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Abstract

An important aspect of multi-agent systems concerns the formation of coalitions
that are stable or optimal in some well-defined way. The notion of popularity has
recently received a lot of attention in this context. A partition is popular if there
is no other partition in which more agents are better off than worse off. In 2019,
a long-standing open problem concerning popularity was solved by proving that
computing popular partitions in roommate games is NP-hard, even when preferences
are strict. We show that this result breaks down when allowing for randomization:
mixed popular partitions can be found efficiently via linear programming and a
separation oracle. Our result implies that one can efficiently verify whether a given
partition in a roommate game is popular and that strongly popular partitions can be
found in polynomial time (resolving an open problem). By contrast, we prove that
both problems become computationally intractable when moving from coalitions of
size 2 to coalitions of size 3, even when preferences are strict and globally ranked.
Moreover, we give elaborate proofs showing the NP-hardness of finding popular,
strongly popular, and mixed popular partitions in symmetric additively separable
hedonic games and symmetric fractional hedonic games.

1 Introduction

Coalitions and coalition formation have been a central concern of game theory, ever since the
publication of von Neumann and Morgenstern’s Theory of Games and Economic Behavior
in 1944. The traditional models of coalitional game theory, in particular TU (transferable
utility) and NTU (non-transferable utility) coalitional games, involve a formal specification
of what each group of agents can achieve on their own. Drèze and Greenberg (1980) noted
that in many situations this is not feasible, possible, or even relevant to the coalition for-
mation process, as, e.g., in the formation of social clubs, teams, or societies. Instead, in
coalition formation games, the agents’ preferences are defined directly over the coalition
structures, i.e., partitions of the agents in disjoint coalitions. Formally, coalition forma-
tion can thus be considered as a special case of the general social choice setting, where the
agents entertain preferences over a special type of alternatives, namely coalition partitions
of themselves, from which one or more need to be selected. In most situations it is natural
to assume that an agent’s appreciation of a partition only depends on the coalition he is a
member of and not on how the remaining agents are grouped. Popularized by Bogomolnaia
and Jackson (2002), much of the work on coalition formation now concentrates on these
so-called hedonic games.

The main focus in hedonic games has been on finding and recognizing partitions that
satisfy various notions of stability—such as Nash stability, individual stability, or core
stability—or optimality—such as Pareto optimality, utilitarian welfare maximality, or egal-
itarian welfare maximality (see Aziz and Savani, 2016, for an overview). In this paper, we
focus on the notion of popularity (Gärdenfors, 1975), which has the flavor of both stability
and optimality. A partition is popular if there is no other partition that is preferred by a
majority of the agents. Moreover, a partition is strongly popular if it is preferred to every
other partition by some majority of agents. Popularity thus corresponds to the notion of
weak and strong Condorcet winners in social choice theory, i.e., candidates that are at least



as good as any other candidate in pairwise majority comparisons. Just like stability notions,
popularity is based on the idea that a subset of agents breaks off in order to increase their
well-being. However, since the new partition has to make at least as many agents better
off than worse off, popularity also has the flavor of optimality. According to the standard
reference Algorithmics of Matching Under Preferences, “popular matchings [. . . ] have been
an exciting area of research in the last few years” (Manlove, 2013, p. 333). A recent survey
on popular matchings is provided by Cseh (2017).

In contrast to Pareto optimal partitions, popular partitions are not guaranteed to exist.
We therefore also consider mixed popular partitions, as proposed by Kavitha et al. (2011)
and whose existence follows from the Minimax Theorem. A mixed popular partition is a
probability distribution over partitions p such that there is no other mixed partition q such
that the expected number of agents who prefer the partition returned by p to q is at least
as large as the other way round. Mixed popular partitions are a special case of maximal
lotteries, a randomized voting rule that has recently gathered increased attention in social
choice theory (Fishburn, 1984; Brandl et al., 2016; Brandl and Brandt, 2020; Brandl et al.,
2018).

We study the computational complexity of popular, strongly popular, and mixed popular
partitions in a variety of hedonic coalition formation settings including additively separable
hedonic games, fractional hedonic games as well as hedonic games where the coalition size
is bounded. The latter includes flatmate games (which only allow coalitions of up to three
agents) and roommate games (which only allow coalitions of up to two agents). Our main
findings are as follows.

• Generalizing earlier results by Kavitha et al. (2011), we show how mixed popular parti-
tions in roommate games can be computed in polynomial time via linear programming
and a separation oracle on a subpolytope of the matching polytope for non-bipartite
graphs.1 This stands in contrast to a recent result showing that computing popular
partitions in roommate games is NP-hard (Faenza et al., 2019; Gupta et al., 2019).

• As corollaries we obtain that verifying popular partitions (Biró et al., 2010), finding
Pareto optimal partitions (Aziz et al., 2013a), and finding strongly popular partitions
can all be done in polynomial time in roommate games, even when preferences admit
ties. The latter statement resolves an acknowledged open problem.2

• We provide the first negative computational results for mixed popular partitions and
strongly popular partitions by showing that finding these partitions in flatmate games
is NP-hard. Moreover, it turns out, that verifying whether a given partition is popular,
strongly popular, or mixed popular in flatmate games is coNP-complete. All of these
results hold for strict and globally ranked preferences, where coalitions appear in the
same order in each individual preference ranking. This is interesting insofar as finding
popular partitions in roommate games becomes tractable under the same restrictions.

• We prove that computing popular, strongly popular, and mixed popular partitions is
NP-hard in symmetric additively separable hedonic games and symmetric fractional
hedonic games. Furthermore, we show coNP-completeness of all corresponding verifi-
cation problems.

1The results by Kavitha et al. (2011) only hold for house allocation and marriage markets and cannot
be straightforwardly extended to roommate markets. See Section 2 for more details.

2See, for example, Biró et al. (2010) and Manlove (2013): “A third open problem is the complexity of
finding a strongly popular matching (or reporting that none exists), for an instance of RPT [Roommate
Problem with Ties]” (Biró et al., 2010, p. 107); “Our last open problem concerns the complexity of the
problem of finding a strongly popular matching, or reporting that none exists, given an instance of SRTI
[Stable Roommates with Ties and Incomplete lists], which is unknown at the time of writing” (Manlove,
2013, p. 380).



2 Related Work

Gärdenfors (1975) first proposed the notions of popularity and strong popularity in the
context of marriage games. He showed that popular matchings (or “majority assignments”
in his terminology) need not exist when preferences are weak, but that existence is guar-
anteed for strict preferences because every stable matching is popular. As a consequence,
the well-known Gale-Shapley algorithm efficiently identifies popular matchings in marriage
games with strict preferences. Kavitha and Nasre (2009), Huang and Kavitha (2011), and
Kavitha (2014) provide efficient algorithms for computing popular matchings that satisfy
additional properties such as rank maximality or maximum cardinality. For weak prefer-
ences, computing popular matchings is NP-hard, even when all agents belonging to one side
have strict preferences (Biró et al., 2010; Cseh et al., 2015).

In the more restricted setting of house allocation (henceforth housing games), Abraham
et al. (2007) proposed efficient algorithms for finding popular allocations of maximum cardi-
nality for both weak and strict preferences. Mahdian (2006) proved an interesting threshold
for the existence of popular allocations: if there are n agents and the number of houses
exceeds αn with α ≈ 1.42, then the probability that there is a popular allocation converges
to 1 as n goes to infinity.

For roommate games with weak preferences, NP-hardness of computing popular match-
ings follows from the above-mentioned hardness results for marriage games. It was recently
shown that this problem is still NP-hard when preferences are strict (Gupta et al., 2019;
Faenza et al., 2019; Cseh and Kavitha, 2018). Also, finding a maximum-cardinality popular
matching in instances where popular matchings are guaranteed to exist is NP-hard (Brandl
and Kavitha, 2018).

There are less results on strongly popular matchings. It is known from Gärdenfors (1975)
that a strongly popular matching has to be a unique popular matching and that every
strongly popular matching is stable in roommate and marriage games. Based on these
insights, Biró et al. (2010) showed that strongly popular matchings in roommate games
and marriage games with strict preferences can be found efficiently by first computing an
arbitrary stable matching and then checking whether it is strongly popular. The case of
weak preferences was left open and little progress has been made since then. Király and
Mészáros-Karkus (2017) recently gave an algorithm for finding strongly popular matchings
in marriage games where preferences are strict, except that agents belonging to one side
may be completely indifferent. In housing games, a matching is strongly popular if and
only if it is a unique perfect matching. Hence, strongly popular matchings in housing games
can be found in polynomial time. All of the above mentioned results on strong popularity,
including the open problem, follow from our Corollary 3.

Mixed popular matchings were introduced by Kavitha et al. (2011) who also showed how
to compute a fractional popular matching in housing games and marriage games, which can
then be translated into a mixed popular matching via a Birkhoff-von Neumann decom-
position. This is possible in these bipartite settings because every fractional matching is
implementable as a probability distribution over deterministic matchings. When moving
from marriage markets to roommate markets, this does not hold anymore. For example,
a matching involving three agents where every pair of agents is matched with probability
1/2 is not implementable. Huang and Kavitha (2017) have shown that in marriage games
with strict preferences, the popular matching polytope is half-integral and that half-integral
mixed popular matchings can be computed in polynomial time. No such matchings are
guaranteed to exist when preferences are weak. They also apply the same techniques to
roommate games in order to compute an optimal half-integral solution over the bipartite
matching polytope in the case of strict preferences. However, the resulting solutions may
again fail to be implementable. Apart from that, their methods heavily rely on computing



stable matchings, which may be intractable when preferences are weak. By contrast, our
results in Section 4.2.1 are based on the matching polytope for non-bipartite graphs via
odd-set constraints and allow both to deal with ties and to efficiently compute a solution
that is implementable using LP methods (Proposition 5). The axiomatic properties of mixed
popular matchings such as efficiency and strategyproofness were investigated by Aziz et al.
(2013c), Brandt et al. (2017), and Brandl et al. (2017).

To the best of our knowledge, popularity, strong popularity, and mixed popularity have
not been studied for coalition formation settings that go beyond coalitions of size 2 except
for a theorem by Aziz et al. (2013b, Th. 15) who claimed that checking whether a partition
is popular in ASGHs is NP-hard and that verifying whether a partition is popular is coNP-
complete. However, the proof of the first statement is incorrect.3 We substantially modified
the reduction to prove a stronger statement and independently proved a stronger statement
for the verification problem.

3 Preliminaries

Let N be a finite set of agents. A coalition is a non-empty subset of N . By Ni we denote
the set of coalitions agent i belongs to, i.e., Ni = {S ⊆ N : i ∈ S}. A coalition structure,
or simply a partition, is a partition π of the agents N into coalitions, where π(i) is the
coalition agent i belongs to. A hedonic game is a pair (N,%), where % = (%i)i∈N is a
preference profile specifying the preferences of each agent i as a complete and transitive
preference relation %i over Ni. If %i is also anti-symmetric we say that i’s preferences are
strict. Otherwise, we say that preferences are weak. We denote by S �i T if S %i T but
not T %i S—i.e., i strictly prefers S to T—and by S ∼i T if both S %i T and T %i S—i.e.,
i is indifferent between S and T . In hedonic games, agents are only concerned about their
own coalition. Accordingly, preferences over coalitions naturally extend to preferences over
partitions as follows: π %i π′ if and only if π(i) %i π′(i).

Sometimes, we consider strict preferences, which are obtained from weak preferences by
breaking ties arbitrarily. To express such preferences succinctly, given a setX of alternatives,
we denote by X� an arbitrary, but fixed strict preference order of the alternatives in X.
For example, a � {b, c}� � d could be replaced by a � b � c � d. For simplicity, one can
assume that ties are broken lexicographically. When referring to index sets, such as sets of
players, we use the shorthand [k] for {1, . . . , k} and [k, l] for {k, . . . , l}.

Two basic properties of partitions are Pareto optimality and individual rationality. Given
a hedonic game (N,%), a partition π is Pareto optimal if there is no partition π′ such that
π′ %j π for all agents j and π′ �i π for at least one agent i. A coalition S ∈ Ni is individually
rational for agent i if she prefers the coalition to staying alone, i.e., C %i {i}. A Partition
π is individually rational if π(i) %i {i} for all i ∈ N . The rationale behind individual
rationality is that agents cannot be forced into a coalition.

Individual rationality is also the crucial ingredient of a succinct representation of he-
donic games where only the preferences over individual rational coalitions are considered
(Ballester, 2004). A hedonic game (N,%) is represented by Individually Rational Lists of
Coalitions (IRLC) via the game (N,%′) where %′ is a preference profile such that %′i is the
restriction of %i to individually rational coalitions in Ni. In this case, (N,%) is called a
completion of (N,%′). This representation of games is useful to obtain meaningful hardness
results because the size of the naive representation of a hedonic game is exponential in the
number of agents while the IRLC representation may only require polynomial space if the

3The reduction fails because for a ‘yes’-instance of Exact 3-Cover, the partition π claimed to be popular
for the ASHG it maps to is not popular: the partition π′ = {{ys, zs1, zs2} : s ∈ S} ∪ {{br1, ar2} : r ∈ R} ∪
{{br2, ar1, ar3} : r ∈ R} is more popular.



number of individually rational coalitions is small enough.
In order to define popularity and strong popularity, let N(π, π′) be the set of agents who

prefer π over π′, i.e., N(π, π′) = {i ∈ N : π(i) �i π′(i)}, where π, π′ are two partitions of N .
For any subset M ⊆ N of agents and partitions π, π′ of N , φM (π, π′) = |N(π, π′) ∩M | −
|N(π′, π)∩M | is called the popularity margin on M with respect to π and π′. If M = {i} is
a singleton set, we use the shorthand notation φi instead of φ{i}. On top of that, we define
the popularity margin of π and π′ as φ(π, π′) = φN (π, π′). Then, π is called more popular
than π′ if φ(π, π′) > 0. Furthermore, π is called popular if, for all partitions π′, φ(π, π′) ≥ 0,
i.e., no partition is more popular than π. π is called strongly popular if, for all partitions
π′ 6= π, φ(π, π′) > 0, i.e., π is more popular than every other partition. Note that there can
be at most one strongly popular partition in any hedonic game.

For a hedonic game (N,%) in IRLC representation, a partition π is called popular if
it is popular in the completion of (N,%) where, for each agent, all coalitions that are not
individually rational are gathered in a single indifference class that is less preferred than the
singleton coalition. This definition of popularity generalizes the definition of popularity that
is used for marriage games by Kavitha et al. (2011), and adds the appropriate perspective
on individual rationality.4 Note that a popular partition need not be individually rational.

Many hedonic games do not admit a popular partition. However, existence can be
guaranteed by introducing randomization via mixed partitions, i.e., probability distribu-
tions over partitions. Let two mixed partitions p = {(π1, p1), . . . , (πk, pk)} and q =
{(σ1, q1), . . . , (σl, ql)} be given, where (p1, . . . , pk), (q1, . . . .ql) are probability distributions.
We define the popularity margin of p and q as their expected popularity margin, i.e.,

φ(p, q) =

k∑
i=1

l∑
j=1

piqjφ(πi, σj).

Clearly, the definition of popularity carries over to the extension of φ. As first observed by
Kavitha et al. (2011), mixed popular partitions always exist, because they can be interpreted
as maximin strategies of a symmetric zero-sum game (see also Fishburn, 1984; Aziz et al.,
2013c). Due to space constraints, we defer most of the proofs to the appendix.

Proposition 1. Every hedonic game admits a mixed popular partition.

4 Results

Our results are divided into three subsections. We first show some basic properties of and
relationships between the different notions of popularity and then analyze popularity in
ordinal hedonic games (such as flatmate and roommate games) and cardinal hedonic games
(such as additively separable and fractional hedonic games).

4.1 Basic Relationships

Clearly, a strongly popular partition is also popular and a popular partition, interpreted
as a probability distribution with singleton support, is mixed popular. Furthermore, every

4The IRLC representation ignores preferences over coalitions that are not individually rational. However,
in contrast to core stability or Nash stability, these preferences can affect whether a partition is popular
or not. In order to circumvent this problem one could strengthen the definition of popularity by requiring
that a coalition needs to be popular for all extensions of the IRLC represented preferences. All our results
also hold for this notion, because we construct individually rational partitions for which the two notions of
popularity coincide.



coalition structure in the support of a mixed popular partition is Pareto optimal. This al-
ready follows from a more general statement by Fishburn (1984, Prop. 3). For completeness,
we give a simple proof in the appendix.

Proposition 2. Let p = {(π1, p1), . . . , (πk, pk)} be a mixed popular partition. Then, for
every i ∈ [k] with pi > 0, πi is Pareto optimal.

We thus have the following relationships between strong popularity (sPop), popularity
(Pop), partitions in the support of any mixed popular partition (supp(mPop)), and Pareto
optimality (PO):

sPop =⇒ Pop =⇒ supp(mPop) =⇒ PO.

The concepts printed in boldface are guaranteed to exist. As a consequence, hardness
results for computing Pareto optimal partitions imply hardness of computing mixed popular
partitions (though not for popular partitions since they need not exist). Mixed popular
partitions also satisfy probabilistic strengthenings of Pareto optimality based on stochastic
dominance and pairwise comparisons (Aziz et al., 2018).

The existence problems for popular and strongly popular partitions are naturally con-
tained in the complexity class Σp2. The verification problems are contained in coNP. The
following relationship turns out to be helpful for deducing the complexity of verifying mixed
popular partitions from the respective result for popular partitions.

Proposition 3. Let a class of hedonic games be given such that the verification problem of
popular partitions is coNP-hard. Then, the verification problem of mixed popular partitions
is coNP-complete.

Hence, whenever hardness results are obtained for the verification of popularity, they
transfer automatically to mixed popularity. Conversely, polynomial-time algorithms for
mixed popularity can be used to efficiently verify whether a partition is popular.

Popular partitions are not only Pareto optimal, but it also suffices to compare a partition
against Pareto optimal partitions when checking for popularity. This is useful when proving
popularity of a given partition, for example in hardness reductions.

Proposition 4. A partition π is popular if and only if, for all Pareto optimal partitions
π′, φ(π, π′) ≥ 0. In addition, π is strongly popular if and only if, for all Pareto optimal
partitions π′ 6= π, φ(π, π′) > 0.

4.2 Ordinal Hedonic Games

In this section we investigate hedonic games in IRLC representation. Important subclasses
of these games are defined by restricting the size of individually rational coalitions using a
global constant. We thus obtain flatmate games as games in which only coalitions of up to
three agents are individually rational and roommate games as games in which only coalitions
of size 2 are individually rational. More restrictions are obtained by partitioning the set
of agents into two groups, say, into males and females, and even further by additionally
demanding that one group of agents is completely indifferent, say, by assuming that they
are objects such as houses. A marriage game is a roommate game where the agents can be
partitioned in two sets such that the only individually rational partitions are formed with
agents from the other set. A housing game is a marriage game where all agents belonging to
one set of the partition are completely indifferent. All of these classes permit polynomially
bounded IRLC representations and form the following inclusion relationship.5

Housing ( Marriage ( Roommates ( Flatmates ( IRLC.

5Note that the inclusion between housing games and marriage games does not hold for strict preferences.



In roommate games (and their subclasses), partitions are referred to as matchings.
Finally we consider a severe preference restriction in coalition formation in general.

A preference profile admits globally ranked preferences if there exists one common global
ranking % of all coalitions in 2N \ {∅} and each individual preference relation %i is the
restriction of % to Ni.

Under globally ranked preferences, the intractability of computing popular matchings in
roommates games with strict preferences (Gupta et al., 2019; Faenza et al., 2019; Cseh and
Kavitha, 2018) breaks down. In fact, it is known that under these preferences, every room-
mate game admits a stable matching, which can furthermore be efficiently computed (Abra-
ham et al., 2008). Since every stable matching also happens to be popular (see Section 2),
this implies that computing popular matchings in roommates games becomes tractable. By
contrast, all hardness results for flatmate games that will be shown in Section 4.2.2 hold
even when preferences are globally ranked. This confirms the robustness of these results
and underlines the crucial difference between settings with coalitions of size 2 and coalitions
of size 3.

Hedonic games in IRLC representation that also happen to be globally ranked are quite
restricted. In particular, a coalition C needs to be either individually rational for all agents
in C or for none. The global ranking of coalitions can therefore be compactly represented
by omitting all coalitions C that are ranked below any of the singleton coalitions consisting
of one of the members of C. Any such coalition is Pareto dominated and therefore irrelevant
for popularity (Proposition 4).

4.2.1 Roommate Games

We start by investigating mixed popularity in roommate games, which will later have im-
portant consequences for popular and strongly popular matchings.

Kavitha et al. (2011) showed that mixed popular matchings in housing games and mar-
riage games can be found in polynomial time. However, as explained in Section 2, their
algorithm cannot be applied to roommate games. In this section, we show how to obtain
an algorithm for the more general class of roommate games.

To introduce our matching notation, we fix a graph G = (N,E) where the vertex set is
the set of agents and there is an edge between two vertices if the corresponding coalition of
size 2 is individually rational for both agents. For technical reasons, it is useful to restrict
attention to the case of perfect matchings, i.e., matchings in which every vertex is matched
with some vertex. Similarly to the construction by Kavitha et al. (2011), this can be achieved
by introducing worst-case partners wa for every agent a with {a,wa} ∼a {a}. These worst-
case partners are not individually rational for all other original agents, and are indifferent
among all other agents themselves. They mimic the case when an agent remains unmatched
and do not affect the popularity of a partition. In graph-theoretic terms, this is equivalent
to adding a loop to every vertex. If some loop is contained in a perfect matching, this means
that the agent is matched to herself, or in other words, remains unmatched.

We now establish a relationship between mixed matchings and fractional matchings,
where the latter are defined as points in the (perfect) matching polytope PMat ⊆ [0, 1]E ,
defined as follows (Edmonds, 1965).

PMat = {x ∈ RE :
∑

e∈E,v∈e
x(e) = 1 ∀v ∈ N,

∑
e∈{{v,w}∈E : v,w∈C}

x(e) ≤ |C| − 1

2
∀C ⊆ N, |C| odd,

x(e) ≥ 0 ∀e ∈ E}



The main constraint is often called odd set constraint and ensures that, for every odd set
of agents C, the weight of the fractional matching restricted to these agents is at most
(|C| − 1)/2, where this quantity is equal to the maximum cardinality that any matching on
the set C may have.

The key insight is to extend the concept of the popularity margin to fractional matchings.
With this notion, we can refine the matching polytope to obtain the popularity polytope

PPop = {x ∈ PMat : φ(x, χM ) ≥ 0 for all matchings M}.

There, χM denotes the incidence vector corresponding to matching M . The feasible points
of PPop correspond exactly to mixed popular matchings. Solving the separation problem
and showing how to extract a mixed matching, we obtain the next theorem.

Theorem 1. Mixed popular matchings in roommate games with weak preferences can be
found in polynomial time.

The technical details are provided in the appendix. Theorem 1 has a number of inter-
esting consequences. Since every mixed popular matching is Pareto optimal, we now have
an LP-based algorithm to find Pareto optimal matchings for weak preferences as an alter-
native to combinatorial algorithms like the Preference Refinement Algorithm by Aziz et al.
(2013a).

Corollary 1. Pareto optimal matchings in roommate games with weak preferences can be
found in polynomial time.

Biró et al. (2010) provided a sophisticated algorithm for verifying whether a given match-
ing is popular. An efficient LP-based algorithm for this problem follows from Theorem 1.

Corollary 2. It can be verified in polynomial time whether a given matching in a roommate
game is popular.

Finally, the linear programming approach allows us to resolve the open problem of finding
strongly popular matchings when preferences are weak.

Corollary 3. Finding a strongly popular matching or deciding that no such matching exists
in roommate games with weak preferences can be done in polynomial time.

It follows from the proof that the verification problem for strongly popular matchings in
roommate games can also be solved efficiently.

4.2.2 Flatmate Games

It turns out that moving from coalitions of size 2 to size 3 renders all search problems
related to popular partitions intractable. For mixed popular partitions, we can leverage the
relationship to Pareto optimal partitions. Aziz et al. (2013a, Th. 5) have shown that finding
Pareto optimal partitions in flatmate games with weak preferences is NP-hard. Since mixed
popular partitions are guaranteed to exist (Proposition 1) and satisfy Pareto optimality
(Proposition 2), this immediately implies the NP-hardness of computing mixed popular
partitions by means of a Turing reduction.6

Theorem 2. Computing a partition in the support of a mixed popular partition in flatmate
games with weak preferences is NP-hard.

6Using the same argument, one can transfer further results on Pareto optimality (Aziz et al., 2013a),
e.g., for room-roommate games or three-cyclic matching games.



For strict preferences, the same method does not work. Pareto optimal partitions can
always be found efficiently by serial dictatorship. Therefore, we will give direct reductions
that yield hardness under strict preferences. In our approach, we show that the class of
flatmate games under strict preferences is sufficiently rich to contain games satisfying a
certain set of properties. These properties allow to deduce a wide range of hardness results.
The proof strategy is very generic and is key to many hardness reductions for cardinal
hedonic games in Section 4.3.

Consider the NP-complete problem X3C (Karp, 1972). An instance (R,S) of Exact 3-
Cover (X3C) consists of a ground set R together with a set S of 3-element subsets of R. A
‘yes’-instance is an instance such that there exists a subset S′ ⊆ S that partitions R. We say
that a class of games satisfies property R (for reduction) if there exists a polynomial-time
reduction from X3C that constructs for every instance (R,S) a game (N,�) together with
a special agent x ∈ N , and a partition π∗ such that for every partition π 6= π∗, it holds that

1. φ(π∗, π) ≥ 1,

2. if π∗(x) ∩ π(x) = {x}, then φ(π∗, π) ≥ 3 or (R,S) is a ‘yes’-instance,

3. for all y ∈ N , π∗(y) �y {y}, and

4. π∗(x) �x C for all C ∈ Nx \ {π∗(x)}.

In addition, if (R,S) is a ‘yes’-instance, then there exists a partition π′ with

5. φ(π∗, π′) = 1, and

6. π′(x) = {x}.

The first condition guarantees that π∗ is strongly popular and with the second condition,
strong popularity is unaffected when adding one or two auxiliary agents that only have an
effect on x. The third condition is only needed for the proofs concerning fractional hedonic
games with non-negative utility functions, but it also holds for all other classes investigated.
It does ensure that every agent is part of an individually rational coalition, and in fact
prefers her coalition in π∗ over staying alone. The forth condition says that x is in her
unique top-ranked coalition under the partition π∗. The last two properties ensure that we
can obtain a more popular partition by adding auxiliary agents that form a new coalition
with x.

Lemma 1. The class of flatmate games under strict and globally ranked preferences satisfies
property R.

By introducing some auxiliary agents, and possibly using the game in the lemma multiple
times as a gadget, we obtain a wide range of hardness results. Still, a lot of the technical
work is deferred to the appendix.

Theorem 3. Consider the class of flatmate games with strict and globally ranked prefer-
ences. Then, the following statements are true:

• Deciding whether there exists a popular partition is coNP-hard.

• Deciding whether there exists a strongly popular partition is coNP-hard.

• Computing a mixed popular partition is NP-hard.

• Verifying whether a given partition is popular is coNP-complete.

• Verifying whether a given partition is strongly popular is coNP-complete.



An interesting observation concerns the relationship of existence and verification prob-
lems. Our general proof strategy for the coNP-hardness of existence problems is to give an
instance of a game together with a partition that is (strongly) popular if and only if the
constructed game arises from a ‘no’-instance of the NP-hard source problem. If the game
is based on a ‘yes’-instance, there is no (strongly) popular partition. In other words, all
relevant questions on (strong) popularity can be answered with this given partition.

Consequently, we actually prove coNP-hardness for a restriction of the verification prob-
lem that is only allowed to ask for verification of partitions that have to be (strongly)
popular if such a partition exists. Clearly, the hardness of this restricted problem implies
both hardness of the verification and the existence problem. The latter follows from the
simple reduction that maps tuples (G, π) of a game and a partition to the game G. Instead
of giving the reduction for this unifying problem, we prefer not to introduce this restricted
verification problem, and to keep the focus on the problems that we are actually inter-
ested in. However, the same phenomenon will occur again for the proofs regarding cardinal
hedonic games in the next section.

4.3 Cardinal Hedonic Games

Important subclasses of hedonic games that admit succinct representations are based on
cardinal utility functions. For one, there are additively separable hedonic games (Bogomol-
naia and Jackson, 2002), where the utility that an agent associates with a coalition is the
sum of utilities he ascribes to each member of the coalition. On the other hand, there are
fractional hedonic games (Aziz et al., 2019), where the sum of utilities is divided by the
number of agents contained in the coalition.

In the following, let vi(j) denote the utility that agent i associates with agent j. Based
on these utilities and the underlying class of games, we will deduce the utility vi(S) that i
associates with some coalition S ∈ Ni. The preferences of i over two coalitions S, T ∈ Ni
are then given by assuming that S %i T if and only if vi(S) ≥ vi(T ). A hedonic game
(N,%) is an additively separable hedonic game (ASHG) if there is (vi(j))i,j∈N that for every
agent i, the preferences %i are induced by the cardinal utilities given by v(S) =

∑
j∈S vi(j).

The hedonic game (N,%) is a fractional hedonic game (FHG) if there exists (vi(j))i,j∈N
such that for every agent i, the preferences %i are induced by the cardinal utilities given
by v(S) = (

∑
j∈S vi(j))/|S|, for S ⊆ N . We focus on symmetric ASHGs and FHGs,

i.e., games for which vi(j) = vj(i) for all i, j ∈ N and denote the symmetric utilities by
v(i, j) = vi(j) = vj(i).

As the proof strategies are very similar for ASHGs and FHGs, we state theorems always
for both classes, even though we give separate proofs in the appendix. Most of the time,
reductions for FHGs tend to be more complicated versions than the ones for ASHGs, because
utility functions are not additive. On top of that, negative utilities have very different
consequences in ASHGs and FHGs. In ASHGs with non-negative utility functions, the
grand coalition will form under any set of reasonable assumptions because it is the best
possible coalition for all agents. The same is not true for FHGs, which incentivize small
coalitions by having the size of a coalition in the denominator of utility functions. Hence,
in contrast to ASHGs, FHGs are meaningful in the absence of negative utilities and it is
therefore desirable to prove hardness results that even hold for non-negative utilities. All
hardness results in this section are obtained by rather involved reductions from X3C.

In the appendix, we provide examples of ASHGs and FHGs that do not admit popu-
lar partitions, which are used as gadgets for the next two results (cf. Proposition 9 and
Proposition 11).

Theorem 4. Checking whether there exists a popular partition is NP-hard in symmetric
ASHGs and symmetric FHGs with non-negative utilities.



Theorem 5. Checking whether a given partition is popular is coNP-complete in a symmetric
ASHGs and symmetric and bipartite FHGs with non-negative utilities.

The graphs used in the part about FHGs have girth 6. This is in contrast to the
polynomial-time algorithm by Aziz et al. (2019) for computing the core in FHGs with girth
at least 5.

The reductions for coNP-hardness of mixed and strong popularity as well as popularity
rely on the idea of property R which we already employed in Lemma 3. The next lemma
establishes this property and is subsequently applied to prove the next four theorems. Note
that it is not possible to leverage the relationship of mixed popularity and Pareto optimality,
because Pareto optimal partitions can be found in polynomial time for symmetric ASHGs
(Bullinger, 2020).

Lemma 2. The class of symmetric ASHGs and the class of symmetric FHGs with non-
negative utilities satisfy property R.

Theorem 6. Checking whether there exists a strongly popular partition is coNP-hard in
symmetric ASHGs and symmetric FHGs with non-negative utilities.

Theorem 7. Verifying whether a given partition is strongly popular is coNP-complete in
symmetric ASHGs and symmetric FHGs with non-negative utilities.

Theorem 8. Computing a mixed popular partition is NP-hard in symmetric ASHGs and
symmetric FHGs with non-negative utilities.

We even obtain coNP-hardness of the existence of popular partitions which makes it
unlikely that this problem is in NP (otherwise coNP = NP) and, together with Theorem 4,
might be seen as evidence that this problem is even Σp2-complete.

Theorem 9. Checking whether there exists a popular partition is coNP-hard in symmetric
ASHGs and symmetric FHGs with non-negative utilities.

5 Conclusion

We have investigated the computational complexity of finding and recognizing popular,
strongly popular, and mixed popular partitions in various types of ordinal hedonic games
and cardinal hedonic games. Table 1 summarizes our results and gives an overview of the
complexity for computing a respective partition. There, NP-hardness refers to intractability
of the corresponding search problem, which follows directly from NP-hardness or coNP-
hardness of the existence problem via a Turing reduction. Note that both NP-hardness and
coNP-hardness of the existence problem for popularity hold for flatmate game, ASHGs, and
FHGs, where the NP-hardness for flatmate games follows from the hardness for roommate
games. It is open whether these problems are even Σp2-complete. Whenever we obtain
hardness of an existence problem, the corresponding verification problem is coNP-complete.
For mixed popularity, this follows from Proposition 3.

Two important factors that govern the complexity of computing these partitions in
ordinal hedonic games are whether preferences may contain ties and whether coalitions of size
3 are allowed. When preferences are weak, computing mixed popular and strongly popular
partitions is only difficult for representations for which we cannot even compute Pareto
optimal partitions efficiently. For strict preferences, however, Pareto optimal partitions can
be found efficiently while computing popular, mixed popular, and strongly popular partitions



weak preferences strict preferences

PO mPop sPop Pop PO mPop sPop Pop

IRLC in P
Flatmates NP-h.a NP-h. (Th. 2) NP-h. (Th. 10) NP-h. (Th. 11) NP-h. (Th. 10)

Roommates in Pb in P (Th. 1) in P (Cor. 3) in P (Th. 1) in Pd NP-h.g

Marriage NP-h.e in Pf

Housing in Pc in P in Ph in P in Pc

PO PO/IR mPop sPop Pop

symmetric ASHGs in Pj NP-h.j NP-h. (Th. 19) NP-h. (Th. 17) NP-h. (Th. 15, 20)

symmetric FHGs in P (0/1)j NP-h.j NP-h. (Th. 25) NP-h. (Th. 23) NP-h. (Th. 21, 26)

Table 1: Complexity of finding popular and Pareto optimal partitions in various classes of
hedonic games. New results are highlighted in gray and implications are marked by gray
arrows. NP-hardness of computing a popular or strongly popular partition always follows
by a Turing reduction from the existence problem. Pareto optimal partitions in FHGs can
be computed in polynomial time for (0/1)-preferences.
a: Aziz et al. (2013a, Th. 5), b: Aziz et al. (2013a, Th. 7), c: Abraham et al. (2007, Th. 3.9), d:

Biró et al. (2010, Th. 6), e: Biró et al. (2010, Th. 11), Cseh et al. (2015, Th. 2), f : Gärdenfors

(1975, Th. 3), g: Gupta et al. (2019, Th. 1.1), Faenza et al. (2019, Th. 4.6), Cseh and Kavitha

(2018, Th. 2), h: Kavitha et al. (2011, Th. 2); the result by Kavitha et al. holds for marriage games

and weak preferences; these are implied by our Th. 1; j : Bullinger (2020, Th. 5.1, 5.1, 6.2, 6.4)

remains intractable. These results are quite robust and all results for flatmate games hold
even when preferences are globally ranked, while this restriction allows for tractability of
popularity under strict preferences in roommate games. It can be shown that our hardness
results remain intact for tripartite matching (with strict and globally ranked preferences),
where the agents can be partitioned into three groups and individually rational coalitions
may only contain at most one agent of each group. An interesting avenue for future research
is to consider further restrictions such as room-roommate games or three-cyclic matchings.

Our positive results for roommate games are obtained via a single linear programming
approach that unifies a number of existing results and exploits the relationships between
the different types of popularity. On the other hand, both in flatmate games and cardinal
hedonic games, our hardness results are based on the same central idea, formalized as
property R. All of these classes of hedonic games contain games with a strongly popular
partition together with an agent that can govern the switch between strong popularity and
non-popularity by joining different sets of additional auxiliary agents. As a consequence,
results for all types of popularity and for both existence and verification problems can be
extracted from the same reduction.
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A Appendix: Proofs

This appendix contains all omitted proofs.

A.1 Basic Results

We start with the basic results.

Proposition 1. Every hedonic game admits a mixed popular partition.

Proof. Every hedonic game can be viewed as a finite two-player symmetric zero-sum game
where the rows and columns of the two players are indexed by all possible partitions
π1, . . . , πB|N| and the entry at position (i, j) of the game matrix is φ(πi, πj). By the Mini-
max Theorem (von Neumann, 1928), the value of this game is 0 and therefore, any maximin
strategy, whose existence is guaranteed, is popular.

Proposition 2. Let p = {(π1, p1), . . . , (πk, pk)} be a mixed popular partition. Then, for
every i ∈ [k] with pi > 0, πi is Pareto optimal.

Proof. Let p = {(π1, p1), . . . , (πk, pk)} be a mixed popular partition and fix i ∈ [k]
such that pi > 0. Assume for contradiction that π′i is a Pareto improvement over
πi. Define p′ = {(π1, p1), . . . , (πi−1, pi−1), (π′i, pi), (πi+1, pi+1), . . . , (πk, pk)}. Note that

φ(π′i, p) =
∑k
j=1,j 6=i pjφ(π′i, πj) + piφ(π′i, πi) ≥

∑k
j=1,j 6=i pjφ(πi, πj) + piφ(π′i, πi) >∑k

j=1,j 6=i pjφ(πi, πj) + piφ(πi, πi) = φ(πi, p).

Then, φ(p′, p) =
∑k
j=1,j 6=i pjφ(πj , p) + piφ(π′i, p) >

∑k
j=1,j 6=i pjφ(πj , p) + piφ(πi, p) =

φ(p, p) = 0.
Hence, p is not mixed popular, a contradiction.

Proposition 3. Let a class of hedonic games be given such that the verification problem of
popular partitions is coNP-hard. Then, the verification problem of mixed popular partitions
is coNP-complete.

Proof. Let C be a class of hedonic games and let (G, π) be an instance of the deterministic
verification problem, i.e. G ∈ C is a hedonic game and π a partition of the agents of G.
By linearity of π′ 7→ φ(π, π′), π is popular if, and only if, it is mixed popular. Hence, the
embedding of the deterministic into the mixed case gives the desired reduction for coNP-
hardness.

For membership in coNP, we observe that whenever there exists a more popular mixed
coalition, then also a more popular deterministic one that can serve as a polynomial-size
certificate for a ‘no’-instance. Indeed, if p is a mixed partition on a game G and p′ =
{(π′1, p′1), . . . , (π′k, p

′
k)} is more popular, then 0 < φ(p′, p) =

∑k
i=1 p

′
iφ(π′i, p). Consequently,

for some i ∈ [k], φ(π′i, p) > 0.

Proposition 4. A partition π is popular if and only if, for all Pareto optimal partitions
π′, φ(π, π′) ≥ 0. In addition, π is strongly popular if and only if, for all Pareto optimal
partitions π′ 6= π, φ(π, π′) > 0.

Proof. We show that the respective popularity margin with Pareto optimal partition deter-
mine popularity.

This follows from the fact that for every two partitions π, π̂, and a Pareto optimal Pareto
improvement π′ of π̂, it holds that φ(π, π̂) ≥ φ(π, π′). If we investigate strong popularity, it
can happen that π′ = π, but in this case φ(π, π̂) > 0 by Pareto dominance.



A.2 Ordinal Hedonic Games

We split the section into roommate and flatmate games.

A.2.1 Roomate games

We show now how to establish the correspondence between mixed and fractional matchings.
Given a matching M , denote by χM ∈ PMat its incidence vector. We obtain a cor-

respondence of mixed matchings and fractional matchings by mapping a mixed match-
ing p = {(M1, p1), . . . , (Mk, pk)} to the fractional matching xp =

∑k
i=1 piχMi . Note that

xp ∈ PMat by convexity. Since we only want to operate on the more concise matching
polytope, we need to ensure that we can recover a mixed matching efficiently. The follow-
ing proposition, which is based on general LP theory, can be seen as an extension of the
Birkhoff-von Neumann theorem to non-bipartite graphs.

Proposition 5. Let G = (N,E) be a graph and x ∈ PMat a vector in the associated
matching polytope. Then, a mixed matching p = {(M1, p1), . . . , (Mk, pk)} such that xp = x
can be found in polynomial time.

Proof. The separation problem for the matching polytope PMat can be solved in polynomial
time, i.e., the class of matching polytopes is solvable. Therefore, given a graph G = (N,E)
and a vector x ∈ PMat we can find a convex combination of extreme points of PMat that
yield x in polynomial time (Grötschel et al., 1981, Th. 3.9). A combinatorial algorithm to
address this problem was proposed by Padberg and Wolsey (1984).

Since the extreme points of the matching polytope are the incidence vectors of matchings
(Edmonds, 1965), this is a mixed matching whose corresponding fractional matching is x.

To be able to operate on fractional matchings only, we seek to define popularity of frac-
tional matchings equivalently to popularity of mixed matchings that induce them. Popular
fractional matchings can be described as feasible points of a (non-empty) subpolytope of the
matching polytope. The separation problem for the subpolytope can be solved efficiently
using a modification of McCutchen’s (2008) algorithm for determining the unpopularity
margin of a matching.

To this end, we need to define the popularity margin for fractional matchings. Given
x, y ∈ PMat , we define their popularity margin as

φ(x, y) =
∑
a∈N

∑
i,j∈NG(a)

x(a, i)y(a, j)φa(i, j)

where NG(a) = {v ∈ N : {v, a} ∈ E} is the neighborhood of a in G and

φa(i, j) =


1 if i �a j
−1 if i ≺a j
0 if i ∼a j

.

Imagine that the matchings x and y independently match agent a to agent i and j
with probability x(a, i) and y(a, j), respectively. Then, we can interpret the quantity
x(a, i)y(a, j)φa(i, j) as the probability of agent a being matched to i through x and to
j through y times the characteristic function of agent a’s binary preference between these
two matching partners. Then,

∑
i,j∈NG(a) x(a, i)y(a, j)φa(i, j) is the expected preference of

agent a between matchings x and y, and φ(x, y) is the expected popularity margin of the
preferences of all agents.



Next, we relate the popularity margins of both worlds. The proof of the proposition is
identical to the corresponding statement for marriage games by Kavitha et al. (2011). For
the sake of self-containment, we state their proof. Before, we introduce a useful notation
for the next two propositions. Given a matching M and an agent a, denote by M(a) the
agent, a is matched with.

Proposition 6. Let p and q be mixed matchings. Then,

φ(p, q) = φ(xp, xq).

In particular, p is popular if and only if for all matchings M , φ(xp, χM ) ≥ 0.

Proof. Let p and q be two mixed matchings. By extending them with some matchings of
probability 0, we may assume that both are defined on the same set of matchings M1, . . . ,Mk

as p = {(M1, p1), . . . , (Mk, pk)} and q = {(M1, q1), . . . , (Mk, qk)}. We derive that

φ(p, q) =

k∑
s,t=1

psqtφ(Ms,Mt)

=

k∑
s,t=1

psqt
∑
a∈N

φa(Ms(a),Mt(a))

=

k∑
s,t=1

psqt
∑
a∈N

∑
i,j∈NG(a)

χMs(a, i)χMt(a, j)φa(i, j)

=
∑
a∈N

∑
i,j∈NG(a)

(
k∑
s=1

psχMs
(a, i)

)(
k∑
t=1

qtχMt
(a, j)

)
φa(i, j)

=
∑
a∈N

∑
i,j∈NG(a)

xp(a, i)xq(a, i)φa(i, j)

= φ(xp, xq).

This proves the desired equality.

As a consequence, mixed popular matchings correspond precisely to the feasible points
of the polytope

PPop = {x ∈ PMat : φ(x, χM ) ≥ 0 for all matchings M}.

It remains to find a feasible point of the popularity polytope PPop . By adopting the
auxiliary graph in McCutchen’s algorithm for non-bipartite graphs, we can find a matching
M minimizing φ(x, χM ) by solving a maximum weight matching problem. This solves the
separation problem for PPop .

Proposition 7. The separation problem for PPop can be solved in polynomial time.

Proof. Assume that a vector x ∈ RE is given. The separation problem for the match-
ing polytope can be solved in polynomial time. For the popularity constraints, we assign
weights wx to the edges of the underlying graph such that for all matchings M on G,
wx(M) = φ(χM , x). Therefore, their separation problem turns into finding a maximum
weight matching, which can be done in polynomial time.



We define the weights by letting

wx(i, j) =
∑

a∈NG(i)

x(i, a)φi(j, a) +
∑

a∈NG(j)

x(j, a)φj(i, a)

and compute

φ(χM , x) =
∑
a∈N

∑
i,j∈NG(a)

χM (a, i)x(a, j)φa(i, j)

=
∑
a∈N

∑
i,j∈NG(a)

χM (a, i)x(a, j)φa(i, j)

=
∑
a∈N

∑
j∈NG(a),i=M(a)

x(a, j)φa(i, j).

On the other hand,

wx(M) =
∑

{i,j}∈M

 ∑
b∈NG(i)

x(i, b)φi(j, b) +
∑

b∈NG(j)

x(j, b)φj(i, b)


=

∑
{i,j}∈M

 ∑
b∈NG(i),j=M(i)

x(i, b)φi(j, b) +
∑

b∈NG(j),i=M(j)

x(j, b)φj(i, b)


=

∑
a∈N,a matched

∑
j∈NG(a),i=M(a)

x(a, j)φa(i, j)

=
∑
a∈N

∑
j∈NG(a),i=M(a)

x(a, j)φa(i, j)

The last equation is due to the fact that the inner sum is empty for unmatched agents
in M . Putting everything together, we conclude that φ(χM , x) = wx(M), which completes
the proof.

We are now ready to prove the following theorem.

Theorem 1. Mixed popular matchings in roommate games with weak preferences can be
found in polynomial time.

Proof. By Proposition 7 and by means of the Ellipsoid method (Khachiyan, 1979), we can
find a fractional popular matching in polynomial time. This can be translated into a mixed
popular matching by leveraging Proposition 5.

We also provide the proof for its last corollary.

Corollary 3. Finding a strongly popular matching or deciding that no such matching exists
in roommate games with weak preferences can be done in polynomial time.

Proof. If a strongly popular matching exists, it is unique. In particular, it is the unique
mixed popular matching. Given a (deterministic) matching M , we can check in polynomial
time if it is strongly popular. Simply apply the reduction of Proposition 7 and check whether
the maximum weight matching amongst the matchings different to M on the auxiliary graph
has negative weight (in which case the matching is strongly popular) or not. To this end,
we compute a maximum weight matching for every (incomplete) graph that is obtained by



deleting exactly one edge from the auxiliary graph. The maximum weight matching amongst
these matchings has the highest weight amongst matchings different from M .

The algorithm to compute a strongly popular matching if one exists first computes a
fractional popular matching. If it does not correspond to a deterministic matching, there
exists no strongly popular matching. Otherwise, it is deterministic and, as described above,
we can check if it is strongly popular. If this is the case, we return it. If not, there exists
no strongly popular matching.

A.2.2 Flatmate games

Instead of giving a direct proof of Lemma 1, we will proceed in several steps. We will first
describe the flatmate games, then prove a key property towards establishing the first set of
requirements for property R in Lemma 3, and then provide a lemma for global rankedness
of the game. Finally, we provide sevaral reductions that—between the lines—establish the
second part of property R.

To this end, consider an instance (R,S) of X3C. Let k = min{k ∈ N : 2k ≥ |R|} be the
smallest power of 2 that is larger than the cardinality of R. We define a flatmate game on

vertex set N =
⋃k
j=0Nj , where Nj =

⋃2j

i=1A
i
j consists of 2j sets of agents Aij .

We define the sets of agents as

• Aik = {aik, bik, cik} for i ∈ [|R|],

• Aik = {aik, bik, cik, yi1, yi2} for i ∈ [|R|+ 1, 2k], and

• Aij = {aij , bij , cij , αij , βij , γij , δij} for j ∈ [0, k − 1], i ∈ [2j ].

Similar names of agents suggest that these agents are going to play the same role in the
reduction. The preferences are designed in a way such that if there exists no 3-partition of
R through sets in S, then there exists a unique best partition that assigns more than half of
the agents a top-ranked coalition. Otherwise, there exists a partition that puts exactly all
the other agents in one of their top coalitions. We order the set R in an arbitrary but fixed
way, say R = {r1, . . . , r|R|} and for a better understanding of the proof and the preferences,
we label the agents bik = ri for i ∈ [|R|]. If we view the set of agents N as k + 1 levels of
agents, then the ground set R of the instance of X3C is identified with some specific agents
in the top level k. Preferences of the agents are as follows. Recall that X� denotes an
arbitrary, but fixed strict preference order of the alternatives in X. We define

• {yi1, yi2} �yi1 {y
i
1}, i ∈ [|R|+ 1, 2k],

• {bik, yi2} �yi2 {y
i
1, y

i
2} �yi2 {y

i
2}, i ∈ [|R|+ 1, 2k],

• {aik, bik, cik} �aik {a
i
k, a

i+1
k , δ

(i+1)/2
k−1 } �aik {a

i
k}, i ∈ [2k] odd,

• {aik, bik, cik} �aik {a
i
k, a

i−1
k , δ

i/2
k−1} �aik {a

i
k}, i ∈ [2k] even,

• {aij , βij , γij} �aij {a
i
j , b

i
j , c

i
j} �aij {a

i
j}, j ∈ [0, k − 1], i ∈ [2j ],

• {{bik, bvk, bwk } : {ri, rv, rw} ∈ S for some v, w ∈ [|R|]}� �bik {a
i
k, b

i
k, c

i
k} �bik {b

i
k}, i ∈

[|R|],

• {bik, yi2} �bik {a
i
k, b

i
k, c

i
k} �bik {b

i
k}, i ∈ [|R|+ 1, 2k],

• {bij , c
2i−1
j+1 , c

2i
j+1} �bij {a

i
j , b

i
j , c

i
j} �bij {b

i
j}, j ∈ [0, k − 1], i ∈ [2j ],



• {aij , bij , cij} �cij {c
i
j , c

i+1
j , b

(i+1)/2
j−1 } �cij {c

i
j}, j ∈ [k], i ∈ [2j ] odd,

• {aij , bij , cij} �cij {c
i
j , c

i−1
j , b

i/2
j−1} �cij {c

i
j}, j ∈ [k], i ∈ [2j ] even,

• {a10, b10, c10} �c10 {c
1
0},

• {αij , βij} �αij {α
i
j , α

i+1
j , δ

(i+1)/2
j−1 } �αij {α

i
j}, j ∈ [k − 1], i ∈ [2j ] odd,

• {αij , βij} �αij {α
i
j , α

i−1
j , δ

i/2
j−1} �αij {α

i
j}, j ∈ [k − 1], i ∈ [2j ] even,

• {α1
0, β

1
0} �α1

0
{α1

0},

• {βij , γij , aij} �βij {β
i
j , α

i
j} �βij {β

i
j}, j ∈ [0, k − 1], i ∈ [2j ],

• {γij , δij} �γij {β
i
j , γ

i
j , a

i
j} �γij {γ

i
j}, j ∈ [0, k − 1], i ∈ [2j ],

• {δij , α
2i−1
j+1 , α

2i
j+1} �δij {δ

i
j , γ

i
j} �δij {δ

i
j}, j ∈ [0, k − 2], i ∈ [2j ], and

• {δik−1, a
2i−1
k , a2ik } �δik−1

{δik−1, γik−1} �δik−1
{δik−1}, i ∈ [2k−1].

The structure of the flatmate game is illustrated in Figure 1 for the case k = 3. We
will be particularly interested in coalitions of the types {aij , bij , cij}, {αij , βij}, {γij , δij}, and

{yi1, yi2} which are marked by undirected edges. These coalitions form the partition π∗ of
Lemma 3 that we need later to investigate for strong and mixed popularity in the respective
reductions. The directed edges indicate that an agent at the tail of the arrow needs to form
a coalition with the agent at the tip of the arrow in order to improve from her coalition
of the above type. The ground structure of the set of agents can be viewed as a binary
tree of triangles depicted by the circular-shaped vertices. The important property of this
tree is that whenever a coalition of the type {aij , bij , cij} gets dissolved, there can only be an

improvement in popularity for the agents in Aij if they propagate changes in the partition

upwards within this tree. This is achieved for agents bij directly through the binary tree

and for agents aij with help of the auxiliary agents {αij , βij , γij , δij} that are depicted as
diamond-shaped vertices.

Lemma 3. Let an instance (R,S) of X3C be given and define the corresponding flat-
mate game as above. Consider the partition π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪
{{αij , βij}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪ {{yi1, yi2} : i ∈ [|R| + 1, 2k]}. Let π 6= π∗

be an arbitrary partition of agents distinct from π∗. Then φ(π∗, π) ≥ 1. In addition, if
c10 ∈ N(π∗, π), then φ(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗).

Proof. Let an instance (R,S) of X3C be given and define the corresponding flatmate game
as above. Let π∗ be defined as in the lemma and π 6= π∗ another partition. We recursively
define the following sets of agents: for i ∈ [2k], T ik = Aik and for j = k − 1, . . . , 0, i ∈ [2j ],
T ij = Aij ∪ T

2i−1
j+1 ∪ T 2i

j+1. We will prove the following claim by induction over j = k, . . . , 0.

For every i ∈ [2j ] holds: Assume there exists an agent x ∈ T ij with π(x) 6= π∗(x). Then

φT ij (π∗, π) ≥ 1. If even π(aij) 6= π∗(aij), then φT ij (π∗, π) ≥ 3∨{bik : i ∈ [2k]}∩T ij ⊆ N(π, π∗).

Note that the claim implies φT ij (π∗, π) ≥ 0 in any case. Clearly, the assertion of the

lemma follows from the case j = 0.
We frequently use the facts that for all j ∈ [0, k − 1], i ∈ [2j ],

• αij /∈ N(π, π∗) and if βij ∈ N(π, π∗), then αij ∈ N(π∗, π), and



b13

a13 c13

b23

a23 c23

b33

a33 c33

b43

a43 c43

b53

a53 c53

b63

a63 c63

b73

y72

y71

a73 c73

b83

y82

y81

a83 c83

{r1, r3, r4} ∈ S

b12

c12

a12

β1
2
α1
2

γ12

δ12
b22

c22

a22

β2
2
α2
2

γ22

δ22
b32

c32

a32

β3
2
α3
2

γ32

δ32
b42

c42

a42

β4
2
α4
2

γ42

δ42

b11

c11

a11

β1
1
α1
1

γ11

δ11

b21

c21

a21

β2
1
α2
1

γ21

δ21

b10

c10

a10

β1
0

α1
0

γ10

δ10

N3

N2

N1

N0

Figure 1: Schematic of the reduction for flatmate games with strict preferences. There is
an edge between two agents if they are in the coalition π∗ defined in Lemma 3. Directed
edges indicate improvements from π∗. The gray edges suggest a 3-elementary set in S.

• γij /∈ N(π, π∗) and if δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

The case j = k and i ∈ [2k] is immediate (using a similar fact for agents yi1 and yi2 in
the case i ∈ {|R|+ 1, . . . , 2k}).

For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. We will essentially prove
that changing the coalitions in Aij causes severe loss in popularity, unless we propagate

changes to substructures via bij or δij . Assume first that there exists an agent x ∈ T ij with

π(x) 6= π∗(x) but no such agent in Aij . Then, x ∈ T 2i−1
j+1 ∨ x ∈ T 2i

j+1 and the claim follows

by induction. Assume therefore that there exists an agent x ∈ Aij with π(x) 6= π∗(x). Note
that φAij (π, π

∗) ≤ 1.

First consider the case that π(aij) 6= π∗(aij). If bij ∈ N(π, π∗), we can apply induction

for T 2i−1
j+1 and T 2i

j+1 and we are done, because by induction φT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 4∨{bik : i ∈

[2k]} ∩ (T 2i−1
j+1 ∪ T 2i

j+1) ⊆ N(π, π∗). We may therefore assume that bij ∈ N(π∗, π). Then,

φAij (π
∗, π) ≥ 3 or aij ∈ N(π, π∗). In the latter case, φAij (π

∗, π) ≥ 3 unless δij ∈ N(π, π∗).

Finally, if δij ∈ N(π, π∗), then the claim follows by induction for T 2i−1
j+1 and T 2i

j+1, because
φT ij (π∗, π) = φAij (π

∗, π) + φT 2i−1
j+1

(π∗, π) + φT 2i
j+1

(π∗, π) ≥ 1 + 1 + 1 = 3.

It remains the case that π(x) 6= π∗(x) for x ∈ {αij , γij} while π(aij) = π∗(aij). If π(αij) 6=
π∗(αij), then φAij (π, π

∗) ≥ 2. If π(γij) 6= π∗(γij), then φAij (π, π
∗) ≥ 2 or φAij (π, π

∗) ≥
0 ∧ π(δij) = {δij , α

2i−1
j+1 , α

2i
j+1} and the claim follows by induction.

In the next lemma, we prove that the preferences used in the construction are even
globally ranked.



When defining global rankings we will often connect rankings over subsets of coalitions
with each other. To simplify the exposition, we introduce the notion of the join of two pref-
erence relations �1 and �2 over two disjoint sets C1 and C2, respectively, as the preference
relation join(�1,�2) = �1 ∪ �2 ∪ C1 × C2 over the set C1 ∪ C2. In other words, two sets
X,Y ∈ C1, C2 are in relation join(�1,�2) if X,Y ∈ Ci and X �i Y for some i ∈ [2], or if
X ∈ C1 and Y ∈ C2. We extend this definition recursively to the join of relations �1, . . . ,�k
over pairwise disjoint sets C1, . . . , Ck as join(C1, . . . , Ck) = join(join(C1, . . . , Ck−1), Ck) for
k ≥ 3. Note that the join operation is not commutative.

Lemma 4. Let an instance (R,S) of X3C be given and define the corresponding flatmate
game as above. Then, the preferences are globally ranked.

Proof. The global preferences are composed of preferences �0, . . . ,�k over the sets of coali-
tions C0, . . . , Ck, where Cj is essentially the set of coalitions that is individually rational for

some agent in Aij for some i ∈ [2j ]. More formally, Ck =
⋃2k

i=1{C ⊆ N : ∃v ∈ Aik : C �v {v}}
and, for j = k − 1, . . . , 0, Cj =

⋃2j

i=1{C ⊆ N : ∃v ∈ Aij : C �v {v}} \ Cj+1. Note that this
separates coalitions by level, and Cj ∩ Cj′ = ∅ for j 6= j′. In particular, coalitions of the
types {δij , α

2i−1
j+1 , α

2i
j+1}, {δik−1, a

2i−1
k , a2ik }, and {bij , c

2i−1
j+1 , c

2i
j+1} that involve agents of two

levels are added to the coalitions of the higher level. The global ranking is given in succinct
form over

⋃k
j=0 Cj as join(�0, . . . ,�k). It can be extended to a full global ranking by

adding coalitions that are not individually rational for one of its members at the bottom.
It remains to specify these subrankings. The preferences over sets of coalitions can always
be arbitrary. The ranking �k is given as

{{yi1, yi2} : i ∈ [|R|+ 1, 2k]}�

�k{{bik, yi2} : i ∈ [|R|+ 1, 2k]}�

�k{{yi1}, {yi2} : i ∈ [|R|+ 1, 2k]}�

�k{{bik, bvk, bwk } : {ri, rv, rw} ∈ S for some v, w ∈ [|R|]}�

�k{{bik} : i ∈ [2k]}�

�k{{aik, bik, cik} : i ∈ [2k]}�

�k{{bik−1, c2i−1k , c2ik }, {δik−1, a2i−1k , a2ik } : i ∈ [2k−1]}�

�k{{aik}, {cik} : i ∈ [2k]}�

For j ∈ [k − 1], the ranking �j is given as

{{γij , δij} : i ∈ [2j ]}�

�j{{aij , βij , γij} : i ∈ [2j ]}�

�j{{aij , bij , cij}, {αij , βij} : i ∈ [2j ]}�

�j{{bij−1, c2i−1j , c2ij }, {δij−1, α2i−1
j , α2i

j } : i ∈ [2j−1]}�

�j{{aij}, {bij}, {cij}, {αij}, {βij}, {γij}, {δij} : i ∈ [2j ]}�

Finally, �0 is given as

{γ10 , δ10} �0 {a10, β1
0 , γ

1
0} �0 {{a10, b10, c10}, {α1

0, β
1
0}}�

�0{{a10}, {b10}, {c10}, {α1
0}, {β1

0}, {γ10}, {δ10}}�

The individual preferences are clearly induced by the global ranking.



In order to prove Theorem 3, we prove each statement individually. We start with
the existence of strongly popular partitions and computation of mixed popular partitions,
because they only need one copy of the auxiliary graph obtained through instances of X3C.
The reduction for popularity relies on a certain instance of a flatmate game without popular
partition that is introduced in Proposition 8. Several agents in this instance are now replaced
by the generic gadget.

For an overview, we split the proof into the following individual statments:

• Theorem 10: Existence of strongly popular partitions,

• Theorem 11: Computation of mixed popular partitions,

• Theorem 12: Existence of popular partitions,

• Theorem 13: Verification of popular partitions, and

• Theorem 14: Verification of strongly popular partitions.

We are now ready to apply the two lemmas for the desired reductions.

Theorem 10. Deciding whether there exists a strongly popular partition in flatmate games
is coNP-hard, even if preferences are strict and globally ranked.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we define a hedonic
game on agent set N ′ = N ∪ {z} where the agents N are as in the above construction with
the identical preferences except changing the preferences of c10 to {a10, b10, c10} �c10 {c

1
0, z} �c10

{c10}, and {c10, z} �z {z}. In particular, for every agent in N \{c10}, partitions together with

z are not individually rational. Note that |N ′| = 3
∑k
j=0 2j+4

∑k−1
j=0 2j+2(2k−|R|−1)+1 =

12 · 2k − 2 · |R| − 8 = O(|R|) and the reduction is in polynomial time.
Consider the partition σ∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αij , βij}, {γij , δij} : j ∈

[0, k−1], i ∈ [2j ]}∪{{yi1, yi2} : i ∈ [|R|+1, 2k]}∪{{z}} = π∗∪{{z}} for the partition π∗ from
Lemma 3. Let σ 6= σ∗ be given and define π = (σ \ σ(z)) ∪ {σ(z) \ {z}}, i.e. the partition
on the agent set N , where z left her coalition. Note that due to the preferences of agents
in N , φ(π∗, π) ≤ φN (σ∗, σ). We investigate the popularity margin of σ∗ and σ by a case
distinction over the possible coalitions for agent z using the knowledge of Lemma 3 about
the relationship of the partitions π∗ and π. If σ(z) = {z}, then φ(σ∗, σ) = φ(π∗, π) ≥ 1.
If σ(z) = {x, z}, then φ(σ∗, σ) ≥ −1 + φ(π∗, π) ≥ −1 + 1 ≥ 0. Otherwise, φ(σ∗, σ) =
1 + φ(π∗, π) ≥ 1. It follows directly that σ∗ is popular and hence there exists a strongly
popular partition if and only if σ∗ is strongly popular. We will prove that this is the case if
and only if the instance of X3C is a ‘no’-instance.

Assume that there exists no 3-partition of R through sets in S. The only case above,
where the popularity margin is not strictly positive, is if σ(z) = {z, x}, but in this case
π(x) = {x} and it follows that φ(σ∗, σ) ≥ −1+φ(π∗, π) ≥ −1+3 ≥ 2. Hence, σ∗ is strongly
popular.

Conversely, assume that there exists a 3-partition S′ ⊆ S of R. Define

σ′ ={{bvk, bwk , bxk} : {v, w, x} ∈ S′} ∪ {{bik, yi2}, {yi1} : i ∈ [|R|+ 1, 2k]}
∪ {{δik−1, a2i−1k , a2ik } : i ∈ [2k−1]} ∪ {{bij , c2i−1j+1 , c

2i
j+1}, {aij , βij , γij} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α

2i
j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1

0}, {z, c10}}.

It is easily checked that φ(σ′, σ∗) = 0.
Indeed, N(σ′, σ∗) = {bik : i ∈ [2k]} ∪ {βij , δij , aij : j ∈ [0, k − 1], i ∈ [2j ]} ∪ {yi2 : i ∈

[|R|+1, 2k]}∪{z}. Therefore, |N(σ′, σ∗)| = 2k+4
∑k−1
j=1 2j+2k−(|R|+1)+1 = 6·2k−|R|−4 =



1
2 |N

′|. Hence, φ(σ′, σ∗) ≥ 0 and equality follows from popularity of σ∗. Therefore, there
exists no strongly popular partition.

A similar reduction as in Theorem 10 works also for mixed popularity. However, we
need two auxiliary agents to control the switch between a strongly popular and non-popular
partition.

Theorem 11. Computing a mixed popular partition in flatmate games is NP-hard, even if
preferences are strict and globally ranked.

Proof. We provide a Turing reduction from X3C to the problem of finding a partition in the
support of a mixed popular partition together with its probability in this mixed partition.

Given an instance X3C, we construct a very similar game as in the proof of Theorem 10.
We have N ′ = N ∪ {z1, z2} where the agents N are as in the above construction with
identical preferences, except for changing the preferences of agent c10 to {a10, b10, c10} �c10
{c10, z1, z2} �c10 {c

1
0}, and {c10, z1, z2} �zi {zi} for i ∈ [2]. By a case distinction similar to

the one in the proof of Theorem 10 and using Lemma 3, it follows that the partition π∗ =
{{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αij , βij}, {γij , δij} : j ∈ [0, k], i ∈ [2j ] odd} ∪ {{yi1, yi2} : i ∈
[|R| + 1, 2k]} ∪ {{z1}, {z2}} is strongly popular if there exists no 3-partition of R through
sets in S. Therefore the unique mixed popular partition assigns probability 1 to π∗.

On the other hand, assume that there exist a 3-partition S′ ⊆ S of R. Define π =
{{bvk, bwk , bxk} : {v, w, x} ∈ S′} ∪ {{bik, yi2}, {yi1} : i ∈ [|R| + 1, 2k]} ∪ {{δik−1, a

2i−1
k , a2ik } : i ∈

[2k−1]} ∪ {{bij , c
2i−1
j+1 , c

2i
j+1}, {aij , βij , γij} : j ∈ [k − 1], i ∈ [2j ]} ∪ {{δij , α

2i−1
j+1 , α

2i
j+1} : j ∈ [k −

2], i ∈ [2j ]} ∪ {{α1
0}, {z1, z2, c10}}. It is easily checked that φ(π, π∗) = 1. Therefore, there

exists no mixed popular partition that assigns probability 1 to π∗.
We can solve X3C by computing a partition π in the support of a mixed popular partition

and checking its probability in case π = π∗.

Popular partitions are guaranteed to exist in roommate games with strict and globally
ranked preferences (Abraham et al., 2008). We show by means of a counterexample that
this is no longer the case when moving from roommate to flatmate games. This example
game will serve as a crucial gadget to prove the hardness of computing popular partitions.

Proposition 8. There exists a flatmate game with strict and globally ranked preferences
which does not admit a popular partition.

Proof. Consider N = {x1, x2, x3} ∪ {zj1, z
j
2 : j ∈ [4]}, and preferences induced by the global

ranking � given by {{x1, zj1, z
j
2} : j ∈ [4]}� � {{x2, zj1, z

j
2} : j ∈ [4]}� � {{x3, zj1, z

j
2} : j ∈

[4]}� � {{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]}�. We claim that there exists no popular
partition. By Proposition 2, we only need to consider Pareto optimal partitions. Let π
be any Pareto optimal partition. Then π is individually rational. We will show how to
obtain a more popular partition. By the pigeon hole principle, there exists j ∈ [4] with
{zj1}, {z

j
2} ∈ π. If there exists i ∈ [3] with {xi} ∈ π, then creating the coalition {xi, zj1, z

j
2}

is more popular.
Otherwise, we may assume that for some {j1, j2, j3} ⊆ [4], π(xi) = {xi, zji1 , z

ji
2 }, for

i ∈ [3]. Let j4 ∈ [4] \ {j1, j2, j3} be the remaining index. We obtain a new partition π′ by

forming π′(xi) = {xi, zji+1

1 , z
ji+1

2 }, leaving zj11 and zj12 in singleton coalitions.

Then, N(π′, π) ⊇ {zji1 , z
ji
2 : i ∈ [2, 4]} while N(π, π′) ⊆ {x1, x2, x3, zj11 , z

j1
2 }. Hence,

φ(π′, π) ≥ 1.

The idea is to replace the agents xi of this example by the gadget of Lemma 3 to obtain
a hardness result.



Theorem 12. Deciding whether there exists a popular partition in flatmate games with
strict and globally ranked preferences is coNP-hard.

Proof. Given an instance (R,S) of X3C, we construct the flatmate game (N,�) with strict
and globally ranked preferences as follows. We take 3 copies (Ni,�i) of the game of
Lemma 3, where �i are the strict and globally ranked preferences of Lemma 4. Denote
the special partition and agent of the lemma by π∗i and xi = c10i, respectively. Also, de-
note the set of coalitions ranked by �i with C ′i and define Ci = C ′i \ {{xi}}. We set

N = N1 ∪ N2 ∪ N3 ∪ {zj1, z
j
2 : j ∈ [4]}. To define global preferences, we define preferences

over C4 = {{xi, zj1, z
j
2} : i ∈ [3], j ∈ [4]} ∪ {{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]}.

{{x1, zj1, z
j
2} : j ∈ [4]}�

�4{{x2, zj1, z
j
2} : j ∈ [4]}�

�4{{x3, zj1, z
j
2} : j ∈ [4]}�

�4({{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]})�

The global ranking is given over
⋃4
j=1 Cj as � = join(�1,�2,�3,�4) in succinct form.

We claim that there exists a popular partition if and only if (R,S) is a ‘no’-instance of
X3C.

If (R,S) is a ‘no’-instance, consider π∗ =
⋃3
i=1 π

∗
i ∪ {{z

j
k} : k ∈ [2], j ∈ [4]}. Let π be

any other partition. Let I = {i ∈ [3] : π∗(xi) 6= π(xi) and define N ′ = N1 ∪ N2 ∪ N3 and
Z = {zj1, z

j
2 : j ∈ [4]}. We have φN ′(π

∗, π) ≥ 3|I| (due to Lemma 3) while φZ(π, π∗) ≤ 2|I|.
Hence, π∗ is more popular than π if |I| ≥ 1. In the case |I| = 0, it holds φN ′(π, π

∗) ≤ 0
while φZ(π, π∗) ≤ 0 and as π 6= π∗, one of the inequalities must be strict.

Now assume that (R,S) is a ‘yes’-instance of X3C and assume for contradiction that
π is popular (and hence Pareto optimal). Then, for i ∈ [3], i ∈ I. Indeed, if i /∈ I, then
π restricted to Ni must be π∗i (otherwise, π∗i is more popular). There exists j ∈ [4] with

π(zj1) 6= {x1, zj1, z
j
2} and by Pareto optimality {zj1}, {z

j
2} ∈ π. We obtain a more popular

partition π′ by replacing the coalitions of Ni ∪ {zj1, z
j
2} by the partition of the proof of

Theorem 11 for the subgame (Ni,�i).
It remains the case that I = [3]. We may assume that for some {j1, j2, j3} ⊆ [4], π(xi) =

{xi, zji1 , z
ji
2 }, for i ∈ [3]. Let j4 ∈ [4] \ {j1, j2, j3} be the remaining index. We obtain a new

partition π′ by removing zj41 , z
j4
2 from their coalitions and forming π′(xi) = {xi, zji+1

1 , z
ji+1

2 },
leaving zj11 and zj12 in singleton coalitions.

Then, N(π′, π) ⊇ {zji1 , z
ji
2 : i ∈ [2, 4]} while N(π, π′) ⊆ {x1, x2, x3, zj11 , z

j1
2 }. Hence,

φ(π′, π) ≥ 1, a contradiction.

To conclude the section, we deal with the problem of verifying whether a given partition
is popular or strongly popular. The respective results follow directly from the constructions
of the hardness of existence.

Theorem 13. Verifying whether a given partition in a flatmate game with strict and globally
ranked preferences is popular is coNP-complete.

Proof. In the proof of Theorem 12, the partition π∗ is popular if and only if (R,S) is a
‘no’-instance of X3C.

Theorem 14. Verifying whether a given partition in a flatmate game is strongly popular is
coNP-complete, even if preferences are strict and globally ranked.

Proof. In the proof of Theorem 10, the partition π∗ is strongly popular if and only if (R,S)
is a ‘no’-instance of X3C.



A.3 Cardinal hedonic games

In this section, we provide the missing proofs about our cardinal classes of hedonic games.
We split the section into a part about additively separable and fractional hedonic games.
The theorems of Section 4.3 are split into two respective theorems as listed in Table 2.

Problem Theorem Body Theorem ASHG Theorem FHG

Existence PO (NP) Theorem 4 Theorem 15 Theorem 21
Existence PO (coNP) Theorem 9 Theorem 20 Theorem 26
Verification PO Theorem 5 Theorem 16 Theorem 22
Auxiliary property R Lemma 2 Lemma 5 Lemma 6
Existence sPOP Theorem 6 Theorem 17 Theorem 23
Verification sPOP Theorem 7 Theorem 18 Theorem 24
Computation mPOP Theorem 8 Theorem 19 Theorem 25

Table 2: Overview of the theorems on cardinal classes of hedonic games. The theorems from
the body of the paper are each split into to separate theorems as indicated by the table.

A.3.1 Additively separable hedonic games

We start by having a look at an example of an ASHG that contains no popular partition
and that will be used as a gadget in the hardness construction. There are smaller ASHGs
without a popular partition, but the instance of the proposition satisfies further properties
required for the reduction of Theorem 15 to work. All games considered in this section only
contain a single negative weight, whose absolute value is large enough to ensure that certain
coalitions will not form.

Proposition 9. Let 0 < ε < 1 and K ≥ 4. Consider the following ASHG, depicted in
Figure 2 with agent set N = {a1, a2, a3, b1, b2, b3, c1, c2} and utilities given by v(ai, c1) =
2, v(ai, c2) = 1, v(ai, bi) = ε, v(bi, c2) = 0 for all i ∈ [3] and v(x, y) = −K for all other
values not defined, yet. Then, there exists no popular partition.

a1 a2 a3

b1 b2

b3

c1 c2

ε

2 1

0

ε

2 1

0

ε
2 1

0

Figure 2: Instance of an additively separable hedonic game with no popular partition.
Omitted edges have weight −K.

Proof. Assume for contradiction that π was a popular partition. Then the following facts
hold:



• ai /∈ π(aj), i 6= j,

• ai /∈ π(bj), i 6= j,

• bi /∈ π(bj), i 6= j, and

• c1 /∈ π(c2), c1 /∈ π(bj).

In all of these cases, dissolving the coalition in question would be more popular, because all
but possibly one agent in the coalition have negative utility and an agent with non-negative
utility can only be contained in the coalition if it contains at least 3 agents. Note that K
is larger than the sum of positive weights incident to any agent and therefore its utility is
negative once it is in a coalition with an agent that gives negative utility.

Now, for every j, exactly one of the following holds: c1 ∈ π(aj) or bj ∈ π(aj). In fact,
both cannot hold as excluded above. If none holds, then π(aj) ⊆ {aj , c2} and we could
delete b2 from its coalition (making no agent worse) and add it to π(aj), resulting in a more
popular partition.

Next, for i ∈ [2], there exists j with ci ∈ π(aj). Otherwise, there existed k with
π(ak) ⊆ {ak, bk} and removing bk and adding ci is more popular.

Thus, up to symmetry, the only possibility is π = {{a1, c1}, {b1}, {a2, c2, b2}, {a3, b3}}.
But then {{a2, c1}, {b2}, {a3, c2, b3}, {a1, b1}} is more popular. Hence, π was not popular.

We now discuss the proof strategy for showing that computing popular partitions in
symmetric ASHGs is NP-hard.

For a reduction from X3C, given an instance (R,S), we have R-gadgets for every element
of the ground set R and S-gadgets for every 3-elementary set in S. The gadgets for elements
of R rely on the ASHG of Proposition 9. The gadget for a set s ∈ S consists of three agents
that are very happy in a coalition of their own, but one of them is linked to the R-gadgets
corresponding to the agents in s and can simultaneously prevent the agents in these R-
gadgets from voting down a partition. This is of course at the expense of the happiness of
agents in the S-gadgets and can only happen if all three R-gadgets are simultaneously dealt
with. This is where we achieve the correspondence of the covering with 3-partitions, which
we can read off from the coalitions of the agents in S-gadgets.

Theorem 15. Checking whether there exists a popular partition in a symmetric ASHG is
NP-hard.

Proof. The reduction is from X3C to deciding whether there exists a popular partition.
Let (R,S) be an instance of X3C. This can be reduced to an instance (N,%), where

(N,%) is an ASHG defined in the following way.
Let N = {ar1, ar2, ar3, br1, br2, br3, cr1, cr2 : r ∈ R} ∪ {ys, zs1, zs2 : s ∈ S} and edge weights as

• v(ari , c
r
1) = 2 and v(ari , c

r
2) = 1, v(ari , b

r
i ) = ε, v(bri , c

r
2) = 0 for all i ∈ [3] and r ∈ R,

• v(ar3, a
r′

3 ) = 0, v(br3, a
r′

3 ) = 0, v(br3, b
r′

3 ) = 0 for all s ∈ S and r, r′ ∈ s,

• v(ar3, y
s) = 5 and v(br3, y

s) = 0 for all s ∈ S and r ∈ R such that r ∈ s,

• v(ys, zs1) = v(ys, zs2) = 10 and v(zs1, z
s
2) = 0 for all s ∈ S, and

• v(x, y) = −40 for all other valuations not defined.



ai3

aj3

ak3

ys

5
5

5

V i
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10 10s = {i, j, k}

Figure 3: Schematic of the reduction of the existence problem for ASHGs. Edges of weight
0 and of negative weight are omitted.

In order to enable the reduction, we can, for example, choose ε = 1
2 .

A schematic of the reduction for a certain set s = {i, j, k} ∈ S is depicted in Figure 3.
We abbreviate in the figure and the rest of the proof V r = {ar1, ar2, ar3, br1, br2, br3, cr1, cr2}, where
r ∈ R, and W s = {ys, zs1, zs2}, where s ∈ S. Also denote V R = ∪r∈RV r,WS = ∪s∈SW s and
A3 = {ar3 : r ∈ R}.

We show that there exists a popular partition of (N,%) if and only if (R,S) is a ‘yes’
instance of X3C.

Assume (R,S) is a ‘yes’ instance of X3C. Then, there exists S′ ⊆ S such that S′ is a par-
tition of R. The following partition π is then popular: {{ar1, cr1} : r ∈ R} ∪ {{ar2, br2, cr2} : r ∈
R} ∪ {{ys, ai3, a

j
3, a

k
3 , b

i
3, b

j
3, b

k
3} : s = {i, j, k} ∈ S′} ∪ {W s : s ∈ N \ S′} ∪ {{zs1, zs2} : s ∈ S′}.

Assume for contradiction that π′ is more popular than π.
We first prove the following two claims:

1. Let r ∈ R such that for all s ∈ S with r ∈ s holds that ys /∈ π′(ar3). Then, |N(π, π′)∩
V r| − |N(π′, π) ∩ V r| ≥ 1.

2. Let r ∈ R. If |{ys : s ∈ S} ∩ π′(ar3)| ≤ 1 then, |N(π, π′)∩ V r| − |N(π′, π)∩ V r| ≥ 0. If
|{ys : s ∈ S} ∩ π′(ar3)| ≥ 2 then, |N(π, π′) ∩ V r| − |N(π′, π) ∩ V r| ≥ −1.

We start with the proof of the first claim.
Let therefore r ∈ R such that for all s ∈ S with r ∈ s holds that ys /∈ π′(ar3). Since r ∈ R

is fixed, we omit the superscript r for proving this claim. We know that a3 ∈ N(π, π′) and
b2, b3 /∈ N(π′, π) We distinguish several cases:

• First, consider the case that c1 ∈ π′(a1). Then, b1, a2 /∈ N(π′, π). In addition, we may
assume a1 /∈ N(π′, π), because otherwise c1, c2 ∈ N(π, π′) and the claim is true.

If ci ∈ N(π′, π), then c3−i /∈ N(π′, π) and either (a1 ∈ N(π, π′)∨a2 ∈ N(π, π′))∧ b3 ∈
N(π, π′) or a1, a2 ∈ N(π, π′). In every case, |N(π′, π)| ≤ 2 and |N(π, π′)| ≥ 3 and the
claim follows.

Hence, we may assume that ci /∈ N(π′, π) and no agent can be in N(π′, π). In this
case, the claim follows.



• Second, assume c1 ∈ π′(a2). Then, a1, b2 ∈ N(π, π′). If a2 /∈ N(π′, π), then it has a
negative neighbor, i.e., a2 ∈ N(π, π′). We have |N(π, π′)| ≥ 4, |N(π′, π)| ≤ 3.

Hence, a2 ∈ N(π′, π). As a consequence, c1 /∈ N(π′, π) and c2 /∈ N(π′, π) ∨ b1 /∈
N(π′, π) and we conclude with |N(π, π′)| ≥ 3, |N(π′, π)| ≤ 2.

• Third, assume c1 ∈ π′(a3). Then, a1, b3 ∈ N(π, π′). If c2 ∈ π′(a3), then c1, c2, a2 ∈
N(π, π′) and we conclude with |N(π, π′)| ≥ 6. If c2 /∈ π′(a3), then {a1, a3, b3} ⊆
N(π, π′) and a2, b2 /∈ N(π′, π) and either b2 ∈ N(π, π′) or c2 /∈ N(π′, π).

• Finally, assume c1 /∈ π′(a1)∪π′(a2)∪π′(a3). Then a1, c1 ∈ N(π, π′) and a2 /∈ N(π′, π)∨
c2 /∈ N(π′, π). Hence, |N(π, π′)| ≥ 3, |N(π′, π)| ≤ 2. This concludes the proof of the
first claim.

Before we prove the second claim, we argue that we can assume without loss of generality
that for all r ∈ R, π′(ar3)∩V r ⊆ {ar3, br3}∨{ys : s ∈ S}∩π′(ar3) = ∅. Indeed, if both conditions
are not met, then leaving with ys ∈ {ys : s ∈ S} ∩ π′(ar3) and forming a coalition with W s

yields a partition π′′ with the following properties:

• |N(π′′, π) ∩ (N \W s)| ≥ |N(π′, π) ∩ (N \W s)| − 1 (Note that the only agent that is
not still better off is possibly ar3 since the other ar

′

3 are worse off since they would get
negative utility in π′(ar3).),

• |N(π, π′′) ∩ (N \W s)| ≥ |N(π, π′) ∩ (N \W s)|+ 1 (the only candidate is again ar3),

• |N(π′′, π) ∩W s| ≥ |N(π′, π) ∩W s|+ 3 if π(ys) 6= W s, and

• |N(π, π′′) ∩W s| ≥ |N(π, π′) ∩W s| − 3 if π(ys) = W s.

Other changes in W s cannot occur at the same time and we conclude φ(π′′, π) ≥ φ(π′, π)
(in fact the inequality is strict).

For the second claim, this means that if some ys ∈ π′(ar3) we can consider π′ modified
such that ys leaves its coalition. This can only decrease the size of N(π′, π)∩V r if |{ys : s ∈
S} ∩ π′(ar3)| ≥ 2 and cannot increase the size of N(π, π′) ∩ V r by more than 1. Hence, the
claim follows from the first case.

We define the set of critical subsets s ∈ S as Y c = {s ∈ S : ∃r ∈ R with ys ∈ π′(ar3)}
and the set of happy R gadgets as Rh = {r ∈ R : |{ys : s ∈ S} ∩ π′(ar3)| ≥ 2}.

We know that for every ys ∈ Y c at most 3 of the ar3 do not satisfy the condition of the
first claim. Hence, a total of max{|R| − 3|Y c| + |Rh|, 0} of the agents ar3 does so. Putting
together the claims yields

|N(π, π′) ∩ V R| − |N(π′, π) ∩ V R|
≥ max{|R| − 3|Y c|+ |Rh|, 0} − |Rh| ≥ |R| − 3|Y c|.

(1)

We claim that in addition

|N(π′, π) ∩WS | − |N(π, π′) ∩WS | ≤ |R| − 3|Y c|. (2)

The idea to prove this inequality is that every agent ys has to decide whether the agents
in W s or the ar3 with r ∈ s should be happy. Without loss of generality, we can assume
that for all s ∈ S, π(ys) ∩ A3 = ∅ or π(ys) ∩W s = {ys}. Indeed, if both conditions are
not met, then leaving with ys and forming a coalition with W s yields a partition π′′ with
φ(π′′, π) ≥ φ(π′, π).

To prove Equation (2) note that W s ⊆ N(π, π′) ∩ WS for every s ∈ Y c such that
π(ys) = W s. In other words, |N(π, π′) ∩WS | ≥ 3|{s ∈ Y c : π(ys) = W s}|.



In addition, the only agents that get better in WS can be in a W s such that π(ys) 6= W s

and ys /∈ Y c. This is, |N(π′, π) ∩WS | ≤ 3|{s /∈ Y c : π(ys) 6= W s}|.
Combining the inequalities yields

|N(π′, π) ∩WS | − |N(π, π′) ∩WS |
≤ 3(|{s /∈ Y c : π(ys) 6= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3(|{s /∈ Y c : π(ys) 6= W s}|+ |{s ∈ Y c : π(ys) 6= W s}|
− |{s ∈ Y c : π(ys) 6= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3|S′| − 3|Y c| = |R| − 3|Y c|.

Combining Equation (1) and Equation (2) yields |N(π, π′)| − |N(π′, π)| ≥ 0, contradict-
ing the assumption that π′ was more popular than π.

It remains to prove that every popular partition yields a 3-partition of R with sets in S.
Therefore, assume that π is a popular partition in (N,%). The partition will be found by
checking intersections of π(ys) ∩A3 as captured in the following claims:

1. For all r ∈ R there exists a unique s ∈ S with ys ∈ π(ar3). For this s holds that r ∈ s.

2. For all s ∈ S holds: (∃i ∈ s : ai3 ∈ π(ys))⇒ (∀j ∈ s, aj3 ∈ π(ys)).

If the claim is true, S′ = {s ∈ S : A3 ∩ π(ys) 6= ∅} covers R due to existence and is a
partition due to uniqueness and the second claim that ensures that either all three or none
of the agents in A3 corresponding to elements in s are present in a coalition π(ys).

We start to show the existence part of the first claim which will follow directly from the
property that N |V r contains no popular partition (Proposition 9).

Assume for contradiction that there exists a r ∈ R such that for all s ∈ S holds ys /∈
π(ar3). We obtain a more popular partition in two steps. First, we modify π such that for all
agents in v ∈ V r we split their coalition into π(v)∩V r and V r \π(v). This cannot decrease
the utility of any agent. Application of Proposition 9 yields a more popular partition locally
on V r that can be extended to the whole N via the remaining (modified) coalitions in π.

For the uniqueness part assume for contradiction that there is r ∈ R and s 6= s′ ∈ S
with {ys, ys′} ⊆ π(ar3). We distinguish two cases.

First, assume that |π(ar3) ∩A3| ≤ 3. Then, there exists (without loss of generality using
symmetry amongst s and s′) an agent r′ ∈ R with r′ ∈ s and ar

′

3 /∈ π(ar3). Then, the partition
π′ obtained from π by removing the agents in W s from their partitions in π and letting them
form a coalition is more popular. Indeed, |N(π, π′)| ≤ 2 (the two remaining agents at3 with
t 6= r′ and t ∈ s are the only ones to possibly loose utility) and W s ⊆ N(π′, π).

Second, assume that |π(ar3) ∩ A3| ≥ 4. Then, there exists an agent u ∈ A3 ∩ π(ar3) with
u /∈ s. The same partition π′ as in the first case yields |N(π, π′)| ≤ 3 and |N(π′, π)| ≥
|W s ∪ {u}| = 4.

In both cases, we have found a more popular partition, a contradiction.
Finally, for the second claim, in the case that there exists a s ∈ S with 1 ≤ |{j ∈ s :

aj3 ∈ π(ys)}| ≤ 2, the same rearrangement of coalitions (i.e., forming the coalition W s) is
more popular.

The verification problem for ASHGs turns out to be coNP-complete. The proof of
Theorem 16 is simpler than Aziz et al.’s (2013b) proof of a weaker statement for ASHGs
that do not have to be symmetric.

Theorem 16. Checking whether a given partition in a symmetric ASHG is popular is
coNP-complete.



Proof. The problem is in coNP, because a more popular partition serves as a polynomial-
time certificate for a ‘no’-instance.

For hardness, we reduce again from X3C. Given an instance (R,S) of X3C, we assume
without loss of generality that |R| ≥ 6. We define an ASHG (N,%) given by N = R ∪
{s1, s2, s3 : s ∈ S} ∪ {b1, b2, b3} and weights as

• v(i, s3) = 1 for i ∈ s, s ∈ S,

• v(s1, s3) = v(s2, s3) = 4 for s ∈ S,

• v(sj , bj) = 1 for s ∈ S, j ∈ [2],

• v(b1, b3) = v(b2, b3) = α for |R|3 − 1 < α < |R|
3 ,

• v(i, j) = 0 for i, j ∈ R, v(s1, s2) = 0 for s ∈ S, and v(b1, b2) = 0, and

• v(x, y) = −max{12, |S|+ |R|/3} for all agents x, y ∈ N such that no utility is defined,
yet.

One can choose, e.g., α = (|R| − 1)/3, but for the reduction, only the above bounds
matter. We introduce some useful notation for the proof. Denote V s = {s1, s2, s3} for
s ∈ S, B = {b1, b2, b3}, and V = ∪s∈SV s.

i j k x y z

R

s3

s1 s20

4 4s = {i, j, k}

t3

t1 t20

4 4t = {x, y, z} V

b1 b2

b3

0

α α Bπ

Figure 4: Schematic of the reduction for the verification problem of popular partitions on
symmetric ASHGs. Edges without explicit weight have weight 1. Omitted edges for agents
in R have weight 0. All other omitted edges have weight −12. The partition π marked in
gray is the one under consideration for verification.

The partition in question is π = {V s : s ∈ S} ∪ {{r} : r ∈ R} ∪ {B}. We claim that
(R,S) is a ‘yes’-instance of X3C if and only if π is not popular for the ASHG given by G.

If (R,S) is a ‘yes’-instance, there exists a subset S′ ⊆ S that partitions R. In particular
|R| = 3|S′|.

Consider the partition given by π′ = {V s : s ∈ S \ S′} ∪ {{s3, i, j, k} : {i, j, k} = s ∈
S′} ∪ {{bj , sj : s ∈ S′} : j ∈ [2]} ∪ {{b3}}.

Then, N(π′, π) = R∪{b1, b2} and N(π, π′) = ∪s∈S′V s∪{b3}. Hence, π′ is more popular
than π.

Conversely, assume that there exists a more popular partition π′ and fix one that max-
imizes φ(π′, π). We have to prove that there exists a subset S′ ⊆ S that yields a partition



of R. Note that the negative weight is chosen so large that agents in a coalition linked by
negative utility are always worse off.

First, we claim that for all s ∈ S, N(π′, π) ∩ V s = ∅. Assume for contradiction that
for j ∈ [2], sj ∈ N(π′, π). Then, {sj , s3, bj} ⊆ π′(sj) ⊆ V s ∪ {bj}. Thus, s3−j , s3, bj , b3 ∈
N(π, π′).

We form a new coalition π′′ from π′ by having the coalitions V s and B (these agents
leave their coalitions in π′) and all other coalitions remain the same. We consider two cases:

• If |π′(b3−j) ∩ V | ≤ 1, then b3−j ∈ N(π, π′). (We used that |R| ≥ 6.) We have that
s3, s3−j , b1, b2, b3 ∈ N(π, π′)\N(π, π′′), s2 ∈ N(π′, π)\N(π, π′′) and possibly the agent
t ∈ π′(b3−j) ∩ V yields t ∈ N(π′, π) ∩N(π, π′′). Hence, φ(π′′, π) > φ(π′, π).

• Otherwise, π′(b3−j)∩V ⊆ N(π, π′), but possibly b3−j ∈ N(π′, π)\N(π, π′′) in addition.
However, φ(π′′, π) > φ(π′, π) remains valid.

In any case, we derived a contradiction to the maximality condition on π′.
If s3 ∈ N(π′, π), then {s1, s2} ⊆ π′(s3), s ∩ π′(s3) 6= ∅, and π′(s3) ⊆ V s ∪ s (here s ⊆ R

is the set of R-agents corresponding to elements of the set s). Hence, forming a coalition
π′′ by leaving with the agents in s moves these agents and s1, s2 out of N(π, π′), while only
removing s3 from N(π′, π). Hence, we again contradict the maximality of φ(π′, π).

For the rest of the analysis, we narrow down the possible more popular partitions to a
very specific situation that corresponds to 3-partitions. The idea is basically that whenever
we ‘sacrifice’ a set V s of agents, we can improve only 3 agents in R. Due to the boundaries
on α, we will cross the threshold, where we can have a popularity margin of precisely 1

exactly at the moment when we gathered |R|3 neighbors for b1 and b2 in order to improve
these.

We introduce the sets RI = R ∩N(π′, π) and SC = {s ∈ S : π′(s3) ∩ R 6= ∅}. Our goal
is to prove |R| = |RI | = 3|SC |.

For s ∈ SC holds V s ⊆ N(π, π′) (which follows for s3 since s3 /∈ N(π′, π)). Consequently,
|N(π, π′) ∩ V | ≥ 3|SC |. In addition, |N(π′, π) ∩R| = |RI | ≤ 3|SC | and φB(π′, π) ≤ 1.

If |RI | < 3|SC |, then φ(π, π′) = φB(π, π′)+φV (π, π′)+φR(π, π′) ≥ −1+3|SC |−(|RI |) =
3|SC | − |RI | − 1 ≥ 0 and π′ is not more popular. We conclude that |RI | = 3|SC |.

Before we conclude the proof, we show two auxiliary claims:

1. If B ⊆ π′(b3) then b1 /∈ N(π′, π) ∨ b2 /∈ N(π′, π).

2. For j ∈ [2], if bj ∈ N(π′, π), then bj ∈ π′(b3) ∨ |{s ∈ S : sj ∈ π′(bj)} ∩ π′(bj)| ≥ |R|3 .

The first claim follows from the fact that if bj forms a coalition with an agent outside B
that gives her positive utility, then b3−j cannot be both in this coalition and improve her

utility. The second claim follows from Tilπ(bj) = α > |R|
3 − 1.

We are ready to prove |R| = 3|SC |. We consider the agents in B. The only possibility
for φ(π′, π) > 0 is that φB(π′, π) ≥ 1 which can only happen if {b1, b2} ⊆ N(π′, π). Due to

the auxiliary claims, there exists j ∈ {1, 2} with |{s ∈ S : sj ∈ π′(bj)} ∩ π′(bj)| ≥ |R|3 .
If s∗ ∈ {s ∈ S : sj ∈ π′(bj)} \ SC , then s∗j ∈ N(π, π′) (using |R| ≥ 6, i.e., |π′(bj) ∩ {s ∈

S : sj ∈ π′(bj)}| ≥ 2).7

Consequently, φ(π, π′) = φB(π, π′)+φV (π, π′)+φR(π, π′) ≥ −1+(3|SC |+1)−3|SC | ≥ 0,

a contradiction. Therefore, {s ∈ S : sj ∈ π′(bj)} ⊆ SC and |R|3 ≤ |{s ∈ S : sj ∈ π′(bj)}| ≤
|SC | = |RI |

3 ≤
|R|
3 .

Consider the set S′ = SC . Then, SC covers R since RI = R. In addition, since
|R| = 3|SC |, every agent r ∈ R is present in exactly one s ∈ SC . Hence, S′ is a partition of
R with sets in S. In total, (R,S) is a ‘yes’-instance of X3C.

7This argument is stronger than what is needed for ASHGs, but it is needed for the case of FHGs.



We first prove the existence of the graph that underlies the subsequent reductions for
ASHGs. It satisfies similar properties as the flatmate game considered in Lemma 3. How-
ever, for the reduction to work, we need two sets of auxiliary agents. The first set corresponds
to the 3-elementary sets in S of an instance (R,S) of X3C, while the second set consists
of two agents that allow the agents in the top-level not corresponding to elements of R to
improve their coalition.

Lemma 5. The class of symmetric ASHGs satisfies property R.

Proof. Let (R,S) be an instance of X3C. We construct the following game. Let k = min{k ∈
N : 2k ≥ |R|} define the smallest power of 2 that is larger than the cardinality of R. We

define an ASHG on vertex set N = {vs1, vs2 : s ∈ S}∪{y1, y2}∪
⋃k
j=0Nj , where Nj =

⋃2j

i=1A
i
j

consists of 2j sets of agents Aij .
We define the sets of agents as

• Aik = {aik, bik, cik} for i ∈ [2k], and

• Aij = {aij , bij , cij , αij , βij , γij , δij} for j ∈ [0, k − 1], i ∈ [2j ].

We order the set R in an arbitrary but fixed way, say R = {r1, . . . , r|R|} and for a better
understanding of the proof and the preferences, we label the agents bik = ri for i ∈ [|R|]. If
we view the set of agents N as k+ 1 levels of agents, then the ground set R of the instance
of X3C is identified with some specific agents in the top level k. We are ready to define the
preferences as

• v(vs1, v
s
2) = 6k + 8 for all s ∈ S,

• v(vs2, b
i
k) = 2k + 3 if there exists s ∈ S with ri ∈ s,

• v(y1, y2) = 1,

• v(y2, b
i
k) = 2k + 3, i ∈ [|R|+ 1, 2k],

• v(bik, b
i′

k ) = 0, i, i′ ∈ [|R|+ 1, 2k],

• v(bik, b
i′

k ) = 0, i, i′ ∈ [|R|],

• v(aik, b
i
k) = v(aik, c

i
k) = v(bik, c

i
k) = k + 1, i ∈ [2k],

• For j ∈ [0, k − 1], i ∈ [2k],

– v(aij , b
i
j) = v(aij , c

i
j) = j + 1, v(bij , c

i
j) = j + 1.5,

– v(bij , c
2i−1
j+1 ) = v(bij , c

2i
j+1) = j + 1.5,

– v(αij , β
i
j) = j + 1, v(βij , γ

i
j) = 0,

– v(βij , a
i
j) = j + 1.75, v(γij , a

i
j) = j + 1.25,

– v(γij , δ
i
j) = j + 2, v(δij , α

2i−1
j+1 ) = v(δij , α

2i
j+1) = j + 1.5, and

• v(g, h) = −M − 1 for all g, h ∈ N such that the utility is not yet defined, where M is
the maximum utility any agents could receive by the previous utilities.

Let π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αij , βij}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪
{{y1, y2}} ∪ {{vs1, vs2} : s ∈ S} and x = c10.

Now consider a partition π 6= π∗.
We will prove the following claim by induction over j = k, . . . , 0. For every i ∈ [2j ] holds:



1. If {bij , aij}∩π(cij) = ∅, then φT ij (π∗, π) ≥ 1 and φT ij (π∗, π) ≥ 3 or {bik : i ∈ [2k]}∩T ij ⊆
N(π, π∗).

2. If αij /∈ N(π, π∗) and there exists an agent z ∈ T ij with π(z) 6= π∗(z). Then
φT ij (π∗, π) ≥ 1.

We will start by arguing, how the first part of the lemma follows from the induction
claim.

First, note that y1 /∈ N(π, π∗) and if y2 ∈ N(π, π∗), then y1 ∈ N(π∗, π). Similarly, for all
s ∈ S, vs1 /∈ N(π, π∗) and if vs2 ∈ N(π, π∗), then vs1 ∈ N(π∗, π). We can therefore focus on T 1

0

and have φ(π∗, π) ≥ φT 1
0
(π∗, π). Define ρ = {C ∩ T 1

0 : C ∈ π} and ρ∗ = {C ∩ T 1
0 : C ∈ π∗},

which are the partitions π and π∗ restricted to agents in T 1
0 . If ρ = ρ∗, then π 6= π∗ can only

happen if some agent outside T 1
0 forms a coalition with a former coalition of π∗ in T 1

0 . Note
that the only agents in T 1

0 that can improve by that are the agents of the type bik. In every
case, this will lead to φT 1

0
(π∗, π) ≥ 1. As we have argued above, this implies φ(π∗, π) ≥ 1.

If ρ 6= ρ∗, we use the claim for the case j = 0 and observe that αi0 /∈ N(π, π∗). Hence,
φ(π∗, π) ≥ 1 also holds in this case.

It needs still to be shown that if π(x) ∩ π∗(x) = {x}, then φ(π∗, π) ≥ 3 or (R,S) is a
‘yes’-instance. Assume therefore that π(x)∩π∗(x) = {x}. By the first part of the induction
claim, we conclude that φT 1

0
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗). Since we are done in

the former case, we assume that {bik : i ∈ [2k]} ⊆ N(π, π∗). This can only happen if, for every
i ∈ 1, . . . , |R|, there exists an si ∈ S with vsi2 ∈ π(bik). Define S′ = {s ∈ S : π(s2) ∩ {bik : i ∈
[2k]} 6= ∅}. Now fix s ∈ S′. Then, it holds that vs1 /∈ π(vs2), because otherwise agents bik ∈
π(vs1) are worse off than in π∗. In particular, vs1 ∈ N(π∗, π). Now, if at most two of the agents
bik corresponding two elements i ∈ s are in the coalition of vs2, then vs2 ∈ N(π∗, π). Together,
φ(π∗, π) ≥ φ{y1,y2}(π

∗, π) + φ{vs1,vs2}(π
∗, π) +

∑
s′∈S\{s}+φ{vs′1 ,vs

′
2 }

(π∗, π) + φT 1
0
(π∗, π) ≥

0 + 2 + 0 + 1 = 3. It remains the case that π(vs2) = {vs2, bik, b
j
k, b

w
k } for every s ∈ S′ with

s = {i, j, w}. But then, S′ is a 3-partition of R by sets in S.
We will now proceed with the proof of the induction claim.
For the base case j = k, we observe that if Aik∩N(π, π∗) 6= ∅, then clearly φAik(π∗, π) ≥ 1.

In addition, if {bik, aik} ∩ π(cik) = ∅, then {aik, cik} ⊆ N(π∗, π) and bik ∈ N(π∗, π) ∪N(π, π∗).
For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. Assume first that there

exists an agent z ∈ T ij with π(z) 6= π∗(z) but no such agent in Aij . The premise of the first

claim is vacuous and this part is therefore true. Since z ∈ T 2i−1
j+1 ∨ z ∈ T 2i

j+1, we can apply

induction for the second claim since the premise of the second claim for T 2i−1
j+1 or T 2i

j+1 is

true. Assume therefore that there exists an agent z ∈ Aij with π(z) 6= π∗(z).
We make the following observations.

• If αij ∈ N(π, π∗), then βij ∈ N(π∗, π).

• If βij ∈ N(π, π∗), then αij ∈ N(π∗, π).

• If γij ∈ N(π, π∗), then δij ∈ N(π∗, π).

• If δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

Now, we consider the case that π(aij) 6= π∗(aij).

• We consider first the subcase that bij ∈ N(π, π∗). Then cij ∈ N(π∗, π).

– If π(bij) ⊇ {c
2i−1
j+1 , c

2i
j+1}, then φAij (π, π

∗) ≤ 1 (with the above observations),

while by induction φT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 2 and φT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 4 ∨ {bik : i ∈
[2k]} ∩ (T 2i−1

j+1 ∪ T 2i
j+1) ⊆ N(π, π∗) and we are done.



– Otherwise, cij ∈ π(bij). Then φAij (π
∗, π) ≥ 1 or aij ∈ N(π, π∗). The second

case can only occur for π(aij) = {aij , βij , γij}. Hence, φAij (π
∗, π) ≥ 1 or π(δij) =

{δij , α
2i−1
j+1 , α

2i
j+1}. But then φAij (π

∗, π) ≥ −1 and φT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 2 and we

are done.

• We can even assume that bij ∈ N(π∗, π), since otherwise aij ∈ π(bij) and aij , c
i
j ∈

N(π∗, π) and it follows φAij (π
∗, π) ≥ 1.

• If cij ∈ N(π, π∗), then aij , b
i
j ∈ N(π∗, π) and therefore φAij (π

∗, π) ≥ 1 and we are done.

• Since π(cij) 6= π∗(cij), we can assume that cij ∈ N(π∗, π).

• Next, consider the case that aij ∈ N(π, π∗) and, by the previous cases, cij , b
i
j ∈

N(π∗, π).

– If π(aij) = {aij , βij , γij}, then φAij (π
∗, π) ≥ 3 or π(δij) = {δij , α

2i−1
j+1 , α

2i
j+1}. In the

latter case, φAij (π
∗, π) ≥ 1 and φT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 by induction and we are

done.

– Otherwise, βij ∈ π(aij) ∩ N(π∗, π) or γij ∈ π(aij) ∩ N(π∗, π). In the former case,

αij ∈ N(π∗, π) and in total φAij (π
∗, π) ≥ 3. In the latter case, again, φAij (π

∗, π) ≥
3 or π(δij) = {δij , α

2i−1
j+1 , α

2i
j+1} and the case is similar as before.

• It remains that aij , b
i
j , c

i
j ∈ N(π∗, π) in which case φAij (π

∗, π) ≥ 3.

We may therefore assume that π(aij) = π∗(aij). Only for the remaining cases, we

need that αij /∈ N(π, π∗). If π(αij) 6= π∗(αij), then αij , β
i
j ∈ N(π∗, π) and consequently

φAij (π
∗, π) ≥ 2. If π(γij) 6= π∗(γij), then φAij (π

∗, π) ≥ 2 or φAij (π, π
∗) ≥ 0 ∧ π(δij) ∩

{α2i−1
j+1 , α

2i
j+1} 6= ∅ and the claim follows by induction.

For the second part of the lemma, assume that S′ is a 3-partition of R through sets in
S. Define

π′ ={{bvk, bwk , bxk, vs2}, {vs1} : {v, w, x} = s ∈ S′} ∪ {{vs1, vs2} : s ∈ S \ S′}

∪ {{b|R|+1
k , . . . , b2

k

k , y2}, {y1}} ∪ {{δik−1, a2i−1k , a2ik } : i ∈ [2k−1]}
∪ {{bij , c2i−1j+1 , c

2i
j+1}, {aij , βij , γij} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α

2i
j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1

0}, {c10}}.

It is easily checked that φ(π′, π∗) = 1 and c10 forms a singleton coalition with c10 ∈ N(π∗, π′).

Theorem 17. Checking whether there exists a strongly popular partition in a symmetric
ASHG is coNP-hard.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we consider the sym-
metric ASHG of Lemma 5 on agent set N with utility function v together with the parti-
tion π∗ and the special agent x ∈ N . Set M = max{

∑
w∈N : v(y,w)>0 v(y, w) : y ∈ N} and

α = minw∈N : v(x,w)>0 v(x,w) > 0. We define a symmetric ASHG on agent set N ′ = N ∪{z}
where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N , v′(z, x) = α/2, and
v′(z, y) = −M − 1 for y ∈ N \ {x}. Note that by Lemma 5, this reduction is in poly-
nomial time.



Consider the partition σ∗ = π∗ ∪ {{z}} and let σ 6= σ∗ be given and define π = (σ \
σ(z)) ∪ {σ(z) \ {z}}, that is, the partition of agent set N where z leaves her coalition. We
argue first that φN (σ∗, σ) ≥ φ(π∗, π) unless π(x) = π∗(x). Clearly, if z leaves a coalition,
only the agent x can be worse. Now recall that x receives her unique top-ranked coalition
in π∗, which means that x forms a coalition precisely with all agents that yield her positive
utility. By the choice of v(x, z), the only coalition of x that z is part of and that is not
worse for x, is π∗(x) ∪ {z}. Hence, the only case that the preferences of x over σ∗ and σ is
affected by z is if π(x) = π∗(x).

We perform a case distinction over the coalitions of z to investigate the popularity margin
between σ∗ and σ. First, if σ(z) = {z}, then φ(σ∗, σ) > 0 by Lemma 5. If σ(z) = {z, x},
then φ(σ∗, σ) ≥ −1 +φ(π∗, π) ≥ 0 There, we can use the lemma again to see that the latter
inequality is strict if (R,S) is a ‘no’-instance. Otherwise, z ∈ N(σ∗, σ). If π(x) 6= π∗(x),
then φ(σ∗, σ) ≥ 1 + φ(π∗, π) ≥ 1. We can therefore assume that π(x) = π∗(x). If π = π∗,
then φ(σ∗, σ) = φσ∗(z)(σ

∗, σ) > 0. If π 6= π∗, then φ(σ∗, σ) ≥ 1 − 1 + φ(π∗, π) > 0, where
the −1 accounts for the case that x may be worse off in π compared to σ. Note that it can
not be the case that x is both better off in σ and worse off in π, since the only relevant
coalition σ(x) = π∗(x) ∪ {z}. Together, it follows that σ∗ is popular and it is a strongly
popular partition if (R,S) is a ‘no’-instance.

If (R,S) is a ‘yes’-instance, then σ∗ is the only candidate that might be strongly popular.
Consider the partition π′ from Lemma 5 and define σ′ = (π′ \ {{x}}) ∪ {{x, z}}. Then,
x ∈ N(π∗, π′) ∩N(σ∗, σ′), whereas z ∈ N(σ′, σ∗). Therefore, φ(σ′, σ∗) = 1 + φ(π′, π∗) = 0.
Hence, π∗ is not strongly popular and there exists no strongly popular partition.

Theorem 18. Verifying whether a given partition in a symmetric ASHG is strongly popular
is coNP-complete.

Proof. In the proof of Theorem 17, the partition σ∗ is strongly popular if, and only if, (R,S)
is a ‘no’-instance of X3C.

Theorem 19. Computing a mixed popular partition in a symmetric ASHG is NP-hard.

Proof. We give a Turing reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric ASHG of Lemma 5 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . Set M = max{

∑
w∈N : v(y,w)>0 v(y, w) : y ∈ N}

and α = minw∈N : v(x,w)>0 v(x,w) > 0. We define a symmetric ASHG on agent set N ′ =
N ∪ {z1, z2} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N , v′(z1, z2) =
v′(z1, x) = v′(z2, x) = α/3 > 0, and v′(zi, y) = −M − 1 for i ∈ [2], y ∈ N \ {x}. Note that
by Lemma 5, this reduction is in polynomial time.

Consider the partition σ∗ = π∗ ∪ {{z1, z2}} and let σ 6= σ∗ be given and define π =
(σ \ (σ(z1) ∪ σ(z2))) ∪ {σ(z1) \ {z1, z2}, σ(z2) \ {z1, z2}}, that is, the partition of agent set
N where z1 and z2 leave their coalitions. Assume that (R,S) is a ‘no’-instance. We will
prove that φ(σ∗, σ) > 0, and therefore that σ∗ is strongly popular. We may assume that
σ(z1) = {z1, z2} or x ∈ σ(zi) for some i, because otherwise it is a Pareto improvement if z1
and z2 leave their coalitions and form a coalition of their own.

If σ(z1) = {z1, z2}, then by Lemma 5, φ(σ∗, σ) = φ(π∗, π) > 0, because π 6= π∗.
Otherwise, assume without loss of generality that x ∈ σ(z1). Since x receives her top-
ranked coalition in π∗ and the utility provided by agents zi is sufficiently small, φN (σ∗, σ)−
φ(π∗, π) ≥ −1, where equality can only hold for π∗(x) = π(x). Now, if π(z1) ⊆ {x, z1, z2},
then φ(σ∗, σ) ≥ −2 + φ(π∗, π) ≥ 1. If there exists y ∈ N \ {x} with y ∈ σ(z1), then
z1, z2 ∈ N(σ∗, σ) and it follows φ(σ∗, σ) ≥ 2 − 1 + φ(π∗, π) > 0. In particular, the unique
mixed popular partition consists of σ∗ with probability 1.



Now assume that (R,S) is a ‘yes’-instance. Consider the partition π′ from Lemma 5
and define σ′ = (π′ \ {{x}}) ∪ {{x, z1, z2}}. Then, x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas
z1, z2 ∈ N(σ′, σ∗). Therefore, φ(σ′, σ) = 2 + φ(π′, π∗) = 1. Hence, the pure mixed partition
{σ∗} is not mixed popular.

We can solve X3C by computing a partition σ in the support of a mixed popular partition
and checking its probability in case σ = σ∗.

Theorem 20. Checking whether there exists a popular partition in a symmetric ASHG is
coNP-hard.

Proof. We provide a reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric ASHG of Lemma 5 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . Set M = max{

∑
w∈N : v(y,w)>0 v(y, w) : y ∈ N}

and α = minw∈N : v(x,w)>0 v(x,w) > 0. For i ∈ [2], let Ni = {yi : y ∈ N} be two copies of
N . Accordingly, let π∗i be their respective copies of π∗.

We define a symmetric ASHG on agent set N ′ = N1∪N2∪Z where Z = {zjk : k ∈ [2], j ∈
[3]}. Define Zj = {zj1, z

j
2}. Utilities are as follows.

• v′(yi, wi) = v(y, w) if y, w ∈ Ni for i ∈ [2],

• v′(zjk, x1) = α/7, v′(zjk, x2) = α/8 for k ∈ [2], j ∈ [3],

• v′(zj1, z
j
2) = α for j ∈ [3], and

• v′(u, y) = −M − 1 for every pair of agents u, y ∈ N ′ such that their utility is not
defined, yet.

Note that by Lemma 5, this reduction is in polynomial time.
First assume that (R,S) is a ‘no’-instance. Then, σ∗ = π∗1∪π∗2∪{Zj : j ∈ [3]} is popular.

To prove this, let σ be an arbitrary partition and define πi = {σ(y) ∩ Ni : y ∈ Ni} be the
coalitions restricted to Ni. For each j ∈ [3], we can assume that σ(zjk) = Zj or there exists a
i ∈ [2] with Zj∩σ(xi) 6= ∅. Otherwise, one can obtain a Pareto-improvement σ′ over σ and it
suffices to prove that φ(σ∗, σ′) ≥ 0. Indeed, if σ(zjk) = {zjk} for k ∈ [2], then creating Zj is a

Pareto-improvement. On the other hand, if {z3−k, x1, x2}∩σ(zjk) = ∅ and |σ(zjk)| ≥ 2, then

leaving her coalition with zjk yields a Pareto-improvement over σ. Hence, if x1, x2 /∈ σ(zjk),

then zj3−k ∈ σ(zjk) and putting all potential further agents in the coalition into a singleton
coalition would yield a Pareto improvement. Hence, we have already substantially restricted
the coalitions of agents in a Zj .

Next, we argue that we may assume that it does not happen that σ(zjk) = {zjk}. In

this case, there exists an i ∈ [2] with zj3−k ∈ σ(xi). We form a partition σ′ by adding zjk
to σ(zj3−k) = σ(xi). This yields a Partition with N(σ∗, σ) ⊆ N(σ∗, σ′) and N(σ′, σ∗) ⊆
N(σ, σ∗), hence φ(σ∗, σ′) ≥ φ(σ∗, σ), and it suffices to consider the popularity margin
between σ∗ and σ′.

By a similar argument, we can assume that σ(xi) ⊆ Z ∪Ni (putting all agents outside
Z ∪Ni into singleton coalitions has the same effect).

We can therefore partition the agent set N ′ into sets of the type Zj such that σ(zj1) = Zj ,
of the type Ni such that Z ∩σ(xi) = ∅, and of the type Ni ∪σ{xi} such that Z ∩σ(xi) 6= ∅.
For the first type, φZj (σ

∗, σ) = 0 and by Lemma 5, φNi(σ
∗, σ) ≥ 0 for the second type of

sets. We prove that φNi∪σ{xi}(σ
∗, σ) ≥ 0 if Z ∩ σ(xi) 6= ∅.

If σ(xi) ⊆ Z ∪ {xi}, then xi ∈ N(σ∗, σ) and φσ(xi)\{xi}(σ
∗, σ) ≥ −2. As a consequence,

φNi∪σ(xi)(σ
∗, σ) ≥ −2 + φ(π∗i , πi) ≥ 0 by Lemma 5.



Otherwise, Z ∩ σ(xi) ⊆ N(σ∗, σ) and the only agent in Ni that can be worse off in πi
compared to σ is xi. Note that the utilities are designed so that xi /∈ N(σ, σ∗)∩N(π∗, π). It
follows φNi∪σ(xi)(σ

∗, σ) = φNi(σ
∗, σ) + φσ(xi)∩Z(σ∗, σ) ≥ φNi(σ∗, σ) + 1 ≥ −1 + φ(π∗i , πi) +

1 ≥ 0.
Together, it is shown that σ∗ is popular.
Conversely, assume that (R,S) is a ‘yes’-instance and assume for contradiction that σ is

popular and define πi = {σ(y)∩Ni : y ∈ Ni} as above. The Pareto-improvements of the first
implication show that for all j, Zj ∈ σ or σ(xi)∩Zj 6= ∅. Define I = {i ∈ [2] : Z∩σ(xi) 6= ∅}.
The first crucial step is to prove that for all i ∈ I, it holds that there exists a j ∈ [3] with
σ(xi) = {xi} ∪ Zj .

Let therefore i ∈ I. First, σ(xi)∩Ni = {xi} since otherwise splitting σ(xi) into singleton
coalitions is more popular. In addition, x3−i /∈ σ(xi). If this happens and |σ(xi) ∩ Z| 6= 2,
then splitting into singleton coalitions is more popular. On the other hand, if |σ(xi)∩Z| = 2,
there exists j∗ ∈ [3] with Zj

∗ ∈ σ. We form the partition σ′ by leaving her coalition with x1
and forming {x1, zj

∗

1 , z
j∗

2 }. Then, {x1, x2, zj
∗

1 , z
j∗

2 } ⊆ N(σ′, σ) while N(σ, σ′) ⊆ σ(xi) ∩ Z.
Hence, σ′ is more popular.

Hence, σ(xi) ⊆ Z ∪ {xi}. If for j 6= j′, Zj ∩ σ(xi) 6= ∅ and Zj
′ ∩ σ(xi) 6= ∅, then

dissolving σ(xi) is again more popular. Finally, if |σ(xi) ∩ Z| = 1, we find again a j∗ ∈ [3]

with Zj
∗ ∈ σ. We form the partition σ′ by forming π(xi) ∩ Z and {xi, zj

∗

1 , z
j∗

2 } which is
more popular.

The next step is to show that I = {1, 2}. Assume for contradiction that Z ∩ σ(xi) = ∅.
Then we can assume that for all y ∈ Ni, σ(y) ⊆ Ni. If πi 6= π∗i , then replacing πi by
π∗i is more popular (by Lemma 5). Otherwise πi = π∗i and we consider the partition π′i
of the last part of Lemma 5 for Ni. By the pigeon hole principle, there exists a j∗ ∈ [3]

with Zj
∗ ∈ σ. We obtain σ′ = (σ \ (πi ∪ {Zj

∗})) ∪ ((π′i \ {{xi}}) ∪ {{xi, z
j∗

1 , z
j∗

2 }}). Then,
φ(σ′, σ) = φNi∪Zj∗ (σ′, σ) = −1 + 2 = 1 and σ′ is more popular.

Together, we can assume that there exist j1, j2 ∈ [3] with σ(xi) = {xi, zji1 , z
ji
2 }, for i ∈ [2].

Let j3 ∈ [3] \ {j1, j2} be the third index. Note that Zj3 ∈ σ. Define σ′ = (σ \ {σ(zj1) : j ∈
[3]}) ∪ {{x1, zj21 , z

j2
2 }, {x2, z

j3
1 , z

j3
2 }, Zj1}. Then, N(σ′, σ) = Zj2 ∪ Zj3 while N(σ, σ′) = Zj1 .

Hence, σ′ is more popular.
All in all, it is shown that there exists no popular partition if (R,S) is a ‘yes’-instance.

This concludes the proof of the theorem.

A.4 Fractional Hedonic Games

Before investigating popularity, we quote a useful proposition about the structure of top-
ranked coalitions in FHGs.

Proposition 10 (Bullinger (2020)). Let a FHG (N,�) be given and let i ∈ N be an agent.
Let µ be the utility of a top-ranked coalition of agent i. Then, the top-ranked coalitions of
agent i are precisely the coalitions of the form {i} ∪ {j ∈ N : vi(j) > µ} ∪W for W ⊆ {j ∈
N : vi(j) = µ}.

In other words, every top-ranked coalition of agent i consists precisely of all agents j
whose utility vi(j) exceeds a certain threshold.

In the reductions for the existence and verification problem, there exist gadgets for every
element of R and the sets in S. The R-gadgets rely on rather simple graphs, namely stars.

We define by Sk the star graph with k leaves, i.e., Sk ∼= G, where G = (V,E) with
V = {c, l1, . . . , lk}, E = {{c, lj} : j ∈ [k]}. We say that an FHG is induced by Sk if its agent
set is N = V , and symmetric, binary utilities are given by v(i, j) = 1 if {i, j} ∈ E and
v(i, j) = 0, otherwise, where i, j ∈ N . The next proposition classifies, which star graphs
induce FHGs admitting popular partitions. The boundary cases are illustrated in Figure 5.
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Figure 5: FHGs induced by stars. For stars with 5 leaves, a popular partition π exists (left).
This is not the case for stars with more leaves. For instance, the grand coalition is more
popular than partition π′ (right).

Proposition 11. Let k ∈ N and consider the FHG induced by Sk. For k ≤ 5, the (sub-
)partition (of) π = {{c, l1, l2, l3}, {l4}, {l5}} is popular. For k ≥ 6, Sk admits no popular
partition.

Proof. The first part is easily seen.
For the second assertion, let k ≥ 6 and assume that π was a popular partition. Then,

|π(c)| ≤ 4, since otherwise we obtain a more popular partition if one leaf leaves π(c). But
in this case, the grand coalition is more popular (having c and at least k − 3 leaves better
off).

Using stars as gadgets, we can prove the next theorem.

Theorem 21. Checking whether there exists a popular partition in a symmetric FHG is
NP-hard, even if all utilities are non-negative.

Proof. The reduction is from X3C to deciding whether there exists a popular partition.
Let (R,S) be an instance of X3C. We transform it into an FHG (N,%) defined by the

graph G = (N,E) that is given as follows:
N = {cr, lrj : r ∈ R, j ∈ [6]} ∪ {ys, zsj : s ∈ S, j ∈ [2]} and E = ER ∪EC ∪E6 ∪ES where

ER = {{cr, lrj} : r ∈ R, j ∈ [6]}, EC = {{lr6, ys} : s ∈ S, r ∈ s}, E6 = {{lr6, lt6} : r 6= t, r, t ∈
s for s ∈ S}, ES = {{ys, zsj}, {zs1, zs2} : s ∈ S, j ∈ [2]}. The edge set EC connects the gadgets
for the ground set and the subsets for the X3C instance.

The weights are 1, except v(e) = 1
2 for e ∈ EC and v(e) = 1

4 for e ∈ E6. A schematic of
the reduction for a certain set s = {i, j, k} ∈ S is depicted in Figure 6.

We show that there exists a popular partition of (N,%) if and only if (R,S) is a ‘yes’
instance of X3C.

Assume (R,S) is a ‘yes’ instance of X3C. Then, there exists S′ ⊆ S such that S′ is a parti-
tion of R. The following partition π is then popular: π = {{cr, lr1, lr2, lr3} : r ∈ R}∪{{lrj} : r ∈
R, j = 4, 5}∪{{ys, li6, l

j
6, l

k
6} : s = {i, j, k} ∈ S′}∪{{zs1, zs2} : s ∈ S′}∪{{ys, zs1, zs2} : s ∈ S\S′}.

Assume for contradiction that π′ is more popular than π and let π be with φ(π′.π)
maximal. We will prove that φ(π, π′) ≥ 0, a contradiction.

We introduce some notation for the proof. V r = {cr, lrj : j ∈ [6]}, where r ∈ R, and

W s = {ys, zs1, zs2}, where s ∈ S. Also denote V R = ∪r∈RV r,WS = ∪s∈SW s and A6 =
{ar6 : r ∈ R} and Y c = {s ∈ S : ∃a ∈ A6 with a ∈ π′(ys)}.

To derive a contradiction, we prove several claims.
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Figure 6: Reduction for existence problem of popular partitions in FHGs. The schematic
displays the part of the network corresponding to one specific set s = {i, j, k}.

1. Let r ∈ R such that for all s ∈ S, ys /∈ π′(ar6). Then φV r ≥ 1.

2. @r ∈ R, s, s′ ∈ S with s 6= s′ and {ys, ys′} ⊆ π′(ar6).

3. ∀s ∈ S holds: π′(ys) ∩W s = {ys} ∨ π′(ys) ⊆W s.

4. For all r ∈ R, φV r (π, π
′) ≥ 0.

5. φWS (π′, π) ≤ |R| − 3|Y c|.

The first claim says that we need sufficient external influence for V r to be locally popular.
The second and third claim give insight on the structure of possible more popular partitions.
The forth claim shows that we locally do best for every V r. The final claim calculates the
tradeoff between forming a coalition W s and joining the agents in V r.

In order to complete the proof from the claims, we apply claims 1 and 4 to obtain
φV R(π, π′) ≥ max{0, |R| − 3|Y c|} ≥ |R| − 3|Y c|. Combining this inequality with the one of
Claim 5 yields φ(π, π′) ≥ 0.

The first claim is a straightforward case distinction considering π′(cr). Observe that by
construction of its neighboring agents, ar6 ∈ N(π, π′) ∨ ar6 ∈ π′(cr). This property makes it
equivalent to the agents ar5 and ar4 in the analysis.

We proceed with the second claim. Therefore, assume for contradiction that r ∈ R, s, s′ ∈
S with s 6= s′ and {ys, ys′} ⊆ π′(ar6). We denote C = π′(ar6) for this part. We claim that we
can change π′ while strictly increasing φ(π′, π). This is done by forming a partition π′′ that
consists of coalitions W t whenever yt ∈ C. The agents outside WS in C form a coalition of
their own. Other coalitions are not changed.

• Let t ∈ S with yt ∈ C. If π(yt) = W t, then W t ⊆ N(π, π′). This is immediate for the
ztj . In addition, by assumption on C, at least 3 agents are present, and the utility is

estimated as vyt(π
′) ≤ max{

1
2

3 ,
3
2

4 ,
5
2

5 ,
6
2

6 ,
7
2

7 } = 1
2 <

2
3 = vyt(π)

• If π(yt) 6= W t, then zt1, z
t
2 /∈ N(π′, π) and yt /∈ N(π′, π) ∨ (∃i : zti ∈ N(π, π′)).

Define Y = |{t ∈ S : yt ∈ C}|. These first two insights yield, that φ{W s:s∈Y }(π
′′, π) ≥

3|Y | + φ{W s:s∈Y }(π
′, π). There is an increase of at least 6 by the assumption that

{ys, ys′} ⊆ C.



• The only agents that can decrease (π′′, π) compared to (π′, π) are in A6. Note that if
a ∈ A6 ∩C has at most one neighbor in Y , then for some p (the number of neighbors

in A6), va(π′) =
1
2+

p
4

3+p < 1
4 = va(π). Define the improving agents in A6 via I =

C ∩A6 ∩N(π′, π) and the non-worsened agents as I ′ = C ∩A6 \ (I ∪N(π, π′)).

– If |I| ≤ 2, then φC∩A6
(π′′, π) ≥ φC∩A6

(π′, π) − 4 (the agents in I each counted
twice for being worse instead of better off).

– If |I| ≥ 3, we know that |Y | ≥ 3 (otherwise, three agents in I are incident to the
same two yt, but then in the instance of X3C, we had two identical 3-elementary
sets). This means for any a ∈ A6 ∩ C that has exactly two neighbors in Y that

for some p, va(π′) ≤ 1+ p
4

4+p = 1
4 . Hence, a /∈ N(π′, π).

Agents in I need therefore three neighbors in Y and agents in I ′ two. Since every
agent in Y has at most three neighbors, this accumulates to |Y | ≥ |I|+ 2

3 |I
′|.

Consequently, for M = C ∩ (A6 ∪WS),

φ(π′′, π) = φN\M (π′′, π) + φC∩A6
(π′′, π) + φWS∩C(π′′, π)

≥ φN\M (π′, π) + φC∩A6
(π′, π)− 2|I| − |I ′|+ φWS∩C(π′, π) + 3|Y |

> φ(π′, π).

In both cases, we contradict the maximality of φ(π′, π).
The third claim is proven similarly, but we have to refine some calculation of the previous

claim, since we do not get the same lower bounds for the denominators of the utilities.
Assume for contradiction that s ∈ S with π′(ys) ∩A6 6= ∅ and π′(ys) ∩W s 6= ∅. We set

C = π′(ys).

• First, we argue that we may assume that A6 ∩ C ∩ N(π′, π) = ∅. Otherwise, by the
previous claim, if ar6 ∈ A6 ∩ C ∩ N(π′, π), then cr ∈ C. Consequently, arj ∈ N(π, π′)

for j ∈ [3] and cr ∈ N(π, π′). The latter is due to vcr (π
′) ≤ 6

9 <
3
4 = vcr (π). Also,

(∃j ∈ {4, 5} : arj /∈ C) ∨ ar6 /∈ N(π′, π). Indeed, if the first is wrong, then for some p,

var6(π′) ≤ 1+ 1
2+

p
4

6+p = 1
4 = var6(π). Hence resetting the coalition within V r to π yields a

coalition contradicting the maximality of φ(π′, π).

• We consider two cases. First assume that π(ys) 6= W s. We claim that rearranging
π′ by means of removing agents of W s from π′(ys) improves φ(π′, π). Indeed, zsj /∈
N(π′, π), but they will be after the rearrangement, and ys ∈ N(π′, π) afterwards.

Also, for all a ∈ A6 ∩ C, va(π′) ≤
1
2+

p
4

p+3 < 1
4 and these agents are already worse off in

the original π′.

• If π(ys) = W s, the same holds for agents in A6 ∩ C. Since W s ⊆ N(π, π′), the same
rearrangement improves φ(π′, π).

We proceed with the next claim and fix r ∈ R. We may assume that for some s,
ys ∈ π′(ar6) (since the other case is already covered in the first claim). In addition, if
cr /∈ π′(ar6), then ar6 /∈ N(π′, π) (by the previous claims). In this case, the coalition π
restricted to V r \ {ar6} is popular and the claim is true.

Denote C = π′(ar6) and assume therefore cr ∈ C. We also know that {a1, a2, a3} ∩
N(π′, π) = ∅ and |{a1, a2, a3} ∩ N(π, π′)| ≥ 2. Consequently, if {a4, a5} ∩ C = ∅, we
are done. If {a4, a5} ∩ C 6= ∅, {a1, a2, a3} ⊆ N(π, π′). Putting the final case together,
|N(π′, π)| ≤ 3 while |N(π, π′)| ≥ 3 and the claim is true.

For the fifth claim, we consider the coalitions in π for different ys:



• IfW s = π(ys), thenW s∩N(π′, π) = ∅ (by Claim 3) and if s ∈ Y c, thenW s ⊆ N(π, π′).
This gives |N(π, π′) ∩WS | ≥ 3|{s ∈ Y c : π(ys) = W s}|.

• If W s 6= π′(ys) and s ∈ Y c, then W s ∩ N(π′, π) = ∅ (again using Claim 3). Conse-
quently, |N(π′, π) ∩WS | ≤ 3|{s /∈ Y c : π(ys) 6= W s}|.
Combining the inequalities yields

|N(π′, π) ∩WS | − |N(π, π′) ∩WS |
≤ 3(|{s /∈ Y c : π(ys) 6= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3(|{s /∈ Y c : π(ys) 6= W s}|+ |{s ∈ Y c : π(ys) 6= W s}|
− |{s ∈ Y c : π(ys) 6= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3|S′| − 3|Y c| = |R| − 3|Y c|.

This proves the final claim and we have proved that ‘yes’-instances of X3C map to
popular partitions of the FHG.

For the reverse implication, assume that π is a popular partition. We exhibit the coali-
tions of the agents in A6.

1. For all r ∈ R, there exists a unique s ∈ S with ys ∈ π(ar6). For this s holds that r ∈ s.

2. For all r ∈ R, |A6 ∩ π(ar6)| = 3.

If the claims are true, S′ = {s ∈ S : A6 ∩ π(ys) 6= ∅} covers R due to existence and is a
partition due to uniqueness and the fact, that uniqueness and the second claim imply that
the coalition of the unique ys must contain precisely ai6 for i ∈ s.

We start with the first claim. Existence is clear because otherwise the subpartition of π
on V r (possibly restricted to V r) is popular on V r, contradicting Proposition 11.

For uniqueness, assume for contradiction that there is r ∈ R and s 6= s′ ∈ S with
{ys, ys′} ⊆ π(ar3). We obtain a more popular coalition π′ as follows: remove the agents in
W s from their partitions in π and let them form a coalition. Then W s ∪ {ys′} ⊆ N(π′, π)
and N(π, π′) ⊆ {ar6 : r ∈ s}. Hence, π′ is more popular.

For the second claim, we know due to uniqueness in the first claim that |A6∩π(ar6)| ≤ 3.
Assume for contradiction that |A6∩π(ar6)| < 3 and let ys ∈ π(ar6). Then, the same coalition
π′ as in the proof of the previous claim is more popular. This time, W s ⊆ N(π′, π) and
N(π, π′) ⊆ {ar6 : r ∈ s}, hence by assumption |N(π, π′)| ≤ 2.

Theorem 22. Checking whether a given partition in a symmetric FHG is popular is coNP-
complete, even if all utilities are non-negative and the underlying graph is bipartite.

Proof. First of all, the verification problem is in coNP, because a more popular partition
serves as a polynomial-time certificate for a ‘no’-instance.

For hardness, we reduce again from X3C. Given an instance (R,S) of X3C, we assume
without loss of generality that |R| ≥ 6. We define an FHG (N,%) given by the underlying
graph G = (N,E) depicted in Figure 7 and defined as:

N = R∪{s1, s2, s3 : s ∈ S}∪{b1, b2, b3}, E = {{s3, r} : r ∈ R∩s}∪{{s1, s3}, {s2, s3} : s ∈
S} ∪ {{sj , bj} : s ∈ S, j ∈ [2]} ∪ {{b1, b3}, {b2, b3}}.

The symmetric weights v are given as

• v(i, s3) = 1
2 if i ∈ s,

• v(s1, s3) = v(s2, s3) = 1 for s ∈ S,
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Figure 7: Schematic of the reduction for the verification problem of popular partitions on
bipartite FHGs. The bipartition is indicated by the shapes of the agents. The partition π
under consideration is marked in gray.

• v(sj , bj) = 1
4 for s ∈ S, j ∈ [2], and

• v(b1, b3) = v(b2, b3) = α for 3(|R|−3)
4|R| < α < 3|R|

4(|R|+3) .

One can choose α with a size bounded polynomially in the input size. For the reduction,
only the above bounds matter. We introduce the same notation as in the proof for ASHGs.
Denote V s = {s1, s2, s3} for s ∈ S, B = {b1, b2, b3}, and V = ∪s∈SV s.

G is bipartite with bipartition (R∪ {s1, s2 : s ∈ S} ∪ {b3}, {s3 : s ∈ S} ∪ {b1, b2}) and all
weights on present edges are positive.

The verification problem is asked for the partition π = {V s : s ∈ S}∪{{r} : r ∈ R}∪{B}.
We claim that (R,S) is a ‘yes’-instance of X3C if and only if π is not popular for the FHG
given by G.

If (R,S) is a ‘yes’-instance, there exists a subset S′ ⊆ S that partitions R. In particular
|R| = 3|S′|.

Consider the partition given by π′ = {V s : s ∈ S \ S′} ∪ {{s3, i, j, k} : {i, j, k} = s ∈
S′} ∪ {{bj , sj : s ∈ S′} : j ∈ [2]} ∪ {{b3}}.

Then, for j ∈ [2], vbj (π
′) =

1
4 |S
′|

|S′|+1 = |R|
4(|R|+3) > α

3 = vbj (π). Since all agents in R

have clearly improved their utility, R∪{b1, b2} ⊆ N(π′, π) (and in fact equality holds here).
Moreover, the utilities of agents in V s for s ∈ S \ S′ have not changed. Consequently,
N(π, π′) ⊆ ∪s∈S′V s ∪ {b3}. Hence, π′ is more popular than π.

Conversely, assume that there exists a more popular partition π′ and fix one that max-
imizes φ(π′, π). We have to prove that there exists a subset S′ ⊆ S that yields a partition
of R.

First, we make the observation that if bj ∈ N(π′, π) for j ∈ [2], then b3 ∈ N(π, π′).
Hence, φB(π′, π) ≤ 1.

Second, we claim that for all s ∈ S, N(π′, π) ∩ V s = ∅. Clearly, s3 /∈ N(π′, π) (by
construction, since she receives a top coalition with respect to the given utilities). Assume
for j ∈ [2], sj ∈ N(π′, π). Then, π′(sj) = {sj , s3, bj}. Note that both neighbors of sj are
needed to improve utility, but no other agent may be present since for |π′(sj)| ≥ 4 follows

vsj (π
′) ≤

5
4

4 <
1
3 = vsj (π). In addition, s3−j , b3 ∈ N(π, π′).



We form a new coalition π′′ from π′ by having the coalitions V s and B and all other
coalitions remain the same. The exact same case distinction for b3−j as in the case of ASHGs
yields a contradiction to the maximality condition on π′.

The remainder of the proof follows a similar strategy as the one for ASHGs, but some
arguments are more tedious.

To make this more formal, we introduce the sets RI = R ∩N(π′, π) of agents in R that
form a coalition with a neighbor in π′ and SC = {s ∈ S : π′(s3) ∩R 6= ∅}. The latter is the
set of critical sets in S whose corresponding agents s3 form a coalition with agents in R.
We split it into SC,1 = {s ∈ S : |π′(s3) ∩R| = 1} and SC,2 = SC \ SC,1.

We have the following facts:

• For s ∈ SC , s3 ∈ N(π, π′).

• For s ∈ SC,1, s1 ∈ N(π, π′) ∨ s2 ∈ N(π, π′).

• For s ∈ SC,2, s1 ∈ N(π, π′) ∧ s2 ∈ N(π, π′).

Consequently, |N(π, π′) ∩ V | ≥ 2|SC,1| + 3|SC,2|. In addition, |N(π′, π) ∩ R| = |RI | ≤
|SC,1|+ 3|SC,2|.

If SC,1 6= ∅, then φ(π, π′) = φB(π, π′) + φV (π, π′) + φR(π, π′) ≥ −1 + 2|SC,1|+ 3|SC,2| −
(|SC,1| + 3|SC,2|) = |SC,1| − 1 ≥ 0 and π′ is not more popular. We conclude that SC,1 = ∅
or equivalently SC = SC,2.

A similar calculation excludes the case |RI | < 3|SC,2| which means |RI | = 3|SC,2|.
We claim that in fact |R| = 3|SC | = 3|SC,2|. Before we prove this, we show the same

two auxiliary claims as for ASHGs.

1. If B ⊆ π′(b3) then b1 /∈ N(π′, π) ∨ b2 /∈ N(π′, π).

2. For j ∈ [2], if bj ∈ N(π′, π), then bj ∈ π′(b3) ∨ |{s ∈ S : sj ∈ π′(bj)} ∩ π′(bj)| ≥ |R|3 .

For the first claim, assume that B ⊆ π′(b3) and b1, b2 ∈ N(π′, π). Denote pj = |{s ∈
S : sj ∈ π′(b3)}|. We know that pj ≥ 1, since otherwise bj /∈ N(π′, π).

The function x 7→ 3(x−3)
4x is monotonically increasing for x > 0. Thus, by the lower

bound on α, we know that α > 3
8 (using |R| ≥ 6).

Let j ∈ [2] with pj = min{pj , p3−j}. Then |π′(b3)| ≥ 3 + 2pj . We compute vbj (π) −
vbj (π

′) = α
3 −

α+
pj
4

3+2pj
=

pj
3(3+2pj)

(2α− 3
4 ) > 0. Hence, bj /∈ N(π′, π), a contradiction.

For the second claim, let j ∈ [2] with bj ∈ N(π′, π) and assume bj /∈ π′(b3). Similarly

as before, let p = |{s ∈ S : sj ∈ π′(bj)}|. Note that vbj (π) = α
3 > |R|−3

4|R| = 1
4

|R|
3 −1

( |R|3 −1)+1
.

Therefore, vbj (π) < vbj (π
′) ≤ 1

4
p
p+1 only if p > |R|

3 − 1 and since p is an integer, this implies

p ≥ |R|3 .
The remainder of the proof is identical to the one for ASHGs (Theorem 16).

The underlying graph for deriving property R for FHGs is almost identical to the one
for ASHGs, which might be surprising, because the utilities for ASHGs and FHGs induced
by the same graph will in general cause very different preferences over coalitions. However,
all coalitions that actually matter for the particular instance we consider are of size 2 and
3 and therefore the different game models behave very similarly.

Lemma 6. The class of symmetric FHGs with non-negative utility functions satisfies prop-
erty R.



Proof. Let (R,S) be an instance of X3C. We construct the following game. Let k = min{k ∈
N : 2k ≥ |R|} define the smallest power of 2 that is larger than the cardinality of R. We
define a symmetric FHG with non-negative utility functions on vertex set N = {vs1, vs2 : s ∈
S} ∪ {y1, y2} ∪

⋃k
j=0Nj , where Nj =

⋃2j

i=1A
i
j consists of 2j sets of agents Aij .

We define the sets of agents as

• Aik = {aik, bik, cik} for i ∈ [2k], and

• Aij = {aij , bij , cij , αij , βij , γij , δij} for j ∈ [0, k − 1], i ∈ [2j ].

We order the set R in an arbitrary but fixed way, say R = {r1, . . . , r|R|} and for a better
understanding of the proof and the preferences, we label the agents bik = ri for i ∈ [|R|]. If
we view the set of agents N as k+ 1 levels of agents, then the ground set R of the instance
of X3C is identified with some specific agents in the top level k. We are ready to define the
preferences.

• v(vs1, v
s
2) = 21

10 (k + 1) for all s ∈ S,

• v(vs2, b
i
k) = 3

2 (k + 1) if there exists s ∈ S with ri ∈ s,

• v(y1, y2) = 1,

• v(y2, b
i
k) = 2k+2(k + 1), i ∈ [|R|+ 1, 2k],

• v(bik, b
i′

k ) = 0, i, i′ ∈ [|R|+ 1, 2k],

• v(bik, b
i′

k ) = 2
3 (k + 1), i, i′ ∈ [|R|],

• v(aik, b
i
k) = v(aik, c

i
k) = v(bik, c

i
k) = k + 1, i ∈ [2k],

• For j ∈ [0, k − 1], i ∈ [2k],

– v(aij , b
i
j) = v(aij , c

i
j) = j + 1, v(bij , c

i
j) = j + 1.5,

– v(bij , c
2i−1
j+1 ) = v(bij , c

2i
j+1) = j + 1.5,

– v(αij , β
i
j) = j + 1, v(βij , γ

i
j) = j

2 ,

– v(βij , a
i
j) = j + 1.75, v(γij , a

i
j) = j + 1.25,

– v(γij , δ
i
j) = j + 2, v(δij , α

2i−1
j+1 ) = v(δij , α

2i
j+1) = j + 1.6, and

• v(g, h) = 0 for all g, h ∈ N such that the utility is not defined, yet.

Let π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αij , βij}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪
{{y1, y2}} ∪ {{vs1, vs2} : s ∈ S} and x = c10.

Now consider a partition π 6= π∗.
We will prove the following claim by induction over j = k, . . . , 0. For every i ∈ [2j ] holds:

1. If {bij , aij}∩π(cij) = ∅, then φT ij (π∗, π) ≥ 1 and φT ij (π∗, π) ≥ 3 or {bik : i ∈ [2k]}∩T ij ⊆
N(π, π∗).

2. If αij /∈ N(π, π∗) and there exists an agent z ∈ T ij with π(z) 6= π∗(z). Then
φT ij (π∗, π) ≥ 1.



We will start by arguing, how the first part of the lemma follows from the induction
claim.

First, note that y1 /∈ N(π, π∗) and if y2 ∈ N(π, π∗), then y1 ∈ N(π∗, π). Similarly, for all
s ∈ S, vs1 /∈ N(π, π∗) and if vs2 ∈ N(π, π∗), then vs1 ∈ N(π∗, π). We can therefore focus on T 1

0

and have φ(π∗, π) ≥ φT 1
0
(π∗, π). Define ρ = {C ∩ T 1

0 : C ∈ π} and ρ∗ = {C ∩ T 1
0 : C ∈ π∗},

which are the partitions π and π∗ restricted to agents in T 1
0 . If ρ = ρ∗, then π 6= π∗ can only

happen if some agent outside T 1
0 forms a coalition with a former coalition of π∗ in T 1

0 . Note
that the only agents in T 1

0 that can improve by that are the agents of the type bik. In every
case, this will lead to φT 1

0
(π∗, π) ≥ 1. As we have argued above, this implies φ(π∗, π) ≥ 1.

If ρ 6= ρ∗, we use the claim for the case j = 0 and observe that αi0 /∈ N(π, π∗). Hence,
φ(π∗, π) ≥ 1 also holds in this case.

It needs still to be shown that if π(x) ∩ π∗(x) = {x}, then φ(π∗, π) ≥ 3 or (R,S) is a
‘yes’-instance. Assume therefore that π(x)∩π∗(x) = {x}. By the first part of the induction
claim, we conclude that φT 1

0
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗). Since we are done

in the former case, we assume that {bik : i ∈ [2k]} ⊆ N(π, π∗). This can only happen if,
for every i ∈ 1, . . . , |R|, there exists an si ∈ S with vsi2 ∈ π(bik). Indeed, if this is not

the case, then the utility of bik is bounded by
2(k+1)+ 2λ

3 (k+1)

3+λ = 2
3 (k + 1) = vbik(π∗), where

λ = |{bjk : j ∈ [|R|]} ∩ (π(bik) \ {bik})|. Note that the equality is true for every λ ≥ 0. Hence,
bik /∈ N(π, π∗).

Define S′ = {s ∈ S : π(s2) ∩ {bik : i ∈ [|R|]} 6= ∅}. Now fix s ∈ S′ and define C = π(vs2).
We deal first with the case that vs1 ∈ C and let ri ∈ R with bik ∈ C. We claim that aik, c

i
k ∈ C.

Otherwise, for some λ ≥ 0, vbik(π) ≤
3
2 (k+1)+(k+1)+ 2λ

3 (k+1)

4+λ < 2
3 (k + 1) = vbik(π∗), and bik /∈

N(π, π∗), which is a contradiction. Hence, aik, c
i
k ∈ C. If vs2 ∈ N(π∗, π), we are done, because

then φ(π∗, π) ≥ φ{y1,y2}(π∗, π)+φ{vs1,vs2}(π
∗, π)+

∑
s′∈S\{s}+φ{vs′1 ,vs

′
2 }

(π∗, π)+φT 1
0
(π∗, π) ≥

0+2+0+1 = 3. Now, if C∩{bjk : j ∈ [|R|]} = {bik}, then vvs2 ≤
21
10 (k+1)+ 3

2 (k+1)

5 < 21
20 (k+1) =

vvs2 (π∗), but we already excluded that. Thus, there is i′ 6= i with bi
′

k ∈ C. It is easy to see

that bi
′

k ∈ N(π∗, π), which is contradicting our assumption that {bik : i ∈ [2k]} ⊆ N(π, π∗).
This concludes the case that vs1 ∈ C and we assume henceforth that, for all s ∈ S′, vs1 /∈ C.

Let I = s∩ {ri ∈ R : bik ∈ C} the set of members of s whose corresponding agents are in

the coalition C. If |I| ≤ 2, then vvs2 (π) ≤
6
2 (k+1)

3 = k+1 < 21
20 (k+1) = vvs2 (π∗). However, it is

already excluded that vs2 ∈ N(π∗, π). Hence, |I| = 3. In other words, π(vs2) = {vs2, bik, b
j
k, b

w
k }

with s = {i, j, w}. We conclude that S′ is a 3-partition of R by sets in S.
We will now proceed with the proof of the induction claim.
For the base case j = k, fix i ∈ [2k] and assume that Aik /∈ π. We observe that if Aik ∩

N(π, π∗) 6= ∅, then clearly φAik(π∗, π) ≥ 1. If Aik ∩N(π, π∗) = ∅, then {aik, cik} ⊆ N(π∗, π)

and φAik(π∗, π) ≥ 1. If in addition {bik, aik} ∩ π(cik) = ∅, then bik ∈ N(π∗, π) ∪N(π, π∗) and
the first part of the claim follows.

For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. Assume first that there
exists an agent z ∈ T ij with π(z) 6= π∗(z) but no such agent in Aij . The premise of the first

claim is vacuous and this part is therefore true. Since z ∈ T 2i−1
j+1 ∨ z ∈ T 2i

j+1, we can apply

induction for the second claim since the premise of the second claim for T 2i−1
j+1 or T 2i

j+1 is

true. Assume therefore that there exists an agent z ∈ Aij with π(z) 6= π∗(z).
We make the following observations.

• If αij ∈ N(π, π∗), then βij ∈ N(π∗, π).

• If βij ∈ N(π, π∗), then αij ∈ N(π∗, π).

• If γij ∈ N(π, π∗), then δij ∈ N(π∗, π).



• If δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

Now, we consider the case that π(aij) 6= π∗(aij).

• We consider first the subcase that bij ∈ N(π, π∗). Then cij ∈ N(π∗, π).

– If π(bij) ⊇ {c
2i−1
j+1 , c

2i
j+1}, then φAij (π, π

∗) ≤ 1 (with the above observations),

while by induction φT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 2 and φT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 4 ∨ {bik : i ∈
[2k]} ∩ (T 2i−1

j+1 ∪ T 2i
j+1) ⊆ N(π, π∗) and we are done.

– Otherwise, cij ∈ π(bij) and π(bij)∩{c
2i−1
j+1 , c

2i
j+1} 6= ∅. Then φAij (π

∗, π) ≥ 1 or aij ∈
N(π, π∗). We only need to consider the second case. Assume for contradiction
that aij ∈ π(bij). Then, π(bij) ∩ {βij , γij} 6= ∅ (otherwise, aij ∈ N(π∗, π)). Then,

vbij (π) ≤ 3j+4
5 < 2j+2.5

3 = vbij (π
∗), contradicting our assumption on bij (note

that we used that π(bij) 6⊇ {c
2i−1
j+1 , c

2i
j+1}). Therefore, aij /∈ π(bij) and therefore

π(aij) = {aij , βij , γij}. Hence, φAij (π
∗, π) ≥ 1 or π(δij) = {δij , α

2i−1
j+1 , α

2i
j+1}. But

then φAij (π
∗, π) ≥ −1 and φT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 and we are done.

• We can even assume that bij ∈ N(π∗, π), since otherwise aij ∈ π(bij) and aij , c
i
j ∈

N(π∗, π) and it follows φAij (π
∗, π) ≥ 1.

• If cij ∈ N(π, π∗), then aij , b
i
j ∈ N(π∗, π) and therefore φAij (π

∗, π) ≥ 1 and we are done.

• Since π(cij) 6= π∗(cij), we can assume cij ∈ N(π∗, π)

• Next, consider the case that aij ∈ N(π, π∗) and, by the previous cases, cij , b
i
j ∈

N(π∗, π).

– If π(aij) = {aij , βij , γij}, then φAij (π
∗, π) ≥ 3 or π(δij) = {δij , α

2i−1
j+1 , α

2i
j+1}. In the

latter case, φAij (π
∗, π) ≥ 1 and φT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 by induction and we are

done.

– Otherwise, βij ∈ π(aij) ∩ N(π∗, π) or γij ∈ π(aij) ∩ N(π∗, π). In the former case,

αij ∈ N(π∗, π) and in total φAij (π
∗, π) ≥ 3. In the latter case, again, φAij (π

∗, π) ≥
3 or π(δij) = {δij , α

2i−1
j+1 , α

2i
j+1} and the case is similar as before.

• Note that aij is not indifferent between π(aij) and π∗(aij), because π(aij) 6= π∗(aij). It

remains that aij , b
i
j , c

i
j ∈ N(π∗, π), in which case φAij (π

∗, π) ≥ 3.

We may therefore assume that π(aij) = π∗(aij). Only for the remaining cases, we

need that αij /∈ N(π, π∗). If π(αij) 6= π∗(αij), then αij , β
i
j ∈ N(π∗, π) and consequently

φAij (π
∗, π) ≥ 2. If π(γij) 6= π∗(γij), then φAij (π

∗, π) ≥ 2 or φAij (π, π
∗) ≥ 0 ∧ π(δij) ∩

{α2i−1
j+1 , α

2i
j+1} 6= ∅ and the claim follows by induction.

For the second part of the lemma, assume that S′ is a 3-partition of R through sets in
S. Define

π′ ={{bvk, bwk , bxk, vs2}, {vs1} : {v, w, x} = s ∈ S′} ∪ {{vs1, vs2} : s ∈ S \ S′}

∪ {{b|R|+1
k , . . . , b2

k

k , y2}, {y1}} ∪ {{δik−1, a2i−1k , a2ik } : i ∈ [2k−1]}
∪ {{bij , c2i−1j+1 , c

2i
j+1}, {aij , βij , γij} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α

2i
j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1

0}, {c10}}.



It is easily checked that φ(π′, π∗) = 1 and c10 forms a singleton coalition with c10 ∈
N(π∗, π′).

The proof of the hardness of the existence of strongly popular partitions on FHGs is very
similar to the case of ASHGs, but there are some subtle differences regarding the preferences
of the additional agent.

Theorem 23. Checking whether there exists a strongly popular partition in a symmetric
FHG is coNP-hard, even if all utilities are non-negative.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we consider the sym-
metric, non-negative FHG of Lemma 6 on agent set N with utility function v together with
the partition π∗ and the special agent x ∈ N . We define a symmetric, non-negative FHG
on agent set N ′ = N ∪ {z} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N ,
v′(z, x) = vx(π∗)/2, and v′(z, y) = 0 for y ∈ N \ {x}. Note that by Lemma 6, this reduction
is in polynomial time.

Consider the partition σ∗ = π∗∪{{z}} and let a partition σ 6= σ∗ of N ′ be given. Define
π = (σ \σ(z))∪{σ(z)\{z}}. Note that every agent y ∈ N \{x} can only improve her utility
if z leaves her coalition. In addition, the utility v(x, z) is designed so that x still receives
her unique top-ranked coalition in σ∗ (apply Proposition 10). Hence, φN (σ∗, σ) ≥ φ(π∗, π).

We consider the popularity margin between σ∗ and σ by a case distinction. If π 6= π∗,
then φ(σ∗, σ) ≥ −1+φ(π∗, π) ≥ 0 and φ(σ∗, σ) > 0 if (R,S) is a ‘no’-instance. On the other
hand, if π = π∗, then σ(z) 6= {z} (since σ 6= σ∗). As vy(π∗) > 0 for all y ∈ N , we know that
|σ(z) \ {z}| ≥ 2 and y ∈ N(σ∗, σ) for all y ∈ σ(z) \ {z} (by design of the utilities, this holds
in particular for agent x). Hence, φ(σ∗, σ) = φσ(z)(σ

∗, σ) ≥ −1 + |σ(z) \ {z}| > 0
It follows that σ∗ is popular and it is a strongly popular partition if (R,S) is a ‘no’-

instance.
If (R,S) is a ‘yes’-instance, then σ∗ is the only candidate that might be strongly popular.

Consider the partition π′ from Lemma 6 and define σ′ = (π′ \ {{x}}) ∪ {{x, z}}. Then,
x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas z ∈ N(σ′, σ∗). Therefore, φ(σ′, σ) = 1 + φ(π′, π∗) = 0.
Hence, π∗ is not strongly popular and there exists no strongly popular partition.

Theorem 24. Verifying whether a given partition in a symmetric FHG is strongly popular
is coNP-complete, even if all utilities are non-negative.

Proof. In the proof of Theorem 17, the partition σ∗ is strongly popular if, and only if, (R,S)
is a ‘no’-instance of X3C.

Theorem 25. Computing a mixed popular partition in a symmetric FHG is NP-hard, even
if all utilities are non-negative.

Proof. We give a Turing reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric FHG of Lemma 6 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . We define a symmetric, non-negative FHG on
agent set N ′ = N ∪ {z1, z2} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N ,
v′(z1, z2) = vx(π∗)/2, v′(z1, x) = v′(z2, x) = vx(π∗)/3 > 0, and v′(zi, y) = 0 for i ∈ [2], y ∈
N \ {x}. Note that by Lemma 6, this reduction is in polynomial time.

Consider the partition σ∗ = π∗ ∪ {{z1, z2}} and let σ 6= σ∗ be given. Define π =
(σ \ (σ(z1) ∪ σ(z2))) ∪ {σ(z1) \ {z1, z2}, σ(z2) \ {z1, z2}}, that is, the partition of agent set
N where z1 and z2 leave their coalitions. Assume that (R,S) is a ‘no’-instance. We will
prove that φ(σ∗, σ) > 0, and therefore that σ∗ is strongly popular. We may assume that
σ(z1) = {z1, z2} or x ∈ σ(zi) for some i, because otherwise it is a Pareto improvement if z1
and z2 leave their coalitions and form a coalition of their own.



Note that as in the proof of Theorem 23, it holds that φN (σ∗, σ) ≥ φ(π∗, π). Now, for
i ∈ [2] holds that zi ∈ N(σ∗, σ) unless σ(zi) ∈ {{z1, z2, x}, {z1, z2}}. If σ(zi) = {z1, z2},
then φ(σ∗, σ) = φ(π∗, π) ≥ 1, because π 6= π∗. On the other hand, σ(zi) = {z1, z2, x},
then π(x) ∩ π∗(x) = {x} and it follows that φ(σ∗, σ) ≥ −2 + φ(π∗, π) ≥ 1 (where the
last inequality uses Lemma 6). It remains the case that z1, z2 ∈ N(σ∗, σ) and we obtain
φ(σ∗, σ) ≥ 2 + φ(π∗, π) ≥ 2. Together, the partition σ∗ is strongly popular and therefore,
the unique mixed popular partition consists of σ∗ with probability 1.

Now assume that (R,S) is a ‘yes’-instance. Consider the partition π′ from Lemma 6
and define σ′ = (π′ \ {{x}}) ∪ {{x, z1, z2}}. Then, x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas
z1, z2 ∈ N(σ′, σ∗). Therefore, φ(σ′, σ) = 2 + φ(π′, π∗) = 1. Hence, the pure mixed partition
{σ∗} is not mixed popular.

We can solve X3C by computing a partition σ in the support of a mixed popular partition
and checking its probability in case that σ = σ∗.

Theorem 26. Checking whether there exists a popular partition in a symmetric FHG is
coNP-hard, even if all utilities are non-negative.

Proof. We provide a reduction from X3C. Given an instance (R,S) of X3C, we consider the
symmetric FHG with non-negative utility functions of Lemma 6 on agent set N with utility
function v together with the partition π∗ and the special agent x ∈ N . Set α = vx(π∗). For
i ∈ [2], let Ni = {yi : y ∈ N} be two copies of N . Accordingly, let π∗i be their respective
copies of π∗.

We define a symmetric ASHG on agent set N ′ = N1∪N2∪Z where Z = {zjk : k ∈ [2], j ∈
[3]}. Define Zj = {zj1, z

j
2}. Utilities are as follows.

• v′(yi, wi) = v(y, w) if y, w ∈ Ni for i ∈ [2],

• v′(zjk, x1) = 2α/5, v′(zjk, x2) = α/3 for k ∈ [2], j ∈ [3],

• v′(zj1, z
j
2) = α/2 for j ∈ [3], and

• v′(u, y) = 0 for every pair of agents u, y ∈ N ′ such that their utility is not yet defined.

By Lemma 6, this reduction is in polynomial time.
First assume that (R,S) is a ‘no’-instance. We claim that σ∗ = π∗1 ∪π∗2 ∪{Zj : j ∈ [3]} is

popular. To prove this, let σ 6= σ∗ be an arbitrary partition and define πi = {σ(y)∩Ni : y ∈
Ni} be the coalitions restricted to Ni. Let k ∈ [2] and j ∈ [3]. The first key insight is
that if there exists y ∈ σ(zjk) \ (Zj ∪ {x1, x2}), then zjk ∈ N(σ∗, σ). Assume that such an

agent y exists. Observe that the only agents that provide positive utility to zjk are zj3−k, x1,

and x2. The maximum utility that under these circumstances can be obtained for zjk is if

σ(zjk) = {zjk, z
j
3−k, x1, y} and even in this case vzjk

(σ) =
α
2 + 2α

5

5 = 9α
40 <

α
4 = vzik(σ∗).

We will use this insight to show that we can assume for every k ∈ [2], j ∈ [3] that
σ(zjk) ⊆ Zj ∪ {x1, x2}. Fix again k ∈ [2], j ∈ [3] and assume otherwise. Then, σ(zjk)∩ (Zj ∪
{x1, x2}) ⊆ N(σ∗, σ). This follows for agents in Zj from what we have just shown before,
and for agents xi by the design of their utilities and the fact that they received a top-ranked
coalition in π∗i and by Proposition 10 in σ∗. We modify σ by leaving the coalition with

the agents in Zj , that is, we define σ′ = (σ \ σ(zjk)) ∪ {σ(zjk) \ Zj , σ(zjk) ∩ Zj}. Then,
N(σ∗, σ′) ⊆ N(σ∗, σ) and N(σ, σ∗) ⊆ N(σ′, σ∗), which implies that φ(σ∗, σ) ≥ φ(σ∗, σ′)
and it suffices to consider σ′ and show a non-negative popularity margin for that partition.

We are ready to compute the popularity margin. Therefore, define I = {i ∈ [2] : σ(xi) ∩
Z 6= ∅}. Note that for i ∈ [2], φNi(σ

∗, σ) ≥ φ(π∗i , πi). Furthermore, if i ∈ I, then πi(xi) ∩
Ni = {xi} and |Z ∩ σ(xi)| ≤ 2. It follows that φ(σ∗, σ) = φN1

(σ∗, σ) + φN2
(σ∗, σ) +



φZ(σ∗, σ) ≥
∑
i∈I φNi(π

∗
i , πi) +

∑
i/∈I φNi(π

∗
i , πi) + φZ(σ∗, σ) ≥ 3|I| − |{z ∈ Z : σ(z) ∩

{x1, x2} 6= ∅}| = 3|I| − 2|I| ≥ 0. Hence, σ∗ is popular.
Conversely, assume that (R,S) is a ‘yes’-instance and assume for contradiction that σ is

popular and define πi = {σ(y) ∩Ni : y ∈ Ni} as above.
The overall proof strategy is as follows. First, we show that for k ∈ [2] and j ∈ [3],

σ(zjk) ∈ {Zj , Zj ∪ {x1}, Zj ∪ {x2}}. Then we show, that for i ∈ [2], there exists j ∈ [3] with
Zj ∪ {xi} ∈ σ. Finally, we perform a cyclic exchange of such coalitions.

Let k ∈ [2] and j ∈ [3] and define C = σ(zjk). The first crucial step is to show that
C ⊆ {x1, x2} ∪ Zj . To see this, assume for contradiction that there exists an agent y ∈
C\({x1, x2}∪Zj). We may assume that vy(σ) > 0, since otherwise leaving the coalition with
y yields a Pareto-improvement. Recall, that we have shown in the first part of the proof that,
under these circumstances, vzjk

(Zj) > vzjk
(σ). The same holds for zj3−k in both the case that

zj3−k ∈ C and zj3−k /∈ C. Define σ′ = (σ \ {σ(zj1), σ(zj2)}) ∪ {σ(zj1) \ {zj1}, σ(zj2) \ {zj2}, Zj}.
Then {zj1, z

j
2, y} ⊆ N(σ′, σ), while N(σ, σ′) ⊆ {x1, x2}. Hence, σ′ is more popular, which is

a contradiction. It follows that C ⊆ {x1, x2} ∪ Zj .
Next, we claim that zj3−k ∈ σ(zjk). Assume otherwise. If one of zjk and zj3−k is in a

singleton coalition, it is a Pareto improvement to form σ(zjk) ∪ σ(zj3−k). Otherwise, there

exists i ∈ [2] with σ(zjk) = {xi, zjk} and if σ(zj3−k) = {zj3−k, x3−i}. Hence, if zj3−k leaves her

coalition and joins σ(zjk), we obtain a more popular partition.
Define I = {i ∈ [2] : Z ∩ σ(xi) 6= ∅} and let i ∈ I. We claim that there exists j ∈ [3]

with σ(xi) = {xi} ∪ Zj . Let k ∈ [2], j ∈ [3] with zjk ∈ σ(xi). We already know that
then Zj ⊆ σ(xi) ⊆ Zj ∪ {x1, x2}. Furthermore, by the pigeon hole principle, for some
j′ ∈ [3] \ {j} holds Zj

′ ∈ σ. Assume for contradiction that x3−i ∈ σ(xi). Then, σ′ = (σ \
{σ(xi), Z

j′})∪{Zj ∪{x1}, Zj
′ ∪{x2}} is more popular. Indeed, N(σ′, σ) = {x1, x2, zj

′

1 , z
j′

2 },
while N(σ, σ′) = Zj .

The remainder of the proof is identical to the proof for ASHGs, namely we show that
I = {1, 2} and find a more popular partition even in this case.

All in all, it is shown that there exists no popular partition if (R,S) is a ‘yes’-instance.
This concludes the proof of the theorem.
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