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Abstract

Recently, Szufa et al. [AAMAS 2020] presented a “map of elections” that visualizes
a set of 800 elections generated from various statistical cultures. While similar
elections are grouped together on this map, there is no obvious interpretation of the
elections’ positions. We provide such an interpretation by introducing four canonical
“extreme” elections, acting as a compass on the map. We use them to analyze both
a dataset provided by Szufa et al. and a number of real-life elections. In effect, we
find a new variant of the Mallows model and show that it captures real-life scenarios
particularly well.

1 Introduction

Szufa et al. [21] recently proposed a technique for visualizing sets of ordinal elections—
i.e., elections where each voter ranks the candidates from the most to the least appealing
one—based on given distances between them. They have applied this technique to 800
elections coming from various statistical cultures, ranging from the classic urn and Mallows
models to various types of restricted domains, and they obtained a map of elections, where
elections with similar properties are grouped together (see Figure 1; each dot represents
a single election and, generally, the closer two elections are in the picture, the smaller is
their distance in terms of the metric of Szufa et al.). Indeed, we see that elections from the
same statistical culture, represented with the same color, are nicely grouped together; Szufa
et al. [21] have also shown other evidence that nearby elections are closely related.1 Yet,
the map has two major drawbacks. First, while similar elections are plotted next to each
other, there is no clear meaning to absolute positions on the map. Second, the map regards
statistical cultures only and it is not obvious where real-life elections—such as those stored
in PrefLib [15]—would lie on the map. Our goal is to address both these issues.

Figure 1: A map for the 10x100 dataset of Szufa et al. [21].

We start by looking more
closely at the distance metric for
elections that Szufa et al. [21]
used. The idea is that given an
election with m candidates, one
computes an m×m frequency ma-
trix which specifies what fraction
of the voters ranks each candi-
date in each position (such ma-
trices are bistochastic, i.e., their
entries are nonnegative and each
column and each row sums up to
one). Measuring the distance be-
tween two elections boils down to
computing their frequency matri-

1The map in the figure regards elections with 10 candidates and 100 voters, whereas Szufa et al. [21]
focused on the case of 100 candidates and 100 voters. Nonetheless, they also provided such smaller datasets
and we focus on them because we want to compare them to real-life elections, which typically have few
candidates.
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(a) The compass and the dataset of Szufa et al. [21]. (b) The compass and various real-life elections.

Figure 2: Maps of elections for the 10x100 dataset of Szufa et al. [21] (on the left) and some real-life
elections (on the right). The maps include the compass matrices and their connecting paths (shown
in black, red, and blue). For clarity, the dots corresponding to the elections of Szufa et al. [21] (in
the left figure) are shown in lighter colors than in Figure 1. On the right, the pale blue area is
where Mallows elections end up (for various φ parameters) and the pale orange area is where urn
elections end up (for various α parameters).

ces and summing up the earth mover’s distances between their columns, where columns
are reordered to minimize the distance (see Section 2); Szufa et al. [21] call this distance
positionwise. Using frequency matrices makes it possible to compare elections with different
numbers of voters (effectively, by reweighting them), and reordering the columns ensures
that candidate names are irrelevant (as suggested for such settings by Faliszewski et al. [7]).

Our first result is an algorithm that, given a bistochastic matrix and a number n, finds
some election with n voters whose frequency matrix is (nearly) identical to the one from the
input (achieving perfect accuracy is not always possible, but our algorithm achieves the best
result one may, in general, hope for). As a consequence, instead of considering elections, we
may directly look at the space of bistochastic matrices, which simplifies many discussions.
Thus, we often speak of matrices and elections interchangeably.

Next we form what we call a compass. The idea is to pick matrices that, on the one
hand, are far away from each other, and, on the other hand, have natural interpretations.
Specifically, we consider the following four “extreme” matrices, corresponding to four types
of (dis)agreement among the voters:

1. The identity matrix, ID, modelling perfect agreement (all voters agree on a single
preference order).

2. The uniformity matrix, UN, modelling lack of agreement (each candidate takes each
position equally often).

3. The stratification matrix, ST, modelling partial agreement (voters agree that half of
the candidates are better than the other half, but lack agreement on anything else).

4. The antagonism matrix, AN, modelling conflict (half of the voters have opposite pref-
erence orders to the other half).

For each two of these “compass” matrices, we also consider a spectrum of their convex
combinations (“paths” between the matrices). In visualizations, these paths appear as a
parallelogram-like shape with corresponding “diagonals”; see, e.g., Figure 2a, where we
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apply the compass method to the dataset from Figure 1 (the black, blue, and red points
are certain convex combinations of the corresponding endpoints, which are the compass
matrices). Throughout the rest of the paper we explain where these figures come from.

The compass allows us to make several observations. For example, in Figure 2a we see
that 1D Interval elections are closer to the antagonism matrix, whereas higher-dimensional
hypercube elections are closer to the stratification one. This is intriguing as, on a formal
level, these two kinds of elections are very similar. Figure 2b, which shows a map of real-life
elections (some from PrefLib and some new ones) is even more striking. Most of the real-life
elections (including all political ones) end up in one “quadrant” of the parallelogram, and
essentially all elections end up in the vicinity of some Mallows elections (in Figure 2b, the
pale blue area is where Mallows elections end up, depending on the parameter of the model;
the pale orange area is where urn elections end up). So, if one were to run experiments with
a single statistical culture, the Mallows model might be a wise choice.

Yet, we find that natural ways of sampling Mallows elections (e.g., by choosing the
Mallows parameter uniformly at random, or using a fixed parameter for different numbers
of candidates), which are used in many research papers, are biased. We propose a nor-
malization and argue, both theoretically and by considering the compass, that it produces
more balanced results. In other words, we recommend using the Mallows model, but in
conjunction with our normalization.

We provide a detailed analysis and discussion of the above-mentioned results in the main
part of the paper and in the appendix (results marked by (F) are proven in the appendix.).

2 Preliminaries

Given an integer t, we write [t] to denote the set {1, . . . , t}. By R+ we mean the set of
nonnegative real numbers. Given a vector x = (x1, . . . , xm), we interpret it as an m × 1
matrix, i.e., we use column vectors. For a matrix X, we write xi,j to refer to the entry in
its i-th row and j-th column.

Elections. An election E is a pair (C, V ), where C = {c1, . . . , cm} is a set of candidates
and V = (v1, . . . , vn) is a collection of voters. Each voter v ∈ V has a preference order �v,
which ranks the candidates from the most to the least desirable one according to v. If v
prefers candidate a to candidate b, then we write v : a � b, and we extend this notation
to more candidates in a natural way. For a voter v and a candidate c, we write posv(c) to
denote the position on which v ranks c (the top-ranked candidate has position 1, the next
one has position 2, and so on). We refer to both the voters and their preference orders as
the votes. The intended meaning will always be clear from the context.

Position and Frequency Matrices. Let E = (C, V ) be an election, where C =
{c1, . . . , cm} and V = (v1, . . . , vn). For a candidate c ∈ C and position i ∈ [m], we
write #posE(c, i) to denote the number of voters in election E that rank c on position i.
By #posE(c) we mean the vector:

(#posE(c, 1),#posE(c, 2), . . . ,#posE(c,m)).

The position matrix for election E, denoted #pos(E), is the m ×m matrix that has vec-
tors #posE(c1), . . . ,#posE(cm) as its columns. We also consider vote frequencies rather
than absolute counts. To this end, for a candidate c and a position i ∈ [m], let #freqE(c, i)

be #posE(c,i)
n , let vector #freqE(c) be (#freqE(c, 1), . . . ,#freqE(c,m)), and let the frequency

matrix for election E, denoted #freq(E), consist of columns #freqE(c1), . . . ,#freqE(cm).
Note that in each position matrix, each row and each column sums up to the number of

voters in the election. Similarly, in each frequency matrix, the rows and columns sum up to
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one (such matrices are called bistochastic). For a positive integer m, we write F(m) [P(m)]
to denote the set of all m×m frequency [position] matrices.

Example 1. Let E = (C, V ) be an election, where C = {a, b, c}, V = (v1, . . . , v6), and
the preference orders are v1 : a � b � c, v2 : a � b � c, v3 : a � b � c, v4 : b � a � c,
v5 : c � a � b, v6 : c � a � b. The position and frequency matrices for this election are:


a b c

1 3 1 2
2 3 3 0
3 0 2 4

 and


a b c

1 1/2 1/6 1/3
2 1/2 1/2 0
3 0 1/3 2/3


Earth Mover’s Distance (EMD). Let x = (x1, . . . , xt) and y = (y1, . . . , yt) be two
vectors from Rt+, whose entries sum up to 1. The earth mover’s distance between x and y,
denoted EMD(x, y), is defined as the lowest total cost of operations that transform vector x
into vector y, where each operation is of the form “subtract δ from position i and add δ to
position j” and costs δ · |i− j|. Such an operation is legal if the current value at position i
is at least δ. EMD(x, y) can be computed in polynomial time using a greedy algorithm.

Positionwise Distance. Let E = (C, V ) and F = (D,U) be two elections with m candi-
dates each (we do not require that |V | = |U |). The positionwise distance between E and F ,
denoted POS(E,F ), is defined in terms of frequency matrices #freq(E) = (e1, . . . , em)
and #freq(F ) = (f1, . . . , fm) as follows [21]:

POS(E,F ) := minσ∈Sm

(∑m
i=1 EMD(ei, fσ(i))

)
,

where Sm is the permutation group on m elements. In other words, the positionwise distance
is the sum of the earth mover’s distances between the frequency vectors of the candidates
from the two elections, with candidates/columns matched optimally according to σ. The
positionwise distance is invariant to renaming the candidates and reordering the voters.

Statistical Cultures. We define the following three statistical cultures, i.e., models for
generating random elections:

1. Under the Impartial Culture (IC) model, we sample all votes uniformly at random.

2. The Pólya-Eggenberger urn model [2] uses a nonnegative parameter α, which gives the
level of correlation between the votes (this parameterization is due to McCabe-Dansted
and Slinko [16]). To generate an election with m candidates, we take an urn containing
one copy of each possible preference order and generate the votes iteratively: In each
step we draw an order from the urn (this is the newly generated vote) and return it
to the urn together with αm! copies. For α = 0, we obtain the IC model.

3. The Mallows model [14] uses parameter φ ∈ [0, 1] and a central preference order v.
Each vote is generated randomly and independently. The probability of generating a
vote u is proportional to φκ(u,v), where κ(u, v) is the swap distance between u and v
(i.e., the minimum number of swaps of adjacent candidates that transform u into v).

Sometimes, we refer to other statistical cultures used by Szufa et al. [21]. We do not
define them formally here, but we attempt to make our discussions intuitively clear.

Maps of Elections. Szufa et al. [21] drew a map of elections by computing the position-
wise distances between 800 elections drawn from various statistical cultures and visualizing
them using the force-directed algorithm of Fruchterman and Reingold [8]. They focused on
elections with 100 candidates and 100 voters, but also generated smaller datasets, available
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on their website. We consider their dataset with 10 candidates and 100 voters (see Figure 1
for its map). We use the same algorithm as they do for our visualizations, except that for
each two elections we set their attraction coefficient to be the square of their positionwise
distance (and not the distance itself, as they do; our approach groups similar elections more
tightly and gives more visually appealing results for elections with few candidates).

We stress that the maps that both we and Szufa et al. [21] provide are helpful tools
to illustrate the distances between particular (families of) elections, but are certainly not
perfect. For example, since the visualization algorithm is randomized, we can get slightly
different maps for each run of the algorithm. The visualizations also depend on the exact
composition of the set of depicted elections (for example, a map where 50% of the elections
came from the IC model would make it seem that these elections cover a much larger propor-
tion of the map than if IC elections constituted only 10% of the elections). Thus, whenever
we say that some two elections are close to each other, we mean that their positionwise
distance is small. While this is typically reflected by these two elections being close on the
map, on its own, closeness on the map does not suffice for such a claim.

3 Recovering Elections from Matrices

Throughout this paper we often deal with frequency matrices of elections. While computing
a frequency matrix of an election is straightforward, the reverse direction is less clear.

We first observe that each m × m position matrix has a corresponding m-candidate
election with at most m2 − 2m+ 2 distinct preference orders. This was shown by Leep and
Myerson [13, Theorem 7] (they speak of “semi-magic squares” and not “position matrices”
and show a decomposition of a matrix into permutation matrices, which correspond to votes
in our setting). Their proof lacks some algorithmic details which we provide in the appendix.

Proposition 1 (F). Given a position matrix X ∈ P(m), one can compute in O(m4.5) time
an election E that contains at most m2 − 2m+ 2 different votes such that #pos(E) = X.

Next, we consider the issue of recovering elections based on frequency matrices. Given an
m×m bistochastic matrix X and a number n of voters, we would like to find an election E
with position matrix nX. This may be impossible as nX may have fractional entries, but we
can get very close to this goal. The next proposition shows how to achieve it, and justifies
speaking of elections and frequency matrices interchangeably.

Proposition 2. Given an m×m bistochastic matrix X and an integer n, one can compute in
polynomial time an election E with n voters whose position matrix P satisfies |nxi,j−pi,j | ≤
1 for each i, j ∈ [m] and, under this condition, minimizes the value

∑
1≤i,j≤m |nxi,j − pi,j |.

Proof. We use randomized dependent rounding in the following algorithm; see Appendix A
for a deterministic algorithm, which also performs the minimization step.

We start by computing matrix Y where each entry yi,j is equal to nxi,j − bnxi,jc. All
entries of Y are between 0 and 1, and each row and each column of Y sums up to a
(possibly different) integer. We construct an edge-weighted bipartite graph G with vertex
sets A = {a1, . . . , am} and B = {b1, . . . , bm}. For each two vertices ai and bj , we have a
connecting edge of weight yi,j . For each vertex c ∈ A∪B, we let its fractional degree δG(c)
be the sum of the weights of the edges touching it. Then we invoke the dependent rounding
procedure of Gandhi et al. [9] on this graph, and in polynomial time we obtain an unweighted
bipartite graph G′ with the same two vertex sets, such that the (standard) degree of each
vertex c ∈ A ∪ B in G′ is equal to δG(c) (note that dependent rounding is computed via a
randomized algorithm, but this condition on the degrees is always satisfied, independently
of the random bits selected). Using G′, we form an m × m matrix D such that for each
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i, j ∈ [m], di,j is 1 if G′ contains an edge between i and j, and di,j = 0 otherwise. Finally,
we compute matrix P = bnXc+D.

The entries of P differ from those of nX by at most one, and the rows and columns of P
sum up to n (to see it, consider the degrees of the vertices in G′). So, we obtain the desired
election by invoking Proposition 1 on matrix P .

4 Setting up the Compass

Our “compass” consists of two main components: Four matrices that occupy very different
areas of the election space and represent different types of (dis)agreement among the voters,
and six paths consisting of their convex combinations. We describe these components below.

4.1 The Four Matrices

The first two matrices are the identity matrix, IDm, with ones on the diagonal and zeros
elsewhere, and the uniformity matrix, UNm, with each entry equal to 1/m. The identity
matrix corresponds to elections where each voter has the same preference order, i.e., there is a
common ordering of the candidates from the most to the least desirable one. In contrast, the
uniformity matrix captures elections where each candidate is ranked on each position equally
often, i.e., where, in aggregate, all the candidates are viewed as equally good. Uniformity
elections are quite similar to the IC ones and, in the limit, indistinguishable from them.
Yet, for a fixed number of voters, typically IC elections are at some (small) positionwise
distance from uniformity.

The next matrix, stratification, is defined as follows (we assume that m is even):

STm =

[
UNm/2 0

0 UNm/2

]
.

Stratification matrices correspond to elections where the voters agree that half of the can-
didates are more desirable than the other half, but, in aggregate, are unable to distinguish
between the qualities of the candidates in each group.

For the next matrix, we need one more piece of notation. Let rIDm be the matrix
obtained by reversing the order of the columns of the identity matrix IDm. We define the
antagonism matrix, ANm, to be 1/2IDm + 1/2rIDm. Such matrices are generated, e.g., by
elections where half of the voters rank the candidates in one order, and half of the voters
rank them in the opposite one, so there is a clear conflict. In some sense, stratification and
antagonism are based on similar premises. Under stratification, the group of candidates is
partitioned into halves with different properties, whereas in antagonism (for the case where
half of the voters rank the candidates in the same order) the voters are partitioned. However,
the nature of the partitioning is, naturally, quite different.

We chose the above matrices because they capture natural, intuitive phenomena and
seem to occupy very different areas of the space of elections. To see that the latter holds,
let us calculate their positionwise distances (for further arguments see also Appendix B).

Proposition 3 (F). If m is divisible by 4, then it holds that:

1. POS(IDm,UNm) = 1
3 (m2 − 1),

2. POS(IDm,ANm) = POS(UNm,STm) = m2

4 ,

3. POS(IDm,STm) = POS(UNm,ANm) = 2
3 (m

2

4 − 1),
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4. POS(ANm,STm) = 13
48m

2 − 1
3 .

To normalize these distances, we divide them by D(m) = POS(IDm,UNm), which we
suspect to be the largest positionwise distance between two matrices from F(m) (as ar-
gued below). For each two matrices X and Y among our four, we let d(X,Y ) :=
limm→∞ POS(Xm,Ym)/D(m). A simple computation shows the following (see also the drawing
on the right; we sometimes omit the subscript m for simplicity):

d(ID,UN) = 1,

d(ID,AN) = d(UN,ST) = 3/4,

d(AN,ST) = 13/16,

d(ID,ST) = d(UN,AN) = 1/2.

UN ID

AN

ST

1

1
2

3
4

13
16

3
4

1
2

For small m, using ILPs, we verified that each compass matrix is almost as far away
as possible from the others. Further, we believe that ID and UN are the two most distant
frequency matrices, i.e., they form the diameter of our space. While showing this formally
seems to be challenging, for each m ∈ {3, . . . , 7}, using an ILP, we have verified that,
indeed, IDm and UNm are the two most distant matrices under the positionwise distance.

4.2 Paths between Election Matrices

Next, we consider convex combinations of frequency matrices. Given two such matrices, X
and Y , and α ∈ [0, 1], one might expect that matrix Z = αX + (1 − α)Y would lie at dis-
tance (1−α)POS(X,Y ) from X and at distance αPOS(X,Y ) from Y , so that we would have:

POS(X,Y ) = POS(X,Z) + POS(Z, Y ).

However, without further assumptions this is not necessarily the case. Indeed, if we takeX =
IDm and Y = rIDm, then 0.5X + 0.5Y = ANm and POS(X,Y ) = 0, but POS(X, 0.5X +
0.5Y ) = POS(ID,AN) > 0. Yet, if we arrange the two matrices X and Y so that their
positionwise distance is achieved by the identity permutation of their column vectors, then
their convex combination lies exactly between them.

Proposition 4 (F). Let X = (x1, . . . , xm) and Y = (y1, . . . ym) be two m ×m frequency
matrices such that POS(X,Y ) =

∑m
i=1 EMD(xi, yi). Then, for each α ∈ [0, 1] it holds

that POS(X,Y ) = POS(X,αX + (1− α)Y ) + POS(αX + (1− α)Y, Y ).

Using Proposition 4, for each two compass matrices, we can generate a sequence of
matrices that form a path between them. For example, matrix 0.5ID + 0.5UN is exactly at
the same distance from ID and from UN. In Figure 2a we show a map of elections that (in
addition to the dataset of Szufa et al. [21]) contains our four compass matrices and for each
two of them, i.e., for each two X,Y ∈ {ID,UN,AN,ST}, a set of d50 · d(X,Y )e matrices
obtained as their convex combinations with values of α uniformly distributed in [0, 1]. Note
that by the proof of Proposition 3, it holds that the positionwise distance between any two
of our four matrices is achieved for the identity permuation, as required by Proposition 4.

5 Applying the Compass

In this section, we apply our compass to gain a better understanding of the map of elections
created by Szufa et al. [21] and to place some real-life elections on the map. We also
determine where Mallows and urn elections land.
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5.1 A Map of Statistical Cultures with a Compass

In Figure 2a, we show a map of the 800 elections provided by Szufa et al. [21] in their
10x100 dataset, together with the compass. As expected, the uniformity matrix is close to
the impartial culture elections, but still at some distance from them. Similarly, the identity
matrix is very close to the Mallows elections with close-to-zero values of φ. Indeed, such
elections consist of nearly identical votes.

The red path, linking AN and ST, roughly partitions the elections into those closer
to UN and those closer to ID. The latter group consists mostly of Mallows and urn elections
(with low φ or high α, respectively), but single-crossing and some single-peaked elections
also make an appearance.

Analyzing the distances of elections to AN and ST, it is striking that 1D Interval elections
lie closer to AN, while other hypercube elections lie closer to ST, even though, formally,
they are similar.2 Moreover, it is intriguing that single-peaked elections generated according
to the Walsh model [22] are closer to ST, whereas those from the Conitzer model [5] (which
are very similar to the 1D Interval ones) are closer to AN. To understand this phenomenon,
let us look at single-peakedness and the models of Conitzer and Walsh more closely.

Definition 1. Consider a set C = {c1, . . . , cm} of candidates and a linear order c1 C c2 C
· · · C cm, referred to as the societal axis. A vote v is single-peaked with respect to C if
for each t ∈ [m] it holds that the t top-ranked candidates in v form an interval in C. An
election E = (C, V ) is single-peaked if there is a societal axis C such that each vote in V is
single-peaked with respect to C.

Intuitively, the societal axis orders the candidates with respect to some common, one-
dimensional issue, such as, e.g., their position on the political left-to-right spectrum. In
both the Conitzer and the Walsh model, we start by choosing the axis uniformly at random.
Then, in the Conitzer model, we generate each vote as follows: We choose the top-ranked
candidate uniformly at random and we keep on extending the vote with candidates to the
left and to the right of the already-selected ones, deciding which one to pick with a coin toss,
until the vote is complete. Thus, by choosing close-to-extreme candidates from different sides
of the axis as top-ranked, we generate close-to-opposite preference orders with fairly high
probability. As a consequence, the Conitzer model generates elections that have common
features with the antagonism ones. Under the Walsh model, we choose each single-peaked
preference order uniformly at random. There are few such preference orders with extreme
candidates (with respect to the axis) ranked highly, but many with the center candidates
on top and the extreme candidates ranked around the bottom. This leads to stratification.

5.2 Urn and Mallows Elections

Our next goal is to place “paths” of urn and Mallows elections on the map. In both cases it
requires some care. Recall that the urn model has parameter α, which takes values between 0
and∞. To generate an urn election, we choose α according to the Gamma distribution with
shape parameter k = 0.8 and scale parameter θ = 1 (this ensures that about half of the urn
elections are closer to UN than to ID, and the opposite for the other half; see Figure 3a).

Regarding the Mallows model, we have a parameter φ that takes values between 0 and 1,
where 0 leads to generating ID elections and 1 leads to generating IC ones. It is thus intuitive
to choose φ uniformly at random from the [0, 1] interval. Yet, as seen in Figure 3b, doing so
places elections quite unevenly on the map. Similarly, for different numbers of candidates

2Elections in a t-dimensional hypercube model are generated by drawing, for each candidate and each
voter, a point from [0, 1]t uniformly at random. A voter then ranks the candidates with respect to the
increasing distance of their points from his or her. For t ∈ {1, 2, 3}, t-dimensional hypercube elections are
called 1D Interval, 2D Square, and 3D Cube, respectively. The others are called tD H-Cube.
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(a) Urn elections (orange);
α follows the Gamma distribu-
tion.

(b) Mallows elections (teal); φ
follows the uniform distribution.

(c) Mallows elections (teal);
rel-φ follows the uniform distri-
bution.

Figure 3: Maps showing the four compass matrices, their connecting paths, and, respectively, urn
elections and Mallows elections (for two distributions of their parameter). These visualizations are
for 20 candidates and 100 voters.

the same value of φ leads to choosing elections at different distances from ID, which thereby
also end up in (quite) different places on the map (see the top-left part of Figure 4). This
imbalance, in essence, follows from the fact that making, say, five swaps among 10 candidates
has a stronger effect than making five swaps among 20 candidates.

Normalizing Mallows. Let us consider a setting with m candidates. For a φ ∈ [0, 1],
let expswaps(m,φ) be the expected swap distance between an m-candidate vote generated
using the Mallows model with parameter φ and the center vote. We define the relative
expected number of swaps as:

relswaps(m,φ) = expswaps(m,φ)
m(m−1)/2

(see the bottom-left part of Figure 4 for plots of this value, depending on φ and m).
In our approach, we choose a value rel-φ ∈ [0, 1] as a parameter, find a φ such that
relswaps(m,φ) = rel-φ, and draw an election from the Mallows model using this φ (see
Appendix C.1 for details). Working on rel-φ instead of φ not only allows for an intuitive
and natural interpretation of the parameter as the relative expected number of swaps in
each vote (or the normalized distance from ID), but also for obtaining comparable elections
for different numbers of candidates. In Figures 3b and 3c, we visualize Mallows elections
generated with φ ∈ [0, 1] and rel-φ ∈ [0, 0.5] chosen uniformly at random, respectively (we
use rel-φ ≤ 0.5 because for larger values one obtains analogous elections, but reversed; e.g.,
both rel-φ = 0 and rel-φ = 1 lead to identity elections). The latter figure shows a far more
balanced distribution of points.

As computing the φ values based on rel-φ and the number of candidates requires some
effort, we provide sample mappings in the table on the right side of Figure 4.

Importance of the New Normalization. The new parameterization of Mallows seems
to be important. The Mallows model is often used in experiments and—in light of our
findings—using a fixed φ for different numbers of candidates or drawing φ from a distribution
independent of the number of candidates, may be questionable. Yet, this is not uncommon,
as witnessed, e.g., in the works of Bachrach et al. [1], Betzler et al. [3], Garg et al. [10],
Goldsmith et al. [11], Skowron et al. [20], and in a number of other papers. We mention
these works as examples only; their authors designed their experiments as best practice
suggested at the time and we do not challenge their high-level conclusions. Our point is that
given the current evidence, they might prefer to design their experiments a bit differently.
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rel-φ\m 5 10 20 50 100

0 0.000 0.000 0.000 0.000 0.000
0.05 0.118 0.209 0.345 0.567 0.724
0.1 0.224 0.360 0.527 0.734 0.846
0.15 0.321 0.477 0.641 0.815 0.898
0.2 0.414 0.572 0.722 0.864 0.927
0.25 0.504 0.653 0.784 0.899 0.946
0.3 0.594 0.727 0.835 0.925 0.960
0.35 0.687 0.796 0.880 0.946 0.972
0.4 0.783 0.863 0.921 0.965 0.982
0.45 0.886 0.930 0.961 0.983 0.991
0.5 1.000 1.000 1.000 1.000 1.000

Figure 4: Average normalized positionwise distances of Mallows elections from ID (plot on the
top-left), relative expected number of swaps in votes drawn from the Mallows model (plot on
the bottom-left), both depending on φ and for different numbers m of candidates, and—in the
table—the values of φ such that relswaps(m,φ) = rel-φ for m ∈ {5, 10, 20, 50, 100} and rel-φ ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}.

5.3 Real-Life Elections on the Map

Let us now consider where real-life elections appear on the map. We start by describing the
datasets that we use (mostly from PrefLib [15]). Whenever we speak of real-life elections in
this section, we mean elections from our datasets.

We chose eleven real-life datasets, where each belongs to one of three groups. The
first group contains political elections: city council elections from Glasgow and Aspen [18],
elections from North Dublin, Meath (Irish), and elections held by non-profit organizations,
trade unions, and professional organizations (ERS). The second group consists of sport
elections: Tour de France (TDF), Giro d’Italia (GDI), speed skating, and figure skating (the
former three dataset are due to us). The last group consists of surveys: preferences over
Sushi, T-Shirt designs, and costs of living and population in different cities [4]. For TDF
and GDI, each race is a vote, and each season is an election. For speed skating, each lap
is a vote, and each competition is an election. For figure skating, each judge’s opinion is a
vote, and each competition is an election.

Preprocessing the Data. Each of our datasets consists of a number of preference profiles,
where each profile consists of (possibly) partial preference orders. Since for our map we need
elections with complete preference orders, we preprocess the data as follows.3 First, for our
new sport-related datasets (i.e., for TDG, GDI, and speed skating) we delete candidates
and voters until each remaining candidate is ranked by at least 70% of the voters, and each
voter ranks at least 70% of the candidates. Second, for all the datasets we disregard those
profiles that contain fewer than ten candidates. Third, we extend each partial preference
order in each remaining profile as follows (our approach is a much-simplified variant of the
technique introduced by Doucette [6]):

1. If some t top candidates are ranked and the remaining ones are not (except that
they are reported to be below the top ones), then we fill v iteratively: (1) We draw

3We speak of elections when we mean the collections of preference orders that we used in the map. We
speak of preference profiles when we mean collections of preference orders at various stages of preprocessing.
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uniformly at random one of the original votes from the same profile that ranks at least
the top t + 1 candidates and that agrees with v on the top t positions, and (2) we
extend v with whoever is ranked on the (t+ 1)-st position in this drawn vote (if there
are no votes to sample from, then we extend v with a candidate chosen uniformly at
random). We repeat this process until v is complete.

2. If a vote contains a tie of a different type than described above, then we break it
uniformly at random.

After applying these preprocessing steps, each dataset contains profiles with ten or more
candidates, and with complete votes. For each such profile, we select the ten candidates with
the highest Borda score and remove the other ones. Finally, we delete some of the profiles
based on the number of voters they contain (as compared to the other profiles in a given
dataset; see Appendix C.2 for details). We refer to the resulting datasets as intermediate.

We treat each of the intermediate real-life datasets as a separate election model, from
which we sample fifteen elections. We sample each election as follows. First, we randomly
select one of the profiles. Second, we sample 100 votes from the profile uniformly at random
(this implies that for profiles with less than 100 votes, we select some of the votes multiple
times, and for profiles with more than 100 votes, we do not select some votes at all). After
executing this procedure, we arrive at 11 datasets, each containing 15 elections consisting
of 100 complete and strict votes over 10 candidates, which we use for our experiments. For
a more detailed description of our data and its processing, see Appendix C.2.

The Map. In Figure 2b, we show a map of our real-life elections along with the compass,
Mallows, and Urn elections. For readability we present Mallows and Urn elections as large,
pale-colored areas. Not all real-life elections form clear clusters, hence the labels refer to
the largest compact groupings.

While the map is not a perfect representation of distances among elections, analyzing
it nevertheless leads to many conclusions. Most strikingly, real-life elections occupy a very
limited area of the map; this is especially true for political elections and surveys. Except
for several sport elections, all elections are closer to UN than to ID, and none of the real-
life elections falls in the top-right part of the map. Another observation is that Mallows
elections go right through the real-life elections, while Urn elections are on average far away.
This means that for most real-life elections there exists a parameter φ such that elections
generated according to the Mallows model with that parameter are relatively close (see the
next section for specific recommendations).

Most of the political elections lie close to one another and are located next to Mallows
elections and high-dimensional hypercube ones. At the same time, sport elections are spread
over a larger part of the map and, with the exception of GDI, are shifted toward ID. As to
the surveys, the City survey is basically equivalent to a sample from IC. The Sushi survey is
surprisingly similar to political elections. The T-Shirt survey is shifted toward stratification
(apparently, people often agree which designs are better and which are worse).

5.4 Capturing Real-Life Elections

In this section we analyze how to choose the rel-φ parameter so that elections generated
using the Mallows model with our normalization resemble our real-life ones. We consider
four different datasets each consisting of elections with 10 candidates and 100 voters (created
as descibed in Section 5.3): the set of all political elections, the set of all sport elections,
the set of all survey elections, and the combined set of all our real-life elections. For each of
these four datasets, to find the value of rel-φ that produces elections that are as similar as
possible to the respective real-life elections, we conduct the following experiment. For each
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Type of elections Value of Average Normalized Norm. Std. Num. of
rel-φ Distance Dev. elections

Political elections 0.375 0.15 0.036 60
Sport elections 0.267 0.27 0.080 60
Survey elections 0.365 0.20 0.034 45
All real-life elections 0.350 0.22 0.106 165

Table 1: Values of rel-φ such that elections generated with Mallows model for m = 10 are, on
average, as close as possible to elections from the respective dataset. We include the average
distance of elections generated with Mallows model for this parameter rel-φ from the elections from
the dataset as well as the standard deviation, both normalized by D(10) = 33. The last column
gives the number of elections in the respective real-life dataset.

rel-φ ∈ {0, 0.001, 0.002, ..., 0.499, 0.5}, we generate 100 elections with 10 candidates and 100
voters from the Mallows model with the given rel-φ parameter. Subsequently, we compute
the average distance between these elections and the elections from the respective dataset.
Finally, we select the value of rel-φ that minimizes this distance. We present the results of
this experiment in Table 1.

Recall that in the previous section we have observed that a majority of real-life elections
are close to some elections generated from the Mallows model with a certain dispersion
parameter. However, we have also seen that the real-life datasets consist of elections that
differ to a certain extent from one another (in particular, this is very visible for the sports
elections). Thus, it is to be expected that elections drawn from the Mallows model for
a fixed dispersion parameter are at some non-zero (average) distance from the real-life
ones. Indeed, this is the case here. Nevertheless, the more homogeneous political elections
and survey elections can be quite well captured using the Mallows model with parameter
rel-φ = 0.375 and rel-φ = 0.365, respectively. Generally speaking, if one wants to generate
elections that should be particularly close to elections from the real world, then choosing
a rel-φ value between 0.35 and 0.39 is a good strategy. If, however, one wants to capture
the full spectrum of real-life elections, then we recommend using the Mallows model with
different values of rel-φ from the interval [0.25, 0.4]. In Appendix C.1.2, we provide some
evidence that these recommendations are also applicable for different numbers of candidates.

6 Conclusions and Future Work

Perhaps the most important conclusion from our work is that the Mallows model is very
good at generating elections similar, under positionwise distance, to those that appear in the
real world, but to achieve this effect one needs to choose its dispersion parameter carefully.
Specifically, the parameter should depend both on the type of elections that we are interested
in (such as, e.g., political ones or sports ones) and on the number of candidates in the
election. We have provided some recommendations for its choice.

Our work leads to a number of open problems. On the practical side, all our experiments
regarded elections with exactly 10 candidates. It is important to extend them to different
numbers of candidates and validate that our conclusions still hold (see Appendix C.1.2 for an
initial discussion regarding this issue). On the mathematical side, one of the most intriguing
question is whether, indeed, the identity and uniformity election are the two farthest ones
in the positionwise metric.

Acknowledgments. NB was supported by the DFG project MaMu (NI 369/19). PF
conducted this research based on his ERC project PRAGMA.

12



References

[1] Y. Bachrach, O. Lev, Y. Lewenberg, and Y. Zick. Misrepresentation in district voting.
In Proceedings of IJCAI-2016, pages 81–87, 2016.

[2] S. Berg. Paradox of voting under an urn model: The effect of homogeneity. Public
Choice, 47(2):377–387, 1985.

[3] N. Betzler, R. Bredereck, and R. Niedermeier. Theoretical and empirical evaluation of
data for exact Kemeny rank aggregation. Autonomous Agents and Multiagent Systems,
28(5):721–748, 2014.

[4] I. Caragiannis, X. Chatzigeorgiou, G. Krimpas, and A. Voudouris. Optimizing posi-
tional scoring rules for rank aggregation. Artificial Intelligence, 267:58–77, 2019.

[5] V. Conitzer. Eliciting single-peaked preferences using comparison queries. Journal of
Artificial Intelligence Research, 35:161–191, 2009.

[6] J. Doucette. Social Choice for Partial Preferences Using Imputation. PhD thesis,
University of Waterloo, 2016.

[7] P. Faliszewski, P. Skowron, A. Slinko, S. Szufa, and N. Talmon. How similar are two
elections? In Proceedings of AAAI-2019, pages 1909–1916, 2019.

[8] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Software:
Practice and Experience, 21(11):1129–1164, 1991.

[9] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan. Dependent rounding and
its applications to approximation algorithms. Journal of the ACM, 53(3):324–360, 2006.

[10] N. Garg, L. Gelauff, S. Sakshuwong, and A. Goel. Who is in your top three? Optimizing
learning in elections with many candidates. In Proceedings of HCOMP-2019, pages 22–
31, 2019.

[11] J. Goldsmith, J. Lang, N. Mattei, and P. Perny. Voting with rank dependent scoring
rules. In Proceedings of AAAI-14, pages 698–704, 2014.

[12] R. Horn and C. Johnson. Matrix Analysis, 2nd Ed. Cambridge University Press, 2012.

[13] D. Leep and G. Myerson. Marriage, magic, and solitaire. The American Mathematical
Monthly, 106(5):419–429, 1999.

[14] C. Mallows. Non-null ranking models. Biometrica, 44:114–130, 1957.

[15] N. Mattei and T. Walsh. Preflib: A library for preferences. In Proceedings of ADT-2013,
pages 259–270, 2013.

[16] J. McCabe-Dansted and A. Slinko. Exploratory analysis of similarities between social
choice rules. Group Decision and Negotiation, 15:77–107, 2006.

[17] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, 2020. URL
http://oeis.org/A008302.

[18] J. O’Neill. Open STV, www.openstv.org. 2013.

[19] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical recipes: The art of
scientific computing, 3rd Edition. Cambridge University Press, 2007.

13

http://oeis.org/A008302


[20] P. Skowron, P. Faliszewski, and A. Slinko. Achieving fully proportional representation:
Approximability result. Artificial Intelligence, 222:67–103, 2015.

[21] S. Szufa, P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. Drawing a map of
elections in the space of statistical cultures. In Proceedings of AAMAS-20, pages 1341–
1349, 2020.

[22] T. Walsh. Generating single peaked votes. Technical Report arXiv:1503.02766 [cs.GT],
arXiv.org, March 2015.

Niclas Boehmer
Technische Universität Berlin
Berlin, Germany
Email: niclas.boehmer@tu-berlin.de

Robert Bredereck
Humboldt-Universität zu Berlin
Berlin, Germany
Email: robert.bredereck@hu-berlin.de

Piotr Faliszewski
AGH University
Krakow, Poland
Email: faliszew@agh.edu.pl

Rolf Niedermeier
Technische Universität Berlin
Berlin, Germany
Email: rolf.niedermeier@tu-berlin.de

Stanis law Szufa
Jagiellonian University
Krakow, Poland
Email: stanislaw.szufa@uj.edu.pl

14

niclas.boehmer@tu-berlin.de
robert.bredereck@hu-berlin.de
faliszew@agh.edu.pl
rolf.niedermeier@tu-berlin.de
stanislaw.szufa@uj.edu.pl


Appendix

A Missing Material from Section 3

A.1 Missing Proofs and Discussion

Proposition 1 (F). Given a position matrix X ∈ P(m), one can compute in O(m4.5) time
an election E that contains at most m2 − 2m+ 2 different votes such that #pos(E) = X.

Proof. Let X be our input m×m matrix and let C = {c1, . . . , cm} be a set of candidates.
Our algorithm creates an election E = (C, V ) iteratively, as follows. In each iteration we
first create a bipartite graph G with vertex sets A = {a1, . . . , am} and B = {b1, . . . , bm}.
For each i, j ∈ [m], if xi,j is nonzero, then we put an edge between ai and bj (vertices in A
correspond to rows of X and vertices in B correspond to the columns). Next, we compute a
perfect matching M in G (we will see later that it is guaranteed to exist). Let v be the vote
that ranks cj on position i exactly if M(ai) = bj (v is well-defined because M is a perfect
matching). Let P be the position matrix corresponding to vote v, i.e., to election (C, (v)),
and let z be the largest integer such that X − zP contains only non-negative entries. Then,
we add z copies of v to V and set X := X − zP . We proceed to the next iteration until X
becomes the zero matrix.

To prove the correctness of the algorithm, we show that at each iteration the constructed
graph G has a perfect matching. Let us assume that this is not the case. Note that each
row and each column in the current X sums up to the same integer, say n′. Since there
is no perfect matching, by Hall’s theorem, there is a subset of vertices A′ ⊆ A such that
the neighborhood B′ ⊆ B of A′ in G contains fewer than |A′| vertices. Yet, we have that∑
ai∈A′,bj∈B′ xi,j = n′|A′|, as we sum up all the nonzero entries of each row corresponding to

a vertex from A′. However, this implies that |B′| ≥ |A′| because each column corresponding
to a vertex from B′ sums up to n′, but we do not necessarily include all its nonzero entries.
This is a contradiction.

The algorithm terminates after at most m2−m+ 1 steps (in each step at least one more
entry of X becomes zero, and in the last step, m entries become zero). Each step requires
O(m2.5) time to compute the matching, so the overall running time is O(m4.5). This implies
that V contains at most m2 −m+ 1 different votes; indeed, using a similar argument as in
Leep and Myerson [13] it can be shown that the algorithm always terminates after at most
m2 − 2m+ 2 steps.

The above proof shows that if all the entries of a given position matrix are at least t > 0,
then we can create an election that induces this matrix by first choosing t votes completely
arbitrarily, and only then resorting to matching in a bipartite graph. In consequence, po-
sition matrices where all entries are large correspond to large and varied sets of elections.
While in some situations this is unavoidable (e.g., when one considers impartial culture
elections with many more voters than candidates), it may mean that the features observed
for one election corresponding to a given matrix are not shared by many of the others.

Fortunately, the matrices in the datasets of Szufa et al. [21] either contain zero entries
or have a very small smallest entry (in the 10× 100 dataset, 69% of the matrices have zero
entries, and among the remaining ones, the average value of the smallest entry is 2.61 with
standard deviation 1.15).

Naturally, if a matrix does have some zero entries it still may correspond to a large and
varied set of elections; we simply claim that if all the entries are large then this is, in essence,
unavoidable.
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Proposition 2. Given an m×m bistochastic matrix X and an integer n, one can compute in
polynomial time an election E with n voters whose position matrix P satisfies |nxi,j−pi,j | ≤
1 for each i, j ∈ [m] and, under this condition, minimizes the value

∑
1≤i,j≤m |nxi,j − pi,j |.

Proof (continued from Section 3). Here we provide a fully deterministic algorithm for com-
puting the matrix D from the proof presented in the main body, which does not invoke
dependent rounding, and which minimizes the value

∑
1≤i,j≤m |nxi,j − pi,j |.

Consider matrix Y from the first part of the proof and let B =
∑

1≤i,j≤m yi,j .
We form a flow network with source s, nodes vi,j for each i, j ∈ [m], “pre-sink” nodes

t1, . . . , tm, and sink node t. For each i ∈ [m], we have a directed path which starts at the
source node s, then goes to vi,1, next to vi,2, and so on, until vi,m. Each edge on this path
has capacity equal to

∑m
j=1 yi,j (recall that this value is an integer). For each i, j ∈ [m],

we have an edge from vi,j to tj , with capacity one and with cost 1 − 2yi,j (all the other
types of edges have cost 0). Finally, for each j ∈ [m], we have an edge from tj to t with
capacity

∑m
i=1 yi,j (this value is an integer). Next, we compute in polynomial time (using

some classic algorithm) an integral flow that moves
∑
i,j∈[m] yi,j units of flow from s to

t at the lowest possible cost (which we denote Bf ). If this flow existed, then we could
compute matrix D by setting, for each i, j ∈ [m], di,j to be the amount of flow (0 or 1)
going from vi,j to tj . Indeed, by definition of our flow network, for each i we would have
that

∑m
j=1 di,j =

∑m
j=1 yi,j (because when a flow enters some node vi,j , then it can either

go to tj or to vi,j+1). Due to the capacities on the edges from the pre-sink nodes to the
sink, for each j ∈ [m] we would also have that

∑m
i=1 di,j =

∑m
i=1 yi,j . These two properties

are equivalent to ensuring that the degrees of the vertices in G′ are equal to the fractional
degrees in G, as is done by dependent rounding. Further, we have that:∑

1≤i,j≤m

|nxi,j − (bnxi,jc+ di,j)| = B +Bf .

To see why this is the case, note that if all the values di,j where 0, then the left-hand sum
would be B, and on the right-hand size Bf would be 0. Each di,j = 1 increases both sides
of the sum by the same amount.

It remains to see that the desired flow indeed always exists. However, this follows from
the previous algorithm: Since dependent rounding always produces a desired matching,
which induces matrix D, D induces a flow of our desired value.

B Missing Material from Section 4

B.1 The Four Matrices

We start this subsection by proving Proposition 3. Afterwards, we provide some evidence
that our four compass elections are, indeed, almost as far away from each other as possible.

Proposition 3 (F). If m is divisible by 4, then it holds that:

1. POS(IDm,UNm) = 1
3 (m2 − 1),

2. POS(IDm,ANm) = POS(UNm,STm) = m2

4 ,

3. POS(IDm,STm) = POS(UNm,ANm) = 2
3 (m

2

4 − 1),

4. POS(ANm,STm) = 13
48m

2 − 1
3 .

16



Proof. IDm and UNm: We start by computing the distance between IDm and UNm.
Note that UNm always remains the same matrix independent of how its columns are
ordered. Thus, we can compute the distance between these two matrices using the
identity permutation between the columns of the two matrices: POS(IDm,UNm) =∑m
i=1 EMD((IDm)i, (UNm)i) =

∑m
i=1(

∑i−1
j=1

j
m +

∑m−i
j=1

j
m )

= 1
m

∑m
i=1( 1+(i−1)

2 (i− 1) + 1+(m−i)
2 (m− i))

= 1
2m

∑m
i=1(2i2 − 2i− 2mi+m2 +m)

= 1
2m (2m(m+1)(2m+1)

6 −m(m+ 1)−m2(m+ 1) +m(m2 +m))

= 1
2m ( (m2+m)(2m+1)

3 − (m+ 1)(m+m2) +m(m2 +m))

= m+1
2 ( (2m+1)

3 − (m+ 1) +m) = (m+1)(m−1)
3 = 1

3 (m2 − 1).
In the following, we use (∗) when we omit some calculations analogous to the calculations

for POS(IDm,UNm).

UNm and STm: Similarly, we can also directly compute the distance between UNm and
STm using the identity permutation between the columns of the two matrices. In this case,
all column vectors of the two matrices have indeed the same EMD distance to each other:
POS(UNm,STm) = m · ( 1

2 + 2 ·
∑m

2 −1
i=1

i
m ) = m

2 + m
2 (m2 − 1) = m2

4 .

UNm and ANm: Next, we compute the distance between UNm and ANm using the identity
permutation between the columns of the two matrices. Recall that ANm can be written as:

ANm = 0.5

[
IDm/2 rIDm/2

rIDm/2 IDm/2

]
.

Thus, it is possible to reuse our ideas from computing the distance between identity and
uniformity:

POS(UNm,ANm) = 4
∑m

2
i=1(

∑i−1
j=1

j
m +

∑m
2 −i
j=1

j
m ) = (∗) = 2

3 (m
2

4 − 1).

IDm and STm: There exist only two different types of column vectors in STm, i.e., m
2

columns starting with m
2 entries of value 2

m followed by m
2 zero-entries and m

2 columns
starting with m

2 zero entries followed by m
2 entries of value 2

m . In IDm, m
2 columns have a

one entry in the first m
2 rows and m

2 columns have a one entry in the last m
2 rows. Thus,

again the identity permutation between the columns of the two matrices minimizes the EMD
distance:
POS(IDm,STm) = 2 · POS(IDm

2
,UNm

2
) = 2

3 (m
2

4 − 1)

ANm and STm: We now turn to computing the distance between ANm = (an1, . . . , anm)
and STm = (st1, . . . , stm). As all column vectors of ANm are palindromes, each column
vector of ANm has the same EMD distance to all column vectors of STm, i.e., for i ∈ [m]
it holds that EMD(ani, stj) = EMD(ani, stj′) for all j, j′ ∈ [m]. Thus, the distance between
ANm and STm is the same for all permutation between the columns of the two matrices.
Thus, we again use the identity permutation. We start by computing EMD(ani, sti) for
different i ∈ [m] separately distinguishing two cases. Let i ∈ [m4 ]. Recall that ani has a 0.5
at position i and position m− i+1 and that sti has a 2

m at entries j ∈ [m2 ]. We now analyze
how to transform ani to sti. For all j ∈ [i− 1], it is clear that it is optimal that the value 2

m

moved to position j comes from position i. The overall cost of this is
∑i−1
j=1

2j
m . Moreover,

the remaining surplus value at position i (that is, 1
2−

2i
m ) needs to be moved toward the end.

Thus, for j ∈ [i+ 1, m4 ], we move value 2
m from position i to position j. The overall cost of

this is
∑m

4 −i
j=1

2j
m . Lastly, we need to move value 2

m to positions j ∈ [m4 +1, m2 ]. This needs to

come from position m− i+1. Thus, for each j ∈ [m4 +1, m2 ], we move value 2
m from position

m− i+ 1 to position j. The overall cost of this is 1
2 · (

m
2 − i) +

∑m
4
j=1

2j
m = 1

2 (m2 − i) + m
16 + 1

4
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Now, let i ∈ [m4 + 1, m2 ]. For j ∈ [m4 ], we need to move value 2
m from position i to

position j. The overall cost of this is 1
2 · (i−

m
4 − 1) +

∑m
4
j=1

2j
m = 1

2 · (i−
m
4 − 1) + m

16 + 1
4 .

For j ∈ [m4 + 1, m2 ], we need to move value 2
m from position m − i + 1 to position j. The

overall cost of this is 1
2 · (

m
2 − i) +

∑m
4
j=1

2j
m = 1

2 · (
m
2 − i) + m

16 + 1
4 .

Observing that the case i ∈ [ 3m4 + 1,m] is symmetric to i ∈ [m4 ] and the case i ∈
[m2 + 1, 3m4 ] is symmetric to i ∈ [m4 + 1, m2 ] the EMD distance between ANm and STm can
be computed as follows:

POS(ANm,STm) = 2 · (A+ 1
2 · (

∑m
4
i=1

m
2 − i) + m

4 · (
m
16 + 1

4 ) + 1
2 · (

∑m
2

i=m
4 +1 ·(i−

m
4 − 1)) +

m
4 · (

m
16 + 1

4 ) + 1
2 · (

∑m
2

i=m
4 +1

m
2 − i) + m

4 · (
m
16 + 1

4 ))

= m2

48 −
1
3 + 3m2−4m

32 + m
2 · (

m
16 + 1

4 ) + m2−4m
32 + m

2 · (
m
16 + 1

4 ) + m2−4m
32 + m

2 · (
m
16 + 1
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IDm and ANm: Lastly, we consider IDm = (id1, . . . , idm) and ANm = (an1, . . . , anm).
Note that, for i ∈ [m], idi contains a 1 at position i and ani contains a 0.5 at position
i and position m − i. Note further that for i ∈ [m2 ] it holds that ani = anm−i+1. Fix

some i ∈ [m2 ]. For all j ∈ [i,m − i + 1] it holds that EMD(ani, idj) = m−2i+1
2 and for all

j ∈ [1, i − 1] ∪ [m − i + 2,m] it holds that EMD(ani, idj) >
m−2i+1

2 . That is, for every
i ∈ [m], ani has the same distance to all column vectors of IDm where the one entry lies in
between the two 0.5 entries of ani but a larger distance to all column vectors of IDm where
the one entry is above the top 0.5 entry of ani or below the bottom 0.5 entry of ani. Thus,
it is optimal to choose a mapping of the column vectors such that for all i ∈ [m] it holds
that ani is mapped to a vector idj where the one entry of idj lies between the two 0.5 in
ani. This is, among others, achieved by the identity permutation, which we use to compute:

POS(IDm,ANm) = 2
∑m

2
i=1( 1

2 (m− 2i+ 1))

= m
2 m−

m
2 (m2 + 1) + m

2 = m2

4

Focusing on 6× 6 matrices, we now argue that our four compass matrices are quite far
away from each other. We focus on m = 6, as this is the largest dimension for which the
ILPs we will use in this section were able to compute optimal solutions within several hours.
While it could be the case that for larger m the results are significantly different, we do
not expect that this is the case (see e.g. Section 4.1). Moreover, the case m = 6 is already
interesting on its own, as elections with only six candidates also regularly appear in the real
world.

We present two different justifications that our compass matrices cover very different
areas on the map. First, we explain how we created the compass by adding the four matrices
one after another, trying to maximize the distances between them. Second, we argue that
each of the matrices is almost as far away from the other three as possible.

B.1.1 Iteratively Building the Compass

We built the compass in an iterative fashion, i.e., we added the matrices one after each
other. We first wanted to find the two matrices that are furthest away from each other. As
discussed in Section 4.1, we believe that these two matrices are the identity and uniformity
matrices. For m = 6, using an ILP, we were able to verify that, indeed, ID6 and UN6 have
the highest distance among all pairs of 6× 6 frequency matrices.
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POS(ID6, ·) POS(UN6, ·) POS(UN6, ·)
+POS(UN6, ·)

M 7.18 7.18 14.36
S 10 4.66 14.66
AN6 9 5.33 14.33
ST6 9 5.33 14.33

Table 2: Distance of four 6× 6 matrices to ID6 and UN6. M is the matrix with maximum possible
minimum distance and S the matrix with maximum possible summed distance to ID6 and UN6.

POS(ID6, ·) POS(UN6, ·) POS(AN6, ·) POS(ID6, ·)
+POS(UN6, ·)
+POS(AN6, ·)

M ′ 7.17 7.16 7.82 22.15
ST6 9 5.33 9.66 23.99

Table 3: Distance of two 6× 6 matrices to ID6, UN6, and AN6. M ′ is the matrix with maximum
possible minimum distance to the three matrices.

Next, we wanted to find a frequency matrix that is as far away from ID6 and UN6 as
possible. However, in this context, it is not entirely clear what “as far as possible” means, as
one might, e.g., maximize the sum or the minimum of the distances to ID6 and UN6. Using
again an ILP, we found two (quite unstructured) matrices M (with maximum minimum
distance) and S (with maximum summed distance):

M =


0.55 0.45 0 0 0 0
0.05 0.25 0.7 0 0 0

0 0.16 0 0.6 0.24 0
0 0.14 0.3 0 0.16 0.4
0 0 0 0 0.4 0.6

0.4 0 0 0.4 0.2 0



S =


0.33 0.33 0.33 0 0 0
0.08 0.08 0.08 0.17 0.17 0.42

0 0 0 0.5 0.5 0
0.08 0.08 0.8 0.33 0.33 0.08
0.17 0.17 0.5 0 0 0.17
0.33 0.33 0 0 0 0.33

 .

The distances of M and S to ID6 and UN6 can be found in Table 2. As both M and S are
quite unstructured, it is unclear how to generalize them to higher dimensions, and it is not
intuitively clear what kind of elections they resemble, we started thinking about canonical
matrices distant from identity and uniformity and came up with AN and ST. As displayed
in Table 2, both AN6 and ST6 are quite far away from both ID6 and UN6. Overall, the
summed distance of these two matrices to ID6 and UN6 is close to the maximum achievable
distance. We decided to first add antagonism to the compass.

In the next step, we again computed two matrices M ′ with maximum minimum distance
from ID6, UN6, and AN6, and S′ with maximum summed distance from ID6, UN6, and
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Minimum Summed Maxmimum minimum Maxmimum summed
distance distance distance distance

ID 5.33 26 7.75 26
UN 5.33 26 7.63 26.44
AN 5.33 23.99 7.05 24.17
ST 5.33 23.99 7.16 23.99

Table 4: For each of the four compass matrices (with m=6), the first column shows its minimum
distance to the other three matrices and the second column its summed distance to the other three
matrices. The third columns shows the maximum minimum distance of any matrix to the other
three matrices and the fourth column the maximum summed distance of any matrix to the other
three matrices.

AN6. It turned out that S′ = ST6 and

M ′ =


0.33 0.33 0.33 0 0 0
0.33 0.33 0.33 0 0 0

0 0 0.08 0.25 0.33 0.33
0.33 0.33 0.25 0.08 0 0

0 0 0 0.33 0.33 0.33
0 0 0 0.33 0.33 0.33

 .

As depicted in Table 3, ST6 is quite far away from each of the three already fixed matrices
from our compass. As, at the same time, ST6 maximizes the summed distance among all
matrices, we selected stratification as our fourth compass matrix.

B.1.2 Distance of One Compass Matrix from the Other Three

We now describe a second experiment to verify that our compass matrices are indeed
nearly as far away from each other as possible. For each of the four matrices X ∈
{ID6,UN6,AN6,ST6}, using an ILP, we compute the best matrix to replace X in order to
maximize the diversity of the resulting set of four matrices. That is, we compute the 6×6 ma-
trix with maximum summed distance to the matrices in {ID6,UN6,AN6,ST6}\{X} and the
6× 6 matrix with maximum minimum distance to a matrix in {ID6,UN6,AN6,ST6} \ {X}.
The results of this experiment along with the minimum/summed distance of X to the ma-
trices in {ID6,UN6,AN6,ST6} \ {X} are shown in Table 4. The results show that each
compass matrix has the highest possible or close to the highest possible summed distance to
the other three matrices. This implies that none of our matrices can be replaced by another
matrix such that the resulting set covers a significantly larger area of the map. Concerning
the minimum distance of each compass matrix to the other three, the compass matrices are
no longer very close to being optimal. Nevertheless, each pair of matrices is quite far away
from each other. Moreover, maximizing the minimum and summed distance are (at least
partly) conflicting optimization goals and, for our purpose of putting a compass on the map,
the summed distance is of greater importance.

B.2 Paths Between Election Matrices

Proposition 4 (F). Let X = (x1, . . . , xm) and Y = (y1, . . . ym) be two m ×m frequency
matrices such that POS(X,Y ) =

∑m
i=1 EMD(xi, yi). Then, for each α ∈ [0, 1] it holds

that POS(X,Y ) = POS(X,αX + (1− α)Y ) + POS(αX + (1− α)Y, Y ).
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Proof. Let Z = (z1, . . . , zm) = αX + (1− α)Y be our convex combination of X and Y . We
note two properties of the earth mover’s distance. Let a, b, and c by three vectors that
consist of nonnegative numbers, where the entries in b and c sum up to the same value.
Then, it holds that EMD(a + b, a + c) = EMD(b, c). Further, for a nonnegative number λ,
we have that EMD(λb, λc) = λEMD(b, c). Using these observations and the definition of
the earth mover’s distance, we note that:

POS(X,Z) ≤
∑m
i=1 EMD(xi, zi)

=
∑m
i=1 EMD(xi, αxi + (1− α)yi)

=
∑m
i=1 EMD((1− α)xi, (1− α)yi)

= (1− α)
∑m
i=1 EMD(xi, yi) = (1− α)POS(X,Y ).

The last equality follows by our assumption regarding X and Y . By an analogous reasoning
we also have that POS(Z, Y ) ≤ αPOS(X,Y ). By putting these two inequalities together,
we have that:

POS(X,Z) + POS(Z, Y ) ≤ POS(X,Y ).

By the triangle inequality, we have that POS(X,Y ) ≤ POS(X,Z) + POS(Z, Y ) and, so, we
have that POS(X,Z) + POS(Z, Y ) = POS(X,Y ).

C Missing Material from Section 5

C.1 Further Details on Normalized Mallows

We start this subsection by providing the missing computational details for our new pa-
rameterization that we propose in the main body. Afterwards, we look at where Mallows
elections for a specific value of rel-φ end up on the map of elections for different numbers of
candidates.

C.1.1 Computational Details

We start with some definitions. Let m ∈ N and φ ∈ [0, 1). Moreover, recall that we denote by
expswaps(m,φ) the expected swap distance between a reference vote v∗ and a vote sampled
from Mallows model with dispersion parameter φ and reference vote v∗ for m candidates.
We denote by relswaps(m,φ) the relative expected swap distance, that is, the expected swap

distance expswaps(m,φ) normalized by the maximum possible number m(m−1)
2 of swaps in

a vote over m candidates.
In the main part, we proposed a new normalization of Mallows model which, for a given

rel-φ ∈ [0, 1), crucially relies on finding a φ ∈ [0, 1) such that:

relswaps(m,φ) = rel-φ. (1)

We now describe how φ can be computed from rel-φ. As a first step, we compute
expswaps(m,φ) for some given m ∈ N and φ ∈ [0, 1) . Recall that, given φ ∈ [0, 1) and a
reference vote v∗ over m candidates, the probability of sampling a vote v over m candidates
under the Mallows model is:

Pφ,v∗(v) =
1

Z
φκ(v,v

∗) (2)

with normalizing constant Z = 1 · (1 +φ) · (1 +φ+φ2) · · · · · (1 + · · ·+φm−1). Next, we need
to compute the number of different votes at some swap distance from a given vote over m
candidates. For this, we create a table T and let T [m, i] denote the number of different votes

at some given swap distance i ∈ [m(m−1)
2 ] from some fixed vote over m candidates. Notably,
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T [m, i] corresponds to the number of permutations over m elements containing i inversions,
a well-studied combinatorial problem ([17]). Unfortunately, no closed form expression to
compute this is known. Instead, one needs to resort to dynamic programming ([17]): First,
we initialize the table with T [m, 0] = 1. Subsequently, for increasing m, we update the table

starting from i = 0 and going to i = m(m−1)
2 as:

T [m, i] = T [m, i− 1] + T [m− 1, r]− T [m− 1, r −m].

After precomputing T , we are able to compute expswaps(φ,m) using Equation (2) as:

expswaps(φ,m) =
1

Z

m(m−1)
2∑
i=0

T [m, i] · φi. (3)

The idea behind this equation is that, for each i ∈ [m(m−1)
2 ], there exist T [m, i] different votes

at swap distance i from the reference vote, each being sampled with probability 1
Zφ

i. Using
this, we are now able to reformulate Equation (1): Given some m ∈ N and rel-φ ∈ [0, 1),
find φ such that:

−1 +
2

rel-φ · Z ·m(m− 1)

m(m−1)
2∑
i=0

T [m, i] · φi = 0.

Note that the left hand side of this equation is simply a polynomial in φ of maximum

degree m(m−1)
2 . Thus, solving Equation (1) reduces to finding the root of a higher degree

polynomial. While no general formula for finding such a root exists, there exists a whole
branch of literature focusing on numerical methods for solving this problem, e.g., Newton’s
method ([19], Chapter 9).4

C.1.2 Mallows Elections for Different Numbers of Candidates

As we only looked at the special case m = 10, it is, in principle questionable whether our
recommendations which dispersion parameter to choose presented in Section 5.4 are also
valid for m > 10 candidates. As mentioned in the main body, we suspect that real-life
elections of similar types end up at similar places on the map of elections with our compass
on it for different numbers of candidates. Thus, it remains to check whether elections
generated from Mallows model with some fixed rel-φ for different numbers of candidates
also end up in similar positions on the respective maps. We confirm this hypothesis using
Figure 5, where we depict the map of elections for m ∈ {5, 10, 20, 50} including the four
compass matrices, the paths between them, and several elections generated using Mallows
model with rel-φ = 0.375 (we look at rel-φ = 0.375 because this is the best parameter to
model the quite homogeneous group of political elections). All maps look quite similar and
elections generated using the Mallows model indeed always end up in very similar places.

C.2 Generation, Selection, and Preprocessing of Real-Life Datasets

C.2.1 Generation and Selection of Datasets

As part of our work, we generate three new datasets from sports competitions, that are,
Tour de France elections, Giro d’Italia elections, and speed skating elections. As we are
interested in elections with complete votes, as a preprocessing step, we always delete votes

4In our python implementation, we used the root() method from the numpy library, which relies on
computing the eigenvalues of the companion matrix ([12]).
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(a) Mallows elections for m = 5. (b) Mallows elections for m = 10.

(c) Mallows elections for m = 20. (d) Mallows elections for m = 50.

Figure 5: Visualization of our four compass matrices and the connecting paths for different num-
bers of candidates. Additionally, several elections randomly generated from Mallows model with
parameter rel-φ = 0.375 for the respective number of candidates are included.

and candidates until each candidate is contained in at least 70% of all votes and each vote
contains 70% of all candidates.

Both the Tour de France and Giro d’Italia are annual cycling competitions consisting of
multiple stages. For each of the past 100 editions, we create a separate election with the
riders as the candidates and the stages as the voters (where each voter ranks the candidates
according to the finish times of the riders in the corresponding stage). To generate the
elections, we use publicly available data from https://www.procyclingstats.com. The third
new dataset consists of different elections modelling speed skating competitions. For this,
we use data from https://results.sporthive.com/ and select 51 speed skating races. Notably,
each race consists of multiple laps. For each race, we create a separate election with the
speed skaters as the candidates and the laps as the voters (where each voter ranks the
candidates according to the lap time of the speed skaters in the corresponding lap).

In addition, our main source of real-life elections is the PrefLib database ([15]). We
categorize all election datasets from PrefLib in Table 5. As discussed in the main body,
we want to compare elections with ten candidates. Moreover, as our model only allows
to consider complete votes without ties, we are interested in datasets where votes are as
complete as possible and contain only a few ties. Based on these criteria, our decision which
PrefLib datasets to include is displayed in Table 5.

C.2.2 Preprocessing of Datasets

For all elections from our selected datasets containing incomplete votes (i.e., votes where
some of the top candidates are ranked and the remaining candidates are not), we need to
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PrefLib ID Name Size m Type Selected Reason to reject

1 Irish 3 9,12,14 soi yes -
2 Debian 8 4-9 toc no Too few candidates
3 Mariner 1 32 toc no Too many ties
4 Netflix 200 3,4 soc no Too few candidates
5 Burlington 2 6 toi no Too few candidates
6 Skate 48 14-30 toc yes -
7 ERS 87 3-29 soi yes -
8 Glasgow 21 8-13 soi yes -
9 AGH 2 7,9 soc no Too few candidates

10.1 Formula 48 22-62 soi no Incomplete and few votes
10.2 Skiing 2 ∼50 toc no Few votes and many ties
11.1 Webimpact 3 103, 240, 242 soc no Too many candidates and too few votes (∼5)
11.2 Websearch 74 100-200, ∼2000 soi no Too few votes (∼4)
12 T-shrit 1 11 soc yes -
13 Anes 19 3-12 toc no Too many ties
14 Sushi 1 10 soc yes -
15 Clean Web 79 10-50, ∼200 soc no Too few votes (∼4)
16 Aspen 2 5,11 toc yes -
17 Berkeley 1 4 toc no Too few candidates
18 Minneapolis 4 7,9,379,477 soi no Incomplete votes
19 Oakland 7 4-11 toc no Incorrect data (votes like: 1,1,1)
20 Pierce 4 4,5,7 toc no Too few candidates
21 San Francisco 14 4-25 toc no Incorrect data (votes like: 1,1,1)
22 San Leonardo 3 4,5,7 toc no Too few candidates
23 Takoma 1 4 toc no Too few candidates
24 MT Dots 4 4 soc no Too few candidates
25 MT Puzzles 4 4 soc no Too few candidates
26 Fench Presidential 6 16 toc no Approval ballots
27 Proto French 1 15 toc no Approval ballots
28 APA 12 5 soi no Too few candidates
29 Netflix NCW 12 3,4 soc no Too few candidates
30 UK labor party 1 5 soi no Too few candidates
31 Vermont 15 3-6 toc no Approval ballots
32 Cujae 7 6,32 soc/soi/toc no Many reasons
33 San Sebastian Poster 2 17 toc no Approval ballots
34 Cities survey 2 36, 48 soi yes -

Table 5: Overview of all election datasets that are part of the PrefLib database. “Size” stands for
the number of elections in the dataset, “m” for the number of candidates and “Type” for the type
of the votes in the dataset (soc means that all votes are strict complete orders; soi means that all
votes are strict incomplete orders; toc means that all votes are weak incomplete orders).

fill-in the votes. For the decision how to complete each vote, we use the other votes as
references assuming that voters that rank the same candidates on top also continue to rank
candidates similarly towards the bottom. For each incomplete vote v, we proceed as follows.
Let us assume that the length of the vote v is n. Let VP be the set of all original votes of
which v is a prefix. We uniformly at random select one vote vp from VP and then we add
candidate c = pos(vp, n + 1) at the end of vote v. We repeat the procedure until vote v
is complete. If the set VP is empty, then we choose c uniformly at random (from those
candidates that are not part of v yet). Moreover, if a vote contains ties (i.e., pairs or larger
sets of candidates that are reported as equally good, except for the case that would fit the
description of an incomplete vote above), we break them randomly.

After applying these preprocessing steps, we arrive at a collection of datasets containing
elections with ten or more candidates and complete votes without ties. As we focus on ten
candidates, we need to select a subset of ten candidates for each election: We select the ten
candidates with the highest Borda score.

In Table 6 we present a detailed description of the resulting selected datasets. In some
datasets only parts of the data meets our criteria. For example, in the dataset containing
Irish elections we have three different election, but one of the them (an election from West
Dublin) contains only 9 candidates. We delete all such elections. After doing so, we finally
arrive at eleven real-life datasets containing elections meeting our criteria.
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Source Category Name # Selected Elections Avg m Avg n Description

Preflib Political Irish 2 13 ∼ 54011 Elections from North Dublin and Meath
Preflib Political Glasgow 13 ∼ 11 ∼ 8758 City council elections
Preflib Political Aspen 1 11 2459 City council elections
Preflib Political ERS 13 ∼ 12 ∼ 988 Various elections held by non-profit organizations,

trade unions, and professional organizations

Preflib Sport Figure Skating 40 ∼ 23 9 Figure skating
This paper Sport Speed Skating 13 ∼ 14 196 Speed skating
This paper Sport TDF 12 ∼ 55 ∼ 22 Tour de France
This paper Sport GDI 23 ∼ 152 20 Giro d’Italia

Preflib Survey T-Shirt 1 11 30 Preferences over T-Shirt logo
Preflib Survey Sushi 1 10 5000 Preferences over Sushi
Preflib Survey Cities 2 42 392 Preferences over cities

Table 6: Each row contains a description of one of the real-life datasets we consider. In the column
“# Selected Elections”, we denote the number of elections we finally select from the respective
dataset.

However, as we cannot include all elections from each dataset on the map of elections,
we further reduce the number of elections by considering only selected elections. In Table 6,
we include in the column “# Selected Elections” the number of elections we selected from
each dataset in the end. We based our decision on the selection of elections on the number
of voters and candidates. That is, for ERS, we only take election with at least 500 voters,
for Speed Skating with at least 80, for TDF with at least 20, and for Figure skating with
at least 9. Beside that for TDF, we only select elections with no more than 75 candidates.
We refer to the resulting datasets as intermediate datasets.

C.2.3 Sampling Elections from Intermediate Datasets

We treat each of our intermediate real-life datasets as a separate election model from which
we sample 15 elections to create the final datasets that we use in the paper. For each
intermediate dataset, we sample elections as follows. First, we randomly select one of the
elections. Second, we sample 100 votes from the election uniformly at random (this implies
that for elections with less than 100 votes, we select some votes multiple times, and for
elections with more than 100 votes, we do not select some votes at all). We do so to make
full use of elections with far more than 100 votes. For instance, our Sushi intermediate
dataset contains only one election consisting of 5000 votes. Sampling an election from the
Sushi intermediate dataset thus corresponds to drawing 100 votes uniformly at random
from the set of 5000 votes. On the other hand, for intermediate datasets containing a higher
number of elections, e.g., the Tour de France intermediate dataset, most of the sampled
elections come from a different original election.

After executing this procedure, we arrive at 11 datasets each containing 15 elections
consisting of 100 complete and strict votes over 10 candidates, which we use for our experi-
ments.
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