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Abstract

The existence of EFX allocations is a major open problem in fair division, even
for additive valuations. The current state of the art is that no setting where EFX
allocations are impossible is known, and EFX is known to exist for (i) agents with
identical valuations, (ii) 2 agents, (iii) 3 agents with additive valuations, (iv) agents
with one of two additive valuations and (v) agents with two valued instances. It is
also known that EFX exists if one can leave n− 1 items unallocated, where n is the
number of agents.
We develop new techniques that allow us to push the boundaries of the enigmatic
EFX problem beyond these known results, and, arguably, to simplify proofs of earlier
results. Our main results are (i) every setting with 4 additive agents admits an EFX
allocation that leaves at most a single item unallocated, (ii) every setting with n
additive valuations has an EFX allocation with at most n− 2 unallocated items.
Moreover, all of our results extend beyond additive valuations to all nice cancelable
valuations (a new class, including additive, unit-demand, budget-additive and multi-
plicative valuations, among others). Furthermore, using our new techniques, we show
that previous results for additive valuations extend to nice cancelable valuations.

The full version of the paper can be found at https://arxiv.org/abs/2102.10654

1 Introduction

The question of justness, fairness and division of resources and commitments dates back
to Aristotle [Chr42]. Distributional justice, the “just” allocation of limited resources, is
fundamental in the work of Rawls [Raw99]. Some evidence of the great interest in Rawls’
work is that numerous editions of his book have been cited over 100,000 times.

The mathematical study of fair division is due to Hugo Steinhaus, Bronislaw Knaster
and Stefan Banach [Ste49] who considered proportional allocations, in which every one of
the n agents gets at least a 1/n fraction of her total value for all the goods.

A stronger notion of fairness is that of an envy free (EF) allocation — introduced by
Gamow and Stern [GS58] for cake cutting, and in the context of general resource allocation
by Foley [Fol67]. Unfortunately, if goods are indivisible, envy free allocations need not exist.
Consider the trivial case of one indivisible good — if some agent gets the good, others will
be envious. Lipton et al. [LMMS04] and Budish [Bud11] consider a relaxed notion of envy
freeness, namely envy freeness up to some item (EF1) — an allocation is EF1 if for every
pair of agents Alice and Bob, there is an item that we can remove from Alice’s allocation
such that Bob will not want to swap his allocation with what remains of Alice’s allocation.

EF1 allocations always exist but their fairness guarantees are questionable. Consider for
example a setting where Alice and Bob have identical valuations over 3 items a, b, c with
respective values 1, 1, 2. Arguably, a fair allocation would assign a, b to one of the players,
and c to the other one, giving each a value 2. However, the allocation that assigns a, c to
Alice and b to Bob is also EF1.

The notion of envy freeness up to any item (EFX) was introduced by Caragiannis et al.
[CKM+16, CKM+19]. An allocation is EFX if for every pair of agents, Alice and Bob, Bob
does not want to swap with what remains of Alice’s allocation when any item is discarded.
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I.e., it suffices to consider removing the item with minimal marginal value (to Bob) from
Alices’s allocation. Indeed, in the example above, the only EFX allocations are those that
allocate a, b to one player and c to the other player.

A major open problem is “when do EFX allocations exist?”. The current state of our
knowledge is somewhat embarrassing. We do not know how to rule out EFX allocations in
any setting, and yet, they are known to exist only in several restricted cases. In particular,
Plaut and Roughgarden, [PR20], prove that EFX valuations exist for 2 agents with arbitrary
valuations, and for any number of agents with identical valuations. Even for the simple case
of additive valuations (where the value of a bundle of items is simply the sum of values
of individual goods), EFX is only known to exist in settings with 3 agents (Chaudhury,
Garg, and Mehlhorn [CGM20]), in settings with only one of two types of additive valuations
(Mahara [Mah20]), or when the value of every agent to every item can take one of two
permissible values (Amanatidis et al. [ABFR+21]).
Indeed, Procaccia [Pro20] recently wrote:

In my view, it (EFX existence) is the successor of envy-free cake cutting as fair
division’s biggest problem.

Given that EFX valuations are known to exist in so few cases, the following question
arises: Can one find a good partial EFX allocation? I.e., an EFX allocation in which only a
small amount of items can be unallocated? The idea of partial allocations for EF and EFX
allocations has appeared in multiple papers, e.g. [BKK13, CGG13, CGH19]. Caragiannis,
Gravin and Huang, [CGH19] show that discarding some items gives good EFX allocations
for the rest (achieving 1/2 of the maximum Nash Welfare). Chaudhury et. al [CKMS20]
show that given n agents with arbitrary valuations, there always exists an EFX allocation
with at most n − 1 unallocated items. Moreover, no agent prefers the set of unallocated
items to her own allocation.

1.1 Our Results

In this paper we develop new techniques, based upon ideas that appear in [CGM20,
CKMS20]. [CGM20] introduced the notion of champion edges with respect to a single
unallocated good, and used it to make progress with respect to the lexicographic potential
function in order to eventually reach an EFX allocation. We extend the notion of cham-
pion edges beyond a single unallocated item, to sets of items, allocated or not, and derive
useful structural properties that allow us to make more aggressive progress within a graph
theoretic framework.

Our techniques are powerful enough to allow us to (i) push the boundaries of EFX
existence beyond known results, and (ii) present substantially simpler proofs for previously
known results. Our results are described below, and are summarized in Table 1.

Our main result concerns EFX allocation for four agents. Extending EFX existence from
three to four agents is highly non-trivial. Indeed, [CGM+21] discovered an instance with 4
additive agents in which there exists an EFX allocation with one unallocated item such that
no progress can be made based on the lexicographic potential function. We show that one
unallocated item is the only possible obstacle to EFX existence in settings with 4 agents.

Theorem 1 (Main Result): Every setting with 4 additive agents admits an EFX alloca-
tion with at most a single unallocated item (which is not envied by any agent).

To prove Theorem 1, we show that for any EFX allocation with at least two unallocated
items, it is possible to reshuffle bundles and reallocate them in such a way that advances the
lexicographic potential function and preserves EFX. The proof requires solving a complex
puzzle, and exemplifies the extensive use of our new techniques.
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Setting Prior results Our results

EFX for 3 agents Additive [CGM20] Beyond additive∗

EFX for n agents, one of 2 valuations Additive [Mah20] Beyond additive∗

Partial EFX for n agents ≤ n− 1 unallocated items [CKMS20] ≤ n− 2 unallocated items

Partial EFX for 4 agents ≤ 3 unallocated items [CKMS20] ≤ 1 unallocated item

Table 1: Our results hold for (*)nice cancelable valuations, generalizing additive valuations

The immediate open problem is whether one can go the additional mile and allocate the
one item that remains. A natural approach to solving this problem is by using a different
potential function. Notably, our new techniques are orthogonal to the choice of the potential
function, and may prove useful in analyzing other potential functions.

Our second result makes an additional progress in settings with arbitrarily many agents.
Theorem 2: Every setting with n additive agents admits an EFX allocation with at most
n− 2 unallocated items.

Here too, the unallocated items are not envied by anyone. To prove Theorem 2, we
show that for any EFX allocation with at least n − 1 unallocated items, one can reshuffle
bundles and reallocate them in a way that results in a Pareto-dominating EFX allocation.
This means that one can find an EFX allocation with at most n− 2 unallocated items.

In addition to these results, we establish the following extensions and simplifications.

Beyond additive valuations. Our results, Theorems 1 and 2 above, apply beyond additive
valuations to a broader class that we term nice cancelable valuations. Moreover, we extend
the results of [CGM20] (EFX for 3 additive agents) and [Mah20] (EFX for n agents with
one of two additive valuations) to this new class.

Intuitively, nice cancelable valuations allow “cancelling out” of equal terms in inequali-
ties, and as such they are a direct generalization of additive valuations1. Besides additive,
this class also includes budget additive, unit-demand and multiplicative valuations, among
others.

We stress that in our extension of the results by [CGM20, Mah20], one can have different
nice cancelable valuations for different agents2. We further remark that the original proofs,
as written, do not directly generalize to this more general class of valuations. It is our new
techniques that allow us to generalize the results to this class.

Theorem 3: EFX existence for 3 agents and EFX existence for two types of valuations
(any number of agents) extends beyond additive valuations to all nice cancelable valuations.

Simplification of proofs for known results. Our new techniques greatly simplify ex-
isting proofs of EFX existence for 3 agents [CGM20] and for the case of 2 types of additive
valuations [Mah20]. Admittedly, simplicity is a matter of subjective judgment, but at least
in terms of character count, the proof for the case of 3 agents with no envy in [CGM20]
(some 5 pages) drops to half a page using our new techniques. Similarly, the proof for
settings with 2 types of additive valuations in [Mah20] (some 8 pages) drops to one page
using our new techniques. Moreover, in both settings, the simplified proofs apply beyond
additive valuations to all nice cancelable valuations.

We believe that we have only scratched the surface of the power of our new techniques,
and hope they will prove useful in making further progress on the EFX problem.

1E.g., if v is additive, then v({a, b}) > v({a, c}) implies v({b}) > v({c}).
2E.g., an EFX allocation exists for three agents when agent a has a multiplicative valuation, b has a

budget additive valuation, and c has a unit demand valuation. Another example, fix any two nice cancelable
valuations, some agents have the 1st and others have the 2nd, an EFX allocation still exists.
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1.2 Our Techniques

Our proof techniques lie within a graph theoretic framework. Given an EFX allocation X,
we describe a graph MX (see Definition 3.2) where vertices are associated with agents and
there are three types of edges: envy edges i j, champion edges i g j, where g is an
unallocated item, and generalized champion edges i H | S j, where H is some subset of
items (allocated or not) and S is a subset of j’s allocation in X.

The use of such graphs, with envy and champion edges (but no generalized championship
edges) has previously appeared in the literature and is a key component in the proof of an
EFX allocation for 3 additive agents [CGM20]. The new ingredient introduced in this paper
is the notion of generalized champion edges. We show how to find such edges (Section 3.1),
and use them to reach a new EFX allocation that advances the lexicographic potential
function of [CGM20].

The key idea in all our results is to reshuffle the existing allocation to obtain a new
allocation with higher potential, while preserving EFX. This follows the same proof template
as in Chaudhury et al. — but we have more options to play with by using the generalized
championship edges.

An envy edge i j suggests a possible reshuffling where agent i gets j’s current allo-
cation. A champion edge i g j suggests another reshuffling, where agent i gets a subset
of agent j’s current allocation, along with the currently unallocated item g. A generalized
champion edge i H | S j suggests giving agent i agent j’s allocation along with some
arbitrary set of items H (that may be arbitrarily allocated among other agents, or be unal-
located), while freeing up the set of items S.

Our proofs require solving a complex puzzle, where the goal is to find a cycle consisting
of envy, champion, and generalized champion edges, such that the union of all sets S freed
up along with the currently unallocated items suffice for the reallocation the cycle suggests.

Finding the appropriate generalized championship edges is a major technical component
of our techniques (see Section 3.1). We show how to find such edges, based on existing edges.
Then, these edges allow us to reshuffle the current allocation and advance the potential.

In several of our proofs we consider the case where MX has envy edges separately from
the case where it has not. For our applications, it turns out that if there are no envy edges,
one can Pareto improve the EFX allocation (See Section 5.1 in [BCFF21]), in particular
this advances the potential function. If there are envy edges it may no longer be possible to
Pareto improve (as pointed out by [CGM20]) but one can nonetheless advance the potential
function itself (see Section 5.2 in [BCFF21]).

1.3 Other Related Work

Lipton et al. [LMMS04] give a greedy algorithm for producing an EF1 allocation, this
adds items to an agent that is not envied, or — alternately — switches bundles around an
envy cycle, the so-called envy-cycles procedure. Caragiannis et al. [CKM+19] show that
maximizing Nash welfare (maximizing the geometric mean of agent utilities) gives an EF1
allocation that is also Pareto optimal. Approximations for maximizing Nash welfare were
presented by Cole and Gkatzelis [CG15] and subsequent papers.

Varian [Var74] introduced the notion of competitive equilibria from equal incomes
(CEEI), which guarantees envy freeness. Envy free allocations that discard few items were
considered in [BT00, BKK13]. In [BKK13] the resulting allocation is Pareto optimal, envy
free, and maximal (no EF allocation allocates more items). There have been some papers on
truthful mechanisms for proportional fairness (Mosel and Tamuz [MT10] and Cole, Gkatzelis
and Goel [CGG13]). The latter mechanism uses no money and provides good guarantees —
the mechanism discards a fraction of the resources to achieve truthfulness.
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1.4 Paper Roadmap

Due to space limitations, some of the proofs appear in the various appendices and not in
the body of the paper. The next section, Section 2, presents the model, introduces “nice
cancelable valuations”, gives definitions from [CGM20] as well as new definitions, notations,
and proofs. Some proofs are deferred to Appendix A.

Section 3 defines “generalized championship”. It may be helpful to consider Figure
1 while reading the section. How to find generalized championship edges is described in
Section 3.1. Some proofs are deferred to Appendix B.

Section 4 proves that it suffices to discard at most n − 2 items and yet guarantee the
existence of an EFX allocation.

In Section 5 we show that for 4 agents it suffices to discard one item and yet still guarantee
an EFX allocation. A roadmap of this proof itself appears in Figure 2. The proof exceeds
the scope of this manuscript and is therefore deferred to the full version of the paper (See
[BCFF21]).

Finally, Appendix C simplifies and extends prior results for 3 agents and for one of two
additive valuations.

2 Preliminaries

We consider a setting with n agents, and a set M of m items. Each agent has a valuation
vi : 2M → R≥0, which is normalized and monotone, i.e., v(S) ≤ v(T ) if S ⊆ T and v(∅) = 0.

For two sets of items S, T ⊆ M , we write S <i T if vi(S) < vi(T ). Similarly we
define S >i T , S ≤i T , S ≥i T , S =i T if vi(S) > vi(T ), vi(S) ≤ vi(T ), vi(S) ≥ vi(T ),
vi(S) = vi(T ), respectively.

We denote a valuation profile by v = (v1, . . . , vn). An allocation is a vector X =
(X1, . . . , Xn) of disjoint bundles, where Xi is the bundle allocated to agent i. Given an
allocation X, We say that agent i envies a set of items S if Xi <i S. We say that agent i
envies agent j , denoted i j, if i envies Xj . We say that agent i strongly envies a set of
items S if there exists some h ∈ S such that i envies S \ {h}. Likewise we say that agent i
strongly envies agent j if i strongly envies Xj . X is called envy-free (EF) if no agent envies
another. X is called envy-free up to any good (EFX) if no agent strongly envies another.

Nice cancelable valuations. We consider a class of valuation functions that can be
viewed as a generalization of additive valuations. These include additive, unit-demand and
budget-additive valuations, among others.

Definition 2.1. A valuation v is cancelable if for any two bundles S, T ⊆ M and an item
g ∈M \ (S ∪ T ), v (S ∪ {g}) > v (T ∪ {g})⇒ v (S) > v (T ) .

A valuation v is non-degenerate if v (S) 6= v (T ) for any two different bundles S, T . A
valuation v′ is said to respect another valuation v if for every two bundles S, T ⊆ M such
that v(S) > v(T ) it also holds that v′(S) > v′(T ). A cancelable valuation v is nice if there is
a non-degenerate cancelable valuation v′ that respects v. In particular, any non-degenerate
cancelable valuation is a nice valuation (by setting v′ ≡ v).

We can show that in order to prove the existence of an EFX allocation for a given
valuation profile v = (v1, . . . , vn) of nice cancelable valuations, it is without loss of generality
to assume that all of the valuations are non-degenerate (Lemma A.1 in Appendix A). Thus,
for the remainder of this paper we assume that all valuations are cancelable and non-
degenerate. Under this assumption it is easy to verify that for any valuation v and bundles
S, T,R such that R ⊆M \ (S ∪ T ) we have

v (S ∪R) > v (T ∪R)⇔ v (S) > v (T ) .
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Other useful claims on cancelable valuations are deferred to the appendix.

Potential functions and progress measures. All our EFX existence results follow the
same paradigm: given an arbitrary EFX allocation X with k unallocated goods, construct a
new partial EFX allocation that advances a fixed potential function. Since there are finitely
many allocations, there must exist an EFX allocation with at most k− 1 unallocated items.

A natural progress measure to consider is Pareto domination. Given two allocations
X,Y, we say that Y Pareto dominates X if Yi ≥i Xi for every i ∈ [n], and there exists some
i for which the inequality is strict. Chaudhury et al. [CGM20] have shown that there need
not exist a Pareto-dominating EFX allocation when n = 3 and k ≥ 1. To overcome this
obstacle they introduce an alternative “lexicographic” progress measure which we also use:

Definition 2.2 ([CGM20]). Fix some arbitrary ordering of the agents a1, . . . , an. The
allocation Y dominates X if for some k ∈ [n], we have that Yaj

=aj
Xaj

for all 1 ≤ j < k,
and Yak

>ak
Xak

.

Note that Pareto-domination implies domination but not vice versa.

Lemma 2.3. If for every EFX allocation X with k unallocated items, there exists a partial
EFX allocation Y that dominates X, then there exists an EFX allocation with at most k−1
unallocated items. Moreover, no agent envies the set of k − 1 unallocated items.

Hereinafter we fix a partial EFX allocation X, and our general goal is to find a dominating
EFX allocation Y. In fact, in our results we almost always progress via Pareto-domination.
In the few cases we do not, we find an allocation in which a1 (the most important agent in
the ordering) is strictly better off. We denote this agent avip.

Most envious agents. Fix some unallocated good g. We denote by U the set of goods that
are unallocated in X (thus g ∈ U). The following are variants of definitions from [CGM20],
[CKMS20].

We say that i is most envious of a set of items S, if there exists a subset T ⊆ S, such
that i envies T and no agent strongly envies T . When more than one such T exists, we
choose one of them arbitrarily unless stated otherwise. The set S \ T is referred to as the
corresponding discard set.

Definition 2.4 ([CGM20]). We say that i champions j with respect to g, denoted i g j,
if i is most envious of Xj ∪ {g}. The corresponding discard set is denoted Dg

i,j . Note that i
envies the set (Xj ∪ {g}) \Dg

i,j , but no agent strongly envies it.

An important case considered frequently in the paper is where g /∈ Dg
i,j . In this case

Xj = (Xj \ Dg
i,j) ·∪ D

g
i,j . Following [CGM20], if i g j and g /∈ Dg

i,j , then we say that
i g-decomposes j into top and bottom half-bundles (Xj \ Dg

i,j) and Dg
i,j , respectively (in

short, i g-decomposes j). If there is no concern of ambiguity, then we denote the top
and bottom half-bundles by Tj and Bj , respectively (note that different g-decomposers
of j may induce different top and bottom half-bundles). Under this notation, we have
(Xj ∪ {g}) \Dg

i,j = Tj ∪ {g}.
In the following observations from [CGM20], i g j and i 6 j are the respective

negations of i g j, i j.

Observation 2.5. For every agent i, there exists an agent j who champions i with respect
to g.

Observation 2.6. If i g j and i 6 j, then g /∈ Dg
i,j , i.e., i g-decomposes j.

Observation 2.7. If i g j and j is g-decomposed: Xj = Tj ·∪Bj , then Xi >i Tj ∪ {g}.

Observation 2.8. If i g-decomposes j, i g k and k is g-decomposed, then Tk <i Tj .
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3 Generalized Championship

A crucial component in our techniques is the extension of Definition 2.4 to an arbitrary set
of items H. It will be useful to have a notation that contains some information regarding
the discarded items.

Definition 3.1. i champions j with respect to (H | S), denoted i H | S j, where H ⊆
M \Xj and S ⊆ Xj , if i is most envious of (Xj \ S) ∪H. The corresponding discard set is

denoted D
H|S
i,j .

As opposed to basic championship, not every agent j has an (H | S)-champion (consider
an extreme example where H = ∅, S = Xj). If i H | S j, then giving i the desired bundle
implied by the championship releases S to be reallocated to other agents. For example, if we
also know that k S | S′ `, then these two champion relations can be “used” simultaneously
in a transition to a new EFX allocation.

We say that a set of items T is released by i H | S j if T ⊆ S ∪DH|S
i,j . We denote the

negation of i H | S j by i H | S j.

Definition 3.2. The champion graph MX = ([n], E) is a labeled directed multi-graph. The
vertices correspond to the agents, and E consists of the following 3 types of edges:

1. Envy edges: i j iff i envies j.

2. Champion edges: i g j iff i champions j w.r.t. g, where g is an unallocated good.

3. Generalized champion edges: i H | S j iff i champions j with respect to H | S.

We refer to envy and champion edges as basic edges. Hereinafter, the edge notations
above will sometimes refer to the edges of the champion graph and sometimes refer to the
statements they convey. For example, we will sometimes refer to “i g j” as an edge in
MX and sometimes as shorthand that i is a g-champion of j, and the meaning will be clear
from the context. Futhermore, it is not hard to verify that i g j iff i {g} | ∅ j and that
i j iff i ∅ | ∅ j. Thus, we can treat basic edges in MX as a generalized champion edges.

Example 3.3. Consider the instance given in Table 2, and let X be the partial EFX
allocation where X1 = {a, b, c}, X2 = {d}, X3 = {e, f}. Figure 1 depicts the graph MX.
We haven’t drawn all edges; rather, we chose a subset of the edges that illustrate the
different types of edges. Item g is unallocated in X, thus U = {g}. Since {a, b, c} <1 {d},
1 2. Moreover, combined with the fact that no one strongly envies {d}, it also means
that 1 g 2. Since {d} <2 {b, g} and no one strongly envies {b, g}, 2 g 1. Similarly,
since {d} <2 {f, g} and no one strongly envies {f, g}, 2 g 3, and since {e, f} <3 {c, g}
and no one strongly envies {c, g}, 3 g 1. Finally, it holds that 2 {a, b} | {e} 3 since
{d} <2 {a, b, f} and no one strongly envies {a, b, f}.

Given a cycle C = a1 → a2 → · · · → ak → a1 and an agent ai in the cycle, succ(ai) and
pred(ai) denote, respectively, the successor and predecessor of ai along the cycle.

Definition 3.4. A cycle C = a1 H1 | S1 a2 H2 | S2 · · · Hk−1 | Sk−1 ak Hk | Sk a1
in MX is called Pareto improvable (PI) if for every i, j ∈ [k] we have Hi∩Hj = ∅, and either
Hi ⊆ U or Hi is released by some edge a` H` | S` succ(a`), for ` ∈ [k].3

A PI cycle which is composed entirely of basic edges is called a basic PI cycle.

3We could have defined a PI cycle more generally, e.g., to allow the set Hi to be a combination of
unallocated goods and items released from several edges. The proposed definition is hopefully easier to
digest and suffices for our purposes.
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a b c d e f g

1 1 2 3 7
2 1 3 6 1 3 4
3 5 3 3 2

Table 2: A profile with 7 items
and 3 additive agents. Un-
specified values are zeros.

Figure 1: The graph
MX corresponding
to the setting de-
scribed in Table 2
and the allocation
X1 = {a, b, c}, X2 =
{d}, X3 = {e, f}.
Only a subset of the
edges is shown.

By definition, every agent ai along a PI cycle envies some subset Ai ⊆
(
Xsucc(ai) \ Si

)
∪Hi

that no agent strongly envies. The following simple but very (!) useful lemma asserts that
reallocating Ai to agent ai for every i produces a Pareto-dominating EFX allocation. Thus,
finding a PI cycle in MX suffices to advance our potential function.

Lemma 3.5. If MX contains a Pareto improvable cycle, then there exists a (partial) EFX
allocation Y that Pareto dominates X. Furthermore, every agent i along the cycle satisfies
Yi >i Xi.

Corollary 3.6 (Following [CKMS20]). If MX contains an envy-cycle, a self-g-champion
(an agent i satisfying i g i) or a cycle composed of envy edges and basic champion edges
where for every h ∈ U there is at most one h-champion edge in the cycle, then there exists a
(partial) EFX allocation Y that Pareto dominates X. Note that these are exactly the basic
PI cycles4.

Remark 3.7. Lemma 3.5 can be generalized to handle disjoint cycles. The fact that C
is a cycle is used in the proof of the lemma only to ensure that every agent whose bundle
is reallocated, is also given an alternative bundle in the new allocation. The same is true
if C is a set of vertex-disjoint cycles rather than a single cycle. We may then define C as
an edge set {ai Hi | Si succ(ai)}i∈[k], and if the conditions in the definition of a Pareto-
improvable cycle are satisfied, then Lemma 3.5 still applies. In this case we refer to C as a
Pareto-improvable edge set.

3.1 New Edge Discovery

In this section we describe a way to discover new generalized champion edges in MX. These
will almost always be of the form k S | Bj j where Bj ⊆ Xj is some bottom half-bundle
induced by a g-decomposer of j (see discussion below Definition 2.4). Therefore, to facilitate
readability we use the following convention:

Convention 3.8. For any two agents k, j and any set S disjoint from Xj , we write k S | ◦

j (resp. (S | ◦)-champion) as shorthand for k S | Bj j (resp. (S | Bj)-champion), where
the half-bundle Bj will be clear from the context.

The following structure in the champion-graph is especially convenient for edge discovery.

Definition 3.9. A cycle C = a1 g a2 g · · · g ak g a1 with at least two g-
champion edges in MX is called a good g-cycle if:

1. All agents along the cycle are different.

4Envy cycles, the simplest form of basic PI cycles, were considered in [LMMS04]. Basic PI-cycles were
considered in [CKMS20] using different terminology — championship was only defined in [CGM20]. Our
definition of a PI-cycle captures and generalizes these notions.
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2. There are no parallel envy edges, i.e., ai 6 succ(ai) for all i.

3. There are no internal g-champion edges, i.e., ∀i, j ∈ [k]: ai g aj iff aj = succ(ai).

Observation 3.10. Agents j on a good g-cycle are g-decomposed by pred(j) into Xj =
Tj ·∪Bj .

We next show how to discover new generalized champion edges in the presence of a good
g-cycle. The following two observations are useful:

Observation 3.11. If i 6 j then i Bj | ◦ j.

Observation 3.12. For any two agents i, j along a good g-cycle, pred(i) Bi | ◦ j.

Lemma 3.13. Let C be a good g-cycle. For any agent i along the cycle, there exists an
agent a such that a Bi | ◦ succ(i).

Proof. C is a good cycle, hence i g-decomposes succ(i) into Xsucc(i) = Tsucc(i) ∪ Bsucc(i).
Furthermore, i g i and i is g-decomposed into Xi = Ti ∪ Bi. Thus by Observation 2.8
(with j = succ(i) and k = i in the Observation statement) we have Ti <i Tsucc(i). Hence,
by cancelability, Xi = Ti ∪ Bi <i Tsucc(i) ∪ Bi. Since the set Tsucc(i) ∪ Bi is envied by some
agent, it must have a most envious agent and the claim follows.

Lemma 3.14. Let C be a good g-cycle. Let i, j, k be agents along the cycle. If k Bi | ◦

j, then there exists an agent a (not necessarily in the cycle) such that a Bi | ◦ succ(k).

Proof. If k = pred(j), then j = succ(k) and we are done (take a = k). Assume otherwise. C
is a good cycle, hence k g-decomposes succ(k) into Xsucc(k) = Tsucc(k)∪Bsucc(k). Furthermore,
k g j since k 6= pred(j), and j is g-decomposed into Xj = Tj ∪Bj . Thus by Observation
2.8 we have Tj <k Tsucc(k). Hence, Xk <k Tj ∪Bi <k Tsucc(k) ∪Bi, where the first inequality
holds by k Bi | ◦ j and the second by cancelability. Since the set Tsucc(k) ∪ Bi is envied
by some agent, it must have a most envious agent and the claim follows.

For every bottom half-bundle Bi along a good g-cycle C, applying Lemma 3.13 provides
an initial Bi-champion edge. If this edge is internal to the cycle, i.e., the source of the edge
is in the cycle, then we can apply Lemma 3.14 to discover a new Bi-champion edge. Once
again, if the new edge is internal to the cycle, then we can reapply Lemma 3.14. We can
repeat this process to discover more and more Bi-champion edges, until either the new edge
has already been previously discovered, or it is external (i.e., its source is outside the cycle).

There are two particular types of internal Bi-champions edges that are useful to us.

Definition 3.15. Let C be a good g-cycle. Let i, j, k be three agents along C. If i Bk | ◦

j and k is on the path from j to i in C, then we say that the edge i Bk | ◦ j is a good
edge (or good Bk-edge). If ` Bk | ◦ j for some agent ` outside the cycle C, then we say
that the edge ` Bk | ◦ j is an external edge (or external Bk-edge).

The figure on the right illustrates Definition 3.15. The red
edges form a good g-cycle C among 4 agents, C = 1 g

2 g 3 g 4 g 1. The edge 2 B1 | B4 4 is a good edge,
since 1 is on the path from 4 to 2 in C. On the other hand,
3 B4 | B2 2 is not a good edge (we call it a bad edge in
the figure), since 4 is not on the path from 2 to 3 along C.
5 B2 | B3 3 is an external edge.

Theorem 3.16. Let C be a good g-cycle. For every agent j along the cycle, there exists
either a good Bj-edge in C, or an external Bj-edge in C.
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Proof. Assume without loss of generality that C = 1 g 2 g · · · g k g 1 and j =
1, i.e., we try to find B1-champion edges. By Lemma 3.13 there exists an edge `1 B1 | ◦

2 for some agent `1. If this is an external B1-edge we are done. Otherwise, `1 is an agent
along C, and thus by Lemma 3.14 there exists an edge `2 B1 | ◦ succ(`1), for some agent
`2 which can be equal to `1. As long as the result of Lemma 3.14 is not an external edge
we may apply the lemma repeatedly. Hence, if no such iteration results in an external edge,
we obtain a sequence of agents (`i)

∞
i=1 such that `i+1 B1 | ◦ succ(`i) for every i ≥ 1.

If for some i ≥ 1, we have `i+1 ≤ `i then the edge `i+1 B1 | ◦ succ(`i) is a good edge
(since the path from succ(`i) to `i+1 includes 1). Hence, if none of these edges are good,
then `i < `i+1 for every i ≥ 1, in contradiction to C being of finite length. Thus, one of
these edges must be good, hence we are done.

The following observation and its corollary allow us to narrow down
the possible configurations of Bj-edges obtained from Theorem 3.16.

Observation 3.17. If i Bj | ◦ k and i 6 k then Bk <i Bj .

Corollary 3.18. Let C be a good g-cycle. Consider the set of Bj-edges guaranteed by
Theorem 3.16 for every agent j along the cycle. If all these edges are external, then they
cannot all share the same source agent, unless that agent envies some agent along the cycle
(the figure on the right demonstrates an impossible configuration).

4 EFX with at most n− 2 unallocated goods

In this section we prove the following:

Theorem 4.1. For every profile of n additive valuations (and more generally, nice cance-
lable valuations), there exists an EFX allocation X with at most n − 2 unallocated items.
Moreover, in X no agent envies the set of unallocated items.

The following lemma shows that the basic edges of the graph MX follow a very particular
structure. This lemma is used in the proof of Theorem 4.1.

Lemma 4.2. Let X be an EFX allocation with at least n− 1 unallocated items, and let G
be MX restricted to basic edges, i.e., envy and basic champion edges as per Definition 2.4.

If G does not admit a basic PI cycle, then the number of unallocated goods is exactly
n − 1, and G is a union of n − 1 parallel Hamiltonian cycles. Every such cycle consists of
g-champion edges for some unallocated item g.

Proof. Recall that U denotes the set of unallocated items, and let U = {g1, . . . , gk} for some
k ≥ n−1. Let e11 be an arbitrary incoming g1-champion edge of agent 1 (such an edge exists
by Observation 2.5).

If the source of this edge is agent 1 we are done (we have a self champion). Assume
w.l.o.g. that the source of e11 is agent 2, and consider its incoming g2-champion edge,
denoted e22. If the source of e22 is agent 2 or agent 1, we are done (in the first case we have a
self g2-champion, and in the second case we have a basic PI cycle of size 2). Assume w.l.o.g.
that the source of e22 is agent 3. We can continue this way to conclude that w.l.o.g we have
a directed path n gn−1 n − 1 gn−2 · · · g1 1. If k ≥ n, then consider the incoming
gn-champion edge of agent n. No matter what the source of this edge is, it must close a
basic PI cycle.

Ergo, k = n− 1. Consider the incoming g1-champion edge of agent n, denoted e1n. The
source of this edge must be agent 1 (every other option closes a basic PI cycle). Now consider
the incoming g2-champion edge of agent 1, e21. Similarly, the source of this edge must be
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agent 2. We can again continue this way until we get to the incoming gn−1-champion edge
of agent n− 2, denoted en−1n−2, and conclude that its source is agent n− 1. We consider the
incoming g1-champion edge of agent n− 1, and continue with the same reasoning, to finally
conclude that the source of the incoming gn−1-champion edge of agent n is agent 1.

At this point there is a Hamiltonian cycle n gi n − 1 gi · · · gi 1 gi n for
every i. Any other basic champion or envy edge must close a basic PI cycle and thus does
not exist by assumption. This concludes the second part of the lemma.

We are now ready to prove Theorem 4.1.

Proof. By Lemma 2.3, it suffices to prove that if X has at least n − 1 unallocated items,
then there exists a Pareto dominating EFX allocation Y. By Lemma 3.5, it suffices to find
a PI cycle in MX.

By Lemma 4.2, there are exactly n−1 unallocated goods, and G is a union of n−1 parallel
Hamiltonian cycles 1 gi 2 gi · · ·n gi 1, one for each unallocated good g1, . . . , gn−1.

Furthermore, it follows from Lemma 4.2 that we can assume that we have no other
champion edges and no envy edges. Thus, all these cycles are good.

By Theorem 3.16 for all agents k and every unallocated good g there exists a good
Dg

k−1,k-champion edge, from some agent j to some agent j′. (Indeed, since G is a union
of parallel Hamiltonian cycles, no external edges exists.) Choose some arbitrary agent k
and unallocated good g and corresponding agents j, j′, and let Z = Dg

k−1,k. We show that

j Z | ◦ j′ closes a Pareto improvable cycle in MX.
By definition of a good edge, there is a unique path P consisting of g-champion edges

from agent j′ to j, passing through agent k. By Lemma 4.2, for every q ∈ U , every edge in
P has a parallel q-champion edge. Note that P has at most n− 1 edges.

Rename the agents so that agent j is agent |P |, agent j′ is agent 1, let k′ be the new
index for agent k, and let P = 1, 2, . . . , k′ − 1, k′, . . . |P |. Note that Z is now the discard set
of the champion edge k′ − 1 g k′. Let U ′ = U \ {g} (|U ′| = n− 2), and rename the items
in U ′ where U ′ = {r1, r2, . . . , rk′−2, rk′ , . . . , rn−1}. We now describe a PI cycle:

1 r1 2 r2 2 r3 · · · rk′−2 k′ − 1 g k′ rk′ k′ + 1 rk′+1 · · ·
· · · r|P |−1 |P | Z | ◦ 1

Since Z is the discard set of the champion edge k′ − 1 g k′, it is discarded along the cycle.
All other edges in the cycle are with respect to distinct unallocated goods. Therefore, this
is a Pareto-improvable cycle.

5 EFX for 4 additive agents with 1 unallocated good

In this section we prove our main result, namely that every setting with 4 additive agents
admits an EFX allocation with at most 1 unallocated good. We prove this for the class of
nice cancelable valuations which contains additive. By Lemma 2.3 it suffices to prove:

Theorem 5.1. Let X be an EFX allocation on 4 nice cancelable agents with at least 2
unallocated items. Then, there exists an EFX allocation Y that dominates X.

While this is indeed our main result, its proof exceeds the scope of this manuscript. We
therefore omit the proof in its entirety, and refer the interested reader to the full version of
the paper (see [BCFF21]). The proof involves a rigorous case analysis, which exemplifies the
extensive use of our new techniques. We have attempted to make the proofs as accessible
as possible through the use of extensive aids such as figures and colors.
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Figure 2: High-level roadmap of the proof of Theorem 5.1. |Cg| and |Ch| are the lengths of
some good cycles of items g and h, respectively. (∗) The g and h champions of agent 4 can
be either agent 1 or 2.

By assumption, there exist two unallocated goods which we denote g, h. The proof dis-
tinguishes between two main cases, namely whether X is envy-free (Section 5.1 of [BCFF21])
or not (Section 5.2 of [BCFF21]). When X is envy-free, we show that a Pareto improvable
(PI) cycle always exists. This is shown via a case analysis that depends on the lengths of
the good g- and h-cycles which must exist in the champion graph MX.

When X has envy, we argue that the only interesting case is where the basic edges follow
some specific structure, modulo permuting the agent identities. Then, we show that there is
an EFX allocation in which agent avip (per the lexicographic potential) is better off relative
to X. Since avip could be any one of the agents (due to the identity permutation), the proof
splits to cases accordingly, where the case avip = 2 is treated separately from the case where
avip is one of the other three agents. Our approach here is heavily inspired by and follows a
similar high-level structure to that of [CGM20] in their analysis of the envy case in their 3
agent result. Our proof structure is depicted in Figure 2.
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A Proofs and Claims from Section 2

Lemma A.1. To prove the existence of an EFX allocation for a given valuation profile
v = (v1, . . . , vn) of nice cancelable valuations, it is without loss of generality to assume that
all of the valuations are non-degenerate.

Proof. For each i ∈ [n], vi is a nice cancelable valuation. Hence, for every i ∈ [n] there
exists a non-degenerate cancelable valuation v′i that respects vi. Let v′ = (v′1, . . . , v

′
n) be

the corresponding valuation profile.
We show that any allocation which is EFX for the profile v′ is also EFX for the profile

v. Let X = (X1, . . . , Xn) be an EFX allocation for the profile v′ and assume towards
contradiction that X is not an EFX allocation for the profile v. Hence, under the profile v
there exists an agent i that strongly envies another agent j, i.e., vi(Xi) < vi(Xj \ {h}) for
some h ∈ Xj . Since v′i respects vi, it follows that v′i(Xi) < v′i(Xj \ {h}), in contradiction to
X being EFX over the profile v′.

The family of nice cancelable valuations contains some well-known classes of valuations.
Additive valuations are clearly cancelable and are shown to be nice in [CGM20]. The
following lemma shows that this class contains many other classes of valuations, including
unit-demand, budget-additive and multiplicative.

Lemma A.2. Unit-demand, budget-additive and multiplicative valuations are nice cance-
lable.

Proof. Budget-Additive: Let v be a budget-additive valuation, i.e., for every S ⊆M ,

v(S) = min

∑
g∈S

v(g), B

 ,

for some B > 0. We start by proving v is cancelable. Consider S, T ⊆M and g ∈M \(S∪T )
such that

v(S ∪ {g}) > v(T ∪ {g}).

First, v(S ∪ {g}) ≤ B, by definition of v. Therefore, v(T ∪ {g}) < B, so v is additive over
T ∪{g}. It follows that v(T ) = v(T ∪{g})−v({g}). Second, since budget-additive valuations
are sub-additive, v(S) ≥ v(S ∪ {g})− v({g}). Combining these two observations we get

v(S) ≥ v(S ∪ {g})− v({g}) > v(T ∪ {g})− v({g}) = v(T ).

This proves that v is cancelable.
We next prove that v is nice. Define the valuation v′ : 2M → R≥0 as the underlying

additive valuation of v, i.e., for every S ⊆M ,

v′(S) =
∑
g∈S

v(g).

We now show that v′ respects v.
Suppose v(S) > v(T ) for some S, T ⊆M . Since v(S) ≤ B, it follows that v(T ) < B, and

thus v is additive over T . By definition of v′, this implies that v(T ) = v′(T ). Furthermore,
notice that v′(S) ≥ v(S). Thus,

v′(S) ≥ v(S) > v(T ) = v′(T ).

This proves that v′ respects v.
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Finally, since v′ is an additive valuation it is nice and cancelable (as shown in [CGM20]).
Therefore, there exists a non-degenerate cancelable valuation v′′ that respects v′. Because
v′ respects v, it follows by transitivity that v′′ respects v as well. Since v′′ is non-degenerate
and cancelable, this proves that v is nice.

Multiplicative: Let v be a multiplicative valuation, i.e., for every S ⊆M ,

v(S) =
∏
g∈S

v(g).

Multiplicative valuations are trivially cancelable. Since additive valuations are nice, and
since taking the log of a multiplicative valuation gives us an additive function, similar
arguments as in [CGM20] imply that multiplicative is also nice.

Unit-Demand: Let v be a unit-demand valuation, i.e., for every S ⊆M ,

v(S) = max
g∈S

v(g).

We first show v is cancelable. Consider S, T ⊆M and g ∈M \ (S ∪ T ) such that

v(S ∪ {g}) > v(T ∪ {g}).

Clearly, g is not the maximal element in S ∪ {g}, otherwise we would have v(S ∪ {g}) =
v({g}) ≤ v(T ∪ {g}). Therefore, v(S ∪ {g}) = v(S). We get

v(S) = v(S ∪ {g}) > v(T ∪ {g}) ≥ v(T ).

This proves that v is cancelable.
We next prove that v is nice. Define

δ = min
S,T⊆M, v(S) 6=v(T )

|v(S)− v(T )|.

That is, δ is the minimal difference between the value of any two non-equal valued sets of
items. Let g0, . . . , gm−1 be the items in M ordered in non-decreasing value, ties broken
arbitrarily. Let ε = 2−(m+1)δ. Define the valuation v′ : 2M → R≥0 as follows:

v′(S) = v(S) + ε
∑

i:gi∈S
2i.

To complete the proof we need to show that v′ is a non-degenerate cancelable valuation and
that v′ respects v. We begin with the latter. Suppose v(S) > v(T ) for some S, T ⊆M . This

implies that v(S) > v(T ) + δ/2, by definition of δ. Moreover, since
∑m−1

i=0 2i < 2m, we have

v′(T ) = v(T ) + ε
∑

i:gi∈T
2i < v(T ) + ε · 2m = v(T ) +

δ

2
.

We get

v′(S) > v(S) > v(T ) +
δ

2
> v′(T ),

as required.
We next prove v′ is non-degenerate. For all S, T ⊆ M such that v(S) 6= v(T ), we

have shown above that v′(S) 6= v′(T ). So it remains to show that v′(S) 6= v′(T ) whenever
v(S) = v(T ) and S 6= T . Since v(S) = v(T ), to prove that v′(S) 6= v′(T ) it suffices to show
that

ε
∑

i:gi∈S
2i 6= ε

∑
i:gi∈T

2i,
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which clearly holds for every S 6= T .
Finally, we prove v′ is cancelable. Consider S, T ⊆M and gj ∈M \ (S ∪ T ) such that

v′(S ∪ {gj}) > v′(T ∪ {gj}).

It is impossible that v(S∪{gj}) < v(T∪{gj}), since v′ respects v. If v(S∪{gj}) > v(T∪{gj}),
then v(S) > v(T ) since v is cancelable. Since v′ respects v, this implies v′(S) > v′(T ), so we
are done. We are left with the case where v(S ∪ {gj}) = v(T ∪ {gj}). Since v′(S ∪ {gj}) >
v′(T ∪ {gj}), this implies

ε ·
∑

i:gi∈S∪{gj}

2i > ε ·
∑

i:gi∈T∪{gj}

2i.

Eliminating ε · 2j from both sides,

ε
∑

i:gi∈S
2i > ε

∑
i:gi∈T

2i. (1)

If v(S) ≥ v(T ) then Equation (1) implies v′(S) > v′(T ) and we are done. We complete the
proof by showing that the case v(S) < v(T ) is impossible. Assume towards contradiction
that v(S) < v(T ). Let gs and gt be the highest valued items in S and T , respectively
(breaking ties according to the ordering we defined on the items). Since v(S) < v(T ) and v
is unit-demand, v(gs) < v(gt). Due to our ordering, it follows that s < t. Therefore,

∑
i:gi∈S

2i ≤
s∑

i=0

2i < 2s+1 ≤ 2t ≤
∑

i:gi∈T
2i,

in contradiction to Equation (1). This shows that v′ is cancelable.

On the other hand, not all cancelable valuations are nice, as shown in Proposition A.3.

Proposition A.3. Not all cancelable valuations are nice. Even when restricted to submod-
ular cancelable valuations it need not be nice.

Proof. We define a valuation v over the set of items M = {a, b, c, d, e, f} and show that it
is cancelable and submodular but not nice. The following table defines the value of v over
each singleton.

a b c d e f
v 101 102 102 103 103 104

Notice that v(a) < v(b) = v(c) < v(d) = v(e) < v(f), i.e., the values are non-decreasing
from left to right.

The next table defines the value of v over each pair of items. For convenience, we depict
this table as a matrix, where the coordinate (x, y) contains the value v({x, y}) (the matrix
is symmetric).

a b c d e f
a - 152 152 153 153 154
b 152 - 152 155 155 156
c 152 152 - 155 155 156
d 153 155 155 - 155 156
e 153 155 155 155 - 156
f 156 156 156 156 156 -
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Finally, for any set S ⊆M containing three or more items we define v(S) = 200, and we
set v(∅) = 0. This completes the definition of v over all subsets of M .

Cancelability: Consider a pair of sets S, T ⊆ M and an item g ∈ M \ (S ∪ T ) such that
v(S ∪ {g}) > v(T ∪ {g}). First consider the cases where |S| = |T | = 1. Therefore, S ∪ {g}
and T ∪{g} are both pairs of items whose values are located in row g of the matrix above. It
is not hard to verify that within each row of the matrix the values are non-decreasing left to
right with equality only between the columns of equal valued items (the columns b and c and
the columns d and e contain equal values). Therefore, the fact that v(S ∪{g}) > v(T ∪{g})
implies that v(S∪{g}) is located to the right of v(T ∪{g}) in row g of the matrix. Therefore,
v(S) ≥ v(T ). The case v(S) = v(T ) implies v(S ∪ {g}) = v(T ∪ {g}) since the columns
of equal valued singletons are identical in the matrix of pairs. Thus, v(S) > v(T ). This
completes the case |S| = |T | = 1.

If |T | > 2, then v(T ∪ {g}) = 200 and there exists no set S such that v(S ∪ {g}) > 200.
Therefore, we may assume |T | ≤ 1. The case |T | = 0 is easy. In this case, v(S ∪ {g}) >
v(T ∪ {g}) implies that S is non-empty. Since T = ∅ and S 6= ∅, we obtain v(S) > v(T ), so
cancelability is maintained.

We are left with the case |T | = 1. The case |S| = 0 is not possible since no singleton has
a higher value than a pair of items. The case |S| = |T | = 1 has been handled above. So it is
left to consider |S| > 1 and |T | = 1. In this case, notice that v(S) > 150 while v(T ) < 150,
therefore v(S) > v(T ), as desired. This proves that v is cancelable.

Submodularity: It suffices to show that for every item g and every pair of sets S and T
such that S ⊆ T ⊆ M \ {g} we have that v(S ∪ {g}) − v(S) ≥ v(T ∪ {g}) − v(T ). This
condition clearly holds if S = T , so assume S ( T . Therefore, |S| < |T |. Notice that the
following holds for any set Z ⊆M and any item x ∈M \ Z:

if |Z| = 0, 100 <v(Z ∪ {x})− v(Z) ≤ 104;

if |Z| = 1, 50 ≤v(Z ∪ {x})− v(Z) < 60;

if |Z| = 2, 40 <v(Z ∪ {x})− v(Z) < 50;

if |Z| ≥ 3, v(Z ∪ {x})− v(Z) = 0.

Therefore, the fact that |S| < |T | directly implies that v(S∪{g})−v(S) ≥ v(T ∪{g})−v(T ).
This proves that v is submodular.

Not nice: Assume towards contradiction that there exists a non-degenerate cancelable
valuation v′ that respects v. Notice that the following inequalities hold:

154 = v ({a, f}) < v ({b, e}) = 155, (2)

155 = v ({d, e}) < v ({c, f}) = 156, (3)

152 = v ({b, c}) < v ({a, d}) = 153. (4)

Therefore, the analogous inequalities must hold for v′. Consider the comparison be-
tween {a, d, f} and {b, d, e} in v′. v′ is non-degenerate, so v′({a, d, f}) 6= v′({b, d, e}). If
v′({a, d, f}) > v′({b, d, e}), then by cancelability v′({a, f}) > v′({b, e}), which contradicts
Equation (2), so

v′({a, d, f}) < v′({b, d, e}). (5)

Similarly, due to Equation (3) we obtain

v′({b, d, e}) < v′({b, c, f}), (6)

and from Equation (4) we get

v′({b, c, f}) < v′({a, d, f}). (7)
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However, combining Equations (5) and (6) we get v′({a, d, f}) < v′({b, c, f}), in contradic-
tion to Equation (7). This proves that there exists no non-degenerate cancelable valuation
v′ such that v′ respects v, and thus v is not nice.

If an additive agent strongly envies some bundle S, then, iterative removal of the least
valued item until strong envy is eliminated results in a smallest size subset of S that the
agent envies. The next lemma shows that this property extends to cancelable valuations.

Lemma A.4. Let v be a cancelable valuation. Let T be some bundle, and let S a subset
of T . Let Z be the subset obtained from T by iteratively removing the item with least
marginal contribution until the leftover bundle has size |S|. Then v(Z) ≥ v(S).

Proof. Define T0 = T , and for j ≥ 0 define Tj+1 = Tj \ {c}, where c ∈ Tj is the item with
least marginal contribution to Tj . It suffices to prove that for every 0 ≤ j ≤ |T | we have

Tj = arg max
S⊆T :|S|=|T |−j

v(S).

We prove by induction on j. For j = 0 the claim is immediate. Assume that the claim is
true for j and we prove for j + 1. Let c ∈ Tj be the item with least marginal contribution
to Tj , hence by definition we have Tj+1 = Tj \ {c}. Let S ⊆ T such that |S| = |Tj+1|.
We need to show that v(S) ≤ v(Tj+1). If S = Tj+1, then this is immediate. Therefore,
assume S 6= Tj+1. Since S and Tj+1 have the same size, this means that there is some item
b ∈ Tj+1 \ S, and thus S ∪ {b} and Tj have the same size. By the induction hypothesis we
get

v(S ∪ {b}) ≤ v(Tj) = v(Tj \ {b} ∪ {b}),

implying v(S) ≤ v(Tj \ {b}) ≤ v(Tj \ {c}) = v(Tj+1) where the first inequality holds by
cancelability, and the second by definition of c. The claim follows.

Proof of Lemma 2.3. The first part of the lemma follows directly from the fact that the
number of possible allocations is finite and domination is a total order relation.

We now show that if in a given partial EFX allocation X some agent envies the set of
unallocated items then there exists a partial EFX allocation Y that Pareto dominates X.
Analogous to the above, this proves the second part of the lemma.

If some agent envies U , then there exists a subset T of U that some agent i envies and
T is a smallest subset of U that some agent envies. We obtain Y by replacing Xi with T .
Y is EFX, since i did not strongly envy anyone before and now she is better off, and no one
strongly envies i by minimality of T .

Proof of Observation 2.5. Since valuations are non-degenerate and monotone, Xi <i Xi ∪
{g}. Since i envies Xi ∪{g}, this set has a most envious agent, and by definition that agent
is a champion of i with respect to g.

Proof of Observation 2.6. By definition of Dg
i,j , agent i envies (Xj ∪ {g}) \Dg

i,j . If g ∈ Dg
i,j

then (Xj ∪ {g}) \ Dg
i,j is a subset of Xj , implying that agent i envies a subset of Xj and

thus the set Xj as well. Hence, i envies j, in contradiction to our assumption.

Proof of Observation 2.7. Assume that j is g-decomposed by some agent k into Xj = Tj ·∪
Bj . By definition of Dg

k,j , no agent strongly envies (Xj ∪ {g}) \Dg
k,j = Tj ∪ {g}. Therefore,

any agent that envies this set is a most envious agent of Xj ∪ {g}, and thus a g-champion
of j. Hence, agent i does not envy that set.

Proof of Observation 2.8. We have, Tk ∪ {g} <i Xi <i Tj ∪ {g}, where the first inequality
is by Observation 2.7 since i g k and the second inequality is by definition of basic
championship (since i g-decomposes j).
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B Proofs from Section 3

Proof of Lemma 3.5. Let C be a Pareto-improvable cycle in Mx, and assume w.l.o.g. that
C = 1 H1 | S1 2 H2 | S2 · · · Hk−1 | Sk−1 k Hk | Sk 1. Define the allocation Y as
follows: for every agent i,

Yi =

{((
Xsucc(i) \ Si

)
∪Hi

)
\DHi|Si

i,succ(i) i ∈ [k] (i.e., i on cycle C)

Xi otherwise

First, note that the assumptions on the sets Hi, Si ensure that the sets Yi are disjoint.
That is, Y is indeed an allocation. For every i ∈ [k], i is the (Hi | Si)-champion of succ(i).
Thus Xi <i Yi, by definition of generalized championship. Since the bundles did not change
for agents outside the cycle, we conclude that Y Pareto-dominates X.

It remains to show that Y is EFX. Since no agent becomes worse off in the transition
from X to Y, it suffices to show that in allocation X no agent strongly envies the set Yi
for all i ∈ [n]. Indeed, if i is an agent outside the cycle, by the fact that X is EFX, no
agent strongly envies Yi = Xi in X. If i is an agent in the cycle, no agent strongly envies

Yi =
((
Xsucc(i) \ Si

)
∪Hi

)
\DHi|Si

i,succ(i) in X, by definition of generalized championship.

Proof of Observation 3.10. This holds by Observation 2.6 since pred(j) g j and
pred(j) 6 j by definition of a good g-cycle.

Proof of Observation 3.11. Recall that a generalized championship relation i H | S j is
required to satisfy H ∩ S = ∅. Here H = S = Bj . Thus, if Bj 6= ∅ then the requirement
clearly does not hold. Otherwise Bj = ∅ and i ∅ | ∅ j implies that i j, which we assume
does not hold. In any case, the relation i Bj | ◦ j cannot hold.

Proof of Observation 3.12. If i = j the statement holds by Observation 3.11. Assume oth-
erwise. By Observation 3.10 we have that pred(i) g-decomposes i. Further, by definition of
a good g-cycle pred(i) 6 i and pred(i) g j. Therefore, Xpred(i) >pred(i) Ti ∪ Bi >pred(i)

Tj ∪Bi, where the second inequality is by Observation 2.8 and cancelability. Thus, pred(i)
does not envy Tj ∪Bi and the claim follows.

Proof of Observation 3.17. Since i 6 k and i Bj | ◦ k we have Tk ∪ Bk = Xk ≤i Xi <i

(Xk \Bk) ∪Bj = Tk ∪Bj , and by cancelability this implies Bk <i Bj .

Proof of Corollary 3.18. Assume towards contradiction that there is some agent a which is
the source of all Bi-edges given by Theorem 3.16, and a does not envy any agent along the
cycle. Let j = arg mini{va(Bi) | i is an agent along C}. By assumption, there exists some
j′ along C such that a Bj | ◦ j′, and a 6 j′. By Observation 3.17, Bj >a Bj′ . Hence,
va(Bj) > va(Bj′), in contradiction to the definition of j.

C Simplification and Extension of Known Results

In this section we simplify the proofs of full EFX existence for 3 additive agents [CGM20] and
for n agents with one of two fixed additive valuations [Mah20]. Moreover, our proofs extend
beyond additive to all nice cancelable valuations. Our proofs demonstrate the versatility of
our techniques.
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C.1 EFX for 3 nice cancelable valuations

By Lemma 2.3 it is sufficient to prove the following theorem.

Theorem C.1. Let X be an EFX allocation for 3 agents with nice cancelable valuations,
with at least one unallocated item. Then, there exists an EFX allocation Y that dominates
X.

By assumption there is an item g that is unallocated in X. The original proof in [CGM20]
distinguishes between two main cases according to whether X is envy-free or not. In the case
where X is not envy-free the original proof extends almost immediately to nice cancelable
valuations (with one exception, see below). The property of an additive valuation v that
is applied there is that for any bundles S, T,R such that R is disjoint from both S and
T , v(S ∪ R) > v(T ∪ R) ⇔ v(S) > v(T ), and this property also holds for nice cancelable
valuations as pointed out in Section 2.

The one exception is in Section 4.2 in [CGM20] (right after Observation 16), in which
their proof requires a subtle adjustment, as follows. In their sub-case “a = 2” they define the
set Zi, for i = 1, 3, to be a smallest subset of X3 such that Zi >i maxi(X1 \G21 ∪ g,X2). In
our case, the set Zi needs to be defined as the subset of X3 obtained by iteratively removing
the item of least marginal value to agent i, as long as the leftover bundle is still better
than maxi(X1 \G21 ∪ g,X2) from agent i’s point of view. Lemma A.4 then guarantees that
the new Zi is indeed a smallest-size subset of X3 as in the original proof. The rest of the
argument then follows as in the original proof.

We now turn to the envy-free case. In the original proof the following property of an
additive valuation v is used to prove the sub-case where MX contains a g-cycle of size 2: if
v(S) > v(T ) and v(S) > v(R), where R and T are disjoint, then 2 · v(S) > v(T ∪ R). This
property does not hold in general for nice cancelable valuations (e.g., v is multiplicative and
v(S) = 5, v(R) = v(T ) = 4), thus their proof does not extend to nice cancelable valuations.

In what follows we present a proof, based on our new techniques, that applies to all nice
cancelable valuations, and is also substantially simpler than the original proof.

Lemma C.2. Let X be a partial envy-free allocation on 3 agents. Then there exists an
EFX allocation Y that Pareto dominates it.

Proof. By Lemma 3.5, it suffices to find a Pareto-improvable (PI) cycle in the champion
graph MX. Since every agent has an incoming g-champion edge (Observation 2.5), MX has
a cycle of g edges. Let C be such a cycle of minimal length. If C is a self loop, then we are
done by Corollary 3.6. Hence, it remains to consider the cases where C has length two or
three. Since X is envy-free, C is a good g-cycle, and as such it induces a g-decomposition
of Xj into top and bottom half-bundles Xj = Tj ∪Bj for every agent j along the cycle.

Case 1: |C| = 2. Assume w.l.o.g. that C = 1 g 2 g 1. By Theorem 3.16, MX

contains a good or external B1-edge and a good or external B2-edge. By Corollary 3.18
they cannot both be external (since their source would be the same, agent 3). Thus, w.l.o.g.
MX contains a good B1-edge, which can only be 1 B1 | ◦ 2, and we obtain the PI cycle
1 B1 | ◦ 2 g 1.

Case 2: |C| = 3. W.l.o.g. let C = 1 g 2 g 3 g 1. As C contains all 3 agents,
there are no external edges going into C. Thus by Theorem 3.16, MX contains a good
Bi-edge, for each i ∈ [3].

If for some i ∈ [3] the good Bi-edge is i Bi | ◦ pred(i), then we get the PI cycle
i Bi | ◦ pred(i) g i, and we are done. Thus we can assume that all good edges are
parallel to the edges of C, i.e., from j to succ(j). W.l.o.g., assume there is a good edge from
agent 1 to agent 2. This good edge cannot be the good B2-edge, because 1 B2 | ◦ 2 by
Observation 3.11. Thus, this good edge is 1 Bi | ◦ 2, for some i ∈ {1, 3}, and the good

21



B2-edge must be either 2 B2 | ◦ 3 or 3 B2 | ◦ 1. The former case admits the PI cycle
1 Bi | ◦ 2 B2 | ◦ 3 g 1; the latter admits the PI cycle 1 Bi | ◦ 2 g 3 B2 | ◦

1.

C.2 EFX for agents with one of two valuations

Consider a setting with n agents, where any agent has one of two valuations va, vb. Let
a0, . . . , at denote the agents with valuation va, and b0, . . . , b` denote the agents with valua-
tion vb, ordered such that

Xa0
≤a Xa1

≤a . . . ≤a Xat
and Xb0 ≤b Xb1 ≤b . . . ≤b Xb` .

The following theorem shows that if va and vb are nice cancelable valuations, then
given any partial EFX allocation, there exists an EFX allocation that Pareto dominates it.
This implies (by Lemmata 2.3, A.1) that every instance in this setting admits a full EFX
allocation.

Theorem C.3. In every setting with two nice cancelable valuations, given any partial EFX
allocation, there exists an EFX allocation that Pareto dominates it.

Before presenting the proof, we present a useful observation. We say that envy (resp.,
most envious) propagates backward within the valuation class a if whenever some agent ai
envies a set S (resp., is most envious of a set S), then for every j < i, agent aj envies
S (resp., is most envious of S) as well. We say that championship propagates backward
within the valuation class a in an analogous way. We define backward propagation within
the valuation class b analogously. One can easily verify that envy propagates backward.
The following observation shows that so does championship.

Observation C.4. Championship propagates backward within the same valuation class.

Proof. We prove the claim for valuation class a. The proof for valuation class b is analogous.
We show that the relation most envious propagates backward; by extension, championship
propagates backward as well. Suppose that for some i ∈ {0, . . . , `}, agent ai is most envious
of a set S, and let D be the discard set of S with respect to ai. This means that ai envies
S \D. Since envy propagates backward, so does agent aj . By definition of a discard set, no
agent strongly envies S \D. Therefore, aj is most envious of S.

We are now ready to prove Theorem C.3.

Proof. Fix a partial EFX allocation, and let g be an unallocated item. By Corollary 3.6 we
may assume that no agent is a g-self champion. We first claim that

a0 g b0 and b0 g a0. (8)

Indeed, if bj g b0 for some j, then b0 is a g-self champion by backward propagation.
Thus, since b0 must have a g-champion (Observation 2.5), then aj g b0 for some j. Since
championship propagates backward, a0 g b0. By symmetry, b0 g a0.

We may also assume that no agent envies a0 (and similarly, b0). Clearly, no aj envies
a0. It remains to show that no bj envies a0. Indeed, if some agent bj envies a0, then b0
envies a0, and together with the fact that a0 g b0, we have a Pareto-improvable cycle, so
we are done by Lemma 3.5. Similarly, if any agent envies b0, we have a Pareto-improvable
cycle.

By Equation (8) and the assumption that no agent envies a0 or b0, a0 g b0 g a0
is a good g-cycle, thus by Observation 2.6 the bundles of a0 and b0 decompose into top

22



and bottom half-bundles. Let Ta0 and Ba0 (resp., Tb0 and Bb0) be the top and bottom
half-bundles of a0 (resp., b0), respectively.

We next argue that a0 Ba0
| ◦ b0. Since a0 g b0 g a0 is a good cycle, by The-

orem 3.16 there exists a good or external Ba0
-edge that goes into b0. If this is a good

Ba0
-edge then it can only be a0 Ba0 | ◦ b0. If this is an external Ba0

-edge, it can’t be
bj Ba0 | ◦ b0 since b0 Ba0 | ◦ b0 (by Observation 3.12) and championship propagates
backward. Hence, the external Ba0-edge must be aj Ba0

| ◦ b0 for some j ∈ {1, . . . , t}.
Again, since championship propagates backward, a0 Ba0

| ◦ b0.
It follows that we have a Pareto-improvable cycle consisting of a0 Ba0

| ◦ b0 and
b0 g a0. We may now apply Lemma 3.5 to conclude the proof.
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