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Abstract

We initiate the work on maximin share (MMS) fair allocation of m indivisible chores
to n agents using only their ordinal preferences, from both algorithmic and mech-
anism design perspectives. The previous best-known approximation is 2 − 1/n by
Aziz et al. [AAAI 2017]. We improve this result by giving a simple deterministic
5/3-approximation algorithm that determines an allocation sequence of agents, ac-
cording to which items are allocated one by one. By a tighter analysis, we show
that for n = 2, 3, our algorithm achieves better approximation ratios, and is actually
optimal. We also consider the setting with strategic agents, where agents may misre-
port their preferences to manipulate the outcome. We first provide a O(log(m/n))-
approximation consecutive picking algorithm, and then improve the approximation
ratio to O(

√
logn) by a randomized algorithm. Our results uncover some interesting

contrasts between the approximation ratios achieved for chores versus goods.

1 Introduction

Multi-agent resource allocation and fair division are major themes in mathematical eco-
nomics [18, 28] and computer science [27]. In this work, we consider allocation algorithms
to fairly assign m heterogeneous and indivisible chores to n agents with additive utilities.
We take both algorithmic and mechanism design perspectives. Firstly, we explore how well
we can achieve fairness guarantees when only considering ordinal preferences. There is a
growing body of work on this issue [5, 6, 7] where it being explored how well ordinal in-
formation can help approximate objectives based on cardinal valuations. Secondly, we take
a mechanism design perspective to the problem of fair allocation. We impose the require-
ment that the algorithm should be strategyproof, i.e., no agent should have an incentive
of reporting untruthfully. Under this requirement, we study how well the fairness can be
approximated. This approach falls under the umbrella of approximation mechanism design
without money that has been popularized by Procaccia and Tennenholtz [47].

The fairness concept we use in this paper is the intensively studied and well-established
maximin share fairness. The maximin fair share (MMS) of an agent is the best she can
guarantee if she is allowed to partition items into n bundles but then receives the least
preferred one, which was proposed by Budish [29] as a fairness concept for allocation of
indivisible items. The concept coincides with the standard proportionality fairness concept
if the items are divisible. It has been proved in [48] and [42] that there may not exist an
allocation such that very agent’s utility is no worse than her MMS. As a result, significant
effort has been focused on algorithms that find approximate MMS allocations [1, 42]. In
recent years, Garg and Taki [36] and Huang and Lu [40] obtained algorithms to find a state
of the art (4/3−Θ(1/n))- and 11/9-approximate MMS fair allocations for goods and chores

1Part of the results of this article appeared in IJCAI’2019, with title“Strategyproof and approximately
maxmin fair share allocation of chores”. The authors thank several anonymous reviewers for their helpful
comments. Bo Li is supported by The Hong Kong Polytechnic University (Grant no. P0034420). Xiaowei
Wu is funded by the Science and Technology Development Fund, Macau SAR (File no. SKL-IOTSC-2021-
2023) and the Start-up Research Grant of University of Macau (File no. SRG2020-00020-IOTSC).
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respectively. Recently, it is proved in [35] that the approximation ratio cannot be better
than 40/39. For a more detailed literature view, please refer to Appendix B.

On one hand, one agent’s MMS is defined with respect to her cardinal preference, which
places an exact numerical value on each item, and all the aforementioned works assume that
the algorithm has full information of these cardinal values. Since cardinal values can some-
times be difficult to obtain, this has led researchers to study ordinal algorithms which only
ask agents to rank the goods in the order of their preferences, i.e. the ordinal preferences
[9, 26]. A decision maker wants to know what the price of the missing information is by know-
ing only ordinal preferences. Amanatidis et al. [2] proved that with only ordinal information
about the valuations, no algorithm can guarantee better than Ω(log n)-approximation (for
goods). Very recently, Halpern and Shah [39] showed that there is an ordinal algorithm that
guarantees O(log n)-approximate MMS fairness for all agents. These works only focused on
the case of goods, but there are many settings in which agents may have negative utilities
such as when chores or tasks are to be allocated. In this work, we study to what extent
MMS fairness can be guaranteed via ordinal preferences when the items are chores.

In the works discussed above, the focus has been on examining the existence or ap-
proximation of MMS allocations. In other words, the problem has been considered from
an algorithmic point of view but incentive compatibility has not been addressed. Strategic
agents may have incentives to misreport their preferences to manipulate the final allocation
of the algorithm in order to increase their utilities. Accordingly, a natural question is if
it is possible to elicit truthful preferences and also guarantee approximate MMS fairness?
Strategyproofness can be a demanding constraint especially when monetary transfers are
not allowed. Amanatidis et al. [2] were the first to embark on a study of strategyproof and
approximately MMS fair algorithms. They gave a deterministic strategyproof ordinal algo-
rithm which is O(m − n)-approximate when the items are goods. In this paper, we revisit
strategyproof MMS allocation by considering the case of chores. All in all, in this work, we
want to answer the following research questions.

When allocating indivisible chores, what approximation guarantee of maximin
share fairness can be achieved using ordinal preferences? Furthermore, how can
we elicit agents’ true preferences and still approximate maximin share fairness?

1.1 Our results

Algorithmic Perspective. We first take an algorithmic perspective on fair allocation
of indivisible chores to agents using ordinal preferences. With cardinal preferences, the
best known result is the 11/9-approximate MMS algorithm in [40]. We note that the round-
robin algorithm that uses only agents’ ordinal preferences returns 2−1/n approximate MMS
allocations [14]. In this work, we first improve this result by designing a simple periodic
sequential allocation algorithm that ensures 5/3 approximation for all n. Interestingly,
by refining our analyses and constructing hard instances for n = 2, 3, we show that our
algorithm is actually optimal for these cases.

Our results depend on the following two ideas. Firstly, we reduce any chore allocation
instance to a special one where all agents have the same ordinal preference for items, which
is essentially the hardest situation for maximin share fair allocation. The technique has been
used previously [19, 25, 40]. Secondly, our algorithm falls under the umbrella of sequential
allocating algorithms in which items are ordered in decreasing order of their costs and
assigned to agents sequentially following the order. In particular, we consider allocation
sequences that have a pattern and the sequence is obtained by repeating the pattern. We
design a pattern with a length of roughly 1.5n, and name our algorithm as the Sesqui-Round
Robin Algorithm. While we prove that our algorithm is optimal for n ≤ 3, we note that it
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is not optimal for larger n = 4 (for a detailed discussion, please refer to the appendix. We
leave exploring the optimal algorithm for arbitrary n as further study.

Goods Chores
Lower Upper Lower Upper

Ordinal
Hn

Amanatidis et al.
[2016]

2Hn

Halpern and Shah
[2020]

4/3 for n = 2
7/5 for n = 3
[Our work]

4/3 for n = 2
7/5 for n = 3
5/3 for n ≥ 4
[Our work]

Cardinal
40/39

Feige et al.
[2021]

4/3−Θ(1/n)
Garg and Taki

[2020]
Unknown

11/9
Huang and Lu

[2019]

Table 1: Lower and upper bounds on approximation of MMS fairness for allocating goods or chores
using cardinal or ordinal preferences. Here Hn = Θ(logn) is the n-th harmonic number and n is
the number of agents.

Mechanism Design Perspective. We also take a mechanism design perspective for our
problem when the agents may misreport their preferences to decrease costs. We design a
deterministic sequential picking algorithm, ConsecutivePick, where each agent consecutively
selects a number of items, and show that it is strategyproof. Roughly speaking, given an
order of the agents, ConsecutivePick lets each agent i pick ai items and leave, where

∑
i ai =

m. Amanatidis et al. [2] proved that when the items are goods, the best ConsecutivePick
algorithm can guarantee an approximation of b(m− n+ 2)/2c, and such an approximation
can be easily achieved by letting each of the first n−1 agents select one item and allocating
all the remaining items to the last agent. Compared to their result, we show that by
carefully deciding the ai’s, when items are chores, we are able to significantly improve the
bound to O(log(m/n))2. Moreover, we show that this approximation ratio is the best a
ConsecutivePick algorithm can achieve. We further improve the approximation ratio by
randomized algorithms. Particularly, we show that by randomly allocating each item but
allowing each agent to reject a small set of “bad” items (i.e., with the largest cost) once,
the resulting algorithm is strategyproof and achieves an approximation ratio of O(

√
log n)

in expectation.

2 Model and Preliminaries

In a fair allocation problem, N is a set of n agents, and M is a set of m indivisible items.
The goal is to fairly distribute all the items to these agents. Different agents may have
different preferences for these items and these preferences are generally captured by utility
or valuation functions: each agent i is associated with a function vi : 2M → R that valuates
any set of items.

MMS fairness. Imagine that agent i gets the opportunity to partition all items into n
bundles, but she is the last to choose a bundle. Then her best strategy is to partition the
items such that the smallest value of a bundle is maximized. Let Π(M) denote the set of
all n-partitionings of M . Then the maximin share (MMS) of agent i is defined as

MMSi = max
(X1,...,Xn)∈Π(M)

min
j∈N

vi(Xj). (1)

2In this paper we use log(·) to denote log2(·).
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If agent i receives a bundle of items with value at least MMSi, this allocation is called MMS
fair to her.

In this work, it is assumed that items are chores: vi(S) ≤ 0 for all i ∈ N and S ⊆ M .
Then each agent actually wants to receive as few items as possible. For ease of description,
we ascribe a disutility or cost function ci = −vi for each agent i. We further assume that the
cost function of each agent i is additive. Accordingly, the cost function ci can be represented
by a cost vector (ci1, . . . , cim) where cij = ci({j}) is the cost of agent i for item j. Then for
any S ⊆ M we have ci(S) =

∑
j∈S cij . We refer c = (c1, . . . , cn) as the cardinal preference

profile. Agent i’s maximin share can be equivalently defined as

MMSi = min
(X1,...,Xn)∈Π(M)

max
j∈N

ci(Xj). (2)

Note that the maximin threshold defined in Equation 2 is positive which is the opposite
number of the threshold defined in Equation 1. Throughout the rest of our paper, we choose
to use the second definition. For each agent i, we use a permutation over M , σi : [m]→M ,
to denote agent i’s ranking on the items: ciσi(1) ≥ . . . ≥ ciσi(m). In other words, item σi(1)
is the least preferred item and σi(m) is the most preferred. We refer to σ = (σ1, . . . , σn)
as the ordinal preference profile. Let x = (xi)i∈N be an allocation, where xi = (xij)j∈M
and xij ∈ {0, 1} indicates if agent i gets item j under allocation x. A feasible allocation
guarantees a partition of M , i.e.,

∑
i∈N xij = 1 for any j ∈ M . We somewhat abuse the

definition and let X = (Xi)i∈N , Xi = {j ∈ M : xij = 1} and ci(x) = ci(xi) = ci(Xi). An
allocation x is called an MMS allocation if ci(xi) ≤ MMSi for every agent i and an α-MMS
allocation if ci(xi) ≤ α ·MMSi for all agents i.

We first state the following simple observation about MMS. Lemma 1 implies if an agent
receives k items, then her cost is at most k ·MMSi.

Lemma 1. For any agent i and any cost function ci, we have

• MMSi ≥ 1
n · ci(M);

• MMSi ≥ cij for any j ∈M .

Proof. The first inequality is clear as for any partition of the items, the largest bundle has
cost at least the average of total cost, i.e., 1

n · ci(M). For the second inequality, it suffices
to show MMSi ≥ ciσi(1). This is also clear since in any partition of the items, σi(1) belongs
to some bundle and thus the costliest bundle should have cost at least ciσi(1).

By Lemma 1, it is easy to see that if m ≤ n, any allocation that allocates at most one
item to each agent is an MMS allocation. Thus throughout this paper, we assume m > n.

Ordinal Algorithm. An ordinal algorithm A takes the ordinal preferences σ of agents
(instead of cardinal preferences c) as input, and computes an allocation A(σ). Note that
the agents do have cardinal cost functions, according to which MMSi’s are defined. We call
an ordinal algorithm α-approximate if for any cost functions c that are consistent with the
ordinal preference σ, the allocation A(σ) given by the algorithm is an α-MMS allocation.
That is ci(A(σ)) ≤ α · MMSi for all i. A randomized algorithm A returns a distribution
over Π(M) and is called α-approximate MMS if for any cost functions (consistent with the
ordinal ranking) c1, . . . , cn,

Ex∼A(σ)

[
max
i∈N

ci(x)

MMSi

]
≤ α.
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Remark. Note that it is necessary and more interesting to define the approximation as the
expectation of the maximum ratio over all agents. If the α-approximation is defined as for
every agent i, Ex∼A(σ)ci(x) ≤ α ·MMSi, the problem becomes trivial as uniform-randomly
allocating all items gives an exact MMS allocation.

Strategyproof Algorithm. In this work, we also study the situation when the cost
rankings σi are private preferences of agents. Each agent may misreport her true ranking in
order to minimize her own cost for the allocation. We call an algorithm strategyproof if no
agent can unilaterally misreport her ranking to reduce her cost. Formally, a deterministic
algorithm A is called strategyproof if for every agent i, ranking σi and the ranking profile
σ−i of other agents,

ci(A(σi, σ−i)) ≤ ci(A(σ′i, σ−i)) holds for all σ′i.

We call a randomized algorithm A strategyproof in expectation if for every i, σi and σ−i,

Ex∼A(σi,σ−i)ci(x) ≤ Ex∼A(σ′i,σ−i)ci(x) holds for all σ′i.

3 Approximate Maximin Share

In this section we consider the problem of computing an allocation of items that is approxi-
mately MMS based on the ordinal rankings of agents for items, and prove the results listed
in Table 1.

3.1 Identical Ordinal Preference and Allocation Sequence

We first note that we can assume without loss of generality that all agents have identical
ordinal preference (IDO), where a chore allocation instance is called IDO if σi(k) = σj(k)
for agents i, j and index k. The original statement is proved for goods in [25] and [19], which
is then adapted to chores by [40].

Lemma 2 ([40]). Suppose that there is an algorithm that runs in T (n,m) time and re-
turns an α-MMS allocation for all IDO instances. Then, there is an algorithm running in
time T (n,m) + O(nm logm) outputing an α-MMS allocation for all instances that are not
necessarily IDO.

Accordingly, in the following, it suffices to only focus on IDO instances. Assume items
are ordered decreasingly regarding their costs: for any agent i ∈ N , we have

ci1 ≥ ci2 ≥ . . . ≥ cim.

To simplify our statements, in this section we assume that m � n. Note that this is
without loss of generality as we can append a sufficiently large number of items with cost
0 for everyone to M . The remaining part of this section focuses on the computation of an
allocation sequence π ∈ Nm (a length-m sequence of agents), where πj is the agent that
receives item j. Since an allocation algorithm is uniquely defined by an allocation sequence,
we use terms “allocation algorithm” and “allocation sequence” interchangeably.

Allocation sequence. One of the most well-known allocation sequences is round-robin,
where the sequence is defined as [1, . . . , n, 1, . . . , n, . . .]. That is, for j = 1, 2, . . . ,m, we
allocate item j to agent ((j − 1) mod n) + 1, until all items are allocated. Observe that we
can compactly represent the round-robin sequence as π = [1, . . . , n]∗, which means that π is
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obtained by repeating the pattern [1, . . . , n] until the sequence has length m (and the last
replica may not be complete). Like round-robin, in this paper we also focus on sequences
with a certain pattern p ∈ Nk, for some k ≤ m. Formally speaking, the allocation sequence
π ∈ Nm with pattern p ∈ Nk is obtained by repeating the pattern p until π has length m.
We denote the full sequence as π = p∗, and call it a periodic allocation sequence.

Recall that a round-robin algorithm achieves a (2 − 1
n ) approximation ratio [14]. In

the following, we improve this approximation via a carefully designed periodic allocation
sequence.

3.2 Upper Bounds

In this section, we define the desired allocation sequences, and prove the approximation
ratios (of MMS). We first show the following technical lemma (proved in the appendix),
which will be useful in the later analysis.

Lemma 3. Consider a sequence of items S = {j1, j2, . . . , jk}, ordered in descending order
of costs. Suppose an agent i receives two items {jx, jk} from S, where x ≥ k

2 . Then we have
ci,jx + ci,jk ≤ 2

k · ci(S).

Next, we define a periodic allocation algorithm, called Sesqui-Round Robin (SesquiRR),
where the length of the repeating pattern is roughly 1.5n.

Sesqui-Round Robin (SesquiRR). Define the pattern of the periodic allocation sequence as

p =
[
1, 2, . . . , n− 1, n, n, n− 1, . . . , bn

2
c+ 1

]
.

For example, for n = 2 agents, the full sequence is π = [1, 2, 2]∗; for n = 3 the sequence
is π = [1, 2, 3, 3, 2]∗. Since the items are ordered in non-increasing order of their costs and
incentive is not a concern, SesquiRR is essentially a heavy cost first sequential allocation
algorithm according to the repeating pattern p. Intuitively, within each pattern, (1) each
agent from 1 to n is assigned an item and this part is the same with round-robin; (2) then
each agent in the second half of [n] is assigned one more item but according to the reverse
order because they have advantage in (1). The pseudocode is provided in Algorithm 1.

Algorithm 1: Sesqui-Round Robin Algorithm.

1 Input: IDO instance with ci1 ≥ ci2 ≥ . . . ≥ cim for all i ∈ N .
2 Initialize: Xi = ∅ for all i ∈ N .

3 Set p =
[
1, 2, . . . , n− 1, n, n, n− 1, . . . , bn2 c+ 1

]
.

4 for j = 1, 2, . . . ,m do
5 a = (j − 1 mod |p|) + 1 and Xp(a) = Xp(a) ∪ {j}.
6 Output: Allocation X = (X1, . . . , Xn).

Theorem 1 (Approximation Ordinal Algorithms). Algorithm SesquiRR returns an alloca-
tion that is

• 4/3-approximate MMS for n = 2;

• 7/5-approximate MMS for n = 3;

• 5/3-approximate MMS for any n ≥ 4.
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In the following, we only prove for n ≥ 4 and defer the proofs for n = 2, 3 to the appendix.

Proof of Theorem 1 when n ≥ 4. Recall that the repeating pattern of the sequence is[
1, 2, . . . , n− 1, n, n, n− 1, . . . , bn

2
c+ 1

]
.

For convenience we let k = 2n − bn2 c be the length of the pattern. Note that we have
k = 3n

2 when n is even; k = 3n+1
2 when n is odd. Fix any agent i ∈ [n], we show that the

set of items Xi agent i receives satisfies ci(Xi) ≤ 5
3 ·MMSi.

Case-1: i ≤ bn2 c. The algorithm assigns to agent i the following items:

Xi = {i, i+ k, i+ 2k, . . .}.

Let cii = f ·MMSi, where f ∈ [0, 1]. Observe that after receiving item i, agent i gets the
item with minimum cost out of every k items. Hence we have

ci(Xi) ≤ f ·MMSi +
1

k
·

m∑
j=i+1

cij ≤ f ·MMSi +
2

3n
·

ci(M)−
i∑

j=1

cij


≤ f ·MMSi +

2

3n
· (n ·MMSi − i · f ·MMSi)

≤
(
f +

2

3

)
·MMSi ≤

5

3
·MMSi.

Case-2: bn2 c + 1 ≤ i ≤ n − k−2
4 . Note that agent i receives item i first, then for every

t = 1, 2, . . ., among the k items

St = {i+ (t− i)k + 1, i+ (t− i)k + 2, . . . , i+ t · k},

agent i receives item i+ (t− 1)k + 2(n− i) + 1 (the (2(n− i) + 1)-th item in St) and item
i+ t · k (the last item in St). Observe that for i ≤ n− k−2

4 ,

2(n− i) + 1 ≥ k − 2

2
+ 1 =

k

2
.

Hence by Lemma 3, for every t = 1, 2, . . . we have

ci,i+(t−1)k+2(n−i)+1 + ci,i+t·k ≤
2

k
· ci(St).

As before, let ci = f ·MMSi, where f ∈ [0, 1]. We have

ci(Xi) ≤f ·MMSi +
2

k
·

m∑
j=i+1

cij = f ·MMSi +
2

k
·

ci(M)−
i∑

j=1

cij


≤f ·MMSi +

2

k
· (n ·MMSi − i · f ·MMSi)

=

(
2n

k
+ (1− 2i

k
) · f

)
·MMSi ≤

(
1 +

2(n− i)
k

)
·MMSi.

For k = 2n− bn2 c and i ≥ bn2 c+ 1, we have n−i
k ≤

0.5n
1.5n = 1

3 , which implies

ci(Xi) ≤
(

1 +
2

3

)
·MMSi =

5

3
·MMSi.
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Case-3: i ≥ n− k−2
4 + 1. Note that agent i receives items

Xi = {i, 2n− i+ 1, i+ k, 2n− i+ 1 + k, i+ 2k, 2n− i+ 1 + 2k, . . .}.

In other words, agent i receives items i and 2n − i + 1 first, then for every t = 1, 2, . . .,
among the k items

St = {2n− i+ 2 + (t− 1)k, 2n− i+ 3 + (t− i)k, . . . , 2n− i+ 1 + t · k},

agent i receives item i+ t · k (the (k− 2(n− i)− 1)-th item in St) and item 2n− i+ 1 + t · k
(the last item in St). Observe that for i ≥ n− k−2

4 + 1,

k − 2(n− i)− 1 ≥ k − 2(
k − 2

4
− 1)− 1 =

k

2
+ 2 >

k

2
.

Hence by Lemma 3, for every t = 1, 2, . . ., the two items agent i receives from St have total
cost at most 2

k · ci(St). Next, we bound the total cost ci(Xi) of agent i, taking into account
the first two items agent i receives.

Let cii = f1 ·MMSi and ci,2n−i+1 = f2 ·MMSi, where 1 ≥ f1 ≥ f2 ≥ 0.

Claim 1. We have either f1 + f2 ≤ 1 or f2 ≤ 1
3 .

For continuity of presentation, we defer the proof of Claim 1 to the appendix. By
definition of f1 and f2 we have

ci(Xi) ≤ f1 ·MMSi + f2 ·MMSi +
2

k
·

m∑
j=2n−i+2

cij

≤ (f1 + f2) ·MMSi +
2

k
·

n ·MMSi −
2n−i+1∑
j=1

cij


Note that for all j ≤ 2n − i + 1, we have cij ≥ f2 · MMSi; for all j ≤ i, we have

cij ≥ f1 ·MMSi. Hence we have

2n−i+1∑
j=1

cij ≥ i ·
(
f1 + (2n− 2i+ 1) · f2

)
·MMSi,

which implies

ci(Xi)

MMSi
≤ f1 + f2 +

2

k
·
(
n− i · f1 − (2n− 2i+ 1) · f2

)
=

2n

k
+
k − 2i

k
· f1 +

k − 2(2n− 2i+ 1)

k
· f2.

Observe that the coefficient of f2 is always positive since

2n− 2i+ 1 ≤ 2n− 2(n− k − 2

4
+ 1) + 1 =

k

2
− 2 <

k

2
.

If 2i ≥ k, then the coefficient of f1 is non-positive, and thus the maximum of RHS is
achieved when f1 = f2. Note that when f1 = f2, by Claim 1, we have f2 ≤ 1

2 , which implies

ci(Xi)

MMSi
≤ 2n

k
+

2k − 4n+ 2i− 1

k
· f2

≤ 4n

2k
+

2k − 4n+ 2i− 1

2k
= 1 +

2i− 1

2k
< 1 +

2n

3n
=

5

3
.
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If 2i < k, then using the fact that i ≥ n− k−2
4 + 1, we have

ci(Xi)

MMSi
≤ 2n

k
+
k − 2i

k
· f1 +

k − 2(2n− 2i+ 1)

k
· f2

≤ 2n

k
+
k − 2n+ k−2

2 − 2

k
· f1 +

k − 2(2n− k + 1)

k
· f2

=
2n

k
+

3k − 4n− 6

2k
· f1 +

3k − 4n− 2

k
· f2

≤ 4

3
+

1

6
· f1 +

1

3
· f2 =

4

3
+

1

3
· (f1

2
+ f2).

where the last inequality holds since k ≥ 1.5n. It not difficult to check that by Claim 1,
f1
2 + f2 ≤ 1, which implies ci(Xi)

MMSi
≤ 4

3 + 1
3 = 5

3 .

3.3 Lower Bounds

In the following, we give the lower-bound results showing that the approximation ratios we
obtained for n ≤ 3 are optimal for deterministic ordinal algorithms; the proof is provided
in the appendix.

Theorem 2 (Hardness for Deterministic Algorithms). No deterministic ordinal algorithm
has approximation ratio (w.r.t. MMS) smaller than

• 4/3 for n = 2;

• 7/5 for n = 3.

Combining Theorems 1 and 2, we have shown that our algorithm is optimal for n = 2 and
n = 3. It would be natural to conjecture that the algorithm achieves optimal approximation
ratios for larger n. Unfortunately, this is not true. We defer this discussion to the appendix.

4 Strategyproof Maximin Share Allocations

In this section, we take a mechanism design perspective and design strategyproof algorithms
that can also approximate MMS fairness. We first note that periodic sequential picking
algorithm is unlikely to be strategyproof. The following example shows that round-robin
cannot guarantee strategyproofness, even on two agents.

Example 1. Suppose there are two agents and four items. The first agent has ranking
c11 < c12 < c13 < c14 on the items, in the ascending order of costs. The second agent has
ranking c24 < c22 < c21 < c23. Suppose that both agents report truthfully then the algorithm
allocates items {1, 2} to agent 1 and items {3, 4} to agent 2. However, if the second agent
reports differently as c22 < c24 < c21 < c23, then the algorithm will allocate items {1, 3}
to agent 1 and items {2, 4} to agent 2. In other words, agent 2 receives a strictly better
allocation by misreporting, and hence the algorithm is not strategyproof.

4.1 Deterministic Algorithm

We present a deterministic sequential picking algorithm that is O(log m
n )-approximate and

strategyproof. Recall that when items are goods, [2] gave a deterministic O(m − n)-
approximate strategyproof ordinal algorithm. In the following, we show that if all the items
are chores, the approximation ratio can be O(log m

n ). Without loss of generality, we assume
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that n and m/n are at least some sufficiently large constant. As otherwise it is trivial to
obtain an O(1)-approximation by assigning m/n arbitrary items to each agent. Moreover, if
m > n · 2n/2, we can simply assign all items to a single agent, which is O(n)-approximation
by Lemma 1 and thus O(log m

n )-approximation. Thus, in this section, we always assume

m ≤ n · 2n/2.

Theorem 3. There exists a deterministic strategyproof ordinal algorithm with approxima-
tion ratio O(log m

n ).

We first define another typical sequential picking algorithm, where each agent has a
single chance to select items.

ConsecutivePick. Fix a sequence of integers a1, . . . , an such that
∑
i≤n ai = m. Order the

agents arbitrarily. For i = n, n−1, . . . , 1, let agent i pick ai items from the remaining items.
We do not restrict which items each agent should pick, but of course strategic agents want
to select items with smallest cost. The pseudocode is provided in Algorithm 2. Recall that
σi(1) is the least preferred item of agent i, and σi(m) is the most preferred.

Algorithm 2: ConsecutivePick Algorithm.

1 Parameters: Integers a1, . . . , an such that
∑
i≤n ai = m.

2 Input: The ordinal preference σ of agents.
3 Initialize: Xi = ∅ for all i ∈ N .
4 for i = n, n− 1, . . . , 1 do
5 for j = 1, 2, . . . , ai do
6 Let e∗ = arg maxe∈M{σ−1

i (e)}; Set Xi = Xi ∪ {e∗} and M = M \ {e∗}.

7 Output: Allocation X = (X1, . . . , Xn).

We note that as long as ai’s do not depend on the reported preferences of agents, the rule
discussed above is the serial dictatorship rule for multi-unit demands. When it is agent i’s
turn to pick items, it is easy to see that her optimal strategy is to pick the top-ai items with
the smallest cost, among the remaining items. Hence immediately we have the following
lemma.

Lemma 4. For any {ai}i≤n, ConsecutivePick is strategyproof.

It remains to prove the approximation ratio, which is provided in the appendix.

Lemma 5. There exists a sequence {ai}i≤n such that the approximation ratio of
ConsecutivePick is O(log m

n ).

We conclude this section by showing that our approximation ratio is asymptotically
optimal for all ConsecutivePick algorithms, and the formal proof is in the appendix.

Lemma 6 (Limits of ConsecutivePick). The ConsecutivePick algorithm (with any {ai}i∈N )
has approximation ratio Ω(log m

n ).

4.2 Randomized Algorithm

Via a carefully designed ConsecutivePick algorithm, we obtained a logarithmic approximation
for the problem. However, the algorithm may still have poor performance when the number
of items is much larger than the number of agents, e.g., m = 2n. In this section, we

10



present a randomized O(
√

log n)-approximation ordinal algorithm, which is strategyproof
in expectation.

Basically, if we randomly allocate all the items, one is able to show that the algorithm
achieves an approximation of O(log n). The drawback of this näıve randomized algorithm
is that it totally ignores the rankings of agents. In the following, we show that if the
agents have opportunities to decline some “bad” items, the performance of this randomized
algorithm improves to O(

√
log n). Note that since we already have an O(log m

n )-approximate
deterministic algorithm for the ordinal model, it suffices to consider the case when m ≥
n log n.

RandomDecline. Let K = bn
√

log nc. Based on the ordering of items submitted by agents,
for each agent i, we label the K items with the largest cost as “large”, and the remaining
to be “small”. It can also be regarded as each agent reports a set Mi of large items with
|Mi| = K. The algorithm operates in two phases.

• Phase 1: every item is allocated to a uniformly-at-random chosen agent, independently.
After all allocations, gather all the large items assigned to every agent into set Mb.
Note that Mb is also a random set.

• Phase 2: Redistribute the items in Mb evenly to all agents: every agent gets |Mb|/n
random items.

The pseudocode is provided in Algorithm 3.

Algorithm 3: RandomDecline Algorithm.

1 Input: The ordinal preference σ of agents.
2 Initialize: Xi = ∅ for all i ∈ N and Mb = ∅.
3 For each i ∈ N : let Mi = {σi(1), σi(2), . . . , σi(K)}, where K = bn

√
log nc.

4 for j = 1, 2, . . . ,m do
5 Randomly and uniformly select an agent i and set Xi = Xi ∪ {j}.
6 for i = 1, 2, . . . , n do
7 Set Mb = Mb ∪ (Mi ∩Xi) and Xi = Xi \Mi.

8 Randomly divide Mb into n bundles (Y1, . . . , Yn), each with size |Mb|/n.
9 for i = 1, 2, . . . , n do

10 Set Xi = Xi ∪ Yi.
11 Output: Allocation X = (X1, . . . , Xn).

Theorem 4. There exists a randomized strategyproof ordinal algorithm with approximation
ratio O(

√
log n).

We prove the approximation ratio in the following lemma and defer the proof for strat-
egyproofness in the appendix.

Lemma 7. In expectation, the approximation ratio of Algorithm RandomDecline is
O(
√

log n).

Proof. We show that with probability at least 1 − 2
n , every agent i receives a collection of

items of cost at most O(
√

log n)·MMSi. Fix any agent i. Without loss of generality, we order
the items according to agent i’s ranking, i.e., σi(j) = j for any j ∈M and ci1 ≥ . . . ≥ cim.

For ease of analysis, we rescale the costs such that

ci1 + ci2 + . . .+ cim = n
√

log n = K.

11



Note that after the scaling, agent i’s maximin share is MMSi ≥
√

log n. Let xij denote
the random variable indicating the contribution of item j to the cost of agent i. Then for
j > K, xij = cij with probability 1

n , and xij = 0 otherwise. For j ≤ K, xij = 0 with
probability 1. Note that

E[

m∑
i=1

xi] =
1

n
·

m∑
i=K+1

cij ≤
K

n
=
√

log n.

Moreover, we have cij ≤ 1 for j > K, as otherwise we have the contradiction that∑K
j=1 cij > K. Note that {xij}j≤m are independent random variables taking value in [0, 1].

Hence by Chernoff bound we have

Pr[

m∑
j=1

xij ≥ 7
√

log n ·MMSi] ≤ Pr[

m∑
j=1

xij ≥ 7 log n]

≤ exp

(
−1

3
·
(

7 log n

E[
∑m
i=1 xi]

− 1

)
·E[

m∑
i=1

xi]

)
<

1

n2
.

Then by union bound over the n agents, we conclude that with probability at least 1− 1
n ,

every agent i receives a bundle of items of cost at most O(
√

log n) ·MMSi in Phase 1.
Now we consider the items received by an agent in the second phase. Recall that the

items Mb will be reallocated evenly. By the second argument of Lemma 1, to show that
every agent i receives a bundle of items of cost O(

√
log n) ·MMSi in the second phase, it

suffices to prove that |Mb| = O(n
√

log n) (with probability at least 1− 1
n ).

Let yj ∈ {0, 1} be the random variable indicating whether item j is contained in Mb. For
every item j, let bj = |{k : j ∈ Mk}| be the number of agents that label item j as “large”.

Then we have yj = 1 with probability
bj
n . Since every agent labels exactly n

√
log n items,

we have

E[|Mb|] = E[

m∑
i=1

yi] =
1

n

m∑
i=1

bi = n
√

log n.

Applying Chernoff bound we have

Pr[

m∑
i=1

yi ≥ 2n
√

log n] ≤ exp

(
−n
√

log n

3

)
<

1

n
.

Thus, with probability at least 1− 2
n , every agent i receives a bundle of items with cost

O(
√

log n ·MMSi) in the two phases combined. Since in the worse case, i receives a total cost
of at most n ·MMSi, in expectation, the approximation ratio is (1− 2

n ) ·O(
√

log n) + 2
n ·n =

O(
√

log n).

5 Conclusion

In this paper, we initiated the study of approximate and strategyproof maximin fair al-
gorithms for chore allocation using ordinal preferences. Our study leads to several new
questions. Two most obvious research questions are to find the optimal ordinal algorithm
for arbitrary number of agents, and to improve the approximation or study the lower bounds
of strategyproof (randomized) algorithms. At present, we have two parallel lines of research
for goods and chores. It is important to consider similar questions for combinations of goods
and chores [15]. Finally, it is interesting to extend our work to asymmetric agents [16], where
agents possess different weights and a fair allocation should respect these weights.
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Appendix

A Discussion

SesquiRR Is Not Optimal for Larger n. As we have proved in Section 3, our algorithm
SesquiRR achieves optimal approximation ratios for n = 2 and n = 3. However, it fails to
return an optimal solution when n = 4. Actually, following similar analysis for n = 2 and
n = 3, one can show that the approximation ratio of our algorithm is 1.5 for n = 4. However,
we are aware of an algorithm that performs strictly better than 1.499-approximate. Fur-
thermore, we are aware of an instance with n = 4, for which no ordinal algorithm performs
better than 1.405-approximate. To this end, we conjecture that the optimal approximation
ratio r∗(n) (with n agents) is an increasing function of n. In this paper we have shown that

r∗(2) =
4

3
≈ 1.333, r∗(3) =

7

5
= 1.4, and ∀n, r∗(n) ≤ 5

3
≈ 1.667.

We can also show that 1.405 < r∗(4) < 1.499 3. We leave it as a future work to analyze the
optimal ratio r∗(n) for n ≥ 4.

Constant Approximations for Our Strategyproof Algorithm. We have shown in
Section 4.1 a deterministic strategyproof algorithm that is O(log(m/n))-approximate MMS.
However, in many applications it is desirable to obtain constant approximation ratios. While
our algorithm has constant approximation ratios when m = O(n), it is not clear how large
the constant is. In particular, if we need to guarantee an approximation ratio r, what is the
maximum number of items we can handle? In this part we give a detailed analysis to answer
this question. Following the analysis of Section 4.1, in order to guarantee an approximation

ratio of r, we can set a1 = r, and for each i = 2, . . . , n, we set ai = r ·
⌈
a1+...+ai−1

n

⌉
. To

guarantee that all items are allocated, we have m ≤
∑n
i=1 ai. For example, if r = 2, we

have

a1 = . . . = an
2

= 2, an
2 +1 = . . . = a 3n

4
= 4,

a 3n
4 +1 = . . . = a 11n

12
= 6, a 11n

12 +1 = . . . = an = 8.

Hence we have m ≤
∑n
i=1 ai = 11

3 n ≈ 3.67n. Similarly, to guarantee an approximation of
r = 3, we can let the first n

3 values of ai be 3; the next n
6 values of ai be 6; then the next

n
9 values of ai be 9, etc. Following similar calculations, one can verify that the maximum
number of items the algorithm can handle to guarantee r = 3 is m ≈ 10.26n; for r = 4, we
have m ≈ 30.15n.

B Related Works

The study of computing fair allocations of resources has a long history. Arguably, two of the
most widely studied solution concepts are envy-freeness and proportionality, whose existence
is guaranteed when there is a single divisible item, i.e., the cake cutting problem [8, 28, 49].
The problem becomes tricky when the items are indivisible, because exact envy-free or
proportional allocations barely exist and are hard to approximate. In order to characterize
the extent to which fairness can be guaranteed in the indivisible setting, several relaxations
have been proposed, such as envy-free up to one item (EF1) [43], envy-free up to any item

3Since we are not able to obtain the exact ratio, we did not include the analysis here.
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(EFx) [32], and maximin share fair (MMS) [29], whose relations have been discussed by [4].
Among these relaxations, MMS is undoubtedly one of the most widely studied one.

It has been conjectured that an MMS allocation always exists until [42, 48] identified
a counter-example. Thereafter, there appeared rich works designing approximate MMS
allocations. The first constant factor approximation algorithm was given by [48], whose
approximation ratio is 3/2 but its running time can be exponential in the number of agents.
Later, Amanatidis et al. [1, 3] refined the algorithm in [48] and guaranteed the same ap-
proximation with a polynomial running time. The same approximation is also obtained in
[19, 20, 37]. Ghodsi et al. [38] improved these results by giving a 4/3 approximation algo-
rithm whose running time may be exponential. More recently, Garg and Taki [36] designed
a polynomial time algorithm to find a 4/3 approximate MMS allocation and proved the
existence of (4/3−Θ(1/n))-MMS allocation, breaking the barrier of 4/3.

Although most of the work on MMS allocation of items is for the case of goods, recently,
fair allocation of chores Aziz et al. [14] or combinations of goods and chores Aziz et al.
[15] have received much attention. Aziz et al. [14] proved that MMS allocations do not
always exist but can be easily 2-approximated. Later, Barman and Murthy [21] presented a
4/3-approximation algorithm for MMS allocation of chores, and Huang and Lu [40] further
improved this ratio to 11/9. In an earlier version of the current work [17], we focused on
the strategyproof algorithms for chores. Aziz et al. [16] extended the definition of MMS to
the weighted version that deals with asymmetric agents.

Distortion. Our work is also inspired by the growing literature on distortion in voting,
where voters express ordinal preferences (instead of numerical utilities) over candidates
[23, 31, 44, 46]; and matching, where only the edge ranking is known instead of the exact
weights [5, 6, 7]. The goal is to use the partial information to find solutions that maximizes
social welfare, and distortion is the measure to evaluate the worst-case multiplicative loss
in social welfare due to this lack of information. A major focus of our work is identifying
what approximation guarantees of fairness can be achieved by only using ordinal information,
which is naturally connected to the work on distortion. There has been a substantial amount
of work on using ordinal preferences in fair allocation of indivisible goods. For example,
Aziz et al. [9] considered the question of checking the existence of allocations that possibly
or necessarily satisfy certain fairness guarantees such as envy-freeness given only ordinal
preferences of the agents over the goods. Bouveret et al. [26] studied similar questions, but
given partial ordinal preferences of the agents over bundles of goods. More closely related
to ours are the papers that use ordinal allocation rules (such as picking sequence rules) in
settings with cardinal valuations. For example, Aziz et al. [11] focused on the complexity of
checking what social welfare such rules can possibly or necessarily achieve. Amanatidis et al.
[2] sought to use picking sequence rules to obtain approximation of the MMS fairness. Very
recently, Halpern and Shah [39] showed that there is an algorithm using ordinal preferences
to guarantee O(log n)-approximate MMS fairness when items are goods.

Mechanism Design without Money. Strategyproofness is a challenging property to
satisfy for fair division algorithms. For cake cutting problem, Chen et al. [33] and Bei et al.
[22] studied to what extent there exist strategyproof algorithms to fairly allocate the cake for
piece-wise uniform or linear valuations. Maya and Nisan [45] provided a characterization of
strategyproof algorithms for the case of two agents. When items are indivisible, Caragiannis
et al. [30] and Lipton et al. [43] have discussed how to elicit true information from the agents
while ensuring some degree of envy-freeness. More recently, Amanatidis et al. [2] initiated
the work on strategyproof allocation of goods with respect to MMS fairness. One important
algorithm class is sequential picking, which is a generalization of round-robin. Aziz et al.
[12, 13], Bouveret and Lang [24], Kohler and Chandrasekaran [41] studied strategic aspects of
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sequential picking. There is also work on the approximation of welfare that can be achieved
by strategyproof algorithms for allocation of divisible items (e.g., [10, 34]).

C Missing Materials in Section 3

C.1 High-level Ideas for Lemma 2

We provide some high-level ideas for this proof as follows, and a formal one can be found in
[40]. For any instance I with parameters N,M, c, σ that is not IDO, we create a correspond-
ing IDO instance I ′ where the costs are defined as c′ij = ci,σi(j) for all i ∈ N and j ∈M . In
other words, in I ′, item 1 is most costly and m is least costly to every agent. Consequently,
the resulting instance is IDO; moreover, the MMS values do not change. Suppose we have
an α-approximation algorithm for IDO instances I ′. Let πj ∈ N be the agent that receives
item j in the allocation. Then we have a length-m sequence of “picking ordering” of agents
(πm, . . . , π1). Going back to I, if we let agent πj pick her favorite unselected item (with
lowest cost) in the order of j = m,m− 1, . . . , 2, 1, each agent’s cost will not be higher than
her cost in I ′ and thus the resulting allocation is also α-MMS.

C.2 Proof of Lemma 3

Proof of Lemma 3. For convenience, let a = ci,jx and b = ci,jk , where a ≥ b. We have

ci(S) ≥ x · a+ (k − x) · b,

which implies

ci,jx+ci,jk
ci(S) ≤ a+b

x·a+(k−x)·b = a+b
k·b+x·(a−b) ≤

a+b
k·b+ k

2 ·(a−b)
= 2

k ,

where the second inequality follows from x ≥ k
2 .

C.3 Complete Proof for Theorem 1

Proof of Theorem 1 when n = 2. For n = 2, SesquiRR has repeating pattern [1, 2, 2]. That
is, we assign to agent 1 item set X1 = {1, 4, 7, . . .} = {3k + 1 | k ∈ Z+} ∩M and assign to
agent 2 item set X2 = {2, 3, 5, 6, 8, 9 . . .} = {3k + 2, 3k + 3 | k ∈ Z+} ∩M .4

Recall that items are indexed in descending order of costs. Let us first consider agent
1 and define f := c11/MMS1. By the second statement in Lemma 1, we have MMS1 ≥ c11

and thus f ∈ [0, 1]. Note that after receiving item 1, agent 1 gets the last one out of every
three consecutive items. Since c1,3j−1 ≥ c1,3j ≥ c1,3j+1 for all j = 1, . . . , bm−1

3 c, then

3 ·
bm−1

3 c∑
j=1

c1,1+3j ≤
bm−1

3 c∑
j=1

c1,3j−1 + c1,3j + c1,3j+1 = c1(M)− c11.

Thus

c1(X1) = c11 +

bm−1
3 c∑
j=1

c1,1+3j ≤ f ·MMS1 +
1

3
· (c1(M)− c11) .

By the first statement in Lemma 1, we have c1(M) ≤ 2 ·MMS1 and thus

c1(X1) ≤
(
f +

1

3
· (2− f)

)
·MMS1 =

2

3
(1 + f) ·MMS1 ≤

4

3
·MMS1.

4Z+ represents the set of all non-negative integers {0, 1, 2, . . .}.

15



Next we consider agent 2. Similarly, since agent 2 receives two items (of smallest cost)
out of every three consecutive items, and c2,3j−2 ≥ c2,3j−1 ≥ c2,3j for all j = 1, . . . , bm3 c, we
have

c2(X2) ≤ 2

3
· c2(M) ≤ 4

3
·MMS2,

where the inequality also comes from c2(M) ≤ 2 ·MMS2 .

Proof of Theorem 1 when n = 3. For n = 3, the allocation sequence has pattern [1, 2, 3, 3, 2].
In the following, we consider the three agents separately and the reasoning is similar to that
of n ≥ 4.

Agent 1. Let c11 = f ·MMS1, where f ∈ [0, 1]. Note that after receiving the first item,
agent 1 receives one out of every 5 consecutive items. Hence

c1(X1) ≤ f ·MMS1 +
1

5
· (c1(M)− c11)

≤
(
f +

1

5
· (3− f)

)
·MMS1 ≤

7

5
·MMS1,

where the second inequality holds due to c1(M) ≤ 3 ·MMS1.

Agent 2. Let c22 = f ·MMS2, where f ∈ [0, 1]. Note that after receiving item 2, for every
t = 1, 2, . . ., among the 5 consecutive items

St = {3 + 5(t− 1), 4 + 5(t− 1), . . . , 7 + 5(t− 1)},

agent 2 receives the third item 5 + 5(t− 1) and the last item 7 + 5(t− 1).
By Lemma 3, the total cost of items agent 2 receives after item 2 is at most 2

5 ·
∑m
j=3 c2j .

Hence we have

c2(X2) ≤ f ·MMS2 +
2

5
· (c2(M)− c21 − c22)

≤
(
f +

2

5
· (3− 2f)

)
·MMS2 ≤

7

5
·MMS2.

Agent 3. Let c33 + c34 = f ·MMS3. Note that among the first four items {1, 2, 3, 4}, at
least two of them must appear in the same bundle of the MMS allocation of agent 3. Hence
we have MMS3 ≥ c33 + c34, which implies f ∈ [0, 1]. Also note that c31 + c32 + c33 + c34 ≥
2 · (c33 + c34) = 2f ·MMS3.

Observe that after receiving items 3 and 4, agent 3 receives two items (of smallest cost)
out of every 5 consecutive items. Hence we have

c3(X3) ≤ f ·MMS3 +
2

5
·

c3(M)−
4∑
j=1

c3j


≤
(
f +

2

5
· (3− 2f)

)
·MMS3 ≤

7

5
·MMS3.

Hence all agents receive a bundle of cost at most 7
5 times her MMS value, and the lemma

follows.
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C.4 Proof of Claim 1

Proof of Claim 1: We call items {1, 2, . . . , i} heavy items and items {i+1, i+2, . . . , 2n−i+1}
light items. Note that every heavy item must have cost at least f1 ·MMSi and every light
item must have cost at least f2 · MMSi. Now consider the MMS allocation of agent i. If
there exists a bundle containing both heavy and light items, or two heavy items, then we
have

MMSi ≥ f1 ·MMSi + f2 ·MMSi,

which implies f1 + f2 ≤ 1. Otherwise we know that if a bundle contains a heavy items,
then it is a singleton. Note that there are i heavy items, 2(n − i) + 1 light items and
n bundles. Hence there must exists a bundle containing three light items, which implies
MMSi ≥ 3f2 ·MMSi and thus f2 ≤ 1

3 .

C.5 Proof of Theorem 2

Proof of Theorem 2. We first give a hard instance for n = 2. Consider the instance in which
the 2 agents have identical ranking on m = 4 items {1, 2, 3, 4}. Without loss of generality,
assume the first item (with maximum cost) is given to agent 1. If the agent 1 is allocated
only one item, then for the case when c2 = (1, 1, 1, 1), the approximation ratio is 3

2 since
the agent 2 has total cost 3 while MMS2 = 2. Otherwise (agent 1 gets ≥ 2 items), for the
case when c1 = (3, 1, 1, 1), the approximation ratio is at least 4

3 , as agent 1 has total cost at
least 3 + 1 = 4 while MMS1 = 3.

Next, we consider the case when n = 3. Suppose there exists an allocation that is strictly
better than 7/5 = 1.4-approximate. Let 1.4− ε be the approximation ratio of the algorithm,
where ε ∈ (0, 0.4). In the following we consider a few instances with m ≥ 2

ε items, in which
the 3 agents have identical ranking on the items. For convenience of discussion we fix m to
be an odd number.

First, observe that the first three items must be allocated to three different agents,
otherwise the approximation is at least 1.5. Without loss of generality, suppose item i ∈
{1, 2, 3} is allocated to agent i. Then item 4 must be allocated to agent 3, as otherwise when
all agents have cost function (2, 2, 1, 1, 0, . . . , 0), the approximation ratio is 1.5. Next, we
consider how the items M ′ = {5, 6, . . . ,m} are allocated. Let y1, y2 and y3 be the number
of items in M ′ allocated to item 1, 2 and 3, respectively.

Agent-1. Consider the instance in which the cost function of agent 1 is

c1 = (1,
2

m− 1
,

2

m− 1
, . . . ,

2

m− 1
).

Note that since m is odd, we have MMS1 = 1. To ensure an approximation ratio of 1.4− ε,
we have c1(X1) = 1 + 2·y1

m−1 ≤ 1.4− ε, which implies

y1 ≤
m− 1

2
· (0.4− ε) < 0.2 ·m− 0.5 · ε.

Agent-2. Now consider the instance in which

c2 = (1, 1,
1

m− 2
,

1

m− 2
, . . . ,

1

m− 2
).

Note that MMS2 = 1. To ensure an approximation ratio of 1.4 − ε, we have c2(X2) =
1 + y2

m−2 ≤ 1.4− ε, which implies

y2 ≤ (m− 2) · (0.4− ε) < 0.4 ·m− ε ·m ≤ 0.4 ·m− 2,
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where the last inequality follows from m ≥ 2
ε .

Agent-3. Finally, we consider the instance in which

c3 = (
1

2
,

1

2
,

1

2
,

1

2
,

1

m− 3
,

1

m− 3
, . . . ,

1

m− 3
).

Since there are m − 4 items with cost 1
m−3 , and m is odd, it is not difficult to verify that

MMS3 = 1. To ensure an approximation ratio of 1.4−ε, we have c3(X3) = 1+ y3
m−3 ≤ 1.4−ε,

which implies
y3 ≤ (m− 3) · (0.4− ε) < 0.4 ·m− ε ·m ≤ 0.4 ·m− 2.

However, observe that now we have y1 + y2 + y3 < m− 4, which is a contradiction since
there are m− 4 items in M ′.

D Missing Proofs in Section 4

D.1 Proof of Lemma 5

Proof of Lemma 5. We first establish a lower bound on the approximation ratio in terms of
{ai}i≤n. Then we show how to fix the numbers appropriately to get a small ratio. Let r be
the approximation ratio of the algorithm.

Consider the moment when agent i needs to pick ai items. Recall that at this moment,
there are

∑
j≤i aj items, and the ai ones with the smallest cost will be chosen by agent i.

Let c be the average cost of items agent i picks, i.e., ci(Xi) = c ·ai. On the other hand, each

of the
∑
j≤i−1 aj items left has cost at least c. Thus we have MMSi ≥ c ·

⌈
a1+...+ai−1

n

⌉
and

r = max
i∈N

{
ci(Xi)

MMSi

}
≤ max

i∈N

 ai⌈
a1+...+ai−1

n

⌉
 .

It suffices to compute a sequence of a1, . . . , an that sum to m and minimize this ratio.
Fix K = 2 log m

n . Since m ≤ n · 2n/2, K ≤ n. Let

ai =

{
2, i ≤ n

2 ,

min{m−
∑
j<i aj ,

⌈
K · (1 + K

n )i−
n
2−1

⌉
}, i > n

2 .

Note that the first term of min{·, ·} is to guarantee we leave enough items for the re-
maining agents. Moreover, truncating ai is only helpful for minimizing the approximation
ratio and thus we only need to consider the case when ai equals the second term of min{·, ·}.
In the following, we show that

1. all items are picked:
∑
i∈N ai = m;

2. for every i > n
2 : ai ≤ K ·

⌈
a1+...+ai−1

n

⌉
.

Note that for i ≤ n
2 , since agent i receives 2 items, the approximation ratio is trivially

guaranteed. The first statement holds because

n
2∑
i=1

2 +

n∑
i= n

2 +1

(
K · (1 +

K

n
)i−

n
2−1

)
=
∑
i≤n

2

(
K · (1 +

K

n
)i−1

)
+ n

=(1 +
K

n
)

n
2 · n− n+ n = (1 +

K

n
)

n
K ·

K
2 · n ≥ 2

K
2 · n > m, (3)
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and ai’s will be truncated when their sum exceeds m.
For i > n

2 , observe that (let l = i− n
2 − 1)

1

n

i−1∑
j=1

aj = 1 +
1

n

l∑
j=1

K · (1 +
K

n
)j−1 = 1 + (1 +

K

n
)l − 1 = (1 +

K

n
)l.

Thus we have

ai ≤
⌈
K · (1 + K

n )l
⌉
≤ K ·

⌈
(1 + K

n )l
⌉
≤ K ·

⌈
a1+...+ai−1

n

⌉
,

as claimed.

D.2 Proof of Lemma 6

Proof of Lemma 6. Fix K = 1
4 log m

n . Suppose there exists a sequence of {ai}i∈N such that
the algorithm is K-approximate. Then the last agent to act must receive at most K items,
i.e., a1 ≤ K. Next, we show by induction on i = 2, 3, . . . , n that ai ≤ K(1 + 2K

n )i−1 for all

i ∈ N . Suppose the statement is true for a1, . . . , ai. Then if ai+1 > K(1 + 2K
n )i, we have

ai+1

a1 + . . .+ ai+1
>

K(1 + 2K
n )i

k · n
2K ((1 + 2K

n )i+1 − 1)
≥ K

n
.

Thus we have ∑n
i=1 ai ≤ n ·

(
(1 + 2K

n )n − 1
)
≤ n ·

(
e2K − 1

)
< m,

which is a contradiction, since not all items are allocated.

D.3 Proof of Theorem 4

It remains to prove the strategyproofness of Theorem 4.

Lemma 8. RandomDecline is strategyproof in expectation.

Lemma 8 . To prove that the algorithm is strategyproof in expectation, it suffices to show
that for every agent, the expected cost she is assigned is minimized when being truthful.
Let K = n

√
log n and fix any agent i. Suppose ci1, . . . , ciK are the costs of items labelled

“large” by the agent; and ci,K+1, . . . , cim are the remaining items. Then the expected cost
assigned to the agent in the first phase is given by 1

n

∑m
j=K+1 cij , as every item is assigned

to her with probability 1
n . Next we consider the cost incurred to agents in the second phase.

Recall that the expected total cost of items to be reallocated in the second phase is
E[
∑
j∈Mb

cij ] =
∑m
j=1 cij ·

bj
n , where bj is the number of agents that label item j “large”.

Let E be this expectation when agent i does not label any item “large”. By labelling
ci1, . . . , ciK “large”, agent i increases the probability of each item j ≤ K being included in
Mb by 1

n . Thus it contributes an 1
n

∑K
j=1 cij increase to the expectation of total cost of Mb.

In other words,

E[
∑
j∈Mb

cij ] = E +
1

n

K∑
j=1

cij .

Since a random subset of |Mb|
n items from Mb will be assigned to agent i, the expected

total cost of items assigned to her in the two phases is given by

1

n

m∑
j=K+1

cij +
1

n
·

E +
1

n

K∑
j=1

cij

 .
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Obviously, the expression is minimized when ci1 + . . .+ ciK is maximized. Hence every
agent minimizes her expected cost by telling the true ranking.
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