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Abstract

It is well understood that the structure of a social network is critical to whether
or not agents can aggregate information correctly. In this paper, we study social
networks that support information aggregation when rational agents act sequentially
and irrevocably. Whether or not information is aggregated depends, inter alia, on
the order in which agents decide. Thus, to decouple the order and the topology, our
model studies a random arrival order.
Unlike the case of a fixed arrival order, in our model the decision of an agent is
unlikely to be affected by those who are far from him in the network. This observation
allows us to identify a local learning requirement, a natural condition on the agent’s
neighborhood that guarantees that this agent makes the correct decision (with high
probability) no matter how well other agents perform. Roughly speaking, the agent
should belong to a multitude of social circles that, if this agent was absent, would
be mutually exclusive.
We illustrate the power of the local learning requirement by constructing a family
of social networks that guarantee information aggregation despite that no agent is
a social hub (in other words, there are no opinion leaders). Although, the common
wisdom of the social learning literature suggests that information aggregation is
very fragile, another application of the local learning requirement demonstrates the
existence of networks where learning prevails even if a substantial fraction of the
agents are not involved in the learning process. On a technical level, the networks
we construct rely on the theory of expander graphs, i.e., highly connected sparse
graphs with a wide range of applications from pure mathematics to error-correcting
codes.

1 Introduction

The way ideas and information propagate in society is critical for engineering political
campaigns, evaluating new technologies, marketing products, and introducing new social
conventions. It is well known that whether or not the information is properly aggregated is
highly dependent on the quality of information accessible to the individual agents, on the
way information is transmitted from one agent to another, the order and frequency with
which agents take actions, and, finally, on the topology of the underlying social network.

In this paper, we study the role that the topology of the social network plays in informa-
tion aggregation among rational agents. We do so using a variant of the herding model of
Banerjee [1992] and Bikhchandani et al. [1992] adapted to a social network setting. Agents
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decide sequentially on a binary action based on a private (bounded) signal and history of
actions taken by their predecessors. In the variant we study, the set of predecessors an agent
observes is restricted by his set of neighbors in an exogenously given social network.

Since agents act sequentially a network may properly aggregate information for a par-
ticular sequence while failing to do so for most other sequences. To decouple the network’s
topology from the order in which agents take their actions, we make a distinction between
the a-priori network, which is exogenously given, and the realized network, which is induced
by the aforementioned social network and the ordering of agents. Such a distinction be-
tween the social network and realized observability structure is not standard. Our goal in
this paper is to find a sufficient condition on the a-priori network that guarantees learning
for most sequences. We say that such a network supports learning. Our first step in the
analysis, which is of independent interest, is to focus on a particular agent in the a-priori
network and characterize features of the local structure of the network that guarantee that
this agent will make the correct decision (with high probability). Indeed, we show that an
agent that belongs to a variety of social circles that, among themselves, are mutually exclu-
sive and socially distant has a high probability of taking the correct action. We refer to this
condition as the local learning requirement. Therefore, social networks with the property
that each agent satisfies the local learning requirement will aggregate information. We show,
with an example, that this condition is not vacuous. Quite surprisingly, we demonstrate the
existence of symmetric networks with the aforementioned property.

In the sociology literature, and in particular the literature on mass communication,
it is often argued that learning is facilitated vis-à-vis a small number of opinion leaders
predetermined by their position in the social network [Katz and Lazarsfeld, 1955]. Thus,
the existence of symmetric networks that support learning is quite counterintuitive as it
implies that learning obtains without opinion leaders (see the discussion in Appendix A).

When studying learning in social networks it may be quite unrealistic to assume that
every decision problem pertains to all agents in the society. In fact, in large societies (such
as those present in online social networks) it is far more realistic that only a minority
of the agents have a stake in an arbitrary decision problem. For example, a dilemma
between two candidates for mayorship may interest one subset of the population while
a dilemma between two competing “green” technologies (e.g., hybrid engines vs. electric
engines) may be relevant to some other small set of agents. Thus, the proper requirement on
a social network is that information be properly aggregated when only a fraction of agents
participate. We say that a network supports robust learning if any subnetwork containing a
constant fraction of the agents supports learning.2 To obtain robust learning it is sufficient
that in any network induced by a fraction of the agents most of those agents satisfy the
local learning requirement. We show, with an example, that this condition is not vacuous.
Once again, the example we have satisfies symmetry assumptions on the agents.

To construct social networks that support (robust) learning we tap into the theory of
expander graphs and in particular we make use of well-known properties of a family of
graphs known as Ramanujan expanders.

1.1 Related literature

The literature on information aggregation studies many aspects of social learning. In our
literature review, we focus on the connection between the topology of the social network
and information aggregation. This connection has received attention in the literature on
repeated interaction in social networks, where, in contrast to our model, agents can revise
their decision as many times as they want. For example, Mossel et al. [2015] study Bayesian

2An alternative, weaker definition could require that most such subnetworks support learning. We discuss
this alternative definition in Appendix F.



learning by rational agents and provide a sufficient condition on the network structure such
that asymptotically agents select the optimal action with a probability that approaches one
as the network grows. Golub and Jackson [2010] analyze conditions under which a “naive”
updating process converges to a fully rational limiting belief, which equals the Bayesian
posterior conditional on all agents’ information, in a large society. The conditions require
no agent to be too influential.

In the context of sequential social learning, where each agent takes an action only once,
it was first suggested by Smith [1991] that learning can be obtained by restricting the social
connections among agents. In particular, Smith points out that, for a given sequence of
agents, if the deciding agents initially do not observe each other then they collectively form
a sample of independent observations (sometimes referred to as the “guinea pigs”). Thus,
any subsequent agent observing them is likely to make the correct decision. Sgroi [2002]
discusses how to choose the set of guinea pigs optimally. Unfortunately, these insights couple
the network structure with the order in which agents make their decision and is, therefore,
moot to the questions we pose.

The interplay between the network structure and sequential learning is studied by Ace-
moglu et al. [2010] in a model with rational agents and sequential actions. In their model,
prior to making his decision, an agent observes a random sample of predecessors, and the
paper focuses on sufficient conditions on this sampling distribution that guarantee learning.
The network structure turns out to be coupled with the order in which agents make their
decisions. Although the sampling model of Acemoglu et al. [2010] induces a random realized
network, this network cannot be derived from and so is not associated with an exogenously
given a-priori network.3 Thus, our approach complements that of Acemoglu et al. [2010] in
the sense that their model better suits settings where the network structure is generated ad
hoc whereas our model fits social networks whose a-priori structure is fixed with no connec-
tion to the order in which agents decide in one problem or another and so the same network
underlies a variety of decision problems, each with its own order. Arieli and Mueller-Frank
[2019] also consider random sampling but assume the edges in the network are limited to
the m-dimensional lattice.

Bahar et al. [2020] are the first to study social learning over an exogenously given network
with a random arrival order of the agents. They demonstrate the existence of a social
network where learning is guaranteed. Their network has a particular structure. It is a
bipartite graph with a minority of agents on one side (whom they refer to as “celebrities”)
and a majority on the other side (“commoners”); for more details see Example 2.2. Although
the family of celebrity graphs supports learning, they are sensitive to the participation of
agents. In other words, in decision problems that are irrelevant to a minority of the agents,
information need not be properly aggregated and social learning may fail; i.e., the celebrity
graphs do not support robust learning.

Recently, various papers have demonstrated how fragile social learning can be (see, e.g.,
Bohren [2016]; Frick et al. [2020]; Mueller-Frank [2018]). In contrast to these findings we
construct a network structure that is robust in the sense that learning prevails even if a
majority of agents, chosen adversarially, does not participate.

On a more technical level, the networks we construct rely on the theory of expander
graphs, i.e., highly connected sparse graphs with a wide range of applications from solving
problems in pure mathematics to designing error-correcting codes (see Lubotzky [2012] for
a survey). Recently, this theory was applied to problems of social learning by Mossel et al.

3Unlike the independence of the random observation sampling assumed by Acemoglu et al. [2010], in our
model the random order generates a high correlation between the observation sets of individuals. Indeed, if
an individual observes only a small subset of his friends when he makes his decision he may infer that those
friends are early arrivals and, therefore, based their own decisions on very limited information. This is not
the case in the random sample model.



[2014] and Feldman et al. [2014] in the context of boundedly rational agents who take actions
repeatedly.

1.2 Structure of the paper

Section 2 contains the description of the model. In Section 3, we demonstrate that whether
or not an agent learns is determined by the local structure of the a-priori network around
him and derive the local learning requirement on this neighborhood, which guarantees that
the agent learns the state. Sections 4 and Section 5 are devoted to implications of the
local learning requirement. Section 4 shows that learning is possible in egalitarian soci-
eties: there are symmetric networks that support learning. Section 5 strengthens this result
by constructing symmetric networks where learning is robust to adversarial elimination of
groups of agents.

Appendix A discusses alternative interpretations and extensions of the basic model.
The results of Sections 4 and 5 heavily rely on the insights from the theory of expander
graphs, which are explained in Appendix B. Technical proofs for Sections 3 and 5 are in
Appendices C, D, and E. Appendix F discusses an alternative, weaker notion of robustness,
where groups of agents are eliminated at random.

2 The model

A social network is an undirected graph G = (V,E), where V is the set of agents and an
edge vu is contained in E if v and u are “friends.” Friendship is always mutual, as on
Facebook: vu ∈ E ⇒ uv ∈ E. We denote by Fv the set of v’s friends {u ∈ V : vu ∈ E}.

With each agent v ∈ V , we associate his arrival time tv; the arrival times T = (tv)v∈V
are independent random variables uniformly distributed on4 [0, 1]. The collection of arrival
times T induces the orientation on edges of G = (V,E) from late arrivals to early ones and
converts it into the direct network GT = (V,ET ) with ET = {vu ∈ E : tu < tv}, which we
call the realized network. We will refer to G as the a-priori network in order to distinguish it
from GT . The directed edge vu in the realized network means that agent v gets to observe
agent u; i.e., v observes his friends who arrived earlier. We denote the set of all such friends
of v by Fv,T = {u ∈ V : vu ∈ ET } ⊂ Fv.

Upon arrival, each agent v takes an action av ∈ {0, 1}, depending on the information
available. The agent gets a payoff of one if av = θ, where θ is the random state, a Bernoulli
random variable with success probability 1/2; if the action does not match the state, the
agent gets zero payoff. Nobody observes θ but every agent receives a binary signal sv ∈ {0, 1}
that equals θ with probability p and 1− θ with probability 1− p, where 1

2 < p ≤ 1. Signals
are independent conditional on θ. In addition to his own signal sv, each agent v observes
the set of his friends who arrived earlier, Fv,T , and their actions, (au)u∈Fv,T . We denote
the information set of an agent v by Iv = (sv, Fv,T , (au)u∈Fv,T ). Note that an agent knows
neither his arrival time nor the set of agents who arrived before him (except for his friends).

All agents are rational and risk-neutral; the description of the model, probability dis-
tributions, and the a-priori network G are common knowledge. By contrast, the realized
network is not observed by agents.

4Random arrival order allows us to disentangle the topology of the a-priori network and the order in
which agents make their decisions. Randomness is also justified by the fact that this order usually differs
from one issue to another (e.g, iPhone vs. Android, public kindergartens vs. private ones). We stress that
in our model arrival refers to the time when the agent makes a decision, and not to the time when he joins
the network as in the random sampling model of Acemoglu et al. [2010].



2.1 Equilibria

A mixed strategy σv of an agent v maps his information set Iv to the probability distribution
on {0, 1}, according to which his action av is then chosen. The goal of each agent is to
maximize his expected payoff, which coincides with the probability of taking the action that
matches the state.

We consider an equilibrium σ = (σv)v∈V of the induced Bayesian game and use Pσ and
Eσ for the probability and for the expectation with respect to all the randomness in the
problem (the state, signals, arrival times, and actions). An equilibrium exists since it is a
finite game; however, it may be non-unique. We omit the subscript σ and write P and E
when this creates no confusion.

We say that an equilibrium is state-symmetric if the distribution P is invariant under the
mapping

(
θ, (sv)v∈V , (av)v∈V

)
→
(
1−θ, (1−sv)v∈V , (1−av)v∈V

)
, i.e., under simultaneous

flipping of the state, signals, and actions. Since the payoffs enjoy this symmetry, a state-
symmetric equilibrium exists.

In any equilibrium, an agent v selects av = 1 if P(θ = 1 | Iv) > 1
2 , i.e., if conditionally

on the information, the state θ = 1 is more likely. Similarly, av = 0 if P(θ = 1 | Iv) < 1
2 . It

may look as if equilibria can only differ in tie-breaking; however, it is not the whole truth
since P(θ = 1 | Iv) depends on the equilibrium strategies of other agents, which, in turn, are
optimal replies to the strategies of others, including v. In particular, an equilibrium lacks
the sequential structure since no pair of agents v, u ∈ V such that vu /∈ E know which of
them acted first.

2.2 Learning

The following definition quantifies how well an agent and the a-priori network itself aggregate
information.

Definition 2.1 (Learning quality). For an a-priori network G = (V,E) and an equilibrium
σ, the learning quality of an agent v ∈ V is the probability that this agent takes the correct
action:

lσ(v) = Pσ(av = θ).

The learning quality of the network G is the expected fraction of agents taking the correct
action:

Lσ(G) =
1

|V |
· Eσ

∣∣{v ∈ V : av = θ}
∣∣ =

1

|V |
∑
v∈V

lσ(v).

We say that an agent with lσ(v) close to one learns the state and the network with Lσ(G)
close to one supports learning. The following example shows that networks may fail to
support learning due to the herding phenomenon.

Example 2.1 (Herding spoils learning). Let the a-priori network G be the n-clique Kn, the
complete graph on n vertices. In this case, every agent v observes actions of all those who
came earlier. We consider an equilibrium σ, where in the case of indifference, each agent
follows his signal (one can show that learning quality in other equilibria can only be worse).
If the first two agents take the incorrect action a = 1−θ, then the third agent will ignore his
signal repeating this wrong action since the chance that both his predecessors are wrong is
lower than the chance of him getting the wrong signal, and so on. This phenomenon known
as herding ruins information aggregation. Indeed, with a probability of at least (1− p)2 all
the agents take the incorrect action. Thus Lσ(Kn) ≤ 1−(1−p)2; i.e., the learning quality is
bounded away from 1 even for large cliques. By symmetry, lσ(v) = Lσ(Kn) for all agents v.



Bahar et al. [2020] consider a similar model of learning with random arrivals and ask
whether there exist networks that support learning. They provide an affirmative answer to
this question by identifying a family of celebrity graphs, the only known family of networks
that supports learning with random arrivals. We will construct another such family in
Section 4.

Example 2.2 (Celebrity graphs support learning). Consider a two-tier society, where a
large set of k “commoners” observe a large but smaller set of m “celebrities,” 1� m� k.
The corresponding a-priori network is a complete bipartite graph Bk,m; see Figure 1.

On average, a set of k
m+1 � 1 commoners arrive before the first celebrity. These com-

moners take their actions in isolation, i.e., without observing anybody else, and so these
actions are dictated solely by their signals. Such isolated commoners play the role of “guinea
pigs” [Sgroi, 2002]. Since k

m+1 � 1, the law of large numbers suggests that the first celebrity
aggregates information from these i.i.d. inputs and thereby takes the correct action with
high probability. Subsequent commoners observe this celebrity and, hence, are also likely
to make the right choice. This correct action propagates and so we conclude that the whole
population except for a negligible fraction of 1

m+1 commoners takes the right action with
high probability. This informal reasoning suggests that for any δ > 0 we can find k and
m such that the learning quality of each agent and of the network itself is at least 1 − δ.
The formal argument in Bahar et al. [2020] is tricky since a celebrity must “guess” which
observed commoners are isolated and which are probably not.

Although the celebrity graphs support learning they are not robust to elimination of
small groups of agents. Indeed, the elimination of all the celebrities would render the
commoners completely isolated and so learning would not obtain. We also note that the
fact that celebrity graphs support learning hinges on the assumption of a random arrival
order. Indeed, if all commoners arrive before celebrities, then all of them make a decision
in isolation and learning fails.

?

m celebrities

k commoners

Figure 1: The celebrity graph. When the first celebrity arrives, he typically observes k
m+1 �

1 commoners who made their decisions in isolation. These decisions match the signals and,
hence, the celebrity learns from a number of independent sources. As a result, he takes a
well-informed action, and then this action propagates.

2.3 Notation

Throughout the paper we use the following notation. For a real number x, the floor and the
ceiling are denoted by bxc and dxe, respectively. The former is the biggest integer n such
that n ≤ x and the latter is the smallest integer n ≥ x. The base of the natural logarithm
is denoted by e.



Consider a network G = (V,E) that is possibly directed. By degG(v) we denote the total
degree of a vertex v, i.e., the number of u ∈ V such that at least one of the edges, uv or vu, is
in E. The network is D-regular if degG(v) = D for all v ∈ V . A map f : V → V is called an
automorphism of G if f is a bijection and it preserves edges, i.e., uv ∈ E ⇔ f(u)f(v) ∈ E.

A network G′ = (V ′, E′) is a subnetwork of G (denoted by G′ ⊂ G) if V ′ ⊂ V and
E′ ⊂ E∩(V ′×V ′). The subnetwork is induced by the set of vertices V ′ if E′ = E∩(V ′×V ′);
such a subnetwork is denoted by GV

′
. We denote by G\v = GV \{v} the induced subnetwork

obtained by deletion of a given vertex v.
A path of length k in G is a sequence of vertices (u0, u1, . . . , uk) such that all the edges

uiui+1, i = 0, 1, . . . , k−1 belong to E. The distance dG(v, v′) between two vertices v, v′ ∈ V
is the minimal k such that there is a path of length k with u0 = v and uk = v′; if there is
no such k, the distance is infinite, dG(v, v′) = +∞. The r-neighborhood Br,G(v) of a vertex
v is the set of all vertices v′ such that dG(v, v′) ≤ r; the number r is the radius of the
neighborhood. Abusing the notation, we will not distinguish between the r-neighborhood
Br,G(v) (the set of vertices) and the subnetwork of G induced by this set of vertices. A
cycle of length k is a path with u0 = uk such that all vertices u0, u1, . . . , uk−1 are distinct
(sometimes cycles with no repetitions are called simple). The girth gG is the length of the
shortest cycle.

When referring to the a-priori network G, we will omit the dependence of all the objects
on G and write simply deg(v), d(v, v′), Br(v), and g.

3 Learning and the local network structure

In this section we study the connection between the local structure of the a-priori network
in the neighborhood of an agent and his learning quality.

In the case of a fixed arrival order, a major impediment for learning is that an agent
can affect the decision of those who are far from him in the social network, which results in
the possibility of large information cascades involving most of the network. Surprisingly, in
our model with random arrival order, the decisions have a local nature: in Section 3.1, we
show that if a pair of agents are far from each other in the a-priori network G, with high
probability the action of one cannot affect the other. This observation suggests that the
learning quality of an agent must be determined by the local structure of his neighborhood
in the a-priori network G, not by the global topology of G.

The local nature of decisions motivates one to look for a condition on the topology of
an agent’s neighborhood that ensures that this particular agent learns the state with high
probability no matter what the global topology of the network is and the learning qualities
of other agents are. We identify such a local learning requirement in Section 3.2.

3.1 Local nature of decisions

For a pair of agents v and u, the action of v may be affected by the choice made by u if
v observes u, or if v observes somebody who observes u, or if v observes somebody who
observes somebody who observes u, and so on.

Given the collection of arrival times T , the agent v can be influenced by u only if there
is a path (v = u0, u1, u2, . . . , uk = u) in the a-priori network G such that tui > tui+1

for all i (i.e., if u is reachable from v by a path in the realized network GT ). We define
the realized subnetwork Gv,T of an agent v to be the induced subnetwork of the realized
network GT composed of v and all such u reachable from v in GT . Whether v learns the
state is determined solely by his realized subnetwork: conditional on Gv,T , the action of v
is independent of the signals and arrival times of all the agents outside Gv,T .



Recall that Br(v) denotes the r-neighborhood of v in the a-priori network G and deg(v)
denotes the degree of v in G. The following lemma shows that the realized subnetwork of v
is contained in the neighborhood of v with high probability provided that the radius of the
neighborhood is big enough compared to the maximal degree.

Lemma 3.1 (Local nature of decisions). The probability that the realized subnetwork of v
is contained in the (r − 1)-neighborhood of v enjoys the following lower bound:

P
(
Gv,T ⊂ Br−1(v)

)
≥ 1− 2 ·

(
e ·maxu∈Br(v) deg(u)

r

)r
. (3.1)

An extended version of the lemma is proved in Appendix C. Here we present a sketch.

Proof sketch for Lemma 3.1. The realized subnetwork of v belongs to the (r − 1)-
neighborhood if and only if no path (v = u0, u1, u2, . . . , uk = u) connecting v and the
sphere Br(v) \ Br−1(v) in the a-priori network G is presented in the realized network GT .
Note that a particular path of this form exists in GT if and only if uk arrives first, then
uk−1, then uk−2, and so on. Hence, each path of length k in G remains in the realized
network with probability 1

(k+1)! . Each path has length k ≥ r and the total number of paths

of length k connecting v and the sphere in G is bounded by
(

maxu∈Br(v) deg(v)
)k

. The
union bound accompanied by manipulations with factorials similar to the Stirling formula
lead to the desired inequality (3.1).

3.2 Local learning requirement

The previous subsection suggests that whether or not an agent v learns the state must be
determined by the local structure of the a-priori network G around him. Here we formulate
a local learning requirement on the topology of v’s neighborhood that ensures high learning
quality for v no matter how well other agents perform and what the global structure of
the network is. In subsequent sections we demonstrate the usefulness of this condition by
constructing networks with exceptional learning and robustness properties.

The essence of the requirement is that v must bridge many social circles. To define the
requirement formally, we recall the following notation: G \ v is the network obtained from
the a-priori network G by elimination of an agent v together with all adjacent edges and
Br,G\v(u) is the r-neighborhood of an agent u in G \ v.

Definition 3.1 (Local learning requirement). An agent v satisfies the local learning re-
quirement with parameters (d, r,D) if among his friends we can find d such that each of
them has degree at least d, their r-neighborhoods in G \ v are disjoint, and the degrees in
all these neighborhoods are upper-bounded by D.

Let u1, . . . ud be the friends from the definition. Then their neighborhoods Br,G\v(ui)
can be interpreted as disjoint social circles bridged by v. The intuition why the definition
refers to the network G \ v relies on the fact that the decision of v depends only on those
agents that arrive before him and, hence, do not observe v as if he was absent from the
network.

Figure 2 illustrates the definition. The following theorem is our main technical result.

Theorem 3.1. If an agent v satisfies the local learning requirement with parameters
(d, r,D), then the learning quality of v enjoys the following lower bound:

lσ(v) ≥ 1− δ(p, d, r,D), (3.2)



Figure 2: Agent v satisfies the local learning requirement with parameters d = 3, r = 2, and
D = 7. He has 3 friends with degree at least 3 (dark gray nodes), their 2-neighborhoods in
the graph G \ v are disjoint (shaded areas), and the maximal degree in these neighborhoods
is 7 (the agent at the bottom has 5 friends within the neighborhood and 2 outside).

where

δ(p, d, r,D) = ψ +
18√

d− 1 (2p− 1− ψ)
, ψ = 2d ·

(
e ·D
r

)r
. (3.3)

The bound holds for any state-symmetric equilibrium σ provided that the probability of the
correct signal satisfies p ≥ 1+ψ

2 ; i.e., the denominator in (3.3) is positive.5

Corollary 3.1. The theorem shows that the agent learns the state whenever δ(p, d, r,D) is
close to zero. We note that δ(p, d, r,D) goes to zero for fixed p > 1

2 when all the elements
of the triplet (d, r,D) go to infinity such that lim inf r

D > e.

The intuition behind Theorem 3.1 is simple. Let u1, . . . , ud be the friends of v from
Definition 3.1. By the local nature of decisions (Lemma 3.1), the realized subnetwork of
each ui, who arrives before v, is likely to be contained within his social circle Br,G\v(ui)
provided that r is large enough compared to e · D. Hence, the realized subnetworks are
disjoint, which ensures no herding among (ui)i=1,...,d. As a result, v learns the state by
observing a large sample of d independent sources of information. We see that there is a
delicate trade-off: the degrees have to be big enough to guarantee a big sample but not
too big in order to avoid a confounding that may be caused by intersection of the realized
subnetworks.

The formalization of the above intuition faces some obstacles: the independence is only
conditional and the conditioning is on a family of events that do not belong to the infor-
mation partition6 of any of the agents; hence, checking that the independent sources are
informative requires the approximation of the condition by elements of information parti-
tions; we are able to carry out this approximation only for high-degree friends of v since
their partitions are finer (hence, the condition deg(ui) ≥ d).

Here we present a sketch of the proof; all the details can be found in Appendix D.

5The condition of state-symmetry can be dropped at the cost of getting (4p− 3−ψ) in the denominator
of (3.3) instead of (2p − 1 − ψ) and of imposing the stricter condition on p to ensure the positivity of the
new denominator (see the discussion on the technical assumptions in Appendix A).

6The information partition of an agent v is the collection of all events such that the agent knows if these
events have occurred. Each such event is given by a certain list of realizations of agent’s signal sv , the set
of friends Fv,T arriving earlier, and their actions (au)u∈Fv,T .



Sketch of the proof of Theorem 3.1. Denote by F dv,T the subset of those friends u1, . . . , ud
from Definition 3.1 who arrive earlier than v. Consider the following deviation a′v from an
equilibrium strategy av of v. He repeats the action played by the majority of F dv,T . In
equilibrium, the agent cannot benefit from this deviation and, hence, lσ(v) ≥ P(a′v = θ).

The probability of a mistake for a′v can be bounded using the Hoeffding inequality.7 This
requires two ingredients: independence of the actions au for u ∈ F dv,T and a lower bound on
the probability of a mistake for au.

Unfortunately, the requirement of independent actions is not satisfied. However, the
actions can be made independent by conditioning on a certain collection of events. This
should still be enough to drive the result provided that the probability of this collection
is close to one. Let Wv be the event that the realized subnetwork of each ui who arrived
before v is contained in his social circle Br,G\v(ui). Since these social circles are disjoint,
the realized subnetworks do not intersect and thus each ui aggregates the information from
disjoint families of sources conditional on Wv. The local nature of decisions (Lemma 3.1)
implies that the probability of Wv is close to one.

Naively, one could argue that conditional on Wv the actions taken by the friends of v are
independent. However, this argument is wrong. There are other sources of dependence. For
example, the fact that we are interested in agents who arrive before v creates dependence
between their actions even if their realized subnetworks are disjoint. To see this consider
the case where v arrives early. This implies that all the friends he observes are also early
arrivals and, hence, are likely to have smaller realized subnetworks compared to the case
where v arrives late; in particular, the earlier v arrives, the more mistakes the observed
friends make, thus creating dependence between their decisions.

To eliminate all the sources of dependence, we end up conditioning on the arrival time
of v, the set F dv,T , the realized state, and the event Wv.

In order to apply the Hoeffding inequality, it remains to show that the conditional
probability of a mistake for au is bounded away from 1/2 for u ∈ F dv,T , i.e., that the
independent sources observed by v are informative. We use the following idea. For any
event A from the information partition of u, we have P(au 6= θ | A) ≤ 1 − p because
otherwise u is better off following his signal whenever A occurs; additional conditioning
on the realized state does not change the bound because we assume a state-symmetric
equilibrium. Unfortunately, the family of events on which we condition does not belong
to u’s information partition. We overcome this difficulty by approximating the condition
to elements of the information partition and showing that the conditional probability of a

mistake is at most 1
1−ψ

(
1− p+ 3

tv·
√

deg(u)−1

)
. The bound gets worse for low-degree agents

since their information partition is not fine enough for a good approximation. This is why
the deviation a′v of agent v takes into account high-degree friends only.

After these preparations, Theorem 3.1 becomes a corollary of the Hoeffding inequality.

4 Implications: Symmetric networks that support
learning

Here we demonstrate that there are a-priori networks where each agent satisfies the local
learning requirement from the previous section and, hence, all agents achieve high learning
quality as does the network itself. Moreover, there are such networks with the additional

7The Hoeffding inequality [Hoeffding, 1994] states that P
(

1
N

∑N
n=1 ξi ≤ E

(
1
N

∑N
n=1 ξi

)
− x
)
≤

exp
(
−2x2N

)
for independent random variables 0 ≤ ξi ≤ 1 and any x ≥ 0.



property that any two agents play the same role. Recall that an automorphism of a network
G = (V,E) is a bijection V → V that preserve edges, i.e., uv ∈ E ⇔ f(u)f(v) ∈ E.

Definition 4.1 (Symmetric networks). A network G = (V,E) is symmetric if for any pair
v, v′ ∈ V there exists an automorphism f of G such that8 f(v) = v′.

Symmetric networks represent totally egalitarian societies. The celebrity graphs from
Example 2.2 may lead to a conjecture that egalitarian societies cannot aggregate information
since one needs a designated minority of agents (like celebrities) in the a-priori network for
learning to propagate. The main result of this section states that this intuition is false and
symmetric networks can support learning. In Section 5, we will strengthen this result by
showing robustness of learning.

Theorem 4.1. For any p0 >
1
2 and any δ > 0 there exists a symmetric network G = (V,E)

such that the learning quality lσ(v) ≥ 1 − δ for each agent v ∈ V , any probability of the
correct signal p > p0, and any state-symmetric equilibrium9 σ.

In order to prove Theorem 4.1, we use classic results from the theory of expanders to
construct networks, where the local learning requirement is satisfied for each agent.

We will need the following lemma, which simplifies checking the local learning require-
ment. Recall that the girth g of a network G is the length of the shortest cycle; the girth of
a tree is infinite, g = +∞.

Lemma 4.1. Consider a network G of girth g and the maximal degree D. In such a network,

any agent v satisfies the local learning requirement with parameters
(
d,
⌊
g−3
2

⌋
, D
)

, where d

is a number such that v has at least d friends of degree d or more.

Proof. Let u1, u2, . . . , ud be v’s friends with degrees deg(ui) ≥ d. Recall that Br,G\v(u)
denotes the r-neighborhood of u in the network, where the agent v was eliminated. We aim
to select r such that Br,G\v(ui) and Br,G\v(uj) are disjoint for i 6= j. If Br,G\v(ui) and
Br,G\v(uj) intersect, this creates a cycle of length 2r + 2 (or shorter): start from v, then
go to ui, then to an agent in the intersection by the shortest path, then to uj again by the
shortest path, and back to v. Hence, the intersection is possible only if 2r + 2 ≥ g. Thus

choosing r such that 2r+2 < g, we ensure that the r-neighborhoods are disjoint; r =
⌊
g−3
2

⌋
is the maximal such r. We conclude that v satisfies the local learning requirement with

parameters
(
d,
⌊
g−3
2

⌋
, D
)

.

Recall that a network is called D-regular if all vertices have degree D. Thanks to
Lemma 4.1 and Theorem 3.1, proving Theorem 4.1 reduces to the question of the existence
of symmetric D-regular networks with arbitrary high degree and girth. The existence of
such networks is demonstrated in the theory of expanders; see Appendix B. The following
is the corollary of a theorem by Lubotzky et al. [1988] (Theorem B.1 in Appendix B) that
describes a family of so-called Ramanujan expanders.

Corollary 4.1 (of Theorem B.1 by Lubotzky et al. [1988]). There is a sequence Dk → ∞
such that for any g0 and k, there exists a symmetric Dk-regular network G = (V,E) such
that the girth g ≥ g0 and |λ2| ≤ 2

√
Dk − 1, where λ2 is the second-largest eigenvalue of the

adjacency matrix.10

8In mathematical literature, such graphs are usually called transitive since the group of automorphisms
acts transitively on them; i.e., for any pair of vertices there is an automorphism mapping one to the other.

9The theorem extends to non-state-symmetric equilibria at the cost of assuming that signals are infor-
mative enough, namely, p0 >

3
4

. This and other extensions are discussed in Section A.2.
10We do not use the bound on λ2 in Section 4; in particular, any D-regular network with large D and

girth would suffice for the proof of Theorem 4.1. The bound on |λ2| will be critical for the discussion on
robust learning in Section 5.



After all these preliminaries, proving Theorem 4.1 becomes easy.

Proof of Theorem 4.1. For a D-regular network of girth g, Theorem 3.1 combined with

Lemma 4.1 implies a lower bound on the learning quality lσ(v) ≥ 1− δ
(
p,D,

⌊
g−3
2

⌋
, D
)

for

any agent v and any state-symmetric equilibrium σ.
Corollary 4.1 allows us to pick a symmetric D-regular network G with arbitrary

high degree D and arbitrary high girth/degree ratio g
D , while Corollary 3.1 implies that

δ
(
p,D,

⌊
g−3
2

⌋
, D
)

tends to zero if both the girth g and the degree D tend to infinity and

the girth goes to infinity faster: g
D → ∞. Hence, for any given δ and p0, we can choose

G to be a symmetric D-regular network with D and g such that δ
(
p0, D,

⌊
g−3
2

⌋
, D
)
≤ δ.

Since, δ is decreasing in p, we obtain δ
(
p,D,

⌊
g−3
2

⌋
, D
)
≤ δ

(
p0, D,

⌊
g−3
2

⌋
, D
)
≤ δ for any

p ≥ p0. Thus the network G satisfies the statement of Theorem 4.1.

5 Implications: Robust learning

Here we discuss the learning quality of a network when some of the agents are uninterested
or unavailable and, hence, do not participate in the learning process. The celebrity graphs
(Example 2.2) demonstrate that high learning quality can be very fragile: if celebrities
(a negligible minority of the population) do not show up, this leaves the network totally
disconnected, and information aggregation breaks down. We show that there are networks
that support robust learning, i.e., are free of such a flaw.

In Section 4, we saw that symmetric sparse networks that have high degrees but not
short cycles support learning. In such networks, all agents play the same role, which makes
it natural to expect that no small group of agents is critical in these networks; in particular,
adversarial elimination of a small group cannot dramatically spoil the learning outcome.
Here we obtain the surprising, much stronger result demonstrating that there are symmetric
networks where learning is robust to the adversarial elimination of any group, even a large
one.

Theorem 5.1. For any p0 >
1
2 and any δ > 0 there exists a symmetric network G = (V,E)

such that for any α ∈ (0, 1] and any subset V ′ ⊂ V with
⌈
α · |V |

⌉
agents, the learning quality

in the induced subnetwork GV
′

is at least 1 − δ
α3 for any state-symmetric equilibrium and

any probability of the wrong signal11 p > p0.

Robustness of learning turns out to be related to spectral properties of the network. This
is captured by Lemma 5.1 below, and Theorem 5.1 easily follows from this lemma combined
with known results on expander graphs. Consider a D-regular network and denote by
|λ1| ≥ |λ2| ≥ ... ≥ |λ|V || the eigenvalues of its adjacency matrix ordered by their absolute
values. Expanders are networks with small |λ2| relative to |λ1|; see Appendix B.

The next lemma bounds by how much the learning quality can decrease if, instead of
the original D-regular network, we consider its arbitrary subnetwork with dα · |V |e agents.

Lemma 5.1. Let G = (V,E) be a D-regular network of girth g with the second-largest
eigenvalue λ2. Then for any α ∈ (0, 1] and any subset V ′ ⊂ V of size |V ′| =

⌈
α · |V |

⌉
, the

learning quality in the induced subnetwork GV
′

satisfies

Lσ′
(
GV

′
)
≥ 1−

(
2√
α

+
(1− α)|λ2|2

α3 ·D 3
2

)
· δ
(
p,D,

⌊g − 3

2

⌋
, D

)
(5.1)

11Similarly to Sections 3 and 4, the result extends to non-state-symmetric equilibria under the requirement
p0 >

3
4

.



for any state-symmetric equilibrium σ′. Here δ(p, d, r,D) is given by formula (3.3).

Lemma 5.1 is proved in Appendix E.
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A Discussion

In Section A.1, we offer two alternative ways to perceive the results on learning in symmetric
networks (Section 4) and those on robust learning (Section 5). First, we present the network-
designer perspective and then explain the connection to the classic sociological theory of
the two-step information flow. Section A.2 discusses our technical assumptions and how to
relax them.

A.1 Alternative interpretations of results

Network-designer perspective Consider a designer of a social network who wants to
ensure social learning. Sgroi [2002] constructs a network that supports learning for a par-
ticular arrival order, and Bahar et al. [2020] propose the celebrity graphs as networks that
support learning and are robust to the arrival order of agents. However, the celebrity graphs
only support learning if all agents actually participate and make a decision. In other words,
if a minority of agents do not care about the decision at hand and are consequently inactive,
then learning may fail. By contrast, our expander-based networks from Theorem 5.1 give
a social structure that supports learning and is robust both to the arrival order and to the
actual subset of active agents.

In practice, social networks are not designed from scratch and the social connections can
be considered as given. However, social networks on the Internet are usually combined with
a recommendation system that decides which news to show to a particular user. In so doing,
it can intervene in the structure of social connections by concealing some friends’ news and
possibly showing some news of non-friends. Our local learning requirement (Theorem 3.1)
combined with Lemma 4.1 suggests a possible recipe for improving overall learning quality:
eliminating short cycles while keeping high the number of information sources an agent is
subject to. This proposal, however, requires additional empirical evaluation.

The paradigm of the two-step information flow The classic sociological theory of the
“two-step information flow” by Katz and Lazarsfeld [1955] conveys the idea that learning is
always facilitated by a small group of opinion leaders, i.e., influential agents predetermined
by the network structure. The original version of the theory, formulated during the golden



era of TV networks, argues that although such networks were responsible for sparking new
ideas and introducing new products, this content was consumed by most people in an indirect
manner. In other words, people’s actions, whether in the form of adopting a new product or
voting for a certain political candidate, were not so much a result of what they heard from
the TV networks but rather what they heard from influential agents who, for their part,
had consumed such content directly.

Let us call a group of agents influential if the network supports learning whenever this
group is present and fails to aggregate the information when it is not. An example of an
influential minority is the group of celebrities in the celebrity graphs of Example 2.2.

The theory of the two-step information flow suggests that networks supporting learning
contain an influential minority, which plays the role of intermediary in the information
spread over the network. The results of Sections 4 and 5 challenge this thesis (in our stylized
theoretical model): high learning quality can be achieved in a-priori symmetric networks
and, hence, no group of agents is predetermined by the network structure; moreover, there
are symmetric networks where no minority (or even majority) of agents is influential.

A.2 Getting rid of technical assumptions

Some of our modeling assumptions were made to simplify the exposition and can be easily
relaxed.

General distributions of arrival times We assumed that agents’ arrival times are
i.i.d. and, in particular, uniformly distributed on the unit interval. However, any non-
atomic distribution leads to an equivalent model (equivalence is obtained by a monotone
reparameterization), as long as the i.i.d. assumption is maintained. An important robustness
result would be to extend our conclusions to some approximate notion of i.i.d. as some local
dependence among agents is a realistic assumption.

Non-binary signals Our results hold for any non-binary signaling device as long as
signals are informative and symmetry is maintained. By informativeness we mean that for
a positive probability set of signals s, the posteriors P(θ = 1 | s) belong to the union of
intervals [0, 1− p] ∪ [p, 1] (the probability of this set of signals will enter into the bound on
the learning quality). By “symmetry” we mean that the distribution posteriors P(θ = 1 | s)
is symmetric around 1

2 . Note that signals of unbounded precision are also allowed.

Heterogeneous agents Agents can be heterogeneous, i.e., the signaling device can be
agent-specific, and so each agent v has his own signal precision pv. In this case, all the
results hold with p = minv∈V pv.

Non-symmetric equilibria The symmetry assumption on equilibria and signals can be
relaxed. However, for asymmetric equilibria, Theorems 3.1, 4.1, and 5.1 require the probabil-
ity p of the correct signal to be above 3

4 (instead of 1
2 ). The reason for this is inequality (D.1),

where for asymmetric equilibria we get 2(1− p) in the parentheses.

General states Extension to non-equiprobable states is straightforward. Note, however,
that this breaks the state symmetry of equilibria and, hence, we get 2(1 − p) in inequal-
ity (D.1) (see the comment above). Extension to a non-binary state does not lead to any
additional technical difficulties.



More informed agents The results of Sections 3, 4, and 5 hold if in addition to observing
the actions of his friends, each agent v gets some information about his realized subnetwork
Gv,T , e.g., a possibly noisy signal about the set of agents, their arrival times, actions, and
even their private signals.

Less informed agents All our results can be easily adapted to the case, where observation
of friends’ actions is noisy. Namely, each agent v, instead of observing the action au of his
friend u ∈ Fv,T , observes either au with probability 1− ε or the flipped action 1− au with
probability ε. One can consider two variants of this model: the action of u is flipped for
all his neighbors at the same time but independently across u ∈ V , or the action is flipped
independently for each pair (v, u).

Both variants require the same straightforward modifications in Sections 3, 4, and 5.
They originate from a minor adjustment in the proof of Theorem 3.1: when applying the
Hoeffding inequality in formula (D.3), instead of the upper bound on P(au 6= θ), we will
need an upper bound on the probability that the action observed by v does not match the
state. The latter probability is equal to (1 − ε)P(au 6= θ) + ε(1 − P(au 6= θ)) and does not
exceed (1− ε)P(au 6= θ) + ε, where P(au 6= θ) can be bounded by Lemma D.3 as before.

B Expanders

There are several equivalent definitions of expanders; see Hoory et al. [2006]. The “spectral”
definition is the most convenient for our needs. Consider a D-regular (deg(v) = D for all
vertices) graph G = (V,E) and denote by (λk)k=1,...,|V | eigenvalues of its adjacency matrix
ordered by absolute values |λ1| ≥ |λ2| ≥ |λ3|.... ≥ |λ|V ||. The eigenvalue λ1 = D corresponds
to the eigenvector representing the uniform distribution over vertices: the smaller the second
eigenvalue |λ2| is, the faster the distribution of a random walk started at some vertex
converges to the uniform distribution; see Proposition 1.6. in Lubotzky [2012]. A graph G
is an expander if |λ2| is small relative to |λ1|; i.e., a random walk on G forgets the starting
point fast.

Theorem B.1 (Lubotzky et al. [1988]). For any N and D such that D − 1 is a prime
number and D − 2 is divisible by 4, there exists a D-regular symmetric graph G = (V,E)
with at least N vertices, |λ2| ≤ 2

√
D − 1, and girth g ≥ 2

3 logD−1 |V |.

Graphs with |λ2| ≤ 2
√
D − 1 are called Ramanujan graphs; by the Alon–Boppana theo-

rem (see Theorem 5.3 in Hoory et al. [2006]), this value of λ2 is essentially the best possible.
It is quite intuitive that the best expanders cannot have short cycles, which lead to recur-
rences in the random walk and, hence, slow down the expansion of the random walk over
the graph.

The proof of Theorem B.1 is quite technical and relies on group theory. Lubotzky
et al. [1988] and their successors (e.g., Morgenstern [1994], who relaxed the condition of
divisibility by 4, and Dahan [2014], who extended the result to arbitrary D ≥ 11) construct
G as a Cayley graph of a certain group.12 While the symmetry of the constructed graph
is not mentioned explicitly in these papers, it comes for free because any Cayley graph is
symmetric; see Claim 11.4 in [Hoory et al., 2006].13

In addition to large girth, we need another property of expanders demonstrating their
similarity to random graphs in the Erdos–Renyi model with the probability p of an edge

12Given a group G with a group operation ◦ and a subset S ⊂ G, its Cayley graph is defined in the
following way: the set of vertices V coincides with G and vu ∈ E if u = v ◦ s for some s ∈ S.

13Indeed, for any x ∈ G the map f(v) : v → x ◦ v is an automorphism of the Cayley graph. For any pair
of vertices v, v′ ∈ V , we achieve f(v) = v′ by choosing x = v′ ◦ v−1.



between two given vertices equal to D
|V | . For a pair of disjoint subsets V 1, V 2 ⊂ V denote by

E(V 1, V 2) the set of edges with one endpoint in V 1 and another in V 2. In the Erdos–Renyi
model the expected number of such edges is equal to p·|V 1||V 2|. The following result, known
as the mixing lemma, shows that

∣∣E(V 1, V 2)
∣∣ for an expander is close to this number.

Lemma B.1 (Mixing lemma, Alon and Chung [1988]). For any D-regular graph G = (V,E)
and any two disjoint subsets V 1, V 2 ⊂ V the following inequality holds:∣∣∣∣∣∣E(V 1, V 2)

∣∣− D

|V |
· |V 1| · |V 2|

∣∣∣∣ ≤ |λ2|√|V 1||V 2|. (B.1)

C Local nature of decisions

Here we prove Lemma 3.1, which ensures that the realized subnetwork Gv,T of v is likely
to be contained in the neighborhood of v whenever the radius of this neighborhood is large
enough compared to the maximal degree. In fact, we prove a slightly more general statement
with conditioning on v’s arrival time; this is a technical nuance that we will need in the
proof of Theorem 3.1.

Lemma C.1. The probability that the realized subnetwork of v is contained in the (r − 1)-
neighborhood of v, conditional on v’s arrival time tv, enjoys the following lower bound:

P
(
Gv,T ⊂ Br−1(v) | tv

)
≥ 1− 2 ·

(
e ·D
r

)r
, (C.1)

where D = maxu∈Br(v) deg(u).

Proof of Lemma C.1. Without loss of generality we can assume that r > e·D since otherwise
the bound (C.1) trivializes.

The realized subnetwork of v is contained in the (r − 1)-neighborhood if and only if no
path connecting v and the sphere Sr(v) = Br(v) \Br−1(v) in the a-priori network G exists
in the realized network GT . Consider an agent u ∈ Sr(v) and let (v = u0, u1, u2, . . . , uk = u)
be a path connecting v and u in G. The chance that this path is presented in the realized
network GT is bounded by the probability that uk, uk−1, . . . , u1 arrive exactly in this order
(we excluded the agent u0 = v since we condition on his arrival time); this probability is
equal to 1

k! . Each path between v and the sphere Sr(v) has length k ≥ r. The total number
of different paths of length k starting from v is at most Dk since there are at most D options
for each of k steps.

Therefore, by the union bound, the chance that there is a path between v and Sr(v) in
the realized network GT is at most

∞∑
k=r

Dk

k!
.

Since Dk

k! ≤
Dr

r! ·
(
D
r

)k−r
, we can bound the sum by the geometric progression

∞∑
k=r

Dk

k!
≤ Dr

r!

∞∑
l=0

(
D

r

)l
=
Dr

r!
· 1

1− D
r

≤ 1

1− 1
e

· D
r

r!
≤ 2 · D

r

r!
,

where the last two inequalities follow from the assumption r ≥ e · D and the fact that
1

1− 1
e

≤ 2. Using the inequality n! ≥
(
n
e

)n
, we can get rid of the factorial in the denominator:

2 ·
(
D
)r
r!
≤ 2 ·

(
e ·D
r

)r
.



Hence, with probability at least 1 − 2 ·
(
e·D
r

)r
there are no paths between v and Sr(v) in

GT or, equivalently, Gv,T ⊂ Br−1(v).

D Proof of Theorem 3.1

Denote by F dv = (ui)i=1,...,d the collection of v’s friends from the local learning requirement
and by F dv,T = {u ∈ F dv : tu ≤ tv} those of them who arrive earlier than v.

Consider the following deviation a′v of v from his equilibrium action av. The agent
decides to rely on his friends F dv,T : if the majority of them played action a ∈ {0, 1}, the
agent v repeats this action; in the case of a tie or v being isolated, av = sv, i.e., v follows
his signal. In equilibrium, no deviation is profitable and, hence, P(av = θ) ≥ P(a′v = θ).
The probability of a′v being a mistake can be estimated using the Hoeffding inequality (see
Footnote 7).

To apply the Hoeffding inequality, we need independence of actions (au)u∈Fdv,T and an

upper bound on the probability that au 6= θ. To make the actions independent, we need
conditioning on the appropriate family of events. The following lemmas describe the desired
family of events and establish the bound.

Recall that Br,G\v(u) denotes the r-neighborhood of u in the network obtained from G

by eliminating v. Denote by Wv the event that the realized subnetwork of each u ∈ F dv,T is
contained in Br−1,G\v(u), i.e., Wv = ∩u∈Fdv,T {Gu,T ⊂ Br−1,G\v(u)}. Note that, given Wv,

the realized subnetworks of u ∈ F dv,T are disjoint.

Lemma D.1. Fix θ0 ∈ {0, 1}, t ∈ [0, 1], and a subset of friends F ⊂ F dv of agent v. The
actions (au)u∈F are independent conditional on θ = θ0, the arrival time tv = t of v, the set
of friends who arrived earlier F dv,T = F , and Wv.

The second lemma ensures that Wv is a high-probability event. It is a corollary of the
local nature of decisions property (Lemma C.1).

Lemma D.2. The probability of Wv conditional on arrival times of v and all his friends
from F dv enjoys the following lower bound:

P
(
Wv | tv, (tz)z∈Fdv

)
≥ 1− ψ, where ψ = 2d ·

(
e ·D
r

)r
.

The third lemma provides an upper bound on the probability of the wrong action.

Lemma D.3. For any subset F of F dv , an agent u ∈ F , and any state-symmetric equilib-
rium, the conditional probability of the wrong action satisfies the following inequality:

P(au 6= θ | θ = θ0, tv = t, F dv,T = F, Wv) ≤
1

1− ψ

(
1− p+

3

t ·
√

deg(u)− 1

)
, (D.1)

where ψ is from Lemma D.2.

The lemmas are proved below. With their help, we complete the proof of Theorem 3.1.
By the Hoeffding inequality and Lemmas D.1 and D.3, the probability of the wrong action



a′v for the high state (θ = 1) is bounded as follows:

P
(
a′v 6= θ | θ = 1, tv, Fv,T , Wv

)
≤ P

 ∑
u∈Fdv,T

au ≤
∣∣F dv,T ∣∣

2

∣∣∣ θ = 1, tv, Fv,T , Wv

 ≤
(D.2)

≤ exp

(
−2

(
1

2
− 1

1− ψ

(
1− p+

3

tv ·
√
d− 1

))2

·
∣∣F dv,T ∣∣

)
=

(D.3)

= exp

−1

2

(
2p− 1− ψ − 6

tv·
√
d−1

)2
(1− ψ)2

·
∣∣F dv,T ∣∣

 , (D.4)

where we used that deg(u) ≥ d for u ∈ F dv . The bound (D.4) holds only if tv is not too small:

to apply the Hoeffding inequality, the expression in the parentheses,
(

2p− 1− ψ − 6
t·
√
d−1

)
,

must be non-negative (see the requirement x ≥ 0 in Footnote 7). We will use the bound (D.4)
only for tv such that this expression is at least 2p−1−ψ

2 or equivalently tv ≥ 12√
d−1(2p−1−ψ) .

For small tv, we roughly bound the probability by 1 and get the following inequality valid
for all tv:

P
(
a′v 6= θ | θ = 1, tv, Fv,T , Wv

)
≤ 1{

tv<
12√

d−1(2p−1−ψ)

} + exp

(
−1

8

(2p− 1− ψ)
2

(1− ψ)2
·
∣∣F dv,T ∣∣

)
,

(D.5)
where 1A denotes the indicator of an event A.

Let us dispense with conditioning on θ = 1, tv, Fv,T , and Wv. For θ = 0, one similarly
derives the same bound (D.5) and, hence, it holds unconditionally for θ. Since P(·) ≤
P( · | Wv) + (1 − P(Wv)), we dispense with conditioning on Wv at the cost of increasing
the upper bound by ψ. It remains to average the bound over F dv,T and tv. The size |F dv,T |
is uniformly distributed over

{
0, 1, . . . , d

}
because it is the length of the prefix of v in a

random permutation of F dv ∪ {v}. Thus, averaging the second summand in (D.5) results in
the geometric progression of length d. Taking into account that tv is uniformly distributed
on [0, 1] and bounding the geometric progression of length d by the infinite one, we get

P(a′v 6= θ) ≤ ψ +
12√

d− 1(2p− 1− ψ)
+

1

d+ 1
· 1

1− exp
(
− 1

8
(2p−1−ψ)2

(1−ψ)2

) . (D.6)

This upper bound can be simplified if we note that 1−exp(−x) ≥ x · 1−exp(−a)a for x ∈ [0, a].

Since 2p−1−ψ
1−ψ ≤ 1, we obtain

1

1− exp
(
− 1

8
(2p−1−ψ)2

(1−ψ)2

) ≤ 8(1− ψ)2(
1− exp

(
− 1

8

))
(2p− 1− ψ)2

≤ 72

(2p− 1− ψ)2
,

where in the second inequality we bounded (1 − ψ) by 1 and used that 1 − exp
(
− 1

8

)
≥ 1

9 .
Denoting by b and c the second and the third summand in (D.6), respectively, we see that
c ≤ 1

2b
2. For b below 1, we have b2 ≤ b, while for b ≥ 1 the bound (D.6) becomes trivial

anyway. Therefore,

P(a′v 6= θ) ≤ ψ +
18√

d− 1(2p− 1− ψ)
.



Taking into account that P(av = θ) ≥ P(a′v = θ) = 1 − P(a′v 6= θ) and substituting the
expression for ψ from Lemma D.2, we complete the proof of Theorem 3.1.

Proof of Lemma D.1: To ensure conditional independence, we make use of the following
property of the realized subnetwork Gu,T = (Vu,T , Eu,T ) of an agent u ∈ V . Conditional on
Gu,T , his action au is independent of (sz, az)z∈V \Vu,T and (tz)z∈V . In other words, u’s action
is solely determined by his realized subnetwork and signals of agents from this subnetwork.
This property has an important consequence. Consider a group of agents U ⊂ V and an
event determined by the collection of arrival times

{
T = (tz)z∈V ∈ T

}
for some T ⊂ [0, 1]V .

Then actions (au)u∈U are independent conditional on θ = θ0 and {T ∈ T } provided that all
the realized subnetworks (Gu,T )u∈U are independent disjoint random networks conditional
on {T ∈ T }.

With this general observation, we will demonstrate that actions (au)u∈F are conditionally
independent given θ = θ0, tv = t, F dv,T = F , and Wv. By the definition of Wv, the
realized subnetwork of each ui ∈ F belongs to Br,G\v(ui) and thus the realized subnetworks
(Gu,T )u∈F are disjoint. It remains to check their independence.

Recall that the event Wv has the form ∩u∈Fdv,T {Gu,T ⊂ Br−1,G\v(u)}. We now check

that each event {Gu,T ⊂ Br−1,G\v(u)} is determined by arrival times tz of agents z ∈
Br,G\v(u) ∪ {v}. Indeed, Gu,T belongs to Br−1,G\v(u) if and only if u arrives earlier than
v and for any path (u = z0, z1, z2, . . . , zk) not passing through v and connecting u and the
sphere Sr,G\v(u) = Br,G\v(u) \ Br−1,G\v(u) in the a-priori network G, there is an index i
such that tzi < tzi+1

. Consequently, we can rewrite the event {Gu,T ⊂ Br−1,G\v(u)} as

{(tz)z∈Br,G\v(u) ⊂ Tu(tv)}, where Tu(tv) is a certain subset of [0, 1]Br,G\v(u) depending on
the arrival time of v.

Conditioning on F dv,T = F , tv = t, and Wv becomes equivalent to conditioning on the
following family of events determined by arrival times: {(tz)z∈Br,G\v(u) ⊂ Tu(t)} for each

u ∈ F , tu > t for u ∈ F dv \ F , and tv = t. Arrival times (tz)z∈V are unconditionally
independent, and the condition restricts the values of disjoint subsets (here we use the fact
that Br,G\v(u) are disjoint for u ∈ F dv ). Thus, conditionally on F dv,T = F , tv = t, and Wv,
the families of random variables (tz)z∈Br,G\v(u) are independent across u ∈ F . The realized
subnetwork Gu,T of u is determined by (tz)z∈Br,G\v(u) and, hence, the networks (Gu,T )u∈F
are also conditionally independent, which implies the desired conditional independence of
actions (au)u∈F .

Proof of Lemma D.2: Recall that Wv = ∩u∈Fdv,T {Gu,T ⊂ Br−1,G\v(u)} and consider one of

these events. We pick an agent u ∈ F dv with tu < tv and demonstrate that

P
(
Gu,T ⊂ Br−1,G\v(u) | tv, (tz)z∈Fdv

)
≥ 1− 2 ·

(
e ·D
r

)r
. (D.7)

Note that the event {Gu,T ⊂ Br−1,G\v(u)} is determined by the arrival times tz of
z ∈ Br,G\v(u) ∪ {v} only (see the argument in the proof of Lemma D.1). Hence, by the
independence of arrival times, we can simplify the condition

P
(
Gu,T ⊂ Br−1,G\v(u) | tv, (tz)z∈Fdv

)
= P

(
Gu,T ⊂ Br−1,G\v(u) | tv, tu

)
because

(
F dv \ {u}

)
∩ Br,G\v(u) = ∅. Since we condition on tu, the only information added

by knowing tv is that at the time u arrives, v is absent (recall that we assume that tu < tv).
Thus

P
(
Gu,T ⊂ Br−1,G\v(u) | tv, tu

)
= PG\v

(
Gu,T ⊂ Br−1,G\v(u) | tu

)
,



where PG\v refers to the probability with respect to the arrival process in the network G\v.
By Lemma C.1 applied to u in the network G \ v, we get

PG\v
(
Gu,T ⊂ Br−1,G\v(u) | tu

)
≥ 1− 2 ·

(
e ·D
r

)r
and we deduce (D.7). The desired inequality for the probability of Wv follows from the
union bound and (D.7).

Proof of Lemma D.3: In the proof of Lemma D.1 we observed that, once the realized sub-
network Gu,T of an agent u is given, his action au is determined by the signals of agents
from this subnetwork. We also saw that, conditional on F dv,T = F , tv = t, and Wv, the real-
ized subnetwork of u ∈ F is determined by arrival times (tz)z∈Br,G\v(u), and the condition
is equivalent to {(tz)z∈Br,G\v(u) ⊂ Tu(t)} (we use the notation introduced in that proof).

Therefore, the distribution of Gu,T (and, hence, au) conditional on θ = θ0, F dv,T = F , tv = t,
and Wv is the same no matter what other agents are in F . This observation allows us to
simplify the condition:

P(au 6= θ | θ = θ0, tv = t, F dv,T = F, Wv) = P(au 6= θ | θ = θ0, tu < t, v /∈ Fu,T , Wv).

By the state symmetry of the equilibrium, the latter probability does not change if we
eliminate conditioning on θ = θ0. This probability can be bounded as follows:

P(au 6= θ | tu < t, v /∈ Fu,T , Wv) ≤
P(au 6= θ | tu < t, v /∈ Fu,T )

1− ψ
(D.8)

by the formula of total probability and the lower bound P(Wv | tu, tv) ≥ 1− ψ.
It remains to estimate the numerator. We use the following observation: for any event

A that belongs to the information partition of agent u, the conditional probability of the
wrong action P(au 6= θ | A) is at most 1 − p. Otherwise, the agent can profitably deviate
from his equilibrium strategy by following his signal whenever A occurs.

The event A′ = {tu < t, v /∈ Fu,T } is not known to u since u does not observe his arrival
time. However, we can approximate the event A′ by the event A = {t̂u < t, v /∈ Fu,T },
where t̂u =

|Fu,T |
deg(u)−1 is a proxy for u’s arrival time (for large-degree agents t̂u ≈ tu by the

law of large numbers). Agent u knows when A occurs and, hence, P(au 6= θ | A) ≤ 1 − p.
The conditional probability with respect to A′ can be bounded as follows:

P(au 6= θ | A′) ≤ P(au 6= θ, A) + P(A′ \A)

P(A′)
=

= P(au 6= θ | A) · P(A)

P(A′)
+

P(A′ \A)

P(A′)
≤ (1− p) · P(A)

P(A′)
+

P(A′ \A)

P(A′)
.

Let us estimate all the probabilities in this expression. The probability P(A′) can be com-
puted explicitly as

P(A′) = P(tu < t, tv > tu) =

∫ t

0

dtu

∫ 1

tu

dtv =

∫ t

0

(1− tu) dtu = t− t2

2
.

To estimate P(A), we note that conditionally on tu and tv > tu, the number of friends
observed by u has the binomial distribution with parameters deg(u) − 1 and tu (there are
deg(u) − 1 friends and each of them arrives before time tu independently with probability



tu). By the Hoeffding inequality, we get

P
(
|Fu,T |

deg(u)− 1
≤ t | tu, v /∈ Fu,T

)
≤ exp

(
−2(tu − t)2(deg(u)− 1)

)
for t ≤ tu

P
(
|Fu,T |

deg(u)− 1
≥ t | tu, v /∈ Fu,T

)
≤ exp

(
−2(tu − t)2(deg(u)− 1)

)
for t ≥ tu.

Now we are ready to estimate P(A):

P(A) = P
(
|Fu,T |

deg(u)− 1
≤ t, tv > tu

)
=

∫ 1

0

dtv

∫ tv

0

P
(
|Fu,T |

deg(u)− 1
≤ t | tu, tv > tu

)
dtu ≤

≤
∫ t

0

dtv

∫ tv

0

1 dtu +

∫ 1

t

dtv

∫ t

0

1 dtu +

∫ 1

t

dtv

∫ tv

t

exp
(
−2(tu − t)2(deg(u)− 1)

)
dtu ≤

≤ t2

2
+ t(1− t) +

∫ 0

−∞
exp

(
−2s2(deg(u)− 1)

)
ds = t− t2

2
+

√
π

8(deg(u)− 1)
.

Similarly,

P(A′ \A) = P
(
tu < t, tv > tu,

|Fu,T |
deg(u)− 1

> t

)
=

=

∫ t

0

dtu

(∫ 1

tu

dtv

)
· P
(
|Fu,T |

deg(u)− 1
> t | tu, v /∈ Fu,T

)
≤

≤
∫ 0

−∞
exp

(
−2s2(deg(u)− 1)

)
ds =

√
π

8(deg(u)− 1)
.

Putting all the pieces together, we obtain

P(au 6= θ | A′) ≤ (1− p)

(
1 +

1

t− t2

2

√
π

8(deg(u)− 1)

)
+

1

t− t2

2

√
π

8(deg(u)− 1)
≤

≤ 1− p+
3

t ·
√

deg(u)− 1
.

In the last inequality we took into account that t− t2

2 ≥
t
2 , p ≥ 0, and

√
2π ≤ 3.

Substituting this expression in (D.8) leads to the desired bound (D.1).

E Missed proofs for Section 5

Proof of Lemma 5.1. Consider the induced subnetwork GV
′

of G for some V ′ ⊂ V with
|V ′| =

⌈
α · |V |

⌉
and denote by deg′(v) the degree of an agent v ∈ V ′ in GV

′
. Fix positive

γ ≤ α. Our goal is to bound the fraction of agents that have deg′(v) < γ ·D = γ · deg(v).
Denote by V 1 the set of all such agents v ∈ V ′ and by V 2, the set of eliminated agents V \V ′.
Apply inequality (B.1) (see mixing lemma B.1) to these V 1 and V 2. Since E(V 1, V 2) >
(1− γ)D · |V 1| and (1− α)|V | − 1 < |V 2| ≤ (1− α)|V |, we get

(1− γ)D · |V 1| − D

|V |
· |V 1| · (1− α)|V | ≤ |λ2|

√
|V 1| · (1− α)|V |.

Dividing both sides by
√
|V 1| and rearranging the terms we get

(α− γ)D
√
|V1| ≤ |λ2|

√
(1− α)|V |



and, therefore,

|V 1| ≤ (1− α)|λ2|2

(α− γ)2D2
|V | ≤ (1− α)|λ2|2

α(α− γ)2D2
|V ′|.

Thus at least a fraction
(

1− (1−α)|λ2|2
α(α−γ)2D2

)
of agents v ∈ V ′ has deg(v) ≥ γ ·D.

By Lemma E.1 contained below, at least
(

1− 2(1−α)|λ2|2
α(α−γ)2D2

)
|V ′| agents have at least γ

2 ·D
friends with degree γ

2 ·D or higher.
Applying Theorem 3.1 combined with Lemma 4.1 to each agent in this set and estimating

the chance of the correct action outside this set by zero, we obtain the following bound on
the learning quality for any state-symmetric equilibrium σ′ in GV

′
:

Lσ′
(
GV

′
)
≥
(

1− 2(1− α)|λ2|2

α(α− γ)2D2

)(
1− δ

(
p,
γ

2
D, r,D

))
,

where r =
⌊
g−3
2

⌋
.

Taking into account that δ(p,D, r,D) > 18√
D

, we see that the expression in the

first parenthesis is greater than 1 − (1−α)|λ2|2

9α(α−γ)2D
3
2
· δ(p,D, r,D). It is easy to check that

δ(p, βD, r,D) ≤ 1√
β− 1

D

δ(p,D, r,D) for any β and, hence, the expression in the second

parenthesis is at least 1− 1√
γ
2−

1
D

· δ(p,D, r,D).

Opening the brackets and dispensing with positive terms, we get

Lσ′
(
GV

′
)
≥ 1−

 (1− α)|λ2|2

9α(α− γ)2D
3
2

+
1√

γ
2 −

1
D

 · δ(p,D, r,D).

Picking γ = 2α
3 and assuming that α

3 −
1
D ≥

α
4 we obtain the desired bound (5.1). In the

complementary case of small α < 12
D the bound (5.1) trivializes since 2√

α
δ(p,D, r,D) ≥

√
D√
3
· 18√

D
> 1.

Lemma E.1. If in a network G = (V,E) at least (1−β)|V | agents have degree D or higher;
then, at least (1− 2β) |V | agents have at least D

2 friends with degree at least D
2 .

Proof. Denote by V<D the set of agents with less than D friends and by V<D
2 ,≥

D
2

the set of

agents with less than D
2 friends with degree D

2 or higher. We know |V<D| < β|V | and want
to prove that

∣∣V<D
2 ,≥

D
2

∣∣ < 2β|V |. Assume by way of contradiction that
∣∣V<D

2 ,≥
D
2

∣∣ ≥ 2β|V |.
Therefore, V ′ = V<D

2 ,≥
D
2
∩ (V \ V<D) contains at least β|V | agents. Each v ∈ V ′ has at

least D friends and at least D− D
2 = D

2 of them have degree less than D
2 ; denote the set of

such low-degree friends by Fv,<D
2

. The set V<D contains the union of Fv,<D
2

over v ∈ V ′.
We obtain

2

D

∑
v∈V ′

∣∣Fv,<D
2

∣∣ ≤ |V<D|,
where the factor 2

D originates because no u ∈ Fv,<D is counted more than deg(u) < D
2

times. Using the bounds on cardinalities of all the sets in this expression, we conclude that

2

D
· β|V | · D

2
< β|V | ⇐⇒ 1 < 1.

This contradiction completes the proof.



F Randomized robustness

In Section 5, we demonstrated existence of a-priori networks satisfying a very strong notion
of adversarial robustness: the network aggregates information even if a subset of agents is
eliminated in an adversarial way. Here we consider a weaker notion of robustness to random
elimination and show that any network has this property. Namely, for networks with high
learning quality, even if a substantial fraction of agents leaves the network, the remaining
agents find a way to learn the state even though most paths of information diffusion (those
involving eliminated agents) disappear.

We will demonstrate the randomized robustness under an additional assumption about
the information available to agents. Recall that Gv,T = (Vv,T , Ev,T ) denotes the realized
subnetwork of an agent v; see the definition in Section 3.1.

Assumption F.1. Each agent v, in addition to his signal and actions of friends who arrived
earlier than him, observes the set of agents Vv,T of his realized subnetwork (without their
actions and arrival times). In other words, an agent knows the set of those who can possibly
affect his action. The information set of v is therefore Iv = (sv, (au)u∈Fv,T , Vv,T ).

Remark F.1 (The role of Assumption F.1). We believe that this assumption plays a tech-
nical role and the randomized robustness must be ubiquitous without it as well; however, we
were unable to get rid of it in our proof. Assumption F.1 ensures the sequential structure
of equilibrium. If Vv,T = ∅, agent v follows his signal. If Vv,T is non-empty with |Vv,T | = k,
the equilibrium strategy σv

(
sv, (au)u∈Fv,T , Vv,T

)
is the optimal reply to (σu)u∈Vv,T with

|Vu,T | ≤ k − 1 (since Vu,T is a strict subset of Vv,T ). This sequential structure implies that
an agent gains no advantage from learning the set of agents who have not yet arrived, the
property critical in the proof of Theorem F.1, the main result of this section.

For a given network G and the probability p of the correct signal, denote by L(G) the
learning quality for the best equilibrium: L(G) = maxσ Lσ(G).

Theorem F.1 (Learning is robust to random elimination). Under the Assumption F.1,
consider a network G = (V,E) that has learning quality L(G) = 1− δ with some δ > 0.

Fix α ∈ (0, 1) and pick a subset V ′ ⊂ V with
⌈
α · |V |

⌉
agents uniformly at random. Then

the learning quality for the induced subnetwork GV
′

enjoys the lower bound L
(
GV

′) ≥ 1−
√

δ
α

with probability at least 1−
√

δ
α with respect to the choice of V ′.

Proof of Theorem F.1. The argument is based on a coupling of the learning process in the
original network G and the selection of the random subnetwork GV

′
. Fix an equilibrium

σ = (σv)v∈V maximizing Lσ(G) and pick a subset V ′ to be the set of
⌈
α · |V |

⌉
earliest

arrivals.
For v ∈ V ′, the equilibrium strategy σv in the original network G can be used as a

strategy in GV
′
. The resulting family of strategies (σv)v∈V ′ constitutes an equilibrium in

GV
′
, which we denote by σV

′
. Note that here we use Assumption14 F.1.

The constructed coupling allows us to link the learning quality for G and for GV
′

under
equilibria σ and σV

′
, respectively. By the formula of total probability, the learning quality

for G can be represented as

L(G) =
1

|V |
∑
v∈V

(
P(av = θ | v ∈ V ′) · P(v ∈ V ′) + P(av = θ | v /∈ V ′) · P(v /∈ V ′)

)
.

14In the game played over V ′, all the present agents know that agents from V \V ′ are absent. In particular,
without Assumption F.1 an agent v in V ′ would know more about his predecessors than the same agent in
the game played over V . Thus, a best reply in V may no longer be a best reply in the game restricted to
V ′, even if all other agents maintained their strategy.



Using a rough estimate P(av = θ | v /∈ V ′) ≤ 1 on the probability of the correct action
outside V ′ and taking into account that P(v ∈ V ′) is bounded from below by α, we get the
following inequality:

Lσ(G) ≤ α · EV ′LσV ′
(
GV

′)
+ (1− α),

where EV ′ denotes expectation with respect to the choice of V ′. Since the left-hand side is
equal to 1− δ, we obtain

1− EV ′LσV ′
(
GV

′)
≤ δ

α
.

Application of the Markov inequality completes the proof.
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