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Abstract

In this paper, we present new results on the fair and e�cient allocation of indivis-

ible goods to agents whose preferences correspond to matroid rank functions. This

valuation class has several properties such as monotonicity and submodularity that

make it naturally applicable to many real-world domains. We show that when agent

valuations are matroid rank functions, an allocation that that maximizes utilitar-

ian social welfare and also achieves envy-freeness up to one item (EF1) exists and

is computationally tractable. We also prove that the Nash welfare-maximizing and

the leximin allocations both exhibit this fairness/e�ciency combination, by showing

that they can be achieved by minimizing any symmetric strictly convex function over

utilitarian optimal outcomes. To the best of our knowledge, this is the first valuation

function class not subsumed by additive valuations for which it has been established

that an allocation maximizing Nash welfare is EF1. Moreover, for a subclass of these

valuation functions based on maximum (unweighted) bipartite matching, we show

that a leximin allocation can be computed in polynomial time.

1 Introduction

Suppose that we are interested in allocating seats in courses to prospective students. How
should this be done? On the one hand, courses o↵er limited seats and have scheduling
conflicts; on the other, students have preferences over the classes that they take, which
must be accounted for. In addition, students might have exogenous constraints, such as a
hard limit on the number of classes they may take. Course allocation can be thought of as
a problem of allocating a set of indivisible goods (course slots) to agents (students). The
problem has an interesting structure to it. Students are either willing or unwilling to sign up
for a class — this can be thought of as having a value of either 1 or 0 for a seat in the class.
In addition, if a student is able to take a set of classes S, then she would be able to take
any subset of S as well. Finally, given two sets of feasible course assignments S, T such that
|S| < |T |, we can find some class o 2 T such that S[{o} is also a feasible course assignment
(this statement is non-trivial but follows a standard proof). Such “well-behaved” structures
are also known as matroids. Can we exploit such structure of subjective valuations to find
a way of distributing indivisible items among agents that satisfies multiple desiderata and
has reasonable demands for computational resources?

These questions have been the focus of intense study in the CS/Econ community in
recent years; several justice criteria, as well as methods for computing allocations that satisfy
them have been investigated. Generally speaking, justice criteria fall into two categories:
e�ciency and fairness. E�ciency criteria are chiefly concerned with lowering some form of
waste, maximizing some notion of item utilization, or agent utilities. For instance, Pareto
optimality (PO) is a popular e�ciency concept which ensures that the value realized by no
agent can be improved without diminishing that of another agent. Fairness criteria require
that agents do not perceive the resulting allocation as mistreating them compared to others;
for example, one might want to ensure that no agent prefers another agent’s assigned bundle
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(i.e. subset of goods) to her own bundle – this criterion is known as envy-freeness (EF)
[26]. However, envy-freeness is not always achievable when items are indivisible: consider
a stylized setting, where there is just one course with one seat for which two students are
competing; any student receiving this slot would be envied by the other. A simple solution
ensuring envy-freeness would be to withhold the seat altogether, not assigning it to either
student. Withholding items, however, violates most e�ciency criteria.

As illustrated above and also observed by Budish [16], envy-freeness is not always achiev-
able, even under completeness, a very weak e�ciency criterion requiring that each item is
allocated to some agent. However, a less stringent fairness notion — envy-freeness up to
one good (EF1) — can be attained. An allocation is EF1 if for any two agents i and j,
there is some item in j’s bundle whose removal results in i not envying j. Complete, EF1
allocations always exist for monotone valuations, and in fact, can be found in polynomial
time, thanks to the now-classic envy graph algorithm due to Lipton et al. [41].

It is already challenging to individually achieve strong allocative justice criteria; hence,
computationally e�cient methods that produce allocations satisfying multiple such criteria
simultaneously are of particular interest. Caragiannis et al. [18] show that when agent
valuations are additive— i.e. every agent i values its allocated bundle as the sum of values of
individual items — there exist allocations that are both PO and EF1. Specifically, these are
allocations that maximize the product of agents’ utilities — also known as the Nash welfare
(MNW). Further work [6] shows that such allocations can be found in pseudo-polynomial
time. While encouraging, these results are limited to agents with additive valuations. In
particular, they do not apply to settings such as the course allocation problem described
above (e.g. being assigned two courses with conflicting schedules will not result in additive
gain), or other settings we describe later on. This is where our work comes in.

1.1 Our Contributions

We focus on monotone submodular valuations with binary (or dichotomous) marginal gains,
which are also known as matroid rank valuations [47]. In this setting, the added benefit
of receiving another item is binary and obeys the law of diminishing marginal returns.
This is equivalent to the class of valuations that can be captured by matroid constraints.
Matroids are mathematical structures that generalize the concept of linear independence
beyond vector spaces [47]. In our fair allocation domain, each agent has a di↵erent matroid
constraint over the collection of items, and her value for a bundle is determined by the size
of a maximum independent set included in the bundle.

Matroid rank valuations naturally arise in many practical applications, beyond the
course allocation problem described above (where students are limited to either approv-
ing/disapproving a class). For example, suppose that a government body wishes to fairly
allocate public goods to individuals of di↵erent minority groups (say, in accordance with
a diversity-promoting policy). This could apply to the assignment of kindergarten slots to
children from di↵erent neighborhoods/socioeconomic classes1 or of flats in public housing es-
tates to applicants of di↵erent ethnicities [9, 10]. A possible way of achieving group fairness
in this setting is to model each minority group as an agent consisting of many individuals:
each agent’s valuation function is based on optimally matching items to its constituent indi-
viduals; envy naturally captures the notion that no group should believe that other groups
were o↵ered better bundles (this is the fairness notion studied by Benabbou et al. [9]). Such
assignment/matching-based valuations, known as OXS valuations [40], are non-additive in
general, and constitute an important subclass of submodular valuations.

The binary marginal gains assumption is best understood in context of matching-based
valuations described above — in this scenario, it simply means that individuals either ap-

1see, e.g. https://www.ed.gov/diversity-opportunity.
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Valuation class MNW Leximin max-USW+EF1
(0, 1)-OXS poly (Theorem 5) poly (Theorem 5) poly (Theorem 1)
matroid rank poly ([4]) poly ([4]) poly (Theorem 1; [4])

Table 1: Summary of our computational complexity results: “poly” denotes polynomial.

prove or disapprove of items, and do not distinguish between items they approve (we call
OXS functions with binary individual preferences (0, 1)-OXS valuations). This is a reason-
able assumption in kindergarten slot allocation (all approved/available slots are identical),
student course selection (one is usually only allowed to indicate interest in a course by sign-
ing up and not asked to provide a ranking) and is implicitly made in some public housing
mechanisms (Singapore housing applicants e↵ectively approve a subset of flats by selecting
a block, and are precluded from expressing a more refined preference model).

In addition, imposing certain restrictions on the underlying matching problem retains the
submodularity of the agents’ induced valuation functions: if agents are subject to hard ex-
ogenous capacity or budget constraints (students may only approve at most a fixed number of
classes) or the number of items each group is allowed to receive must respect pre-determined
quotas (e.g. ethnicity-based quotas in Singapore public housing [48, 20, 56, 22, 49, 60, 10];
socioeconomic status-based quotas in certain U.S. public school admission systems such as
Chicago Public Schools [51, 19, 58, 10] then agents’ valuations are truncated matching-based
valuations. Such valuation functions are not OXS, but are still matroid rank functions, Since
agents still have binary/dichotomous preferences over items even with the quotas in place,
hence our results apply to this broader class as well.

Using the matroid framework, we obtain a variety of positive existential and algorithmic
results on the compatibility of (approximate) envy-freeness with welfare-based allocation
concepts. The following is a summary of our main results:

(a) For matroid rank valuations, we show that an EF1 allocation that also maximizes the
utilitarian social welfare or USW (hence is Pareto optimal) always exists and can be
computed in polynomial time by a simple greedy algorithm.

(b) For matroid rank valuations, we show that leximin2 and MNW allocations both possess
the EF1 property.

(c) For matroid rank valuations, we provide a characterization of the leximin allocations;
we show that they are identical to the minimizers of any symmetric strictly convex
function over utilitarian optimal allocations (equivalently, the maximizers of any sym-
metric strictly concave function over utilitarian optimal allocations). We obtain the
same characterization for MNW allocations.

(d) For (0, 1)-OXS valuations, we show that both leximin and MNW allocations can be
computed e�ciently.

Result (a) is remarkably positive: the EF1 and utilitarian welfare objectives are incom-
patible in general, even for additive valuations. In fact, maximizing the utilitarian social
welfare among all EF1 allocations is NP-hard for general valuations [8]. Result (b) is rem-
iniscent of the Theorem 3.2 in Caragiannis et al. [18], showing that any MNW allocation
is PO and EF1 under additive valuations; they left the PO+EF1 existence question open
for the submodular class. To our knowledge, the class of matroid rank valuations is the

2Roughly speaking, a leximin allocation is one that maximizes the realized valuation of the worst-o↵
agent and, subject to that, maximizes that of the second worst-o↵ agent, and so on.
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first valuation class not subsumed by additive valuations for which the EF1 property of
the MNW allocation has been established. Our computational tractability results (d) are
significant since we know that for arbitrary real valuations, it is NP-hard to compute the
following types of allocations: PO+EF even for the seemingly simple class of binary ad-
ditive valuations which is subsumed by our matroid rank class (Bouveret and Lang [14]
Proposition 21); leximin [12]; and MNW [45].

1.2 Related Work

There is a vast and growing literature on fairness and e�ciency issues in resource allocation.
Early work on divisible resource allocation provides an elegant result: an allocation that
satisfies envy-freeness and Pareto optimality always exists under mild assumptions on val-
uations [59], and can be computed via the convex programming of Eisenberg and Gale [25]
for additive valuations. In the domain of the allocation of indivisible goods (see Bouveret
et al. [15], Markakis [42] for an overview), Budish [16] was the first to formalize the notion
of EF1 as an approximation to envy-freeness but it implicitly appears in Lipton et al. [41].
More recently, Caragiannis et al. [18] prove the discrete analogue of Eisenberg and Gale
[25]: MNW allocation satisfies EF1 and Pareto optimality for additive valuations. Barman
et al. [6] provide a pseudo-polynomial-time algorithm for computing allocations satisfying
EF1 and PO. Closely related to ours is the work of Biswas and Barman [13] who consider
fair division under matroid constraints; our setting is fundamentally di↵erent from theirs
(are valuation functions are themselves matroid rank functions and we care about e�ciency
as well), some of our proof techniques (e.g. item transfer for our Theorem 1) are similar to
theirs. Moreover, we admit fair and e�cient allocations that may be incomplete (i.e. not all
items are allocated to the agents under consideration), bringing us close to recent work on
fairness with “charity” [17? ]. Many of our results generalize existing results on allocative
fairness and e�ciency under binary additive preferences, widespread in the social choice
literature [37], that is a sub-class of our (0, 1)-OXS class: For this sub-class, Darmann and
Schauer [21] and Barman et al. [7] prove that the maximum Nash welfare can be computed
e�ciently — generlized by our result (d); Aziz and Rey [2] (Lemma 4) establish the equiv-
alence between leximin and MNW — a special case of our result (c); Halpern et al. [32]
(Theorem 1) design a group strategy-proof mechanism that returns an allocation satisfying
utilitarian optimality and EF1 — dropping strategy-proofness, we generalize this result to
the matroid rank valuation class. Barman et al. [7] develop an e�cient greedy algorithm to
find an MNW allocation when the valuation of each agent is a concave function that depends
on the number of items approved by her — we note that this class of valuations does not
subsume the class of (0, 1)-OXS valuations,3 hence the polynomial-time complexity result
of Barman et al. [6] does not imply our Theorem 5.

Recently, Babaio↵ et al. [4] presented a set of results similar to ours, and established
the existence of strategy-proof deterministic and randomized mechanisms for fair allocation
allocation under matroid rank valuations. Our work was developed independently, and has
many conceptual di↵erences from Babaio↵ et al. [4]: our algorithms are based on fundamen-
tally di↵erent principles, and our main focus is on the fairness and e�ciency compatibility
as well as other properties of such allocations and possible extensions beyond matroid rank
valuations. We defer a more detailed comparison to the full version of the paper [11].

One motivation for this paper is recent work by Benabbou et al. [9] on promoting diversity
in assignment problems through e�cient, EF1 allocations of bundles to attribute-based
groups in the population. Similar works study quota-based fairness/diversity [3, 10, 57, and

3Consider 3 items, o1, o2, o3, and a group of members S = {1, 2, 3} with member 1 assigning weight 1
to items o1 and o3, and members 2 and 3 assigning weight 1 to item o2 only. The value of a maximum
matching between {o1, o2} and S is 2 while the value of a maximum matching between {o1, o3} and S is 1.
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references therein], or by the optimization of carefully constructed functions [1, 23, 38, and
references therein] in allocation/subset selection.

2 Model and definitions

Throughout the paper, given a positive integer r, let [r] denote the set {1, 2, . . . , r}. We are
given a set N = [n] of agents, and a set O = {o1, . . . , om} of items or goods. Subsets of O
are referred to as bundles, and each agent i 2 N has a valuation function vi : 2O ! R+ over
bundles where vi(;) = 0.We further assume polynomial-time oracle access to the valuation
vi of all agents. Given a valuation function vi : 2O ! R, we define the marginal gain of an
item o 2 O w.r.t. a bundle S ✓ O, as �i(S; o) , vi(S [ {o})� vi(S). A valuation function
vi is monotone if vi(S)  vi(T ) whenever S ✓ T .

An allocation A of items to agents is a collection of n disjoint bundles A1, . . . , An, such
that

S
i2N

Ai ✓ O; the bundle Ai is allocated to agent i. Given an allocation A, we denote
by A0 the set of unallocated items, also referred to as withheld items. We may refer to agent
i’s valuation of its bundle vi(Ai) under the allocation A as its realized valuation under A.
An allocation is complete if every item is allocated to some agent, i.e. A0 = ;. We admit
incomplete, but clean allocations: a bundle S ✓ O is clean for i 2 N if it contains no item
o 2 S for which agent i has zero marginal gain (i.e., �i(S \ {o}; o) = 0); allocation A is
clean if each allocated bundle Ai is clean for the agent i that receives it. It is easy to ‘clean’
any allocation without changing any realized valuation by iteratively revoking items of zero
marginal gain from respective agents and placing them in A0. For example, if for agent i,
vi({1}) = vi({2}) = vi({1, 2}) = 1, then the bundle Ai = {1, 2} is not clean for agent i (and
neither is any allocation where i receives items 1 and 2) but it can be cleaned by moving
item 1 (or item 2 but not both) to A0.

2.1 Fairness and E�ciency Criteria

Our fairness criteria are based on the concept of envy. Agent i envies agent j under an
allocation A if vi(Ai) < vi(Aj). An allocation A is envy-free (EF) if no agent envies another.
We will use the following relaxation of the EF property due to Budish [16]: we say that A
is envy-free up to one good (EF1) if, for every i, j 2 N , i does not envy j or there exists o

in Aj such that vi(Ai) � vi(Aj \ {o}).
The e�ciency concept that we are primarily interested in is Pareto optimality. An

allocation A
0 is said to Pareto dominate the allocation A if vi(A0

i
) � vi(Ai) for all agents

i 2 N and vj(A0
j
) > vj(Aj) for some agent j 2 N . An allocation is Pareto optimal (or PO

for short) if it is not Pareto dominated by any other allocation.
Closely related to the concept of e�ciency is the welfare of an allocation which can be

measured in several ways [54]. Specifically, given an allocation A,

• its utilitarian social welfare is USW(A) , P
n

i=1 vi(Ai);

• its egalitarian social welfare is ESW(A) , mini2N vi(Ai);

• its Nash welfare is NW(A) , Q
i2N

vi(Ai).

An allocation A is said to be utilitarian optimal (respectively, egalitarian optimal) if it
maximizes USW(A) (respectively, ESW(A)) among all allocations.

Since it is possible that the maximum attainable Nash welfare is 0 (e.g. if there are
fewer items than agents, then one agent must have an empty bundle), we use the following
refinement of the maximum Nash social welfare (MNW) criterion used in [18]: we find a
largest subset of agents, say Nmax ✓ N , to which we can allocate bundles of positive values,
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and compute an allocation to agents in Nmax that maximizes the product of their realized
valuations. If Nmax is not unique, we choose the one that results in the highest product of
realized valuations.

The leximin welfare is a lexicographic refinement of the maximin welfare concept, i.e.
egalitarian optimality. Formally, for real n-dimensional vectors x and y, x is lexicograph-
ically greater than or equal to y (denoted by x �L y) if and only if x = y, or x 6= y and
for the minimum index j such that xj 6= yj we have xj > yj . For each allocation A, we
denote by s(A) the vector of the components vi(Ai) (i 2 N) arranged in non-decreasing
order. A leximin allocation A is an allocation that maximizes the egalitarian welfare in a
lexicographic sense, i.e., s(A) �L s(A0) for any other allocation A

0.

2.2 Submodular Valuations

In this paper, agents’ valuation functions are not necessarily additive but submodular. A
valuation function vi is submodular if each single item contributes more to a smaller set than
to a larger one, namely, for all S ✓ T ✓ O and all o 2 O \ T , �i(S; o) � �i(T ; o).

One important sub-class of submodular valuations is the class of assignment valuations.
This class of valuations was introduced by Shapley [55] and is synonymous with the OXS
valuation class [39, 40, 5]. Fair allocation in this setting was explored by Benabbou et al.
[9]. Here, each agent h 2 N represents a group of individuals Nh (such as ethnic groups
and genders), each individual i 2 Nh (also called a member) having a fixed non-negative
weight ui,o for each item o. An agent h values a bundle S via a matching of the items
to its individuals (i.e. each item is assigned to at most one member and vice versa) that
maximizes the sum of weights [44]; namely,

vh(S) = max{
X

i2Nh

ui,⇡(i) | ⇡ 2 ⇧(Nh, S) },

where ⇧(Nh, S) is the set of matchings ⇡ : Nh ! S in the complete bipartite graph with
bipartition (Nh, S).

Our particular focus is on submodular functions with binary marginal gains. We say
that vi has binary marginal gains if �i(S; o) 2 {0, 1} for all S ✓ O and o 2 O \S. The class
of submodular valuations with binary marginal gains includes the classes of binary additive
valuations [7] and of assignment valuations where the weight is binary [9]. We say that vi

is a matroid rank valuation if it is a submodular function with binary marginal gains (these
are equivalent definitions [47]), and (0, 1)-OXS if it is an assignment valuation with binary
marginal gains.4 The constrained assignment valuations discussed in the fourth paragraph
of Section 1.1 are examples of matroid rank valuations that are not (0, 1)-OXS.

3 Matroid rank valuations

The main theme of all results in this section is that, when all agents have matroid rank
valuations, fairness (EF1) and e�ciency (PO) properties are compatible with each other
and also with all three optimal welfare criteria we consider. Lemma 1 below shows that
Pareto optimality of optimal welfare is unsurprising; but, it is non-trivial to prove the EF1
property in each case.

Lemma 1. For monotone valuations, every utilitarian optimal, leximin, and MNW alloca-
tion is Pareto optimal.

4(0, 1)-OXS valuations coincide with rank functions of transversal matroids [5].
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We start the analysis of matroid rank valuations by introducing the basics of matroid
theory. Formally, a matroid is an ordered pair (E, I), where E is some finite set and I is a
family of its subsets (referred to as the independent sets of the matroid), which satisfies the
following three axioms:

(I1) ; 2 I,

(I2) if Y 2 I and X ✓ Y , then X 2 I, and

(I3) if X,Y 2 I and |X| > |Y |, then there exists x 2 X \ Y such that Y [ {x} 2 I.

The rank function r : 2E ! Z of a matroid returns the rank of each set X, i.e. the maximum
size of an independent subset of X. Another equivalent way to define a matroid is to use the
axiom systems for a rank function. We require that (R1) r(X)  |X|, (R2) r is monotone,
and (R3) r is submodular. Then, the pair (E, I) where I = {X ✓ E | r(X) = |X| } is a
matroid [47]. In other words, if r satisfies properties (R1)–(R3) then it induces a matroid.

Within the fair allocation context, if an agent has a matroid rank valuation, then the set
of clean bundles forms the set of independent sets of a matroid. The following are useful
properties of matroid rank valuations.

Proposition 1. A valuation function vi with binary marginal gains is monotone and takes
values in [|S|] for any bundle S (hence vi(S)  |S|).

This property leads us to the following equivalence between the size and realized val-
uation of every clean allocated bundle for the matroid rank valuation class — a crucial
component of all our proofs. Note that cleaning any optimal-welfare allocation leaves the
welfare unaltered and ensures that each resulting withheld item is of zero marginal gain to
each agent; hence it preserves the PO condition.

Proposition 2. For matroid rank valuations, A is a clean allocation if and only if vi(Ai) =
|Ai| for each i 2 N .

Lipton et al. [41]’s classic envy graph algorithm does not guarantee a Pareto optimal
allocation under matroid rank valautions (although the output allocation is complete and
EF1), and thus underscores the di�culty of finding the PO+EF1 combination under this
valuation class. Moreover, note that in the simple example of one good and two agents
each valuing the good at 1, both agents’ valuation functions belong to the class under
consideration — this shows that an envy-free and Pareto optimal allocation may not exist
even under this class, and further justifies our quest for EF1 and Pareto-optimal allocations.

3.1 Finding a Utilitarian Optimal and EF1 Allocation

We will now establish that the existence of a PO+EF1 allocation, proved for additive val-
uations by Caragiannis et al. [18], extends to the class of matroid rank valuations. In fact,
we provide a stronger — and surprisingly strong — relation between e�ciency and fairness:
utilitarian optimality (stronger than Pareto optimality) and EF1 turn out to be mutually
compatible under this valuation class. Moreover, such an allocation can be computed in
polynomial time!

Theorem 1. For matroid rank valuations, a utilitarian optimal allocation that is also EF1
exists and can be computed in polynomial time.

Our result is constructive: we provide a way of computing the above allocation in Algo-
rithm 1. The proof of Theorem 1 and those of the latter theorems utilize Lemmas 2 and 3
which shed light on the interesting interaction between envy and matroid rank valuations.
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Lemma 2 (Transferability property). For monotone submodular valuation functions, if
agent i envies agent j under an allocation A, then there is an item o 2 Aj for which i has
a positive marginal gain with respect to Ai.

Note that Lemma 2 holds for submodular functions with arbitrary real-valued marginal
gains, and is trivially true for (non-negative) additive valuations. However, there exist non-
submodular valuation functions that violate the transferability property, even when they
have binary marginal gains.

Below, we show that if i’s envy towards j under a clean allocation cannot be eliminated
by removing one item from the latter’s bundle, then the two agents’ valuations for their
respective bundles di↵er by at least two (in fact, we establish a stronger version of the result
that does not require the envious agent i’s bundle to be clean). Formally, we say that agent
i envies j up to more than 1 item if Aj 6= ; and vi(Ai) < vi(Aj \ {o}) for every o 2 Aj .

Lemma 3. For submodular functions with binary marginal gains, if agent i envies agent j
up to more than 1 item under an allocation A and j’s bundle Aj is clean, then vj(Aj) �
vi(Ai) + 2.

Next, we show that under matroid rank valuations, utilitarian social welfare maximiza-
tion is polynomial-time solvable (2).

Theorem 2. If all agents have submodular functions with binary marginal gains, one can
compute a clean utilitarian optimal allocation in polynomial time.

Finally, we are ready to prove Theorem 1.

Proof of Theorem 1. Consider Algorithm 1. This algorithm maintains optimal USW as an
invariant and terminates on an EF1 allocation. Specifically, we first compute a clean allo-
cation that maximizes the utilitarian social welfare. The EIT subroutine in the algorithm
iteratively diminishes envy by transferring an item from the envied bundle to the envious
agent; Lemma 2 ensures that there is always an item in the envied bundle for which the
envious agent has a positive marginal gain.

Algorithm 1: Algorithm for finding utilitarian optimal EF1 allocation

1 Compute a clean, utilitarian optimal allocation A.
2 /*Envy-Induced Transfers (EIT)*/
3 while there are two agents i, j such that i envies j more than 1 item do

4 Find item o 2 Aj with �i(Ai; o) = 1.
5 Aj  Aj \ {o}; Ai  Ai [ {o}.
6 end

Correctness: Each EIT step maintains the optimal utilitarian social welfare as well as
cleanness: an envied agent’s valuation diminishes exactly by 1 while that of the envious agent
increases by exactly 1. Specifically, recall that for matroid rank valuations, an allocation
A is clean if and only if vi(Ai) = |Ai| for all i 2 N by Proposition 2. This means that
if the previous allocation A is clean, then we have vi(Ai [ {o}) = |Ai [ {o}|, and vj(Aj \

{o}) = |Aj \ {o}|. Hence the new allocation after each EIT step remains clean. Thus, if
the algorithm terminates, the EIT subroutine retains the initial (optimal) USW and, by the
stopping criterion, induces the EF1 property.

To show that the algorithm terminates (in polynomial time), we define the potential
function �(A) , P

i2N
vi(Ai)2. At each step of the algorithm, �(A) strictly decreases by 2

or a larger integer. To see this, let A0 denote the resulting allocation after reallocation of item
o from agent j to i. Since A is clean, we have vi(A0

i
) = vi(Ai) + 1 and vj(A0

j
) = vj(Aj)� 1;
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since all other bundles are untouched, vk(A0
k
) = vk(Ak) for every k 2 N \ {i, j}. Also, since

i envies j up to more than one item under allocation A, vi(Ai) + 2  vj(Aj) by Lemma 3.
Combining these, we get

�(A0)� �(A) = (vi(Ai) + 1)2 + (vj(Aj)� 1)2 � vi(Ai)
2
� vj(Aj)

2

= 2(1 + vi(Ai)� vj(Aj))  2(1� 2) = �2.

Complexity : By Theorem 2, a clean utilitarian optimal allocation can be computed in
polynomial time. The value of the non-negative potential function has a polynomial upper
bound:

P
i2N

vi(Ai)2  (
P

i2N
vi(Ai))2  m

2. Thus, Algorithm 1 terminates in polynomial
time.

An interesting implication of the above analysis is that a utilitarian optimal allocation
that minimizes

P
i2N

vi(Ai)2 is always EF1.

Corollary 1. For matroid rank valuations, any clean, utilitarian optimal allocation A that
minimizes

�(A) ,
X

i2N

vi(Ai)
2

among all utilitarian optimal allocations is EF1.

Remark 1 (Choice of the potential function). In the proof of Theorem 1, the use of the sum
of squared valuations as the potential function shows that the EIT subroutine terminates
after O(m2) iterations. However, to establish polynomial time complexity it su�ces to
use any symmetric, strictly convex, polynomial function � of the realized valuations (See
Section 3.2) as our potential function. Moreover, Corollary 1 holds for any such function �
as well — we elaborate on this theme in Section 3.2. ⌥

Despite its simplicity, Algorithm 1 significantly generalizes that of Benabbou et al. [9]’s
Theorem 4 (which ensures the existence of a non-wasteful EF1 allocation for (0, 1)-OXS

valuations) to matroid rank valuations. We note, however, that the resulting allocation
may be neither MNW nor leximin even when agents have (0, 1)-OXS valuations: In the
full version, we illustrate this and also show that the converse of Corollary 1 does not hold.
Also, we discuss the implications of our results for a stronger version of the EF1 property
called EFX (Remark 2) and fair allocation “with charity” [17? ] (Remark 3).

3.2 MNW and Leximin Allocations

We saw in Section 3.1 that under matroid rank valuations, a simple iterative procedure
allows us to reach an EF1 allocation while preserving utilitarian optimality. However, as we
previously noted, such allocations are not necessarily leximin or MNW. In this subsection,
we characterize the set of leximin and MNW allocations under matroid rank valuations. We
start by showing that Pareto optimal allocations coincide with utilitarian optimal allocations
when agents have matroid rank valuations. Intuitively, if an allocation is not utilitarian
optimal, one can always find an ‘augmenting’ path that makes at least one agent happier
but no other agent worse o↵.

Theorem 3. For matroid rank valuations, any Pareto optimal allocation is utilitarian op-
timal.

Theorem 3 above, along with Lemma 1, implies that both leximin and MNW allocations
are utilitarian optimal. Next, we show that for the class of matroid rank valuations, leximin
and MNW allocations are identical to each other; further, they can be characterized as

9



the minimizers of any symmetric strictly convex function among all utilitarian optimal
allocations.

A function � : Zn
! R is symmetric if for any permutation ⇡ : [n]! [n],

�(z1, z2, . . . , zn) = �(z⇡(1), z⇡(2), . . . , z⇡(n)),

and is strictly convex if for any x,y 2 Zn with x 6= y and � 2 (0, 1) where �x+ (1� �)y is
an integral vector,

��(x) + (1� �)�(y) > �(�x+ (1� �)y).

A function  : Zn
! R is strictly concave if for any x,y 2 Zn with x 6= y and � 2 (0, 1)

where �x+ (1� �)y is an integral vector,

� (x) + (1� �) (y) <  (�x+ (1� �)y).

It is not di�cult to see that � : Zn
! R is strictly convex if and only if �� is strictly concave.

Examples of symmetric, strictly convex functions include the following: �(z1, z2, . . . , zn) ,P
n

i=1 z
2
i
for zi 2 Z 8i 2 [n]; �(z1, z2, . . . , zn) ,

P
n

i=1 zi ln zi for zi 2 Z�0 8i 2 [n]. For an
allocation A, we define �(A) , �(v1(A1), v2(A2), . . . , vn(An)).

We start by showing that given a non-leximin socially optimal allocation A, there exists
an adjacent socially optimal allocation A

0 which is the result of transferring one item from
a ‘happy’ agent j to a less ‘happy’ agent i. The underlying submodularity guarantees the
existence of such allocation. We denote by �i the n-dimensional incidence vector where the
j-th component of �i is 1 if j = i, and it is 0 otherwise.

Lemma 4. Suppose that agents have matroid rank valuations. Let A be a utilitarian op-
timal allocation. If A is not a leximin allocation, then there is another utilitarian optimal
allocation A

0 such that
s(A0) = s(A) + �i � �j ,

for i, j 2 [n] with s(A)j � s(A)i + 2.

We further observe that such adjacent allocation decreases the value of any symmetric
strictly convex function (equivalently, increases the value of any symmetric strictly concave
function). The proof is similar to that of Proposition 6.1 in Frank and Murota [27], which
shows the analogous equivalence over the integral base-polyhedron.

Lemma 5. Let � : Zn
! Z be a symmetric strictly convex function and  : Zn

! Z be
a symmetric strictly concave function. Let A be a utilitarian optimal allocation. Let A0 be
another utilitarian optimal allocation such that s(A0) = s(A) + �i � �j for some i, j 2 [n]
with s(A)j � s(A)i + 2. Then, �(A) > �(A0) and  (A) <  (A0).

Now we are ready to prove the following.

Theorem 4. Let � : Zn
! R be a symmetric strictly convex function, and  : Zn

! R be a
symmetric strictly concave function. Let A be some allocation. For matroid rank valuations,
the following statements are equivalent:

1. A is a minimizer of � over all the utilitarian optimal allocations; and

2. A is a maximizer of  over all the utilitarian optimal allocations; and

3. A is a leximin allocation; and

4. A maximizes Nash welfare.

10



Proof. To prove 1 , 2, let A be a leximin allocation, and let A0 be a minimizer of � over
all the utilitarian optimal allocations. We will show that s(A0) is the same as s(A), which,
by the uniqueness of the leximin valuation vector and symmetry of �, proves the theorem
statement.

Assume towards a contradiction that s(A) 6= s(A0). By Theorem 3, we have USW(A) =
USW(A0). By Lemma 4, we can obtain another utilitarian optimal allocation A

00 that is a
lexicographic improvement of A0 by decreasing the value of the j-th element of s(A0) by
1 and increasing the value of the i-th element of s(A0) by 1, where s(A0)j � s(A0)i + 2.
Applying Lemma 5, we get �(s(A0)) > �(s(A00)), which gives us the desired contradiction.

The equivalence 2 , 3 immediately holds by the fact that � is a symmetric strictly
convex function.

To prove 3, 4, let A be a leximin allocation, and let A0 be an MNW allocation. Again,
we will show that s(A0) is the same as s(A), which by the uniqueness of the leximin valua-
tion vector and symmetry of NW, proves the theorem statement. Let N>0(A) (respectively,
N>0(A0)) be the agent subset to which we allocate bundles of positive values under leximin
allocation A (respectively, MNW allocation A

0). By definition, the number n0 of agents who
get positive values under leximin allocation A is the same as that of MNW allocation A

0.
Now we denote by s̄(A) (respectively, s̄(A0)) the vector of the non-zero components vi(Ai)
(respectively, vi(A0

i
)) arranged in non-decreasing order. Assume towards a contradiction

that s̄(A) >L s̄(A0). Since A
0 maximizes the product NW(A0) when focusing on N>0(A0)

only, the value
P

i2N>0(A0) log vi(A
0
i
) is maximized. However,  (x) =

P
n
0

i=1 log xi is a sym-
metric concave function for x 2 Zn with each xi > 0. Thus, by a similar argument as before,
one can show that  (s̄(A0)) >  (s̄(A)), a contradiction. This completes the proof.

Combining the above characterization with the results of Section 3.1, we get the following
fairness-e�ciency guarantee for matroid rank valuations.

Corollary 2. For matroid rank valuations, any clean leximin or MNW allocation is EF1.

Proof. Since both leximin and MNW allocations are Pareto-optimal, they maximize the
utilitarian social welfare, by Theorem 3. By Theorem 4 and the fact that the function
�(A) , P

i2N
vi(Ai)2 is a symmetric strictly convex function, any leximin or MNW allo-

cation is a utilitarian optimal allocation that minimizes �(A) among all utilitarian optimal
allocations; hence, if such an allocation is clean, it must be EF1 by Corollary 1.

Theorem 4 does not generalize to the non-binary case: There is an instance (with as-
signment valuations based on non-binary, real-valued weights) where neither leximin nor
MNW allocation is utilitarian optimal. Moreover, for connections between Theorem 4 and
the Pigou-Dalton principle Moulin [43].

4 Assignment valuations with binary gains

We now consider the special but practically important case when valuations come from
maximum matchings. For this class of valuations, we show that invoking Theorem 3, one
can find a leximin or MNW allocation in polynomial time, by a reduction to the network flow
problem. The problem of finding a leximin allocation under the (0, 1)-OXS valuation class
can be reduced to that of computing an integral balanced flow (or increasingly-maximal
integer-valued flow) in a network, which has been recently shown to be polynomial-time
solvable [28].

Theorem 5. For assignment valuations with binary marginal gains, one can find a leximin
or MNW allocation in polynomial time.
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In contrast with assignment valuations with binary marginal gains, the problem of com-
puting a leximin or MNW allocation becomes intractable for weighted assignment valuations
even when there are only two agents.

Theorem 6. For two agents with general assignment valuations, it is NP-hard to compute
a leximin or MNW allocation.

5 Discussion

We studied allocations of indivisible goods under submodular valuations with binary
marginal gains in terms of the interplay among envy, e�ciency, and various welfare concepts.
We showed that three seemingly disjoint outcomes — minimizers of arbitrary symmetric
strictly convex functions among utilitarian optimal allocations, the leximin allocation, and
the MNW allocation — coincide in this class of valuations. We will conclude with additional
implications of this work and directions for further research.

In Section 3.1, we showed that cleaning followed by further processing of a utilitarian
optimal allocation (Algorithm 1) is su�cient for achieving the EF1+PO combination. It
is still an interesting open problem whether cleaning (and hence withholding some items)
is necessary for this purpose, i.e. can we achieve a complete allocation with the desired
fairness-e�ciency combination for matroid rank valuations.

Another imperative line of future work is investigating which of our findings extend to
more general valuation functions. There are several known extensions to matroid structures,
with deep connections to submodular optimization [47, Chapter 11]. We have already made
some progress to that end. Consider, for instance, the class of submodular valuation func-
tions with subjective binary marginal gains, i.e. �i(S; o) 2 {0,�i} for some agent-specific
constant �i > 0, for every i 2 N . For this valuations class that we call (0,�i)-SUB, we show
that any clean, MNW allocation is still EF1 (clean bundles being defined the same way as
for matroid rank valuations) but the leximin and MNW allocations no longer coincide and
leximin no longer implies EF1. We have also empirically delved into general assignment
valuations (i.e. when group members have positive real weights for items) — we report in
the full version [11], experiments on a real-world data set, comparing the performance of a
heuristic extension of Algorithm 1 (Section 3.1) to this valuation class with Lipton et al.
[41]’s envy graph algorithm in terms of a natural measurement of waste, demonstrating that
approximate envy-freeness can often be achieved in practice simultaneously with good e�-
ciency guarantees even for this larger valuation class. A promising direction is to investigate
PO+EF1 existence for the class well-known gross substitutes (GS) valuations [31, 34] which
subsumes matroid rank valuations.

The fairness concept we consider here is (approximate) envy-freeness. An obvious next
step is to explore other popular fairness criteria such as proportionality he maximin share
guarantee or MMS equitability, etc. (see, e.g. Caragiannis et al. [18], Freeman et al. [29] and
references therein for further details) for matroid rank valuations. We present our results
from a preliminary exploration of these questions in the full version [11]. In particular,
Freeman et al. [29] show that, for binary additive valuations, it can be verified in polynomial
time whether an EQ1 (a relaxation of equitability in the same spirit as EF1), EF1 and PO
allocation exists and, whenever it does exist, it can also be computed in polynomial time
(for the time complexity result, they show that such an allocation is MNW).
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