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Abstract

Much of the social choice literature examines direct voting systems, in which voters
submit their ranked preferences over candidates and a voting rule picks a winner.
Real-world elections and decision-making processes are often more complex and in-
volve multiple stages. For instance, one popular voting system filters candidates
through primaries: first, voters affiliated with each political party vote over candi-
dates of their own party and the voting rule picks a candidate from each party, which
then compete in a general election.
We present a model to analyze such multi-stage elections, and conduct the first
quantitative comparison (to the best of our knowledge) of the direct and primary
voting systems in terms of the quality of the elected candidate. Our main theoretical
result is that every voting rule is guaranteed to perform almost as well (i.e., within a
constant factor) under the primary system as under the direct system. Surprisingly,
the converse does not hold: we show settings in which there exist voting rules that
perform significantly better under the primary system than under the direct system.
Using simulations, we see that plurality benefits significantly from using a primary
system over a direct one, while Condorcet-consistent rules do not.

1 Introduction

Thomas Jefferson, like many of the US constitution’s authors, believed that political parties
and factions are a bad thing (see also Hamilton et al. [18]). This view stemmed from a long
history of British and English political history, in which prison sentences and executions
were possible outcomes in the battle between factions for supremacy at the Royal court [32].
However, both in Britain and in the Unites States, once their respective legislative assemblies
gained political force, parties turned out to be quite unavoidable. Even Jefferson had to
start his own party, which ended up quite successful, and was able to vanquish the opposing
party from political existence [35].

Fast forwarding to today, political parties have become the bedrock of parliamentary
politics throughout the world. In particular, one of political parties’ main roles – if not
the most important (especially in presidential systems) – is to select the candidates which
are voted for by the general public. The mechanisms by which parties make this selection
are varied, and they have evolved significantly throughout the past 150 years. But in the
past few decades there has been a marked shift by parties throughout the world towards
increasing the ability of individual party (or unaffiliated) members to influence the outcome,
and in some cases, to be the only element to determine party candidates [12]. In particular,
US parties have changed their election methods since the 1970s to focus the selection of
presidential, congressional and state-wide candidates on popular support by party members
via primaries [9].

Despite this long and established role of parties in whittling down the candidate field
in elections, the treatment of a parties’ role in elections within the multiagent systems
community has been quite limited. While various candidate manipulation attacks have
been investigated (e.g., Sybil attacks [11]), and there is recent research into parties as a
collection of similar minded candidates (e.g., in gerrymandering, across different districts),
the role of parties in removing candidates has not been explored.

The focus of this paper is the primary voting system, in which each party’s electorate
selects a winner from among the party’s candidates, and among these primary winners,



an ultimate election winner is selected by the general public. Our goal is to compare this
system to the direct voting system, in which all voters directly vote over all candidates.

1.1 Our Results

Our contribution is twofold. First, we formulate a model which allows a quantitative com-
parison of the two voting systems. Our model is a spatial model of voting in which vot-
ers and candidates lie in an underlying multi-dimensional space, and voter preferences are
single-peaked. This allows us to compare each candidate’s social utility in terms of its total
distance to the voters. We make the evaluation metric formal using the notion of distortion
advocated by a recent line of research [28, 6]. Our results focus on 2 parties, each selecting
a single candidate, with both candidates presented to the general voting public.

Second, we use this model to present a comparison of the direct and primary voting
systems. In particular, we show that no voting rule performs much worse (by more than a
constant factor) under the primary system than under the direct system. While the converse
holds in some cases, we show settings in which it does not, and there exist voting rules that
perform much better under the primary system than under the direct system.

It is important to note that while we write of parties, voters and elections, this multi-step
model applies to a variety of decision-making processes by agents. An organization selecting
an “employee of the month” may ask each unit to nominate a single candidate, and then
choose from amongst them. A city may ask its regional subdivisions to assess which roads
require urgent fixing, and then the city council decides from these options where to invest
its efforts. Fundamentally, in many cases where the potential number of options is huge,
it is common to use subdivisions to cull the options and present only a few of them for
discussion and vote. In such cases, our multi-stage model is apt.

2 Related Work

The analysis of regular, direct elections is long and varied, both in the social sciences and
in AI [7]. In our particular setting, the voters are located in a metric space, with their
preferences related to their distance from candidates. Such settings have been widely inves-
tigated in the social science literature since the work of Downs [14], recently summarized
by Schofield [30]. In particular, we focus on the idea of distortion in such elections, a topic
broached by Procaccia and Rosenschein [28] for voters with a utility function, but inves-
tigated in the context of voters in metric spaces in a series of papers [2, 1, 33] for most
common voting rules. Feldman et al. [17] explored such a setting for strategyproof mecha-
nisms. Micha and Shah [24] consider the problem of predicting the election outcome under
a given voting rule using sampled votes. This can be alternatively viewed as the problem of
choosing a desirable candidate for the entire electorate when only a subset of them vote. In
our metric setting, Lemma 4 shows that if only a constant fraction of the electorate votes,
the distortion of the chosen candidate with respect to the entire electorate increases by at
most a constant factor. In contrast, in their non-metric setting, they derive a stark negative
result even when the votes of all but one voter are available. Finally, Bachrach et al. [3]
examine a related concept, comparing how district based elections differ from proportional
ones. They measure how much a district election outcome can differ from the proportional
outcome, a term they refer to as the Misrepresentation Ratio.

Discussing changes to the set of candidates has been mainly focused on two paths of
research. Strategic candidates, investigation of which began with the work of Dutta et al.
[15] – followed by Dutta et al. [16] discussing strategic candidacy in tournaments, and
recently further explored by Brill and Conitzer [8], Polukarov et al. [27] and others – deals



mainly with finding equilibria. The other is the addition and removal of candidates, as a
form of control manipulation, which was studied by Bartholdi III et al. [4]; see the summaries
by Brandt et al. [7] and Rothe [29].

Investigating parties’ selection methods and their effect on the election has mostly been
done in the social sciences. Kenig [23] details the range of selection methods parties use,
and there has been significant focus on more democratic methods for leader selection [13],
which seems to be a general trend in many Western countries [12]. There is also significant
literature on particular party elections in various countries, such as Britain [21], Belgium
[34], Israel [20], and many others. Naturally, the most widely examined country is the US, in
which political parties have been a fixture of political life since its early days [35]. The most
recent extensive summary of research on it is due to Cohen et al. [9], who try to explain how
party power-brokers influence the party membership vote. Norpoth [26] uses primary data
to predict election results, and notably Sides et al. [31] show that primary voters are very
similar to “regular” voters. In computational fields, recent interest in proxy voting [10, 22],
in which voters give other agents the ability to vote for them, may be related to how modern
parties are viewed and analyzed. Finally, Harrenstein et al. [19] looks at the complexity of
finding Nash equilibrium for the strategic selection of party nominees.

3 Model

For k ∈ N, define [k] = {1, . . . , k}. Let V = [n] denote a set of n voters, and A denote
a set of m candidates. We assume that voters and candidates lie in an underlying metric
space M = (S, d), where S is a set of points and d is a distance function satisfying the
triangle inequality and symmetry. More precisely, there exists an embedding ρ : V ∪A→ S
mapping each voter and candidate to a point in S. For a set X ⊆ V ∪A, we slightly abuse
the notation and let ρ(X) = {ρ(x) : x ∈ X}. Also, for x, x′ ∈ V ∪ A, we often use d(x, x′)
instead of d(ρ(x), ρ(x′)) for notational convenience.

In this work, we assume that voters and candidates additionally have an affiliation with
a political party. Specifically, we study a setting with two parties1, denoted −1 and 1. The
party affiliation function π : V ∪ A → {−1, 1} maps each voter and candidate to the party
they are affiliated with. For p ∈ {−1, 1}, let Vp = π−1(p) ∩ V , Ap = π−1(p) ∩ A, np = |Vp|,
and mp = |Ap|. We require np ≥ 1 for each p ∈ {−1, 1}. Our main result (Theorem 2) holds
even if there are independent voters not affiliated with either party.

Collectively, an instance is the tuple I = (V,A,M, ρ, π). Given I, our goal is to find
a candidate a ∈ A as the winner. The social cost of a is its total distance to the voters,
denoted CI(a) =

∑
i∈V d(i, a). For party p ∈ {−1, 1}, let CIp (a) =

∑
i∈Vp d(i, a). Hence

CI(a) = CI−1(a) +CI1 (a). We also use for X ⊆ V , CIX(a) =
∑
i∈X d(i, a). Given an instance

I, we would like to choose a candidate aOPT ∈ arg mina∈A C
I(a) that minimizes the social

cost. We shall drop the instance from superscripts if it is clear from the context.
However, we do not observe the full instance. Specifically, we do not know the underlying

metric M or the embedding function ρ. Instead, each voter i ∈ N submits a vote, which
is a ranking (strict total order) �i over the candidates in A by their distance to the voter.
Specifically, for all i ∈ N and a, b ∈ A, a �i b ⇒ d(i, a) ≤ d(i, b). The voter is allowed to
break ties between equidistant candidates arbitrarily. The vote profile

−→� I = (�1, . . . ,�n)
is the collection of votes. Given an instance I, its corresponding election EI = (V,A,

−→� I , π)
contains all observable information.

In the families of instances that we consider, we fix the number of candidates m and
let the number of voters n to be arbitrarily large. This choice is justified because in many

1The model can be extended to multiple parties in a reasonably straightforward manner, but for simplic-
ity’s sake, we shall focus on only 2 parties.



typical elections (e.g., political ones), voters significantly outnumber candidates. Let Iαm,M
be the family of instances satisfying the following conditions.

• Each party has at least an α fraction of the voters affiliated with it, i.e., np ≥ α ·n for
each p ∈ {−1, 1}. Note that α ∈ [0, 0.5]: α = 0.5 is the strictest (exactly half of the
voters are affiliated with each party), while α = 0 imposes no conditions; in the latter
case, we omit the superscript α.

• The number of candidates is at most m.

In particular, we shall focus on a few cases of M :

M = ? This allows M to be an arbitrary metric space.

M = Rk The metric space should be M = (Rk, d), where d is the standard Euclidean
distance.

M = sep-Rk This means the embedding ρ must be such that ρ(V−1 ∪A−1) and ρ(V1 ∪A1)
are linearly separable.2 In this case we shall take the metric to be M = (Rk, d)
with d as the standard Euclidean distance. In plain words, the voters and candidates
affiliated with each party reside in a certain part of the metric space, separate from
those affiliated with the other party. In a single dimension, this means there exists a
threshold on the line such that voters and candidates affiliated with one party lie to
the left of it, while those affiliated with the other party lie to the right. Note that this
is the only choice of M that restricts the embedding ρ based on party affiliation π.

These families of instances are related by the following relation. For all k,

Iαm,sep-Rk
⊂
⊂

Iα
m,Rk

Iα
m,sep-Rk+1

⊂
⊂
Iαm,Rk+1 ⊂ Iαm,?

3.1 Voting Rules and Distortion

A voting rule f takes an election as input, and returns a winning candidate from A. We say
that the cost-approximation of f on instance I is

φ(f, I) =
CI(f(EI))

mina∈A CI(a)
,

and given a family of instances I, the distortion of f with respect to I is

φI(f) = sup
I∈I

φ(f, I).

Since distortion is a worst-case notion, we have that when I ⊆ I ′, φI(f) ≤ φI′(f) for
every voting rule f .

Standard voting rules choose the winning candidate independently of party affiliations.
These include rules such as plurality, Borda count, k-approval, veto, and STV. We refer
readers to the book by Brandt et al. [7] for their definitions. We call a voting rule affiliation-
independent if f(E) = f(E′) when elections E and E′ differ only in their party affiliation
functions. Since an affiliation-independent voting rule f ignores party affiliations, we have
φIα

m,sep-Rk
(f) = φIα

m,Rk
(f). All of the above-mentioned rules, in addition to being affiliation-

independent, share the property of being unanimous, i.e., they return candidate a when a
is the top choice of all voters.

2Two sets of points are linearly separable if the interiors of their convex hulls are disjoint.



3.2 Stages and Primaries

Given an affiliation-independent voting rule f , voting systems with primaries employ a
specific process to choose the winner, essentially resulting in a different voting rule f̂ that
operates on a given election E = (V,A,

−→� , π) as follows:

1. First, it creates two primary elections: for p ∈ {−1, 1}, define Ep = (Vp, Ap,
−→�p, πp),

where
−→�p denotes the preferences of voters in Vp over candidates in Ap, and πp : Vp →

{p} is a constant function.

2. Next, it computes the winning candidate in each primary election (primary winner)
using rule f : for p ∈ {−1, 1}, let a∗p = f(Ep).

3. Finally, let Eg = (V,
{
a∗−1, a

∗
1

}
,
−→�g, π) be the general election, where

−→�g denotes
the preferences of all voters over the two primary winners. The winning candidate is
f̂(E) = maj(Eg), which is what most voting rules become when dealing with only 2
candidates.3 Here, maj is the majority rule, which, given two candidates, picks the
one that a majority of voters prefer; our results are independent of its tie-breaking.

This resembles systems employed by the main US, Canadian and other countries’ parties, in
which a party’s members vote on their party’s candidates to select a winner of their primary.
In other systems, such selection could be a multi-stage process.

Given an affiliation-independent voting rule f , the goal of this paper is to compare its
performance under the direct system, in which f is applied on the given election directly,
to its performance under the primary system, in which f̂ is applied on the given election
instead. Formally, given a family of instances I and an affiliation-independent voting rule
f , we wish to compare φI(f) and φI(f̂) (henceforth, the distortion of f with respect to I
under the direct and the primary systems, respectively).

4 Small Primaries Are Terrible

Recall that in a family of instances Iαm,M, we require that at least α fraction of voters be
affiliated with each party, i.e., np ≥ αn for each p ∈ {−1, 1}. In other words, each primary
election must have at least αn voters.

We first show that when a primary election can have very few voters (α = 0), every
reasonable voting rule has an unbounded distortion in the primary system, even with respect
to our most stringent family of instances Im,sep-R.

Theorem 1. For m ≥ 3, φIm,sep-R(f̂) = ∞ for every affiliation-independent unanimous
voting rule f .

Proof. Consider an instance I ∈ Im,sep-R in which voter 1 is located at 0 and affiliated with
party −1, while the remaining n− 1 voters are located at 1 and affiliated with party 1. All
m candidates are affiliated with party −1: one is at 0, and the rest are at 1.

The candidate a∗ at 0 becomes the primary winner of party −1, and trivially becomes
the overall winner. Its social cost is C(a∗) = n− 1. In contrast, an optimal candidate aOPT
at 1 has social cost C(aOPT ) = 1. Hence, C(a∗)

C(aOPT )
= n− 1. Since the number of voters n is

unbounded, φIm,sep-R(f̂) =∞.

3If one of the parties has no affiliated candidates, then the primary winner of the other party becomes
the overall winner. In a setting with more than 2 parties, or where each party nominates several candidates,
the general election can use f to determine the outcome (or use some other voting process).



Theorem 1 continues to hold even if we require that at least a constant fraction of
candidates be affiliated with each party: we could simply move a constant fraction of the
candidates from 1 to 3, and the proof would still go through.

On the other hand, if we require that at least a constant fraction of voters be affiliated
with each party, the result changes dramatically.

5 Large Primaries Are Never Much Worse

For every affiliation-independent voting rule f , we bound the distortion of f̂ in terms of the
distortion of f for every instance. Note that this is stronger than comparing the worst-case
distortions of f and f̂ over a family of instances.

Given an instance I = (V,A,M, ρ, π) and party p ∈ {−1, 1}, we say that Ip =
(Vp, Ap,M, ρp, πp) is the primary instance of party p, where ρp and πp are restrictions of ρ
and π to Vp∪Ap. The primary election Ep of party p is precisely the election corresponding
to instance Ip.

Theorem 2. Let I = (V,A,M, ρ, π) be an instance. For p ∈ {−1, 1}, let Ip be the primary
instance of party p, and np = |Vp| ≥ αn. Then,

φ(f̂ , I) ≤ 3 · 1− α+ max(φ(f, I−1), φ(f, I1))

α
.

Further, for a socially optimal candidate aOPT ∈ arg mina∈A C
I(a), we have a bound de-

pending only on the distortion of the primary election of its party:

φ(f̂ , I) ≤ 3 ·
1− α+ φ(f, Iπ(aOPT ))

α
.

For each family of instances I that we study, it holds that for every instance I ∈ I,
both its primary instances, if seen as direct elections, are also in I (since the party division
has no effect on the direct election distorition). Hence, we can convert the instance-wise
comparison to a worst-case comparison.

Corollary 3. For every α > 0, k ∈ N, family of instances I ∈
{
Im,?, Im,Rk , Im,sep-Rk

}
,

and affiliation-independent voting rule f ,

φI(f̂) ≤ 3 · 1− α+ φI(f)

α
.

Note that φI(f) ≥ 1 by definition. Hence, we can write φI(f̂) ≤ 6
α · φI(f). In other

words, for every affiliation-independent voting rule f , its distortion under the primary system
is at most a constant times bigger than its distortion under the direct system, with respect
to every family of instances that we consider.

To prove Theorem 2, we need two lemmas. The first lemma shows that if the distortion
of a rule f for a primary instance Ip is low, then the corresponding primary winner a∗p is
nearly as good as any candidate in Ap for the overall election as well. The intuition is that
when voters in V \ Vp drive up the social cost of a∗p (i.e., when they are far from a∗), they
must do so for every candidate in Ap.

Lemma 4. Let a∗p denote the primary winner of party p. Then

C(a∗p) ≤
1− α+ φ(f, Ip)

α
· min
a∈Ap

C(a).



Proof. Let θ = φ(f, Ip) (hence θ ≥ 1). Fix an arbitrary a ∈ Ap. Then, CVp(a∗p) ≤ θ ·CVp(a).
Now,

C(a∗p) = CVp(a∗p) + CV \Vp(a∗p)

≤ θ · CVp(a) + CV \Vp(a) + (n− np) · d(a, a∗p)

≤ θ · C(a) + (n− np) · d(a∗p, a), (1)

where the second transition follows due to the triangle inequality. We also have d(a∗p, a) ≤
d(a∗p, i) + d(i, a) for any i ∈ Vp. Thus,

d(a∗p, a) ≤
CVp(a∗p) + CVp(a)

np

≤ 1 + θ

np
· CVp(a) ≤ 1 + θ

np
· C(a). (2)

Substituting Equation (2) into Equation (1), and using the fact that
n−np
np
≤ 1−α

α , we

get the desired result.

Our next lemma shows that the primary winner that wins the general election is not
much worse than the primary winner that loses the general election.

Lemma 5. Let a∗−1 and a∗1 be the two primary winners, a∗ ∈
{
a∗−1, a

∗
1

}
be the winner of

the general election, and â ∈
{
a∗−1, a

∗
1

}
\ {a∗}. Then,

C(a∗) ≤ 3 · C(â).

Proof. Because a∗ wins the general election by a majority vote, there must exist X ⊆ V ,
|X| ≥ n

2 such that d(i, a∗) ≤ d(i, â) for every i ∈ X. Combining with the triangle inequality

d(a∗, â) ≤ d(a∗, i) + d(i, â), we get d(i, â) ≥ d(a∗,â)
2 for every i ∈ X. Hence,

C(â) ≥ n

2
· d(a∗, â)

2
⇒ d(a∗, â) ≤ 4

n
· C(â). (3)

Now, we have

C(a∗) =
∑
i∈X

d(i, a∗) +
∑

i∈V \X

d(i, a∗)

≤
∑
i∈X

d(i, â) +
∑

i∈V \X

(d(i, â) + d(a∗, â))

≤ C(â) +
n

2
· d(a∗, â), (4)

where the second transition follows because d(i, a∗) ≤ d(i, â) for i ∈ X, and d(i, a∗) ≤
d(i, â)+d(a∗, â) due to the triangle inequality. Substituting Equation (3) into Equation (4),
we get the desired result.

We are now ready to prove our main result.

Proof of Theorem 2. Recall that a∗−1 and a∗1 are the primary winners. Let p ∈ {−1, 1} be
such that a∗p is the winner of the general election. Let aOPT ∈ arg mina∈A C(a) be a socially
optimal candidate. We consider three cases.

• Case 1: aOPT ∈ Ap. That is, the optimal candidate and the winner are affiliated with
the same party. In this case, Lemma 4 yields

φ(f̂ , I) ≤ 1− α+ φ(f, Ip)

α
=

1− α+ φ(f, Iπ(aOPT ))

α
.



• Case 2: aOPT ∈ A−p, aOPT = a∗−p. That is, the optimal candidate and the winner
are affiliated with different parties, and the optimal candidate is a primary winner. In
this case, Lemma 5 yields

φ(f̂ , I) ≤ 3.

• Case 3: aOPT ∈ A−p, aOPT 6= a∗−p. That is, the optimal candidate is affiliated with
a party different than that of the winner, and is not a primary winner. In this case,
we use both Lemmas 4 and 5 to derive

φ(f̂ , I) =
C(a∗p)

C(aOPT )
=

C(a∗p)

C(a∗−p)
·
C(a∗−p)

C(aOPT )

≤ 3 · 1− α+ φ(f, I−p)

α

= 3 ·
1− α+ φ(f, Iπ(aOPT ))

α
.

Thus, in each case, we have the desired approximation.

Note that our proof of Theorem 2 does not preclude the existence of independent voters.
Specifically, we can allow the party affiliation function π to map a subset of voters V0 to
a neutral choice (say 0), have these voters only vote in the general election and not in
either primary election under the primary system, and the proof of Theorem 2 would still
go through. Additionally, we can also relax the restriction that all voters vote in the general
election. That is, we can assume that a subset of voters Vg ⊆ V vote in the general election
under the primary system, assume |Vg| ≥ γn, and a version of Theorem 2 in which the
constant 3 in the bound is replaced by 4−γ

γ would hold. This requires a generalization of
Lemma 5, omitted due to space constraints. Finally, note we do not use the assumption
that both parties use the same voting rule f in their primaries. The theorem extends easily
to allow the use of different voting rules, with the distortion under the primary system still
being bounded in terms of the maximum of the distortions in the two primary elections.

6 Large Primaries Are Not Better
Without Party Separability

While we showed in the previous section that a voting rule does not perform much worse
under the primary system than under the direct system, we now show that it does not
perform any better either, at least in the worst case over all instances with at most m
candidates. The result continues to hold even if we require each party to have at least a
constant fraction of the voters.

Note, this result is weaker than Theorem 2 because it is a worst-case comparison instead
of an instance-wise comparison. However, it still applies to all voting rules f . It applies to
any metric that does not require separability of parties, in particular to Im,? and Im,Rk .

Theorem 6. For α ∈ [0, 0.5], k ∈ N, M ∈
{
?,Rk

}
(i.e. when the metric space does not

require party separability), and affiliation-independent voting rule f , we have φIαm,M(f̂) ≥
φIαm,M(f).

Proof in appendix.
Our proof actually establishes a slightly stronger result. Instead of showing φIαm,M(f̂) ≥

φIαm,M(f), we actually show φI0.5m,M(f̂) ≥ φIαm,M(f).



7 Separability and Its Advantages

The analysis for Im,sep-Rk is not so straightforward. In the proof of Theorem 6, we co-located
the new voters affiliated with party 1 and aOPT affiliated with party −1. This was allowed
because non-separable metrics like ? and Rk place no constraints on the embedding.

With Iαm,sep-Rk , we need the voters and candidates affiliated with one party to be sepa-
rated from those affiliated with the other. Hence, this operation of putting all of one party’s
voters at the location of aOPT belonging to another party would be allowed only if, in the
original instance I, aOPT is on the boundary of the convex hull of ρ(V ∪ A). While this
is not the case for all instances, we only need this in at least one worst-case instance for
f , i.e., for at least one I ∈ Iαm,sep-Rk with φ(f, I) = φIα

m,sep-Rk
(f). Equation (5) would then

yield the desired result. More generally, it is sufficient if, given any ε > 0, we can find an
instance I such that φ(f, I) ≥ φIα

m,sep-Rk
(f)− ε and aOPT is at distance at most ε from the

boundary of the convex hull of ρ(V ∪A).
Interestingly, [2] show that this is indeed the case for plurality and Borda count (see the

proof of their Theorem 4). Thus, we have the following.

Proposition 7. Let f be plurality or Borda count. Then, φI0.5m,sep-R(f̂) ≥ φIm,?(f).

However, known worst cases for the Copeland rule [2] and STV [33] do not satisfy this
requirement. It is unknown if these rules admit a different worst case that satisfies it.

This raises an important question. Does Proposition 7 hold for all affiliation-independent
voting rules? We shall shortly answer this negatively.

More precisely, we construct an affiliation-independent voting rule f such that
φIαm,sep-R

(f̂)� φIαm,sep-R
(f) for every α > 0. That is, with large primaries, f performs much

better under the primary system than under the direct system, when voters and candidates
are embedded on a line and the separability condition is imposed.

Note that instances in Im,sep-R are highly structured. For instance, it is known that
when voters and candidates are embedded on a line, there always exists a weak Condorcet
winner [5], and selecting such a candidate results in a distortion of at most 3 [2]. Hence, we
have φIm,sep-R(f) = 3 for every Condorcet-consistent, affiliation-independent voting rule f .4

Our aim in this section is to construct an affiliation-independent voting rule ffail that
with respect to Im,sep-R has an unbounded distortion in the direct system, but at most a
constant distortion in the primary system.

Definition 1. Let ffail be an affiliation-independent voting rule that operates on election
E = (V,A,

−→�) as follows. Let A = {a1, . . . , am}, and t = (m+ 1)/2.

• Special Case: If m ≥ 9, m is odd, n ≥ m2, and
−→� has the following structure, then

return a1.

1. For voter 1, a1 �1 . . . �1 am.

2. For voter 2, am �2 . . . �2 a1.

3. For voter 3, at−1 is the most preferred, and
am−2 �3 a1 �3 am−1 �3 am.

4. For voter 4, at+1 is the most preferred, and
a3 �4 am �4 a2 �4 a1.

5. For j ∈ [m− 2], for voter i = 4 + (2j − 1),
aj+1 �i aj+2 �i aj , and for voter i′ = 4 + 2j,
aj+1 �i′ aj �i′ aj+2.

4[2] also proved that no affiliation-independent (deterministic) voting rule can have distortion better than
3, even with respect to Im,sep-R.



6. For every other voter v, at is the most preferred.

• If E does not fall under the special case, then apply any Condorcet consistent voting
rule (e.g., Copeland’s rule).

Theorem 8. For m ≥ 9 and constant α ∈ (0, 0.5], φIαm,sep-R(f̂fail) is upper bounded by a

constant, whereas φIαm,sep-R(ffail) is unbounded.

Proof is in the appendix.

8 Using Simulations to Go Beyond Worst Case

So far we compared the distortion of a voting rule under the direct and primary systems,
taken in the worst case over a family of instances. In practice, such worst-case instances may
not arise naturally. In this section, we investigate the distortion of a voting rule under the
direct and primary systems, in the average case over simulated instances. Our simulations
focus on the two-stage, two-party primary process which has been main setting in this paper.
We generate the simulated instances by varying a number of parameters; to keep the number
of simulations reasonable, when varying one parameter, we use default values of the others5:

Total voters The number of voters n: default = 500, range = 100 to 2100 in increments
of 200.

Total candidates The number of candidates m: default = 50, range = 10 to 210 in incre-
ments of 20.

Independent voters The percentage of voters who are independent (i.e., do not vote in
any party primary): default = 0%, range = 0% to 90% in increments of 10%.

Independent candidates The percentage of candidates who are independent (i.e., are not
a candidate in any party primary): default = 0%, range = 0% to 90% in increments
of 10%.

Party voter balance The percentage of voters who are affiliated with party −1: default
= 50%,6 range = 10% to 90% in increments of 10%.

Party candidate balance The percentage of candidates who are affiliated with party −1:
default = 50%,7 range = 10% to 90% in increments of 10%.

Metric space dimension The dimension k of the Euclidean metric space [0, 1]k: default
= 4, range = {1, 4, 7, 10}.

For a given combination of the parameter values, we generate random instances as fol-
lows. First, we place a set V of n voters at uniformly random locations in [0, 1]k. Next, if
the ratio of the number of voters in the two parties is supposed to be x : (1− x), we find a
hyperplane dividing voters into this x : (1 − x) ratio. We do not set voter affiliations yet.
Next, if the ratio of the number of candidates in the two parties is supposed to be x : (1−x),

5As we observe later, the dimension of the metric space had perhaps the most significant effect on the
distortion. To verify that this was not an artifact of the default values of the other parameters, we varied
the dimension along with every other parameter. Our figures, however, are generated with the default value
for the dimension.

6When there are no independent voters in these simulations, by default we split voters equally between
the two parties.

7When there are no independent candidates in these simulations, by default we split the candidates
equally between the two parties.



then we place candidates uniformly at the appropriate side of the hyperplane. Finally, if
x% of the voters (resp. candidates) are supposed to be independent, then we choose x% of
the voters (resp. candidates) — rounded down — remove them from the respective sets,
and distribute them at uniformly random locations in [0, 1]k.

Once the locations of the voters and candidates are fixed, we create two instances. In
one instance (called “split”), we assign V−1 ∪A−1 to party −1, and assign V1 ∪A1 to party
1. In this instance, we have party separability. In the other instance (called “random”),
we assign |V−1| voter and |A−1| candidates chosen uniformly at random to party −1, and
among the rest, assign |V1| voter and |A1| candidates chosen uniformly at random to party
1. In this instance, we do not have party separability. This allows us to compare the
effect of party separability on the distortion. We run five voting rules — plurality, Borda,
STV, maximin, and Copeland — on both instances under the direct and primary systems,
and measure the distortion (for primary systems with independent candidates, we use the
specified voting rule in both rounds). Note that the distortion of the direct system would
be identical for party separable and random instances because the two instances only differ
in party affiliations. Thus, for each rule, we obtain three numbers: Direct, Primary-split,
and Primary-random. For each combination of parameter values, we repeat this 1000 times
and take the average distortion.

Primary
is better

Direct
is better

No significant
difference

plurality split 183 7 18
plurality random 203 0 5
STV split 8 178 22
STV random 152 13 48
Borda split 2 202 4
Borda random 8 179 21
maximin split 0 207 1
maximin random 0 208 0
Copeland split 0 207 1
Copeland random 0 208 0

Table 1: The table shows the number of settings (out of 208) in which each of primary and
direct systems leads to a lower average distortion than the other. Statistical significance is
measured using a paired t-test with p = 0.05.

We now present our results comparing the primary and direct systems. Our experiments
result in 208 settings (combination of parameter values). For each setting, we compare the
average primary distortion and the average direct distortion of each voting rule under each
party affiliation model (split or random), and evaluate which system results in a better
average distortion. For statistical significance, we use the paired t-test with p = 0.05. The
results are presented in Table 1.

Without party separability (i.e. in the random case), our theoretical results indicate
that primary is no better than direct in the worst case (Theorem 6). While this is also true
in our experimentally generated average cases for Borda, Copeland, and maximin, we see
that for plurality and STV, primary almost always outperforms direct in the average case.

With party separability, direct outperforms primary for all voting rules except plurality.
While our theoretical result shows that for plurality direct also outperforms primary in the
worst case (Proposition 7), we see that this is not true in the average case. Interestingly,
for STV, party separability significantly affects which system works better.

We also wanted to know how large where the differences between the two systems, so we
looked at the difference between the average distortion under the primary system and the



(a) plurality-split (b) plurality-random (c) STV-split

(d) maximin-split (e) maximin-random (f) STV-random

Figure 1: These histograms show the difference between the average distortion under the
primary system and that under the direct system.

average distortion under the direct system. The results for plurality, STV, and maximin
are given in Figure 1. The figures for Borda and Copeland are omitted because they were
similar to the figures for maximin.

The results are quite varied. In some cases where primary mostly outperforms direct
(e.g. in plurality-split or plurality-random), primary sometimes outperforms direct by a
large margin whereas direct only outperforms primary by a small margin. But we see that
the opposite is also true (e.g. in maximin-split). Hence, neither system seems to have a
significant advantage over the other in terms of the difference in average distortions.

9 Discussion

Our paper initiates the novel quantitative study of multi-stage elections (and their com-
parison to single-stage elections), but leaves plenty to explore. Some directions are fairly
straightforward extensions of our results. The most straightforward question is to tighten
our bounds. There is also the question of explaining the trends we observe in the average
case, which sometimes differ from our worst-case results. A next step would be to study
realistic distributional models of voter preferences and candidate positions in the political
spectrum, and analyze their effect on distortion.

Other extensions are seemingly more involved. Extending our framework to more than
two parties requires the use of a ranked voting rule in the general election, which may
significantly affect the analysis. Interestingly, such an extension would also incorporate
independent candidates because one can imagine an independent candidate to be a party
of their own. Examining the use of multiple and different voting rules as Narodytska and
Walsh [25] do for two-step voting (though without candidate elimination between stages)
is an enticing direction. For example, in a multi-party direct system, we may use plurality,
whereas in the primary system, the parties may use STV. It is also reasonable to consider
that each party has its own voting rule. It would be interesting as well to examine party
manipulation techniques in primary systems. Similarly, it is reasonable to believe that
candidates may also strategically shift, to some extent, their location following the primaries,
to make themselves more appealing to the general electorate.
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A Proof of Theorem 6

Recall Theorem 6 states:
For α ∈ [0, 0.5], k ∈ N, M ∈

{
?,Rk

}
(i.e. when the metric space does not require

party separability), and affiliation-independent voting rule f , we have φIαm,M(f̂) ≥ φIαm,M(f).

Proof. We shall denote Iαm,M as I. We want to show that for every instance I ∈ I, there

exists an instance I ′ ∈ I such that φ(f̂ , I ′) ≥ φ(f, I). This would imply the desired result.
Fix an instance I = (V,A,M, ρ, π) ∈ I. Let aOPT ∈ A denote an optimal candidate in

I, and a∗ = f(EI). Note that φ(f, I) = CI(a∗)
CI(aOPT )

. Construct instance I ′ = (V ′, A,M, ρ′, π′)

as follows.

• Let V ′ = V ∪ Ṽ , where Ṽ is a new set of voters and |Ṽ | = |V |.

• Let ρ′(x) = ρ(x) for all x ∈ V ∪ A, and ρ(x) = ρ(aOPT ) for all x ∈ Ṽ . That is, ρ′

matches ρ for existing voters and candidates, and the new voters are co-located with
aOPT .

• Let π′(x) = −1 for all x ∈ V ∪ A, and π′(x) = 1 for all x ∈ Ṽ . That is, all existing
voters and candidates are affiliated with party −1, while all new voters are affiliated
with party 1.



First, let us check that I ′ ∈ I. Since I has m candidates, so does I ′. Further, in I ′, we
have |V ′−1| = |V ′1 | = |V ′|/2, which satisfies the constraint corresponding to every α ∈ [0, 0.5].
Hence, we have I ′ ∈ I.

Let us apply f̂ on I ′. One of its primary instances, I ′−1, is precisely I. Hence, the primary
winner of party −1 is f(I ′−1) = f(I) = a∗. Because there are no candidates affiliated with
party 1, a∗ becomes the overall winner.8

Next, CI
′
(a∗) ≥ CI(a∗) because V ⊂ V ′. Also, CI

′
(aOPT ) = CI(aOPT ) because aOPT

has zero distance to all voters in V ′ \ V . Together, they yield

φ(f̂ , I ′) =
CI
′
(a∗)

CI′(aOPT )
≥ CI(a∗)

CI(aOPT )
= φ(f, I), (5)

as desired.

B Proof of Theorem 8

Recall, Theorem 8 states:
For m ≥ 9 and constant α ∈ (0, 0.5], φIαm,sep-R(f̂fail) is upper bounded by a constant,

whereas φIαm,sep-R
(ffail) is unbounded.

And that ffail in an affiliation-independent voting rule that operates on election E =
(V,A,

−→�) as follows. Let A = {a1, . . . , am}, and t = (m+ 1)/2.

• Special Case: If m ≥ 9, m is odd, n ≥ m2, and
−→� has the following structure, then

return a1.

1. For voter 1, a1 �1 . . . �1 am.

2. For voter 2, am �2 . . . �2 a1.

3. For voter 3, at−1 is the most preferred, and
am−2 �3 a1 �3 am−1 �3 am.

4. For voter 4, at+1 is the most preferred, and
a3 �4 am �4 a2 �4 a1.

5. For j ∈ [m− 2], for voter i = 4 + (2j − 1),
aj+1 �i aj+2 �i aj , and for voter i′ = 4 + 2j,
aj+1 �i′ aj �i′ aj+2.

6. For every other voter v, at is the most preferred.

• If E does not fall under the special case, then apply any Condorcet consistent voting
rule (e.g., Copeland’s rule).

We will now prove the theorem. Note that m being odd ensures that t is an integer, and
m ≥ 9 ensures that a1, a3, at−1, at, at+1, am−2, and am are all distinct candidates. The
significance of n ≥ m2 will be clear later.

We will now establish that a worst-case instance of ffail falls under the special case;
for this instance, we need to show that at is socially optimal; that ffail returns a1 on this
instance; and most importantly, that the structure of

−→� ensures that the optimal candidate
at is sufficiently far from both the leftmost and the rightmost candidates.

We prove this last fact in the following lemma.

8Even if we require each party to have at least one affiliated candidate, the proof essentially continues to
hold. In this case, we can add one candidate affiliated with party 1 that is located sufficiently far from all
the voters, ensuring that a∗ still becomes the overall winner. This would show φIα

m+1,M
(f̂) ≥ φIα

m,M
(f)

because instance I′ may now have m+ 1 candidates.



Lemma 9. Let I = (V,A,M, ρ, π) ∈ Im,sep-R be an instance for which the corresponding
election EI falls under the special case of ffail. Then the following holds.

1. Either ρ(a1) ≤ . . . ≤ ρ(am), or ρ(a1) ≥ . . . ≥ ρ(am), or |ρ(A)| = 2.

2. If |ρ(A)| 6= 2, min {d(at, a1), d(at, am)} ≥ d(a1,am)
4 .

Proof. Since voter 1 ranks am last and preferences are single peaked on the line, am is at
one edge of the candidate ordering. Similarly, since voter 2 ranks a1 last, candidate a1 is
also at the edge of the candidate ordering (i.e., ρ(a1) = maxa∈A ρ(a) or ρ(a1) = mina∈A ρ(a)
and ρ(am) = maxa∈A ρ(a) or ρ(am) = mina∈A ρ(a)). If ρ(a1) = ρ(am), this means voters 1
and 2 are located in an equal distance from all candidates (which means all candidates are
located in the same location, or some are at some distance from voters 1 and 2, and the rest
are at the same distance in the other direction from these voters).

Assume |ρ(A)| > 2 (this also means ρ(a1) 6= ρ(am) and ρ(v1) 6= ρ(v2)), we wish to show
the order of candidates is as voter 1 ordered them, i.e., ρ(a1) ≤ . . . ≤ ρ(am) or ρ(a1) ≥
. . . ≥ ρ(am). If voter 1 is further away from all candidates (i.e, if ρ(a1) = maxa∈A ρ(a), then
ρ(v1) > ρ(a1); if ρ(a1) = mina∈A ρ(a), then ρ(v1) < ρ(a1)), the ordering of the candidates is
as voter 1 orders them. Otherwise, let ` be the smallest index such that ρ(a1) 6= ρ(a`), then
ρ(v1) may be between ρ(a1) and ρ(a`). If d(v1, a1) < d(v1, a`), once again, the ordering of
candidates is as voter 1 ordered them. If d(v1, a1) = d(v1, a`), for any `′ > `, ρ(a`′) 6= ρ(a1),
as that contradicts voter 2’s vote (a`′ �2 a` �2 a1). Therefore, ρ(`′) is either at ρ(`), or
further away from ρ(a1), meaning that candidates locations are ordered in the order voter
1’s ordered them.

For the second condition, we will show that d(at, a1) ≥ d(a1,am)
4 . By symmetry, we

also obtain d(at, am) ≥ d(a1,am)
4 . Assume |ρ(A)| 6= 2, and without loss of generality, let

ρ(a1) ≤ . . . ≤ ρ(am) from the first condition. We show that either ρ(a1) = . . . = ρ(am)
or ρ(a1) < . . . < ρ(am). If not, then we can find three consecutive candidates aj , aj+1,
and aj+2 such that either ρ(aj) = ρ(aj+1) < ρ(aj+2) or ρ(aj) < ρ(aj+1) = ρ(aj+2). Both
of these options are impossible in our case due to the existence of voters with preferences
aj+1 � aj � aj+2 and aj+1 � aj+2 � aj .

If ρ(a1) = . . . = ρ(am) the second condition is trivially true. Suppose ρ(a1) < . . . <
ρ(am). Because voter 3 (resp. 4) prefers candidate at−1 (resp. at+1) the most, we have
ρ(v3) ∈ (ρ(at−2), ρ(at)) (resp. ρ(v4) ∈ (ρ(at), ρ(at+2)). We can now show

d(a1, am) ≤ d(a1, v4) + d(v4, am)

≤ 2d(a1, v4) (∵ am �4 a1)

≤ 2d(a1, am−2) (∵ ρ(at) < ρ(v4) < ρ(am−2))

≤ 2(d(a1, v3) + d(v3, am−2))

≤ 4d(a1, v3) (∵ am−2 �3 a1)

≤ 4d(a1, at). (∵ ρ(a1) < ρ(v3) < ρ(at))

This concludes the proof.

We can now restate our theorem:

For m ≥ 9 and constant α ∈ (0, 0.5], φIαm,sep-R(f̂fail) is upper bounded by a constant,

whereas φIαm,sep-R(ffail) is unbounded.



Proof. First, we show that φIαm,sep-R
(ffail) is unbounded. Consider the following instance

I = (V,A,M, ρ, π). Let V = {v1, . . . , v2n} (where n ≥ m2), A = {a1, . . . , am} (m being
odd), and M = (R, d) with d being the Euclidean distance on the line.

The embedding function ρ is as follows. For ` ∈ [m], ρ(a`) = `−1
m−1 ; that is, candidates

a1 through am are uniformly spaced in [0, 1] with ρ(a1) = 0 and ρ(am) = 1.
Fix ε < 1/m2. The voters are embedded as follows.

ρ(v1) = ρ(a1)− ε,
ρ(v2) = ρ(am) + ε,

ρ(v3) = ρ(at − 1) + ε,

ρ(v4) = ρ(at + 1)− ε,
ρ(v4+(2j−1)) = ρ(aj+1) + ε ∀j ∈ [m− 2],

ρ(v4+2j) = ρ(aj+1)− ε ∀j ∈ [m− 2],

ρ(vj) =
1

2
∀j ≥ 2m+ 1.

Finally, in the party affiliation π, since we are just showing how bad the distortion of
direct elections are and f is affiliation-independent, the party affiliation is not important,
and the outcome is independent of π, so we can assign it in any way such that half the
voters are of one party and half are of the other. This construction is all we need since
I ∈ I0.5m,sep-R ⊆ Iαm,sep-R for all α ∈ (0, 0.5].

Next, it is also easy to check that election EI falls under the special case of ffail. Hence,
ffail(E

I) = a1. Note that C(a1) ≥ (2n − 2m) · |0 − 1
2 | > n −m because a1 is at distance

1
2 from all but 2m voters located at 1

2 . In contrast, C(at) ≤ 2m · 1 because at is at zero
distance from all but 2m voters (and its distance from those 2m voters is at most 1). Thus,
φ(ffail, I) ≥ (n−m)/2m. Since n is unbounded, φIαm,sep-R(ffail) is also unbounded.

Finally, we show that φIαm,sep-R
(f̂fail) is upper bounded by a constant. Fix an instance

I ∈ Iαm,sep-R. For notational simplicity, we refer to the number of candidates in I as m,
though the proof below works if it is less than m, too. First, assume |ρ(A)| 6= 2 (we will
handle the case |ρ(A)| = 2 later). Without loss of generality, assume that ρ(a1) ≤ . . . ≤
ρ(am), and that for a fixed q ∈ [m], candidates a1, . . . , aq are affiliated with party −1 and
the rest are affiliated with party 1.

Let I−1 and I1 be the primary instances corresponding to I. Let aOPT be an optimal
candidate for I. Without loss of generality, suppose it is affiliated with party −1.

In the proof of Theorem 2, φ(f̂ , I) depends only on the distortion of f on the primary
instance of the party that aOPT is affiliated with. Hence, if primary election EI−1 does
not fall under the special case of ffail, then ffail applies a Condorcet-consistent rule on I−1,

ensuring that φ(f, I−1) is at most 3. In this case, by Theorem 2, φ(f̂ , I) is also upper
bounded by a constant.

Suppose EI−1 falls under the special case of ffail. Let t = (q+ 1)/2 and d−1 = d(a1, aq).
Then, by Lemma 9, min {d(at, a1), d(at, aq)} ≥ d−1/4. From now on, we shall use asymptotic
notation liberally for simplicity.

Recall that there is a set of voters S ⊂ V−1 whose top candidate was at, and

|S| = |V−1| − 2q = Ω(|V−1|) = Ω(n),

where the second transition holds because in the special case, |V−1| ≥ q2, and the final
transition holds because |V−1| ≥ αn.

Note that for every i ∈ S and j ∈ V1, d(i, j) ≥ d−1/8. And |V1| ≥ αn. Hence, we have
Ω(n) pairs of voters (i, j) such that d(i, j) ≥ d−1/8. Further, d(aOPT, i) + d(aOPT, j) ≥



d(i, j). Hence, it follows that

C(aOPT) = Ω(n) · d−1. (6)

Let a∗ = f̂(I). If a∗ = a∗−1 = a1, then we have

C(a∗) ≤ C(aOPT) + n · d(a∗, aOPT)

≤ C(aOPT) + n · d−1 = O(C(aOPT)),

yielding a constant upper bound on φ(f̂fail, I) = C(a∗)/C(aOPT).
On the other hand, if a∗ = a∗1, we have

C(aOPT) ≥ C(a1)− n · d(a1, aOPT)

≥ n

2

d(a1, a
∗)

2
− n · d−1

≥ n

2

d(aOPT, a
∗)

2
−O(C(aOPT)).

Here, the second transition follows because in the general election, at least n/2 voters vote
for a∗ over a1 and d(a1, aOPT) ≤ d−1, and the final transition follows from Equation (6).
This implies

C(aOPT) = Ω(n · d(aOPT, a
∗)). (7)

On the other hand, we have

C(a∗) ≤ C(aOPT) + n · d(aOPT, a
∗) = O(C(aOPT)),

where the last transition follows due to Equation (7). Hence, we again have the desired

constant upper bound on φ(f̂fail, I).
Finally, if ρ(A) = {x1, x2} (w.l.o.g., x1 < x2), due to separability, we have two options:

1. ρ(A−1) = x1 and ρ(A1) = x2: Therefore, aOPT ∈ {a∗−1, a∗1}, and since a∗ is the
majority winner, a∗ = aOPT, and the distortion is 1.

2. ρ(A−1) = {x1, x2} and ρ(A1) = x2: If aOPT ∈ {a∗−1, a∗1}, then it is similar to the
previous case. Otherwise, this means ρ(aOPT) = x1 and ρ(a∗−1) = ρ(a∗1) = x2.
Separability means the voters of party 1 lie in {x|x ≥ x2}, so C(aOPT) ≥ |V1| ·
d(x1, x2) ≥ α · n · d(x1, x2). While C(a∗) ≤ C(aOPT) + |V−1| · d(x1, x2) ≤ C(aOPT) +
n(1− α)d(x1, x2). Combining these two equations we get the distortion is 1+2α

α .


