is already su�cient for a
contradiction.

Remark 5. Theorem 1 holds also under weaker versions of rank-basedness. First, it uses
rank-basedness only in very speci�c situations, namely when two voters rename exactly two
alternatives. Moreover, the only real restriction on the rank function r is independence of
the naming of other alternatives, i.e., r(%i, a) = r(%′i, a) for all preferences %i, %′i that only
di�er in the naming of alternatives in A \ {a}. Hence, we may also de�ne rank-basedness
based on a rank function other than the rank tuple and the result still holds.

Remark 6. It is possible to show Theorem 1�as well as Theorem 2�by induction proofs
where completely indi�erent voters and universally bottom-ranked alternatives are used
to generalize the statement to arbitrarily many voters and alternatives (see, e.g., Brandl
et al., 2018, 2019; Brandt et al., 2021). However, these constructions seem arti�cial and
thus, we prefer to give universal proofs for any numbers of voters and alternatives to stress
the robustness of the respective constructions. As a consequence, our proofs often hold
when restricting the domain of admissible pro�les by prohibiting arti�cial constructs such
as completely indi�erent voters.

Remark 7. Theorem 1 does not hold when preferences are strict. For instance, the omni-
nomination rule satis�es all required axioms for arbitrary numbers of voters and alternatives
for strict preferences. It can even be shown that Claim 2 of the proof no longer holds for
strict preferences as a variant of the 2-plurality rule, which chooses the two alternatives
that are top-ranked by the most voters, is rank-based, Pareto-optimal, and strategyproof.
However, no voter is a nominator for this rule. A formal de�nition of this SCF and proofs
for its properties can be found in the appendix.

3.2 Support-Based SCFs

It is not possible to replace rank-basedness with support-basedness in Theorem 1 since the
Pareto rule is strategyproof, Pareto-optimal, and support-based. Note that the Pareto rule
always chooses one of the most preferred alternatives of every voter. Consequently, Claim 1
in the proof of Theorem 1 cannot be true in general for support-based SCFs. Nevertheless,
we show next that Claim 2 remains true for such SCFs, i.e., every voter is a nominator for
every support-based SCF that satis�es Pareto-optimality and strategyproofness.

Theorem 2. In every support-based SCF that satis�es Pareto-optimality and strategyproof-
ness, every voter is a nominator if m ≥ 3.

Proof sketch. We prove this theorem again by contradiction and assume therefore that there
is a support-based SCF f for m ≥ 3 alternatives that satis�es Pareto-optimality and strat-
egyproofness and that a voter is no nominator for f . As a consequence of Lemma 1, f is
nearly unanimous. Note that near unanimity itself results immediately in a contradiction if
n ≤ 2 and thus, we focus on the case that there are at least three voters. The central argu-
ment in this case is the following claim that we prove by induction over k ∈ {1, . . . , n− 1}:
for all preference pro�les R and alternatives a ∈ A, if n−k voters report a as their uniquely
most preferred alternative, then f(R) = {a}. For k ≥ n/2, we derive that less than half of
the voters can enforce that f(R) = {a} by uniquely top-ranking a. However, if half of the
voters report a as their best alternative and the other half reports b as their best alternative,



f(R) = {a} and f(R) = {b} must be simultaneously true, a contradiction. Hence, it follows
that every voter is a nominator for every support-based SCF that satis�es Pareto-optimality
and strategyproofness if m ≥ 3.

Remark 8. All axioms used in Theorem 2 are required as the following SCFs show. Ev-
ery constant SCF satis�es support-basedness and strategyproofness, and violates Pareto-
optimality and that every voter is a nominator. The SCF that chooses the lexicographic
smallest Pareto-optimal alternative satis�es Pareto-optimality and support-basedness but
violates strategyproofness and that every voter is a nominator. For de�ning an SCF that
satis�es Pareto-optimality and strategyproofness but violates support-basedness and that
every voter is a nominator, we de�ne a transitive dominance relation by slightly strengthen-
ing Pareto-dominance by allowing additionally that an alternative a that is among the most
preferred alternatives of n − 1 voters can dominate another alternative b, even if a single
voter prefers b strictly to a. Therefore, we say that an alternative a dominates alternative b
if a Pareto-dominates b or n− 1 voters prefer a the most while sab(R) ≥ 2 and sba(R) ≤ 1.
It should be stressed that it is not required that a is uniquely top-ranked by n − 1 voters,
but only that it is among their best alternatives. The SCF f∗ that chooses all maximal
elements with respect to this dominance relation satis�es all required properties (see the
appendix for more details). Also the bound on m is tight as the majority rule satis�es all
axioms if m = 2 but no voter is a nominator for this SCF.

Remark 9. Brandt et al. (2021, Th. 5.4) have shown that there is no pairwise, Pareto-
optimal and strategyproof SCF if m ≥ 3 and n ≥ 3. This result immediately follows from
Theorem 2 by observing that strategyproofness, pairwiseness, and Pareto-optimality rule
out that every voter is a nominator. For this, it su�ces to �nd a preference pro�le in
which a Pareto-dominates b and another pro�le with the same majority margins where b is
uniquely top-ranked by a voter.

Remark 10. Just as in the proof of Theorem 1, we make only very restricted use of support-
basedness in the proof of Theorem 2. It su�ces if two voters are allowed to exchange their
preferences over two alternatives. This technical restriction is signi�cantly weaker than
support-basedness, which allows any number of voters to change their preferences.

Remark 11. An important subclass of support-based SCFs are majority-based SCFs, which
Fishburn (1977) calls C1 functions. They only rely on the majority relation RM = {(a, b) ∈
A2 : sab(R) ≥ sba(R)} of the input pro�le R to compute the choice set. For majority-based
SCFs, an even more severe impossibility holds: there is no majority-based SCF that satis�es
non-imposition and strategyproofness if m ≥ 3 and n ≥ 3. Even though this statement does
not require Pareto-optimality and therefore cannot use Lemma 1, the result follows from a
proof similar to the one of Theorem 2. See the appendix for more details.

Remark 12. If preferences are required to be strict, Theorem 2 does not hold. Several SCFs
including the uncovered set, the minimal covering set, and the essential set are strategyproof,
Pareto-optimal and support-based, but no voter is a nominator for them (see, e.g, (Brandt
et al., 2016a) for more details).

Remark 13. Theorems 1 and 2 raise the question whether all voters must be nominators
for every anonymous, Pareto-optimal, and strategyproof social choice function. This is not
the case because the SCF f∗, as de�ned in Remark 8, satis�es near unanimity and therefore
represents a counterexample.

3.3 Non-Imposing SCFs

Finally, we consider the class of non-imposing SCFs. Recall that an SCF is non-imposing if
every alternative is returned as the unique winner in some pro�le. Among the SCFs typically



studied in social choice theory, there are only very few that fail to be non-imposing, e.g.,
SCFs that never return certain alternatives (such as constant SCFs) or SCFs that never
return singletons.

We will show a rather strong consequence of strategyproofness for non-imposing SCFs:
every such function has to return a Condorcet loser in at least one preference pro�le and
thus violate the Condorcet loser property. In the presence of neutrality (symmetry among
alternatives), non-imposition can be seen as a decisiveness requirement. Accordingly, the
theorem identi�es a tradeo� between decisiveness and the undesirable property of selecting
Condorcet losers.

Similarly to Theorem 1 and Theorem 2, we start with a lemma that allows a voter to
push down the unique winner. Since we do not require Pareto-optimality in this section, we
cannot use Lemma 1 and therefore propose a new lemma that uses non-imposition instead.

Lemma 2. Let f denote a strategyproof SCF for n ≥ 3 voters that satis�es non-imposition
and the Condorcet loser property. Then, f(R) = {a} for every preference pro�le R and
every alternative a ∈ A such that more than half of the voters in R report a as their unique
top choice.

Proof sketch. As �rst step of the proof of this lemma, we show that an alternative is the
unique winner for such an SCF f if it is the unique top choice of every voter. Next, we prove
that a voter i can make his uniquely best alternative a into his uniquely worst one while
ensuring that a remains the single winner if more than half of the voters still report a as
their unique best alternative after this modi�cation. This step relies signi�cantly on the fact
that the voters who top-rank a can turn every other alternative b into the Condorcet loser
without a�ecting the choice set. As a consequence, we can repeatedly choose an alternative
x and reinforce it against a in voter i's preference while ensuring that x is not chosen as it is
the Condorcet loser. Applying these steps repeatedly to multiple voters leads to a pro�le R′

such that f(R′) = {a}, dn+1
2 e voters prefer a uniquely the most, and the remaining voters

prefer a uniquely the least. Finally, we can apply strategyproofness to turn this pro�le into
any other pro�le in which a is uniquely top-ranked by a majority of the voters without
changing the choice set.

Note that the Condorcet loser property allows for a signi�cantly stronger push-down
lemma than Pareto-optimality, even though it only requires that a single alternative may not
be chosen. The reason is that an absolute majority of voters can exclude every alternative
from the choice set. We use Lemma 2 to show that there is no strategyproof SCF that
satis�es the Condorcet loser property and non-imposition.

Theorem 3. There is no strategyproof SCF that satis�es the Condorcet loser property and
non-imposition if m ≥ 3 and n ≥ 4.

Proof sketch. We prove this result by contradiction, i.e., we assume that there is a non-
imposing SCF f for m ≥ 3 alternatives and n ≥ 4 voters that satis�es the Condorcet loser
property and strategyproofness. Since the Condorcet loser property and Lemma 2 depend
on the parity of the number of voters, we proceed with a case distinction with respect to n.

First consider the case that n ≥ 5 is odd. In this case, the pro�le R3, where X =
A \ {a, b, c}, plays a central role in the proof. In particular, we can show with two simple
deductions that there is no valid choice set for R3.

R3: 1: a, b,X, c [2 . . . l−1]: a, c,X, b l: c, a,X, b [l+1 . . . n]: b, c,X, a

Next, we infer restrictions on f(R3) from the pro�les R1 and R2.

R1: 1: a, b,X, c [2 . . . l]: a, c,X, b [l+1 . . . n]: b,X, {a, c}
R2: [1 . . . l−1]: a, c,X, b l: c, a,X, b [l+1 . . . n]: c, b,X, a



First, we consider the derivation of R3 from R1 and note that f(R1) = {a} because
of Lemma 2. Moreover, c is the Condorcet loser in R1 regardless of voter l's preference.
Therefore, we replace the preference of this voter with c, a,X, b, and the Condorcet loser
property and strategyproofness entail that a is still the unique winner. Finally, we let the
voters i ∈ [l+1 . . . n] change their preference to b, c,X, a. Before these modi�cations, a, one
of the least preferred alternatives of these voters, was the unique winner, and thus it follows
from strategyproofness that f(R3) ⊆ {a, c}. Moreover, f(R3) 6= {c} because otherwise,
voter 1 can manipulate by reporting b as his best choice. After this modi�cation, more
than half of the voters prefer b uniquely the most, which entails that b is the unique winner
because of Lemma 2. Hence f(R3) ∈ {{a}, {a, c}}.

Next, we discuss the derivation of R3 from R2. Once again, Lemma 2 applies for R2

and entails that f(R2) = {c}. Moreover, note that b is the Condorcet loser, regardless of
the preferences of the voters i ∈ [l+1 . . . n]. Hence, these voters can swap b and c one after
another, and strategyproofness and the Condorcet loser property entail that c is still the
unique winner afterwards. Finally, we derive R3 by replacing the preference of voter 1 with
a, b,X, c. Since c is the unique winner before the manipulation, f(R3) 6∈ {{a}, {a, c}} be-
cause voter 1 prefers these sets to {c}. This is a contradiction with the previous observation.

Finally, we have to consider the case that n ≥ 4 is even. In this case, we provide �rst
an involved argument showing that no non-imposing SCF can satisfy strategyproofness and
the Condorcet loser property if n = 4. Next, we generalize this impossibility to larger values
of n by adding pairs of voters with inverse preferences. This is possible since these voters
do not a�ect any of the required properties.

Remark 14. A more general version of Lemma 2 can be proven for a non-imposing and
strategyproof SCF f : if there is a group of voters S ( N such that a 6∈ f(R) for every
alternative a and pro�le R in which all voters in S reports a as their uniquely least preferred
alternative, then f(R′) = {b} for all preference pro�les R′ and alternatives b such that all
voters in S agree on b as their uniquely best alternative. In particular, this means that
vetoers, i.e, voters whose uniquely least preferred alternative is never chosen, are dictators
for f .

Remark 15. The axioms used in Theorem 3 are independent of each other. An SCF that
only violates the Condorcet loser property is the Pareto rule. The SCF that returns all
alternatives except the Condorcet loser only violates non-imposition. The SCF that returns
all Pareto-optimal alternatives except the Condorcet loser only violates strategyproofness.
The bounds on n and m are also tight. The majority rule satis�es all axioms if m = 2,
the Pareto rule satis�es all axioms if n ≤ 2, and a rather technical SCF based on a case
distinction on the maximal plurality score of an alternative satis�es all axioms if n = 3,
m ≥ 3.

Remark 16. Brandt (2015, Th. 2) has shown that no Condorcet extension can be strat-
egyproof if m ≥ 3 and n ≥ 3m. By replacing the Condorcet loser property and non-
imposition with Condorcet-consistency, careful inspection of the proof of Theorem 3 reveals
that Condorcet-consistency and strategyproofness are already incompatible if m ≥ 3 and
n ≥ 4.

4 Conclusion and Discussion

We have studied which SCFs satisfy strategyproofness according to Kelly's preference exten-
sion and obtained results for three broad classes of SCFs. A common theme of our results
is that strategyproofness entails that potentially �bad� alternatives need to be chosen. In



particular, we have shown that (i) every strategyproof rank-based SCF returns a Pareto-
dominated alternative in at least one pro�le, (ii) every strategyproof support-based SCF
that satis�es Pareto-optimality returns at least one most preferred alternative of every voter,
and (iii) every strategyproof non-imposing SCF returns a Condorcet loser in at least one
pro�le. These results only leave room for rather indecisive strategyproof SCFs such as the
Pareto rule, the omninomination rule, the SCF that returns all top-ranked alternatives that
are Pareto-optimal, or the SCF that returns all alternatives except Condorcet losers.

Our results also have consequences for so-called social decision schemes (SDSs), which
map a preference pro�le to a lottery over alternatives. Since the notions of ranked-basedness
and support-basedness are independent of the type of the output of the function and merely
de�ne an equivalence relation over preference pro�les, they can be straightforwardly ex-
tended to SDSs. When extended to the support of lotteries, Kelly-strategyproofness is
weaker than the well-studied notion of (weak) SD-strategyproofness (Brandt, 2017). Hence,
Theorem 1 implies that there is no rank-based SDS that satis�es Pareto-optimality and
SD-strategyproofness. Furthermore, Theorem 2 implies that every support-based SDS that
satis�es Pareto-optimality and SD-strategyproofness puts positive probability on at least
one most preferred alternative of every voter, a property that is known as positive share
in the context of dichotomous preferences (Bogomolnaia et al., 2005). Finally, we can also
de�ne the Condorcet loser property for SDSs by requiring that Condorcet losers should
always receive probability 0, and non-imposition by demanding that for every alternative,
there is a pro�le such that this alternative receives probability 1. Then, Theorem 3 im-
plies that there is no SDS that satis�es the Condorcet loser property, non-imposition, and
SD-strategyproofness.

In comparison to other results on the strategyproofness of set-valued SCFs, we employ
a very weak notion of strategyproofness. In particular, our notion of strategyproofness
is weaker than those used by Duggan and Schwartz (2000), Barberà et al. (2001), Ching
and Zhou (2002), Rodríguez-Álvarez (2007), and Sato (2008). This is possible because
we consider the more general domain of weak preferences, which explicitly allows for ties.
Interestingly, all proofs except that of Claim 1 in Theorem 1 can be transferred to the
domain of strict preferences by carefully breaking ties and replacing Kelly-strategyproofness
with the signi�cantly stronger strategyproofness notion introduced by Duggan and Schwartz
(2000). While the resulting theorems are covered by the Duggan-Schwartz impossibility, this
raises intriguing questions concerning the relationship between strategyproofness results for
weak and strict preferences.

In contrast to previous impossibilities for Kelly's preference extension (Brandl et al.,
2019; Brandt et al., 2021), our proofs do not rely on the availability of arti�cial voters who
are completely indi�erent between all alternatives. Moreover, the results are tight in the
sense that they cease to hold if we remove an axiom, reduce the number of alternatives or
voters, weaken the notion of strategyproofness, or require strict preferences. For example,
the essential set (Dutta and Laslier, 1999; Laslier, 2000) and a handful of other support-based
Condorcet extensions satisfy strategyproofness if preferences are strict and participation
for unrestricted preferences (Brandt, 2015; Brandl et al., 2019). Our results thus provide
important insights on when and why strategyproofness can be attained.
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Appendix A: Proofs of Auxiliary Lemmas

Here, we discuss the missing proofs of Lemma 1 and Lemma 2 and some examples to
give a better understanding of the applied constructions. Before stating the proofs, we �rst
discuss two frequently used implications of strategyproofness. For this, consider an arbitrary
strategyproof SCF f , a voter i ∈ N , and two preference pro�les R and R′ with %j=%′j for
all j ∈ N \ {i}. Moreover, let X+

j (R) denote the set of voter j's most preferred alternatives
in R and X−j (R) denote the set of voter j's least preferred alternatives in R. The following
two implications are true:

i) If f(R) ⊆ X−i (R), then f(R′) ⊆ X−i (R).

ii) If f(R) ⊆ X+
i (R′), then f(R′) ⊆ X+

i (R′).

Both implications follow directly from strategyproofness: i) states that if a subset of
voter i's least preferred alternatives is the choice set for R, then no better alternative can
be chosen if he lies about his preferences; otherwise, voter i can manipulate. ii) states that
making the current choice set f(R) into a subset of voter i's most preferred alternatives in
R′ results into a choice set f(R′) that is also a subset of X+

i (R′). If this was not true, voter
i can manipulate by switching from R′ to R.

Lemma 1. Let f be an anonymous, Pareto-optimal, and strategyproof SCF that is de�ned
for m ≥ 3 alternatives and n ≥ 2 voters. If a voter is not a nominator for f , then f satis�es
near unanimity.

Proof. Let f denote a Pareto-optimal and strategyproof SCF and assume that voter i is
not a nominator for f . Thus, there is a pro�le R0 such that f(R0) does not contain any
of voter i's most preferred alternatives. We derive the lemma by modifying this pro�le in
three steps. Firstly, we deduce a pro�le R′ such that f(R′) ∩X+

i (R′) = ∅ and f(R′) = {x}
for some alternative x ∈ f(R0). Secondly, we infer from this pro�le that f(R) = {x} for
all preferences pro�les R such that n − 1 voters prefer x uniquely the most. Finally, we
generalize this observation from a single alternative to all alternatives. This is reminiscent
of the so-called �eld expansion lemma in proofs of Arrow's theorem (see, e.g., Sen, 1986).

Step 1: As a �rst step, we let every voter j ∈ N \ {i} replace his preference in R0

sequentially such that they prefer the alternatives in f(R0) the most. This leads to the
preference pro�le R1 and it follows from a repeated application of ii) that f(R1) ⊆ f(R0).
Next, let a denote one of voter i's most preferred alternatives in f(R0), i.e., a %i b for all
b ∈ f(R0). We replace the current preference of voter i in R1 with a preference where all
alternatives in X+

i (R1) are preferred to a, which, in turn, is preferred to all alternatives in
A \ (X+

i (R1) ∪ {a}). This leads to the preference pro�le R2 for which f(R2) = {a}. This
claim is true as all alternatives in A \ (X+

i (R1) ∪ {a}) are Pareto-dominated by a and no
alternative inX+

i (R1) can be chosen; otherwise, voter i can manipulate by switching from R1

to R2. Thus, we have derived a pro�le R′ = R2 with f(R′) = {a} and f(R′)∩X+
i (R′) = ∅.

Step 2: Given the preference pro�le R′ from the last step, we show that f(R) = {a}
for all preferences pro�les R such that n− 1 voters prefer a uniquely the most. We deduce
this result by modifying and analyzing the pro�le R′. First, we sequentially replace the
preference of every voter j ∈ N \ {i} in R′ with a new preference in which he prefers a
uniquely the most and an alternative b ∈ X+

i (R′) uniquely the second most. This leads to
a pro�le R3 for which f(R3) = {a} follows from a repeated application of ii). Furthermore,
every alternative in A \ {a, b} is Pareto-dominated by b in R3. We use this observation
to replace voter i's current preference with a preference in which b is his uniquely most



preferred alternative and a is his uniquely least preferred alternative. In this new pro�le R4,
all alternatives in A \ {a, b} are still Pareto-dominated by b and therefore, f(R4) ⊆ {a, b}.
Furthermore, if b ∈ f(R4), voter i can manipulate by switching from R3 to R4. Hence,
f(R4) = {a}, and it follows from i) that f(R′′) = {a} for all preference pro�les R′′ with
%′′j=%4

j for all j ∈ N \ {i} and from ii) that a is the unique winner if all voters in N \ {i}
prefer a uniquely the most. Thus, f(R′′) = {a} for all pro�les R′′ in which all voters in
N \ {i} prefer a uniquely the most. Finally, anonymity implies that a is chosen if n − 1
voters agree that it is the uniquely most preferred alternative.

Step 3: It only remains to show that if n−1 voters can make a win uniquely by uniquely
top-ranking it, they can make every alternative win uniquely by uniquely top-ranking it.
Thus, consider the preference pro�le R5 in which n−1 voters prefer a uniquely the most, and
the remaining voter i prefers c uniquely the most, b uniquely second most and a uniquely
the least. It follows from our previous observations that f(R5) = {a}. Next, let the voters
j ∈ N \{i} change their preferences sequentially such that they prefer a and b the most. This
leads to a new preference pro�le R6 with f(R6) = {b} because ii) implies that f(R6) ⊆ {a, b}
and b Pareto-dominates a. Thereafter, we replace the preference of every voter j ∈ N \ {i}
with a new preference in which he prefers b uniquely the most. This step results in a new
preference pro�le R7 and the repeated application of ii) shows that f(R7) = {b}. As voter
i does not top-rank b, we can apply the constructions discussed in step 2 to deduce that b
is uniquely chosen if n− 1 voters prefer it uniquely the most.

For a better understanding of the proof, we provide an example. Therefore, let f denote
an anonymous SCF that satis�es Pareto-optimality and strategyproofness. Furthermore,
assume that f(R0) = {a, d} for the pro�le R0 shown in the sequel and note that voter 1 is
therefore no nominator for f .

R0: 1: b, {a, d}, c 2: d, a, {b, c} 3: {a, c}, {b, d}
As a �rst step, we let both voter 2 and 3 change their preferences such that {a, d} is the

set of their most preferred alternatives, which leads to the pro�le R1.

R1: 1: b, {a, d}, c 2: {a, d}, {b, c} 3: {a, d}, {b, c}
As consequence of ii), it follows that f(R1) ⊆ {a, d}. Moreover, every alternative that

is strictly less preferred than a by voter 1 is Pareto-dominated. We use this observation to
break the tie in the preference order of voter 1, which results in R2.

R2: 1: b, a, d, c 2: {a, d}, {b, c} 3: {a, d}, {b, c}
Pareto-optimality implies that f(R2) ⊆ {a, b} and strategyproofness requires that

f(R2) 6∈ {{a, b}, {b}}. Consequently, f(R2) = {a}. Next, we use again ii) to change the
preference of voter 2 and 3 such that a is their uniquely most preferred alternative and b is
their uniquely second best alternative. This results in the pro�le R3 for which f(R3) = {a}.

R3: 1: b, a, d, c 2: a, b, {c, d} 3: a, b, {c, d}
Note that b Pareto-dominates every alternative but a in R3. We use this observation

to replace the preference of voter 1 with b, d, c, a while ensuring that a is still the unique
winner.

R4: 1: b, d, c, a 2: a, b, {c, d} 3: a, b, {c, d}
Observe that b also Pareto-dominates every alternative but a in R4 and therefore f(R4) ⊆

{a, b}. Moreover, b cannot be chosen as otherwise, voter 1 can manipulate by switching from
R3 to R4. Thus, it follows that f(R4) = {a}. Based on this pro�le, it follows from i), ii)
and anonymity that a is the unique winner if n− 1 voters prefer it uniquely the most.

Next, we show that n − 1 voters can also make another alternative b win uniquely by
ranking it �rst. Therefore, consider the pro�le R5 displayed in the sequel.



R5: 1: c, b, d, a 2: a, b, {c, d} 3: a, b, {c, d}
It follows from our previous observations that f(R5) = {a}. Next, we let voter 2 and 3

change their preference such that they prefer both a and b uniquely the most, which leads
to the pro�le R6.

R6: 1: c, b, d, a 2: {a, b}, {c, d} 3: {a, b}, {c, d}
It holds that f(R6) = {b} as ii) implies that f(R6) ⊆ {a, b} and b Pareto-dominates a.

Therefore, we let voter 2 and 3 replace their preferences to derive the pro�le R7 and use
again ii) to deduce that f(R7) = {b}.

R7: 1: c, b, d, a 2: b, c, {a, d} 3: b, c, {a, d}
Finally, note that the pro�le R7 is equivalent to R3 up to renaming alternatives. There-

fore, we can use the previously discussed steps to derive that f(R) = {b} if n − 1 voters
prefer b uniquely the most. This concludes the example.

Lemma 2. Let f denote a strategyproof SCF for n ≥ 3 voters that satis�es non-imposition
and the Condorcet loser property. Then, f(R) = {a} for every preference pro�le R and
every alternative a ∈ A such that more than half of the voters in R report a as their unique
top choice.

Proof. First, note that the lemma is trivial if m = 1 as the single alternative is always the
unique winner and if m = 2 as an alternative b is the Condorcet loser if more than half of
the voters prefer the other alternative a uniquely the most. Thus, we focus in the sequel on
the case m ≥ 3 and consider a strategyproof SCF f that satis�es non-imposition and the
Condorcet loser property.

Let Na denote an arbitrary subset of voters such that |Na| = dn+1
2 e, and let R denote a

pro�le in which every voter i ∈ Na prefers a uniquely the most and every voter i ∈ N \Na
prefers a uniquely the least. We show in the sequel that f(R) = {a}. This implies that
f(R′) = {a} for every pro�le R′ in which the voters i ∈ Na prefer a uniquely the most since
ii) allows voters who uniquely top-rank the unique winner to reorder all other alternatives
without a�ecting the choice set and i) allows voters who uniquely bottom-rank the unique
winner to reorder all alternatives without a�ecting the choice set. Thus, we can transform
R into any pro�le R′ without changing the choice set if all voters in Na prefer a uniquely
the most in R′. Moreover, as Na is arbitrarily chosen, the lemma follows by showing that
f(R) = a. In the following, we assume for simplicity that Na = {1, . . . , dn+1

2 e}, i.e., the �rst
dn+1

2 e voters in R prefer a uniquely the most and the remaining voters prefer a uniquely the
least. This assumption is feasible as all of our arguments are closed under renaming voters
and alternatives.

The proof of f(R) = {a} proceeds by an induction over k ∈ {0, . . . , n − dn+1
2 e}. Thus,

let Rk denote a pro�le in which all voters in {1, . . . , n− k} prefer a uniquely the most and
the remaining voters prefer a uniquely the least. We show in the sequel that f(Rk) = {a}
for all k ∈ {0, . . . , n − dn+1

2 e}, which implies that f(R) = {a} since we can derive R from

Rd
n+1
2 e by applying i) and ii) without a�ecting the choice set since a is in both pro�les

either uniquely top-ranked or uniquely bottom-ranked. It should be mentioned that this
argument can be often used, in which case we ignore all preferences between alternatives in
A \ {a}. In particular, this is also the reason why we do not specify the preferences between
these alternatives for the pro�les Rk.

First, we consider the base case k = 0, i.e., we show that a is the unique winner if all
voters agree that a is the uniquely best alternative. This claim follows as f is non-imposing
and strategyproof: non-imposition implies that there is a pro�le R∗ with f(R∗) = {a}.
Then, we use ii) to subsequently change the preference of every voter into one in which he



prefers a uniquely the most. This step results in the pro�le R0 in which every voter prefers
a uniquely the most and ii) implies that f(R0) = {a}. Thus, the base case is proven.

Next, we focus on the induction step, i.e., we assume that f(Rk) = {a} for some k ∈
{0, . . . , n − dn+1

2 e − 1} and show that f(Rk+1) = {a}. Let i∗ = n − k denote the voter
who prefers a uniquely the most in Rk but not in Rk+1. In order to show why voter i∗ can
make a into his least preferred alternative, we require an auxiliary claim which we prove at
the end: it holds for al ∈ {a1, . . . , am−1} = A \ {a} that f(Rk,l) = {a}. The pro�les Rk,l

are de�ned in the sequel, where the ∗ symbol indicates that the preferences on the missing
alternatives are arbitrary but extend the preferences shown. In particular, x, ∗, y means that
x is strictly preferred to every other alternative and every alternative is strictly preferred
to y. Note that, even though the preferences of voters j ∈ N \ {i∗} over alternatives in
A \ {a} can be arbitrary, we assume that Rk,lj = Rk,l

′

j for all voters j ∈ N \ {i∗} and indices
l, l′ ∈ {1, . . . ,m− 1}.

Rk,l: [1 . . . i∗−1]: a, ∗ i∗: al, A\{al} [i∗+1 . . .m]: ∗, a
Assume for now that the auxiliary claim is true. We proceed by replacing the preference

of voter i∗ in each of these pro�les with a1, a2, . . . , am−1, a. As the pro�les Rk,l only di�er
in the preference of this voter, this leads always to the same pro�le R̃k. Moreover, strat-
egyproofness implies for all l ∈ {1, . . . ,m− 1} that al 6∈ f(R̃k) as otherwise, voter i∗ can
manipulate by switching from Rk,l to R̃k. Thus, we derive that f(R̃k) = {a}. Finally, we
can transform R̃k into Rk+1 without changing the choice set by repeatedly applying i) and
ii) since these pro�les can only di�er on the preferences of voters in A \ {i∗}. The induction
step is therefore shown.

Finally, it remains to prove the auxiliary claim, i.e., that f(Rk,l) = {a} for all l ∈
{1, . . . ,m− 1}. For this, consider the pro�les Rk,l,X for l ∈ {1, . . . ,m− 1} and X ⊆ A \
{a, al}.

Rk,l,X : [1 . . . i∗−1]: a, ∗ i∗: al, {a}∪X,A\(X∪{a, al}) [i∗+1 . . .m]: ∗, a
In particular, voter i∗'s preference is al, a, A \ {a, al} in Rk,l,∅ and al, A \ {al} in

Rk,l,A\{a,al}, i.e., Rk,l,A\{a,al} = Rk,l.
In the sequel, we show by an induction on z = |X| that f(Rk,l,X) = {a} for all l ∈

{1, . . . ,m−1} and X ⊆ A\{a, al}. This entails the auxiliary claim since Rk,l,A\{a,al} = Rk,l

for all l ∈ {1, . . . ,m−1}. Two observations are central for the subsequent argument: �rstly,
our argument is closed under renaming alternatives in A \ {a}. This means that if we can
show that f(Rk,l,X) = {a} for some l ∈ {1, . . . ,m−1} and X ⊆ A\{a, al} with |X| = z, this
result holds for all l′ ∈ {1, . . . ,m − 1} and subsets of A \ {a, al′} with size z. Secondly, we
can turn any alternative aj ∈ {a1, . . . , am−1} into the Condorcet loser by letting the voters
i ∈ [1 . . . i∗−1] uniquely bottom-rank aj since this set contains more than half of the voters.
Even more, this step does not change the choice set if a is the unique winner because of ii).

First, we prove the base case z = 0, i.e., we show that f(Rk,l,∅) = {a} for all l ∈
{1, . . . ,m − 1}. Recall for this that it su�ces to show that f(Rk,1,∅) = {a} due to the
neutrality of the argument. By assumption, f(Rk) = {a} and thus, a repeated application
of i) and ii) entails that f(R̂k,1,∅) = {a}, where the pro�le R̂k,1,∅ is shown subsequently.
This is true as the voters i ∈ [1 . . . i∗] uniquely top-rank the unique winner a and the voters
i ∈ [i∗+1 . . . n] uniquely bottom-rank the unique winner before and after the modi�cation.

R̂k,1,∅: [1 . . . i∗−1]: a, ∗, a1 i∗: a, a1, A\{a, a1} [i∗+1 . . .m]: ∗, a

Note that a1 is the Condorcet loser in R̂k, regardless of the preference of voter i∗. Thus,
a1 is also not in the choice set if voter i∗ swaps a and a1 because of the Condorcet loser
property. This step results in the pro�le R̃k,1,∅ displayed in the following. Moreover, as
a1 6∈ f(R̃k,1,∅), strategyproofness implies that f(R̃k,1,∅) = {a}. Otherwise, voter i∗ can
manipulate by switching from R̃k,1,∅ back to R̂k,1,∅.



R̃k,1,∅: [1 . . . i∗−1]: a, ∗, a1 i∗: a1, a, A\{a1, a} [i∗+1 . . .m]: ∗, a

Finally, we note that R̃k,1,∅ can only di�er from Rk,1,∅ in the preferences of the voters in
N \{i∗} on the alternatives A\{a}. As i) and ii) allow us to reorder the preferences of these
voters on A\{a} arbitrarily without a�ecting the choice set, we derive that f(Rk,1,∅) = {a},
and hence, f(Rk,j,∅) = {a} for all j ∈ {1, . . . ,m− 1}.

Next, we focus on the induction step, i.e., we assume that f(Rk,j,X) = {a} for all
j ∈ {1, . . . ,m − 1} and all X ⊆ A \ {a, aj} with |X| = z − 1 and show that the same is
true for all such X ′ of size z. Recall for this that the derivation of f(Rk,j,X

′
) = {a} is

independent of the naming of the alternatives in A \ {a}, and thus, it su�ces to show that
f(Rk,z+1,{a1,...,az}) = {a}. For this, let Z = {a1, . . . , az}, Z+a = Z∪{a}, and Z−l = Z \{al}
for every l ∈ {1, . . . , z}, and consider the pro�les Rk,l,Z−l . Our induction hypothesis implies
for all these pro�les that f(Rk,l,Z−l) = {a} since |Z−l| = z − 1.

Rk,l,Z−l : [1 . . . i∗−1]: a, ∗ i∗: al, Z−l∪{a}, A\Z+a [i∗+1 . . .m]: ∗, a
For all of these pro�les, we can repeatedly apply i) and ii) such that every voter i ∈

[1 . . . i∗−1] prefers alternative az+1 uniquely the least and Rk,l,Z−l

j = R
k,l′,Z−l′
j for all voters

j ∈ N \{i∗} and indices l, l′ ∈ {1, . . . , z}. This step results in the pro�les R̂k,l,Z−l , for which
i) and ii) imply that f(R̂k,l,Z−l) = {a}.

R̂k,l,Z−l : [1 . . . i∗−1]: a, ∗, az+1 i∗: al, Z−l∪{a}, A\Z+a [i∗+1 . . .m]: ∗, a
Note that az+1 is the Condorcet loser in all of these pro�les, regardless of the preference

of voter i∗, and all voters but i∗ have the same preference in all of these pro�les. We use
these observations to derive the pro�le R̃k,z+1,Z by replacing the preference of voter i∗ in
all these pro�les with az+1, Z+a, A\ (Z+a∪{az+1}. Formally, the pro�le R̃k,z+1,Z is de�ned
as follows.

R̃k,z+1,Z : [1 . . . i∗−1]: a, ∗, az+1 i∗: az+1, Z+a, A\(Z∪{a, az+1})
[i∗+1 . . .m]: ∗, a

As mentioned, the Condorcet loser property implies that az+1 6∈ f(R̃k,z+1,Z). Thus,
strategyproofness from R̃k,z+1,Z to R̂k,l,Z−l implies that f(R̃k,z+1,Z) ⊆ Z as otherwise, voter
i∗ can manipulate by reverting back to a pro�le R̂k,l,Z−l . This is true because voter i∗ prefers
f(R̂k,l,Z−l) = {a} to every set Y ⊆ A \ {az+1} with Y \ Z 6= ∅. Finally, strategyproofness
from R̂k,l,Z−l to R̃k,z+1,Z implies for every l ∈ {1, . . . , z} that al 6∈ f(R̃k,j,Z). Otherwise,
voter i∗ can manipulate as he prefers any set Y ⊆ Z with al ∈ Y to {a} according to his
preference in R̂k,l,Z−l . Hence, we conclude that f(R̃k,z+1,Z) = {a}. By applying again i) and
ii) to reorder the preferences of the voters i ∈ N \ {i∗}, it follows that f(Rk,z+1,Z) = {a}.
As the argument is closed under renaming alternatives in A \ {a}, the induction step is
proven. Hence, it follows that f(Rk,l,X) = {a} for all l ∈ {1, . . .m− 1} and X ⊆ A \ {a, al}.
In particular, this means that f(Rk,l,A\{a,al}) = f(Rk,l) = {a} for all l ∈ {1, . . . ,m − 1},
i.e., the auxiliary claim is proven.

Just as for Lemma 1, we provide an example of the constructions used in the proof of
Lemma 2. In particular, we show how a voter can turn his best alternative a into his worst
one without changing the choice set if f(R) = {a}.

Therefore, let f denote a strategyproof SCF that satis�es non-imposition and the Con-
dorcet loser property, and consider the pro�le R1 de�ned for four voters and four alternatives
A = {a, b, c, d}.

R1: 1: a, b, c, d 2: a, b, c, d 3: a, b, c, d 4: a, b, c, d

As f satis�es non-imposition and strategyproofness, it follows that f(R1) = {a}. Next,
we let all voters i ∈ {1, 2, 3} make b into the worst alternative such that it becomes the
Condorcet loser. This results in the pro�le R2 and ii) implies that f(R2) = {a}.



R2: 1: a, c, d, b 2: a, c, d, b 3: a, c, d, b 4: a, b, c, d

Note that b is the Condorcet loser in R2, regardless of the preference of voter 4. Thus,
we let this voter swap a and b next to derive the pro�le R3. The Condorcet loser property
implies that b 6∈ f(R3) and then, strategyproofness entails that f(R3) = {a}.

R3: 1: a, c, d, b 2: a, c, d, b 3: a, c, d, b 4: b, a, c, d

Thereafter, voters 1 to 3 can modify their preferences on the alternatives A \ {a} again
arbitrarily without a�ecting the choice set because of ii). Hence, it follows that f(R4) = {a}
where the pro�le R4 is shown in the sequel.

R4: 1: a, d, b, c 2: a, d, b, c 3: a, d, b, c 4: b, a, c, d

In the pro�le R4, c is the Condorcet loser even if voter 4 changes his preferences. We
use this observation to replace his current preference with c, {a, b}, d. This step results in
the pro�le R5 and c 6∈ f(R5) due to the Condorcet loser property. Then, strategyproofness
from R5 to R4 implies that f(R5) ⊆ {a, b} and strategyproofness in the inverse direction
implies that f(R5) 6= {a, b} and f(R5) 6= {b}. Hence, f(R5) = {a} is the only valid option.

R5: 1: a, d, b, c 2: a, d, b, c 3: a, d, b, c 4: c, {a, b}, d
Note that the voters i ∈ {1, 2, 3} can now reorder again all alternatives in A \ {a}

without a�ecting the choice set. Moreover, a symmetric argument shows that voter 4 can
also rename b and c in his preference and a is still the unique winner. In summary, we
obtain that f(R6) = f(R7) = {a} where the pro�les R6 and R7 are shown in the sequel.

R6: 1: a, b, c, d 2: a, b, c, d 3: a, b, c, d 4: c, {a, b}, d
R7: 1: a, b, c, d 2: a, b, c, d 3: a, b, c, d 4: b, {a, c}, d

Alternative d is the Condorcet loser in both R6 and R7, regardless of the preference of
voter 4. Hence, we replace voter 4's preference in both R6 and R7 with d, {a, b, c} to derive
the pro�le R8. Since d is the Condorcet loser in R8, d 6∈ f(R8). Moreover, strategyproofness
from R6 to R8 implies that c 6∈ f(R8) and strategyproofness from R7 to R8 implies that
b 6∈ f(R8). Hence, we conclude that f(R8) = {a}.

R8: 1: a, b, c, d 2: a, b, c, d 3: a, b, c, d 4: d, {a, b, c}
Again, the voters i ∈ {1, 2, 3} can reorder the alternatives in A \ {a} arbitrarily without

a�ecting the choice set and symmetric arguments can be used to rename alternatives in the
preference of the fourth voter. Hence, it follows that f(R9) = f(R10) = f(R11) = {a} for
the pro�les R9, R10, and R11 shown in the sequel.

R9: 1: a, c, b, d 2: a, c, b, d 3: a, c, b, d 4: b, {a, c, d}
R10: 1: a, c, b, d 2: a, c, b, d 3: a, c, b, d 4: c, {a, b, d}
R11: 1: a, c, b, d 2: a, c, b, d 3: a, c, b, d 4: d, {a, b, c}

Finally, we replace the preference of voter 4 in all three pro�les with b, c, d, a to derive the
pro�le R12. Strategyproofness from R9 implies that b 6∈ f(R12), from R10 that c 6∈ f(R12),
and from R11 that d 6∈ f(R12). Consequently, f(R12) = {a} is the only option. Since all
voters can reorder all alternatives in A \ {a} without changing the choice set due to i) and
ii), it follows that a is also the unique winner regardless of the exact preferences of the
voters.

R12: 1: a, c, b, d 2: a, c, b, d 3: a, c, b, d 4: b, c, d, a

This concludes the example.



Appendix B: Proofs of the Main Theorems

In this section, we prove the main results stated in Theorems 1 to 3. Note that proof sketches
for all of these results have been discussed in the main body, and that these results rely on
Lemma 1 and Lemma 2.

Theorem 1. There is no rank-based SCF that satis�es Pareto-optimality and strategyproof-
ness if m ≥ 4 and n ≥ 3.

Proof. Assume for contradiction that there is a rank-based SCF f that satis�es strate-
gyproofness and Pareto-optimality and that is de�ned for �xed numbers of voters n ≥ 3 and
alternatives m ≥ 4. We derive a contradiction to this assumption by proving two claims:
on the one hand, there is a voter who is not a nominator for f . On the other hand, the as-
sumptions on the SCF require that every voter is a nominator. These two claims contradict
each other and therefore f cannot exist.

Claim 1: Not every voter is a nominator for f .
First, we prove that not every voter is a nominator for f . Consider therefore the following

three pro�les in which X = A \ {a, b, c, d}.
R1: 1: {a, b}, X, {c, d} 2: {c, d}, X, {a, b} [3 . . . n]: a, {b, c, d}, X

R2: 1: {a, c}, X, {b, d} 2: {b, d}, X, {a, c} [3 . . . n]: a, {b, c, d}, X

R3: 1: {a, d}, X, {b, c} 2: {b, c}, X, {a, d} [3 . . . n]: a, {b, c, d}, X
It can be easily veri�ed that r∗(R1) = r∗(R2) = r∗(R3) and that a Pareto-dominates b

in R1, c in R2, and d in R3. This means that f(R1) = f(R2) = f(R3) ⊆ {a} ∪X because
of rank-basedness and Pareto-optimality. Consequently, voter 2 is not a nominator for f .

Claim 2: Every voter is a nominator for f .
Assume for contradiction that a voter is no nominator for f and consider the pro�les

Rk,1 and Rk,2 for k ∈ {1, . . . , n}.
Rk,1: 1: {c, d}, X, b, a [2 . . . k]: {a, b}, X, c, d [k+1 . . . n]: a,X, b, c, d

Rk,2: 1: {b, d}, X, c, a [2 . . . k]: {a, b}, X, c, d [k+1 . . . n]: a,X, b, c, d

We prove by induction on k ∈ {1, . . . , n} that f(Rk,1) = f(Rk,2) = {a}. The case k = n
yields a contradiction to Pareto-optimality as a is Pareto-dominated by b in Rn,1.

The base case k = 1 follows because n−1 voters prefer a uniquely the most in both R1,1

and R1,2. Therefore, Lemma 1 implies that f(R1,1) = f(R1,2) = {a}. Assume now that the
claim is true for some �xed k ∈ {1, . . . , n− 1}.

By induction and strategyproofness, f(Rk+1,1) ⊆ {a, b} since otherwise voter k + 1
can manipulate by switching back to Rk,1. Next, we derive the pro�le Rk,3 from Rk,2 by
assigning voter k + 1 the preference {a, c}, X, b, d. Formally, Rk,3 is de�ned as follows.

Rk,3: 1: {b, d}, X, c, a [2 . . . k]: {a, b}, X, c, d
k+1: {a, c}, X, b, d [k+2 . . . n]: a,X, b, c, d

The induction hypothesis entails that f(Rk,2) = {a} and therefore, strategyproofness
implies that f(Rk,3) ⊆ {a, c}; otherwise, voter k + 1 could manipulate by switching back
to Rk,2. Next, we apply rank-basedness to conclude that f(Rk+1,1) = {a} as r∗(Rk+1,1) =
r∗(Rk,3). Finally, Rk+1,2 evolves from Rk+1,1 by having voter 1 change his preferences.
As a is the uniquely least preferred alternative of this voter, strategyproofness implies that
f(Rk+1,2) = {a} as any other outcome bene�ts voter 1.

Theorem 2. In every support-based SCF that satis�es Pareto-optimality and strategyproof-
ness, every voter is a nominator if m ≥ 3.



Proof. Let f be a support-based SCF satisfying Pareto-optimality and strategyproofness
for �xed numbers of voters n ≥ 1 and alternatives m ≥ 3. For n = 1, the theorem follows
immediately from Pareto-optimality as only the most preferred alternatives of the single
voter are Pareto-optimal. Moreover, Lemma 1 proves the theorem for n = 2. Indeed, if a
voter is not a nominator, a single voter can determine the choice set. However, this means
that f(R) = {a} and f(R) = {b} are simultaneously true if voter 1 prefers a uniquely the
most and voter 2 prefers b uniquely the most.

Therefore, we focus on the case n ≥ 3 and assume for contradiction that a voter is no
nominator for f . We derive from this assumption by an induction on k ∈ {1, . . . , n − 1}
that n − k voters can determine a unique winner by uniquely top-ranking it. This results
in a contradiction when k ≥ n/2 because then, two alternatives can be simultaneously
top-ranked by n− k ≤ n/2 voters, and both of them must be the unique winner.

The induction basis k = 1 follows directly from Lemma 1 as this lemma states that f
satis�es near unanimity. Next, we assume that our claim holds for a �xed k ∈ {1, . . . n− 2}
and prove that also n− (k+ 1) voters can determine the winner uniquely. For this, we focus
only on three alternatives a, b, c and on a certain partition of the voters. This is possible as
the induction hypothesis allows us to exchange the roles of the alternatives without a�ecting
the proof and support-basedness allows us to reorder the voters. Thus, consider the pro�le
Rk,1, in which X = A \ {a, b, c}, and note that f(Rk,1) = {a} because of near unanimity.

Rk,1: [1 . . . k]: a,X, c, b k+1: c,X, b, a [k+2 . . . n]: a, b,X, c

Next, we aim to reverse the preferences of the voters i ∈ [k+2 . . . n] over a and b. This is
achieved by the repeated application of the following steps explained for voter k + 2. First,
voter k + 2 changes his preference to {a, b}, c,X to derive the pro�le Rk,2. Since a subset
of {a, b} was chosen before this step, strategyproofness implies that f(Rk,2) ⊆ {a, b} as
otherwise, voter k+ 2 can manipulate by reverting this modi�cation. Next, we use support-
basedness to exchange the preferences of voter k + 1 and k + 2 over a and b. This leads to
the pro�le Rk,3 and support-basedness implies that f(Rk,3) = f(Rk,2) ⊆ {a, b}. As a subset
of the least preferred alternatives of voter k+ 1 is chosen for Rk,3, strategyproofness implies
that this voter cannot make another alternative win by manipulating. Thus, he can switch
back to his original preference to derive Rk,4 and the fact that f(Rk,4) ⊆ {a, b}.

Rk,2: [1 . . . k]: a,X, c, b k+1: c,X, b, a k+2: {a, b}, X, c [k+3 . . . n]: a, b,X, c

Rk,3: [1 . . . k]: a,X, c, b k+1: c,X, {a, b} k+2: b, a,X, c [k+3 . . . n]: a, b,X, c

Rk,4: [1 . . . k]: a,X, c, b k+1: c,X, b, a k+2: b, a,X, c [k+3 . . . n]: a, b,X, c

It is easy to see that we can repeat these steps for every voter i ∈ [k+3 . . . n]. This process
results in the pro�le Rk,5 and shows that f(Rk,5) ⊆ {a, b}. Moreover, consider the pro�le
Rk,6 derived from Rk,5 by letting voter k + 1 make b his best alternative. As n − k voters
prefer b uniquely the most in Rk,6, the induction hypothesis entails that f(Rk,6) = {b}.
This means that voter k+1 can manipulate by switching from Rk,5 to Rk,6 if f(Rk,5) = {a}
or f(Rk,5) = {a, b}. Consequently, f(Rk,5) = {b} is the only valid choice set for Rk,5.

Rk,5: [1 . . . k]: a,X, c, b k+1: c,X, b, a [k+2 . . . n]: b, a,X, c

Rk,6: [1 . . . k]: a,X, c, b k+1: b,X, a, c [k+2 . . . n]: b, a,X, c

So far, we have found a pro�le in which b is uniquely chosen when only n− (k+1) voters
prefer it uniquely the most. Next, we show that b is always the unique winner if the voters
i ∈ [k+2 . . . n] prefer it uniquely the most. Therefore, consider the pro�le Rk,7 which is
derived from Rk,5 by letting the voters i ∈ [1 . . . k] subsequently change their preference to
c,X, a, b. As f(Rk,5) = {b} and b is the worst alternative for these voters, strategyproofness
implies that f(Rk,7) = {b}.



Rk,7 : [1 . . . k]: c,X, a, b k+1: c,X, b, a [k+2 . . . n]: b, a,X, c

As last step, we change the preferences of voter k + 1 such that b is his least preferred
alternative. For this, we �rst let all voters i ∈ [k+2 . . . n] subsequently change their prefer-
ence to b,X, c, a. This modi�cation results in the pro�le Rk,8 and strategyproofness implies
that f(Rk,8) = {b}. Moreover, observe that alternative a is Pareto-dominated by c in Rk,8.
Therefore, voter k+1 can now swap a and b to derive the pro�le Rk,9 and Pareto-optimality
implies that a 6∈ f(Rk,9). Then, strategyproofness implies that f(Rk,9) = {b} as any other
subset of A \ {a} is a manipulation for voter k + 1.

Rk,8 : [1 . . . k]: c,X, a, b k+1: c,X, b, a [k+2 . . . n]: b,X, c, a

Rk,9 : [1 . . . k]: c,X, a, b k+1: c,X, a, b [k+2 . . . n]: b,X, c, a

Finally, observe that the voters i ∈ [1 . . . k+1] can change their preferences in Rk,9 arbi-
trarily without a�ecting the choice set, and the voters i ∈ [k+2 . . . n] can reorder all alter-
natives in A \ {b} without a�ecting the choice set because of strategyproofness. Thus, b is
always the unique winner if all voters i ∈ [k+2 . . . n] prefer b uniquely the most. Moreover,
interchanging the roles of alternatives and reordering the voters shows that every alternative
is chosen if it is uniquely top-ranked by n − (k + 1) voters. This completes the induction
step and consequently, we derive that every voter is a nominator for a support-based SCF
that satis�es strategyproofness and Pareto-optimality.

Theorem 3. There is no strategyproof SCF that satis�es the Condorcet loser property and
non-imposition if m ≥ 3 and n ≥ 4.

Proof. Assume for contradiction that there is a non-imposing SCF f that satis�es the Con-
dorcet loser property and strategyproofness for n ≥ 5 and m ≥ 3 alternatives. Since the
Condorcet loser property and Lemma 2 strongly depend on the parity of the number of
voters, we proceed with a case distinction on n.

Case 1: n is odd

First, assume that f is de�ned for an odd number of voters n ≥ 4 and recall that f
chooses an alternative as unique winner if at least l = n+1

2 voters prefer it uniquely the
most because of Lemma 2. Next, let X = A \ {a, b, c} and consider pro�le R1 shown in
the sequel. It follows from Lemma 2 that f(R1) = {a} because the �rst l voters prefer a
uniquely the most.

R1: 1: a, b,X, c [2 . . . l]: a, c,X, b [l+1 . . . n]: b,X, {a, c}
Moreover, observe that c is the Condorcet loser in R1 because every voter prefers a

weakly to c and all voters in [l+1 . . . n] and voter 1 prefer all alternatives in A \ {a, c}
strictly to c. In addition, c remains Condorcet loser if voter l swaps a and c. Let R2 denote
the pro�le derived from this swap and observe that c 6∈ f(R2) because of the Condorcet loser
property. Moreover, strategyproofness implies that f(R2) = {a} if c 6∈ f(R1); otherwise,
voter l can manipulate by reverting back to R1 as he prefers {a} to every other subset of
A \ {c}.

R3: 1: a, b,X, c [2 . . . l−1]: a, c,X, b l: c, a,X, b [l+1 . . . n]: b,X, {a, c}
Next, we subsequently replace the preference of the voters i ∈ [l+1 . . . n] with b, c,X, a.

Strategyproofness implies for each of these steps that a subset of {a, c} is chosen if it has
been chosen before the step. The reason for this is that every other set contains a strictly
preferred alternative and obtaining it is therefore a manipulation. Hence, we deduce that
this process results in a pro�le R3 with f(R3) ⊆ {a, c} because f(R2) = {a}. Moreover,
f(R3) 6= {c} as otherwise voter 1 can manipulate by swapping a and b: after this step, b is
uniquely top-ranked by more than half of the voters and therefore Lemma 2 implies that b



is the unique winner. As voter 1 prefers {b} to {c}, it follows from strategyproofness that
f(R3) ∈ {{a}, {a, c}}.

R3: 1: a, b,X, c [2 . . . l−1]: a, c,X, b l: c, a,X, b [l+1 . . . n]: b, c,X, a

Next, we provide another derivation for the choice set of R3 which con�icts with f(R3) ∈
{{a}, {a, c}}. Therefore, consider the pro�le R4 shown in the sequel and note that f(R4) =
{c} because of Lemma 2.

R4: [1 . . . l−1]: a, c,X, b l: c, a,X, b [l+1 . . . n]: c, b,X, a

Note that b is the Condorcet loser in R4 as it is uniquely bottom-ranked by the voters
i ∈ [1 . . . l]. This even holds if the voters in i ∈ [l+1 . . . n] change their preference. Thus,
we let these voters swap b and c, and the Condorcet loser property always implies for the
resulting pro�le that b is not chosen. Just as for R3, strategyproofness implies then that c
remains the unique winner after every change because otherwise, a voter can manipulate by
reverting this modi�cation. Thus, this process results in the pro�le R5 with f(R5) = {c}.

R5: [1 . . . l−1]: a, c,X, b l: c, a,X, b [l+1 . . . n]: b, c,X, a

Finally, we derive the pro�le R3 from R5 by replacing the preference of voter 1 with
a, b,X, c. Strategyproofness from R5 to R3 implies that f(R3) 6= {a} and f(R3) 6= {a, c}
as otherwise, voter 1 can manipulate by switching from R5 to R3. This is in con�ict with
our previous observation. Hence, there is no strategyproof SCF for odd n ≥ 5 that satis�es
non-imposition and the Condorcet loser property.

Case 2: n is even

As second case, we assume that f is de�ned for an even number of voters n ≥ 4. In
this case, we �rst prove the statement for n = 4 and generalize this result then to a larger
number of voters.

Case 2.1: n = 4
Assume for contradiction that f is a strategyproof SCF for n = 4 voters and m ≥ 3

alternatives that satis�es the Condorcet loser property and non-imposition. Consider the
pro�le R1 shown in the sequel. By Lemma 2, f(R1) = {a}.

R1: 1: a, c,X, b 2: a, b,X, c 3: a, b,X, c 4: b,X, c, a

Moreover, c is the Condorcet loser in R1, even if voter 1 is indi�erent between a and c.
Thus, we replace the preference of voter 1 with {a, c}, X + b, where X + b = X ∪ {b}, to
derive the pro�le R2. As consequence, c 6∈ f(R2) due to the Condorcet loser property, and
strategyproofness implies that f(R) ⊆ {a, c}. Otherwise, an alternative in X + b is chosen
and voter 1 can manipulate by reverting back to R1. Hence, we deduce that f(R2) = {a}.

R2: 1: {a, c}, X+b 2: a, b,X, c 3: a, b,X, c 4: b,X, c, a

As next step, we let voter 2 change his preference to a, c,X, b and voter 4 change his
preference to c,X, {a, b} in order to make b the Condorcet loser. By applying these modi�-
cations subsequently, it follows from strategyproofness that the choice set does not change:
otherwise, voter 2 can manipulate by undoing this step since a is his best alternative after
the modi�cation, or voter 4 can manipulate by applying the modi�cation since a is his least
preferred alternative in R2. Hence, these steps result in the pro�le R3 with f(R3) = {a}.

R3: 1: {a, c}, X+b 2: a, c,X, b 3: a, b,X, c 4: c,X, {a, b}
Note that b is the Condorcet loser, even if voter 3 swaps a and b. Hence, we derive the

pro�le R4 with b 6∈ f(R4) and by strategyproofness, f(R4) = {a}.
R4: 1: {a, c}, X+b 2: a, c,X, b 3: b, a,X, c 4: c,X, {a, b}



Now, we let voter 4 change his preference to c, b,X, a to derive the pro�le R5. As
f(R4) = {a} and a is among the least preferred alternatives of voter 4, it follows that
f(R5) ⊆ {a, b}. Otherwise, voter 4 can manipulate by applying this modi�cation.

R5: 1: {a, c}, X+b 2: a, c,X, b 3: b, a,X, c 4: c, b,X, a

We can apply the same steps for pro�les symmetric with respect to the voters or alter-
natives. Thus, we can infer the choice sets for the pro�les R6, R7, and R8 as f(R6) ⊆ {a, c},
f(R7) ⊆ {a, b}, and f(R8) ⊆ {b, c}.

R6: 1: {b, c}, X+a 2: a, c,X, b 3: b, a,X, c 4: c, b,X, a

R7: 1: a, b,X, c 2: c, a,X, b 3: {b, c}, X+a 4: b, c,X, a

R8: 1: a, b,X, c 2: c, a,X, b 3: {a, c}, X+b 4: b, c,X, a

Note that if b ∈ f(R5), then voter 1 can manipulate by switching to R6 as f(R6) ⊆ {a, c}.
Hence, we derive that f(R5) = {a}. By a symmetric argument for R7 and R8, it follows
that f(R7) = {b}.

Finally, consider the pro�le R9 shown in the sequel.

R9: 1: a, b,X, c 2: a, b,X, c, 3: b, a,X, c 4: b, a,X, c

We can derive the pro�le R9 from R5 and R7 by replacing the preferences of some
voters. In more detail, we obtain R9 from R5 by replacing the preference of voters 1 and
2 with a, b,X, c and the preference of voter 4 with b, a,X, c. If we apply these steps one
after another, strategyproofness entails that the choice set is not allowed to change. Hence,
f(R9) = {a}. Moreover, we obtain R9 from R7 by replacing the preferences of voters 3
and 4 with b, a,X, c and the preference of voter 2 with a, b,X, c and obtain f(R9) = {b},
a contradiction. Therefore, f cannot exist and there is no strategyproof SCF that satis�es
non-imposition and the Condorcet loser property if n = 4 and m ≥ 3.

Case 2.2: n > 4
Our goal is to reduce the case with n > 4 voters to the case with n = 4 voters. Hence,

assume that there is a strategyproof SCF f for n > 4 voters, n even, and m ≥ 3 alternatives
that satis�es the Condorcet loser property and non-imposition. We use this SCF f to
de�ne another SCF g for n = 4 voters as follows: given a pro�le R on 4 voters, g adds
(n − 4)/2 voters with preference c,X, b, a and (n − 4)/2 voters with preference a, b,X, c,
where X = A \ {a, b, c}. Then, g returns the choice set of f on the resulting pro�le R′,
i.e., g(R) = f(R′). Subsequently, we prove that g satis�es all criteria required for case 2.1.
As a consequence, g cannot exist, which implies that f also violates one of the required
axioms. It should be mentioned here that the proof for n = 4 also works with slightly
weaker properties: instead of the full power of Lemma 2, it su�ces that this lemma applies
for three alternatives a, b, c.

First, note that g is trivially strategyproof as f is strategyproof. The reason for this
is that any manipulation for g would also be a manipulation for f because g always adds
the same voters before calling f . Moreover, g cannot return a Condorcet loser because a
Condorcet loser in a pro�le R on 4 voters is also a Condorcet loser in the pro�le R′ that is
obtained after g adds the n − 4 extra voters. The reason for this is that the preference of
the �rst half of these n− 4 voters is inverse to the other half. In more detail, adding these
n− 4 voters increases every support sxy(R) by (n− 4)/2 if x ∈ {a, b, c} or y ∈ {a, b, c} and
the supports sxy(R) with x, y ∈ X do not change at all. Consequently, the Condorcet loser
does not change and g inherits the Condorcet loser property from f .

Finally, we need to show that g returns a, b, and c uniquely if three out of the four voters
uniquely top-rank one of these alternatives. For a and c, this follows from Lemma 2 because
g adds (n−4)/2 voters with preference a, b,X, c and (n−4)/2 voters with preference c,X, b, a
to derive the input pro�le R′ for f . Hence, if at least three voters agree that x ∈ {a, c} is the



uniquely best choice in g's input pro�le R, n/2 + 1 voters name this alternative as uniquely
best choice in R′. As f satis�es all requirements of Lemma 2, it holds that f(R′) = {x} and
thus g(R) = {x} by de�nition.

A slightly more complicated argument is required for showing that g returns b if three
voters prefer it uniquely the most. In more detail, consider the pro�le R shown in the sequel
and note that Lemma 2 implies that f(R) = {b}. It should be mentioned here that the
exact ordering of the �rst four voters is not important for the argument, i.e., we can apply
the constructions regardless of which voters in [1 . . . 4] prefer b the most.

R: [1 . . . 3]: b,X, c, a 4: a, c,X, b [5 . . . 2+n/2]: b, a,X, c [3+n/2 . . . n]: c,X, b, a

Note that a is uniquely bottom-ranked by all voters in [1 . . . 3]∪ [3+n/2 . . . n] and thus,
a is the Condorcet loser. This is also true if the voters i ∈ [5 . . . 2+n/2] swap a and b one
after another. Hence, the Condorcet loser property implies that a is not chosen after these
swaps and strategyproofness entails then that b is still the unique winner since all voters
in [5 . . . 2+n/2] prefer {b} to every other subset of A \ {a}. This means that f(R′) = {b},
where the pro�le R′ is displayed in the sequel.

R′: [1 . . . 3]: b,X, c, a 4: a, c,X, b [5 . . . 2+n/2]: a, b,X, c [3+n/2 . . . n]: c,X, b, a

In the pro�le R′, the preferences of the last n−4 voters are equal to those used by g to pad
up pro�les of size 4 to size n. Hence, g(R′′) = f(R′) = {b}, where R′′ = (R′1, R

′
2, R

′
3, R

′
4).

Moreover, the voters i ∈ [1 . . . 3] can reorder all alternatives in A \ {b} arbitrarily without
a�ecting the choice set and voter 4 can reorder all alternatives arbitrarily without a�ecting
the choice set because of strategyproofness. As the argument also holds if we reorder the
�rst four voters, b is indeed the unique winner of g if three voters uniquely top-rank it.

Hence, g satis�es all axioms required by the case that n = 4, which means that g
cannot exist. On the other hand, we have shown that the existence of a strategyproof
SCF for an even number of voters n > 4 that satis�es the Condorcet loser property and
non-imposition entails the existence of g. By the contraposition of this implication, the
impossibility generalizes to every even number of voters n > 4.

Appendix C: Additional Results

In this appendix, we discuss some of the claims mentioned in the remarks of the main part.
We start with Remark 3 concerning rank-based SCFs and show that Theorem 1 also holds
if m ≥ 5 and n = 2.

Theorem 4. There is no rank-based SCF that satis�es Pareto-optimality and strategyproof-
ness if m ≥ 5 and n = 2.

Proof. Assume for contradiction that there is a rank-based SDS f that satis�es Pareto-
optimality and strategyproofness if m ≥ 5 and n = 2. Moreover, consider the pro�les R1,
R2, and R3, where X = A \ {a, b, c, d, e}.

R1: 1: {a, b}, e, {c, d}, X 2: {c, d}, a, {b, e}, X

R2: 1: {a, c}, e, {b, d}, X 2: {b, d}, a, {c, e}, X

R3: 1: {a, d}, e, {b, c}, X 2: {b, c}, a, {d, e}, X
Note that r∗(R1) = r∗(R2) = r∗(R3) and thus, rank-basedness requires that f(R1) =

f(R2) = f(R3). Moreover, a Pareto-dominates b in R1, c in R2, d in R3, and all other
alternatives in all three pro�les. It follows that f(R1) = f(R2) = f(R3) = {a} and voter
2 is therefore no nominator for f . Hence, Lemma 1 entails that a single voter can decide
the outcome by top-ranking a single alternative. However, this is a contradiction because,



if voter 1 top-ranks a uniquely and voter b top-ranks b uniquely, both alternatives must be
the unique winner. Hence, we have derived a contraction.

Next, we consider the claim in Remark 11 stating that majority-based SCFs can-
not satisfy strategyproofness and non-imposition simultaneously. Recall that an SCF is
majority-based if f(R) = f(R′) for all pro�les R, R′ with the same majority relation
RM = {(x, y) ∈ A2 : nxy(R) ≥ nyx(R)}.

Theorem 5. There is no majority-based SCF that satis�es non-imposition and strate-
gyproofness if m ≥ 3 and n ≥ 3.

Proof. Assume for contradiction that there is a majority-based SCF f that satis�es non-
imposition and strategyproofness form ≥ 3 and n ≥ 3. As �rst step, we show that f satis�es
Condorcet-consistency. Hence, choose an arbitrary alternative and consider a pro�le R such
that f(R) = {a}. Note that such a pro�le exists by non-imposition. Next, consider the
sequence of pro�les R0 to Rn such that R0 = R and Ri di�ers from Ri−1 only in the fact
that voter i uniquely top-ranks a in Ri. Strategyproofness implies that f(Ri) = {a} if
f(Ri−1) = {a} as otherwise, voter i can manipulate by switching from Ri to Ri−1. Hence,
it follows that f(Rn) = {a}. Finally, strategyproofness implies that all voters can reorder
all alternatives in A \ {a} in Rn without a�ecting the choice set. Since f is majority-based,
it follows that a is the unique winner under all majority relations having a as Condorcet
winner. Hence, f is Condorcet-consistent.

As a consequence of this observation, it follows that l = dn+1
2 e voters can ensure that

f(R) = {x} if they all top-rank x in R. We use this fact to derive that f(R1) = {a} for the
pro�le R1, where X = A \ {a, b, c}.

R1: 1: c,X, b, a [2 . . . l]: a, b, c,X [l+1 . . . n]: a, c,X, b

As next step, we let every voter i ∈ [2 . . . l] change their preference sequentially to
{a, b}, c,X. This leads to the pro�le R2 and strategyproofness implies that f(R2) ⊆ {a, b};
otherwise there is a voter who can manipulate by reversing this modi�cation.

R2: 1: c,X, b, a [2 . . . l]: {a, b}, c,X [l+1 . . . n]: a, c,X, b

In the sequel, we use the same idea as in the proof of Theorem 2: we let voter 1 and 2
change their preferences over a and b. This results in the pro�le R3 and majority-basedness
implies that f(R3) = f(R2) ⊆ {a, b} as this step does not a�ect the majority relation.

R3: 1: c,X, {a, b} 2: b, a, c,X [3 . . . l]: {a, b}, c,X [l+1 . . . n]: a, c,X, b

Note that f(R3) is a subset of the least preferred alternatives of voter 1. Thus, strate-
gyproofness implies that voter 1 cannot make any other alternative but a and b win by lying
about his preference as he could manipulate otherwise. As consequence, f(R4) ⊆ {a, b},
where R4 is shown in the sequel.

R4: 1: c,X, b, a 2: b, a, c,X [3 . . . l]: {a, b}, c,X [l+1 . . . n]: a, c,X, b

As voter 1 prefers b to a in R4 after these steps, we can repeat them with every voter in
[3 . . . l]. This leads to the pro�le R5 and the fact that f(R5) ⊆ {a, b}.

R5: 1: c,X, b, a [2 . . . l]: b, a, c,X [l+1 . . . n]: a, c,X, b

Finally, consider the pro�le R6 which di�ers from R5 only in the fact that voter 1 reports
b, c,X, a. It follows from Condorcet-consistency that f(R6) = {b}.

R6: 1: b, c,X, a [2 . . . l]: b, a, c,X [l+1 . . . n]: a, c,X, b

Observe that f(R6) = {b} and f(R5) ⊆ {a, b} imply that f(R5) = {b} as switching from
R5 to R6 is a manipulation for voter 1, otherwise. This means that the voters i ∈ [l+1 . . . n]
receive their worst possible outcome for R5, and hence they cannot a�ect the outcome



by deviating because they prefer any other outcome. Moreover, the best alternatives of the
voters i ∈ [2 . . . l] is the unique winner and therefore, these voters can reorder all alternatives
in A \ {b} without a�ecting the outcome. This implies that f(R7) = {b} for the pro�le R7

shown in the sequel.

R7: 1: c,X, b, a [2 . . . l]: b,X, c, a [l+1 . . . n]: c,X, b, a

Finally, note that f(R7) = {b} is a contradiction. If n is odd, then c is the Condorcet
winner in f(R7) and thus, Condorcet-consistency requires that f(R7) = {c}. Moreover,
if n is even, we can exchange the roles of b and c in the derivation of R7 to derive that
f(R7) = {c} must also be true. This is possible as b and c are symmetric to each other
in R7. As f(R7) = {b} and f(R7) = {c} cannot be true simultaneously, we also have a
contradiction for even n. Hence, the initial assumption is wrong and no majority-based SCF
exists that satis�es strategyproofness and non-imposition if m ≥ 3 and n ≥ 3.

In the remainder of the section, we review some of the speci�c SCFs that we considered
in our analysis of the tightness of the axioms in our results.

First, we deal with rank-basedness under strict preferences. Therefore, we consider the
variant of the 2-plurality rule in Remark 7, which we call 2∗-plurality. For introducing
this rule, we de�ne the plurality score PL(a,R) of an alternative a in pro�le R as the
number of voters that top-rank alternative a in the pro�le R. Given a pro�le R, let aR
denote the alternative with the second highest plurality score. Then, the 2∗-plurality rule,
abbreviated by 2∗-PL(R), chooses precisely all alternatives x with PL(x,R) ≥ PL(aR, R)
and PL(x,R) > 0, i.e., 2∗-PL(R) = {x ∈ A : PL(x,R) ≥ PL(aR, R) ∧ PL(x,R) > 0}.

Proposition 1. For strict preferences, the 2∗-plurality rule is rank-based, Pareto-optimal,
and strategyproof, but no voter is a nominator if m ≥ 3 and n ≥ 5.

Proof. First, note that 2∗-plurality is by de�nition rank-based and it satis�es Pareto-
optimality as it only returns alternatives that are top-ranked by some voters. This criterion
entails Pareto-optimality as we assume strict preferences. Moreover, no voter is a nominator
for 2∗-plurality if there are at least 5 voters because the top-ranked alternative c of a voter
can have plurality score 1 and two other alternatives may have plurality score 2. Hence, it
only remains to show that it is strategyproof. We assume for contradiction that this is not
the case, i.e., that there are preference pro�les R and R′ and a voter i such that Rj = R′j
for all j ∈ N \ {i} and 2∗-PL(R′) �i 2∗-PL(R). We proceed with a case distinction on
whether voter i's most preferred alternative in R, denoted by a, is chosen.

First, assume that a ∈ 2∗-PL(R). This means that voter i can only manipulate if
2∗-PL(R′) = {a} as otherwise, there is an alternative x ∈ 2∗-PL(R′) with a �i x. Moreover,
if 2∗-PL(R) = {a}, voter i can also not manipulate as his best alternative is the unique
winner. Hence, another alternative b is chosen by 2∗-plurality, which implies that another
voter reports b as his most preferred alternative in R. As consequence, PL(b, R′) > 0 and
therefore, 2∗-PL(R′) 6= {a} as 2∗-plurality only returns a single winner if all voters report
it as their best choice. Hence, no manipulation is possible in this case.

Next, assume that a 6∈ 2∗-PL(R) and let b denote voter i's best alternative in R′.
We proceed with another case distinction with respect to the plurality score of b in R.
First, assume that b has the largest plurality score in R, i.e, PL(b, R) ≥ PL(c,R). This
means that PL(b, R′) > PL(x,R′) and consequently b 6= aR′ . Moreover, a 6= aR′ because
a 6∈ 2∗-PL(R′), which means that we can choose aR such that aR = aR′ . This implies that
all 2∗-PL(R) = 2∗-PL(R′) as all alternatives in R′ have a larger plurality score than aR′ if
and only if they have already a larger plurality score than aR in R.

As second case, assume that PL(b, R) = PL(aR, R) and that there is an alternative c
with PL(c,R) > PL(aR, R). This assumption entails that {b, c} ⊆ 2∗-PL(R). Moreover,
we can derive that PL(b, R′) = PL(b, R) + 1 > PL(x,R′) for all x ∈ A \ {b, c} because



PL(b, R) ≥ PL(aR, R)PL(x,R) for all these alternatives and voter i increases the plurality
score of b. Furthermore, PL(c,R′) ≥ PL(b, R′) since c had a stricty larger plurality score
than b in R. Thus, we deduce that 2∗-PL(R′) = {b, c} ⊆ 2∗-PL(R). However, this is no
manipulation for voter i as he is not indi�erent between b and c, i.e., we can �nd alternatives
x ∈ 2∗-PL(R), y ∈ 2∗-PL(R′) such that x �i y.

Finally, assume that PL(b, R) < PL(aR, R) and note that this assumption entails
that there are at least two alternatives with a higher plurality score than a and b, i.e.,
PL(aR, R) > PL(a,R) and PL(aR, R) > PL(b, R). Hence, PL(b, R′) = PL(b, R) + 1 ≤
PL(aR, R). This means that PL(aR, R) = PL(aR′ , R

′) as b has a plurality score of at
most PL(aR, R) and the plurality scores of all alternatives x with PL(x,R) ≥ PL(aR, R)
have not been a�ected by the manipulation. Consequently, it follows that every alterna-
tive chosen in 2∗-PL(R) is also chosen after the manipulation, i.e, 2∗-PL(R) ⊆ 2∗-PL(R′).
As |2∗-PL(R)| ≥ 2 (because |2∗-PL(R)| = 1 only if an alternative is unanimously top-
ranked), switching from R to R′ is therefore no manipulation because we can �nd alterna-
tives x ∈ 2∗-PL(R), y ∈ 2∗-PL(R) ⊆ -PL(R′) such that x �i y. Hence, no case allows for
a manipulation, which means that 2∗-plurality is strategyproof for strict preferences.

Next, we consider Remark 3 in which we claim that the bounds on n andm in Theorem 1
are tight as the Pareto rule is rank-based for small values of n and m. We prove this
statement in the sequel.

Proposition 2. The Pareto rule is rank-based, Pareto-optimal, and strategyproof if m ≤ 3,
or if m ≤ 4 and n ≤ 2.

Proof. The Pareto rule is known to satisfy Pareto-optimality and strategyproofness, regard-
less of the number of alternatives or voters (see, e.g., Brandt et al., 2021). Hence, it only
remains to show that it also satis�es rank-basedness under the restrictions on n and m. For
m = 1, rank-basedness is obviously no restriction, and if m = 2, the rank vector of the sin-
gle alternative determines all preferences except that we do not know which voter submits
which alternatives. If an alternative a is uniquely top-ranked by a voter, its rank vector
contains a (0, 1) entry, and thus, the rank vector of the other alternative b must contain a
(1, 1) entry. Similarly, if a has a (0, 2) entry, a voter is indi�erent between both alternatives
and thus, b has also a (0, 2). Finally, we can apply a symmetric argument to the �rst case if
the rank vector a contains a (1, 1) entry, and thus, we can reconstruct a unique pro�le (up
to renaming the voters) given a rank matrix. Hence, the Pareto rule is rank-based if m = 2.

Next, we focus on the case that m = 3 and consider an arbitrary rank matrix Q. First
note that Q can only have the following entries: (0, 3), (0, 2), (1, 2), (0, 1), (1, 1), and (2, 1).
Moreover, many of these entries specify the preferences of the voters. For instance, the (0, 3)
entry entails that a voter is completely indi�erent between all alternatives. Consequently,
we can focus on the rank vector of an alternative a, add a completely indi�erent vector for
every (0, 3) entry and remove all these entries from Q afterwards. Also, the (0, 2) entries
in the rank vector of a specify a lot of information: there must be a voter who top-ranks
a and another alternative x and bottom-ranks the last alternative y uniquely. We use this
observation to formulate a system of linear equations. Let therefore na, nb, and nc denote
the number of (0, 2) entries in the rank vector of the respective alternatives. Moreover, let
xab, xac, and xbc denote the number of voters who top-rank both alternatives in the index.
The following equations must hold for every pro�le R with r∗(R) = Q.

na = xab + xac

nb = xab + xbc

nc = xbc + xac



It can easily be checked that the unique solution of this system of equations is xab =
na+nb−nc

2 , xbc = nb+nc−na

2 , and xac = na+nc−nb

2 . As this solution is unique, these entries de-
termine some preferences uniquely. Moreover, note that a symmetric argument holds for all
(1, 2) entries. Hence, we can now remove these entries from Q, as well as the corresponding
(2, 1) and (0, 1) entries, to �nd a simpler rank matrix.

After the last step, Q only consists of (0, 1), (1, 1), and (2, 1) entries, which means
that all remaining preferences are strict. If there are no such entries, we can check Pareto
dominance with the derived preference pro�les. Otherwise, these entries do not necessarily
entail a unique pro�le, but we can use all our observations so far to check for an arbitrary
pair of alternatives a and b, whether alternative a Pareto-dominates alternative b. For this,
we �rst construct the preferences involving ties as explained before and check whether one
of the voters thus far prefers b strictly to a. If this is the case, a cannot Pareto-dominate
b and we are done. Otherwise, we consider the remaining entries in Q. We claim that a
Pareto-dominates b in these preferences if and only if a has no (2, 1) entry and b has no
(0, 1) entry. If a has an (2, 1) entry or b has an (0, 1) entry, then a is uniquely last-ranked
or b is uniquely top-ranked by some voter. Conversely, if none of these entries exist, then
b has to be last-ranked whenever a is second-ranked, and we derive Pareto dominance of b
by a (note that there is at least one strict comparison because we assumed that the pro�le
was not determined, yet). Since a and b were chosen arbitrary, we can check whether an
alternative Pareto-dominates another alternative only based on the rank matrix if m = 3,
i.e., the Pareto rule is rank-based in this case.

Finally, we show that the Pareto rule is also rank-based if m = 4 and n = 2. In this case,
we use a di�erent proof strategy by showing that if an alternative a is Pareto-dominated in
a pro�le R, it is Pareto-dominated in every Pro�le R′ with r∗(R) = r∗(R′). Given a rank
matrixQ, we can therefore compute the Pareto rule on an arbitrary pro�le R with r∗(R) = Q
as the outcome is independent of the exact choice of R. Next, we consider the pro�le R in
detail: as a is Pareto-dominated, there is an alternative b such that b %i a for all i ∈ {1, 2}
and this preference is strict for at least one of the voters. Let (sxi, txi) = r(Ri, x) denote the
rank tuple of alternative x in the preference of voter i. We assume in the sequel without loss
of generality that sb1 ≤ sb2; otherwise just exchange the voters' preferences. Note that if
mini∈{1,2} sai ≥ sb2, then b Pareto-dominates a in all pro�les R′ with r∗(R′) = r∗(R). The
reason for this is that if sxi ≤ xyi, then x %i y. Hence, we focus on the case that sa1 < sb2
(sa2 < sb2 is impossible because b Pareto-dominates a). Next, consider a pro�le R′ with
r∗(R′) = r∗(R) such that a �′i b for some voter i ∈ {1, 2}. If no such pro�le R′ exists, we
are done as b Pareto-dominates a in every pro�le R′ with r∗(R) = r∗(R′). Moreover, we
assume without loss of generality that r(R1, b) = r(R′1, b) and r(R2, b) = r(R′2, b) because
we can just reorder the voters otherwise. It follows from this assumption that a �′2 b
because sb1 = min(sb1, sb2, sa1, sa2). Next note that a cannot be uniquely top-ranked in R
since it is Pareto-dominated, which means that there must be another alternative c with
c %′2 a in R′. This implies that voter 2 prefers two alternatives strictly to b. Because of
r(R2, b) = r(R′2, b), voter 2 also prefers two alternatives strictly to b in R and, as b Pareto-
dominates a and m = 4, a is among the least preferred alternatives of voter 2 in R. Hence,
we derive from r∗(R) = r∗(R′) that a is among the least preferred alternatives of voter 1
in R′. Finally, note that at least one voter prefers b strictly to a in R. Hence, either a is
uniquely bottom-ranked by voter 2 in R or it is not among the most preferred alternatives
of voter 1. This means that, in every preference pro�le R′ with r∗(R′) = r∗(R), a is Pareto-
dominated by an alternative c that is among the most preferred alternatives of the voter
who does not bottom-rank a. As consequence, if an alternative is Pareto-dominated in a
pro�le R, it is also Pareto-dominated in every pro�le R′ with r∗(R) = r∗(R′) and thus, we
can compute the Pareto rule based on the rank matrix Q.



As last result, we discuss the SCF f∗ that satis�es Pareto-optimality and strategyproof-
ness but violates support-basedness and that every voter is a nominator. As described in
Remark 8, this SCF chooses the maximal alternatives of a transitive dominance relation
which slightly strengthens Pareto-dominance. In more detail, we say that an alternative a
dominates alternative b in a pro�le R if a Pareto-dominates b or n − 1 voters prefer a the
most while sab(R) ≥ 2 and sba(R) = 1. It should be stressed that it is not required that
a is uniquely top-ranked by n− 1 voters, but only that it is among their best alternatives.
Subsequently, we show that f∗ satis�es all axioms that we claim.

Proposition 3. The SCF f∗ satis�es Pareto-optimality and strategyproofness but violates
support-basedness and that every voter is a nominator if n ≥ 3.

Proof. Before discussing the axioms, we �rst show that f∗ is a well-de�ned SCFs by proving
that it chooses the maximal elements of a transitive dominance relation. Hence, consider
an arbitrary pro�le R and three alternatives a, b, c and assume that a dominates b and b
dominates c. As there are two possibilities on how an alternative dominates another one
(i.e., a either Pareto-dominates b, or sab(R) ≥ 2, sba(R) = 1, and n − 1 voter top-rank a),
we proceed with a case distinction with respect to the dominance relations between a and
b and between b and c. First, consider the case that a Pareto-dominates b and b Pareto-
dominates c. Then, a Pareto-dominates c as the Pareto-dominance relation is transitive and
thus, transitivity is in this case satis�ed.

Next, consider the case that a Pareto-dominates b and b dominates c because sbc(R) ≥ 2,
scb(R) = 1, and n−1 voter top-rank b. As every voter prefers a (weakly) to b, it follows that
sac(R) ≥ sbc(R) ≥ 2, sca(R) ≤ scb(R) = 1 and that n− 1 voters top-rank a. Hence, a either
Pareto-dominates c if sca(R) = 0 or satis�es the second dominance criterion if sca(R) = 1.
This means that the dominance relation is also in this case transitive.

As third case, assume that b Pareto-dominates c, and that sab(R) ≥ 2, sba(R) = 1, and
n− 1 voters top-rank a. As b Pareto-dominates c, it follows that sac(R) ≥ sab(R) ≥ 2 and
sca(R) ≤ sba(R) = 1. Hence, transitivity is also in this case satis�ed.

Finally, assume that neither a Pareto-dominates b nor b Pareto-dominates c, but a
dominates b and b dominates c. Consequently, we derive that both a and b are top-ranked
by n− 1 voters. However, this means that at most a single voter prefers a strictly to b and
thus, sab(R) ≤ 1. This contradicts that a dominates b and thus, this case cannot occur.
Hence, the resulting dominance relation is transitive and f∗ is a well-de�ned SCF.

Next, note that f∗ satis�es Pareto-optimality as it is de�ned by a dominance relation that
re�nes Pareto-dominance. Moreover, no voter is a nominator for f∗ because f∗(R) = {a} for
all pro�les R in which n−1 voters report a as their uniquely best alternative. The SCF f∗ is
also not support-based. To this end, consider the pro�les R1 and R2, where X = A\{a, b, c},
and note that f(R1) = {a} 6= {a, b, c} = f∗(R2) even though s∗(R1) = s∗(R2).

R1: 1: c, b, a,X 2: a, b, c,X [3 . . . n]: a, b, c,X

R2: 1: c, a, b,X 2: b, a, c,X [3 . . . n]: a, b, c,X

Finally, it remains to show that f∗ is strategyproof. Assume for contradiction that
this is not the case, i.e., there are preference pro�les R and R′ and a voter i such that
Rj = R′j for all j ∈ N \{i} and f∗(R′) �i f∗(R). Moreover, let X+

i (R) denote voter i's best
alternatives in R. We proceed with a case distinction with respect to whetherX+

i (R)∩f∗(R)
is empty or not. First, assume that X+

i (R) ∩ f∗(R) is non-empty. This means that voter
i can only manipulate by switching to R′ if f∗(R′) ⊆ X+

i (R) and f∗(R) 6⊆ X+
i (R). As the

dominance relation de�ning f∗ is transitive, it follows that there are alternatives x ∈ X+
i (R),

y ∈ f∗(R)\X+
i (R) such that x dominates y in R′ but not in R. However, this is not possible.

If x does not Pareto-dominate y in R, there is a voter j 6= i with y �j x and thus, x cannot
Pareto-dominate y in R′. Furthermore, since x �i y, it follows that sxy(R) ≥ sxy(R′) and



syx(R) ≤ syx(R′), and since x ∈ X+
i (R), voter i can also not increase the number of voters

who top-rank x. Consequently, since x does not dominate y in R, it does not dominate y
in R′. Hence, it follows from the transitivity of the dominance relation de�ning f∗ that
f∗(R′) cannot be a subset of X+

i (R) if f(R) 6⊆ X+
i (R), which means that no manipulation

is possible in this case.
Next, assume that X+

i (R)∩f∗(R) = ∅, i.e., none of voter i's best alternatives are chosen.
As at least one of voter i's best alternatives is Pareto-optimal, it follows that there is a non-
empty set of alternatives B such that all voters j ∈ N \ {i} top-rank all alternatives in
B. Moreover, let a denote one of voter i's most preferred alternatives in f∗(R) and let b
denote one of voter i's most preferred alternatives in B. Observe that all alternatives x
with b �i x are Pareto-dominated by b because all voters but i top-rank b and thus, these
alternatives are not in f∗(R). Moreover, it holds that b ∈ f∗(R). Indeed, it could only
be Pareto-dominated by alternatives in B, but it is voter i's best alternative among these.
Moreover, syb(R) ≤ 1 for all y ∈ A because n − 1 voters top-rank b and hence, it is not
dominated.

As next step, we show that for all alternatives y ∈ A with y �i a, there is an alternative
z ∈ B such that szy(R) ≥ 2 and syz(R) ≤ 1. Assume that this is not the case and let
c ∈ A \ f∗(R) with c �i a such that sxc(R) ≤ 1 for all x ∈ B (scx(R) ≤ 1 must be true for
all x ∈ B since n−1 voters top-rank these alternatives). As c 6∈ f∗(R), it is Pareto-dominated
by an alternative d because sxc(R) ≤ 1 for all x ∈ B by assumption and none of voter i's best
alternatives is top-ranked by n−1 voters as otherwise f∗(R)∩X+

i (R) 6= ∅. As consequence,
we derive that sxd(R) ≤ sxc(R) ≤ 1 for all x ∈ B. Moreover, Pareto-dominance entails that
d %i c �i a and thus, d 6∈ f∗(R). Hence, d must also be Pareto-dominated, and we can
repeat the argument. As the Pareto-dominance relation is transitive, this process results
eventually at a Pareto-optimal alternative e with sxe(R) ≤ 1 for all x ∈ B and e �i a.
However, this means that e ∈ f∗(R) contradicting that a is one of voter i's best alternative
in f∗(R). Hence, we derived a contradiction and it holds for all alternatives y ∈ A with
y �i a that there is an alternative z ∈ B such that szy(R) ≥ 2 and syz(R) ≤ 1. As voter i
prefers all such alternatives y to all alternatives z ∈ B because y �i a %i b %i z, it follows
that szy(R′) ≥ 2 and syz(R′) ≤ 1. Since all voters in N \ {i} top-rank all alternatives in B
also in R′, we derive that no alternative y with y �i a can be element of f∗(R′).

As consequence, voter i can only manipulate by switching from R to R′ if x ∼i a for
all x ∈ f∗(R′) and there is an alternative y ∈ f∗(R) with a �i y. The latter observation
implies that a �i b (because otherwise a ∼i b, but alternatives y with b �i y are Pareto-
dominated and cannot be in f∗(R)). By the choice of b, a �i x for all x ∈ B. Finally,
we show that B ∩ f∗(R′) 6= ∅, which entails that voter i cannot manipulate. Note for this
that all alternatives in B are also in R′ top-ranked by n − 1 voters and thus sxy(R′) ≤ 1
for all x ∈ A, y ∈ B. This means that an alternative x ∈ B is only not chosen in f∗(R′)
if it is Pareto-dominated. However, an alternative x ∈ B can only be Pareto-dominated by
another alternative in B as for any alternative y ∈ A \B, there is a voter j ∈ N \ {i} such
that x �i y; otherwise, all voters in N \ {i} top-rank y implying that y ∈ B. Finally, as the
Pareto-dominance relation is transitive, it follows that there is a Pareto-optimal alternative
in B, and thus, B ∩ f∗(R′) 6= ∅. Altogether, f∗ is strategyproof.
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