
A Better Algorithm for Societal Tradeoffs

Hanrui Zhang, Yu Cheng and Vincent Conitzer

Abstract

In the societal tradeoffs problem, each agent perceives certain quantitative tradeoffs
between pairs of activities, and the goal is to aggregate these tradeoffs across agents.
This is a problem in social choice; specifically, it is a type of quantitative judgment
aggregation problem. A natural rule for this problem was axiomatized by Conitzer et
al. [AAAI 2016]; they also provided several algorithms for computing the outcomes of
this rule. In this paper, we present a significantly improved algorithm and evaluate
it experimentally. Our algorithm is based on a tight connection to minimum-cost
flow that we exhibit. We also show that our algorithm cannot be improved without
breakthroughs on min-cost flow.

1 Introduction

In social choice, we take as input the preferences or opinions of multiple agents and seek
to aggregate them. This is a key problem in multiagent systems, which has given rise to
the computational social choice research community [2]. The paradigmatic setting in social
choice is that of voting, where each agent ranks a set of alternatives. However, a ranking
of alternatives is not always a natural representation of the preferences or opinions that
must be aggregated. For example, in a multi-issue setting [11], there are exponentially
many alternatives, making it infeasible to rank them all. In judgment aggregation (in its
standard form) [8], agents provide true-or-false judgments on various propositions, and we
must aggregate these into judgments that are logically consistent. AI researchers regularly
deal with questions of how to represent the world, so it is not surprising that these problems
are receiving special attention from the AI/MAS community. And indeed, entirely new
problems in social choice are arising from work done in this community.

One such problem is the societal tradeoffs problem [4]. In it, each agent quantitatively
compares pairs of activities. For example, one agent may judge that using one liter of
gasoline is as bad as generating 2 bags of landfill trash; another may judge that that number
should be 3 instead of 2. One possible area of application for this framework is in automated
moral decision making, where an AI system has to choose a course of action based on data
that it has about human judgments in similar scenarios (see, e.g., [6]). This problem has
already been considered in the specific contexts of self-driving vehicles making life-or-death
decisions [13] and kidney exchange algorithms prioritizing certain patients over others [9].
To fit this into the framework considered in this paper, it may be that one human subject
appears to value (say) the life of a 20-year old at 1.5 times the life of a 50-year old, and
another appears to use a ratio of 1.1. We then need to find an aggregate ratio.1

When only two activities are being compared, using the median judgment as our ag-
gregate satisfies many nice properties. Things become more complex when more than two
activities are compared. As observed by Conitzer et al. [4], taking the median on each pair
separately can result in inconsistent tradeoffs. For example, the resulting aggregate trade-
offs may be that (one unit of) gasoline is 2 times as bad as trash, trash is 4 times as bad as
deforestation, and gasoline is 2 times as bad as deforestation; but 2 · 4 = 8 6= 2 (Figure 1).

Conitzer et al. [5] take consistency as a hard constraint and specify some axioms that

1In these contexts, the word “activities” is not very appropriate to refer to the different types of people,
but we will stick with this word for the sake of consistency with prior literature.

gasoline trash

deforestation

2(1)

8(3) 4(2)

gasoline trash

deforestation

0.5(−1)

2(1) 4(2)

gasoline trash

deforestation

2(1)

0.5(−1) 0.25(−2)

gasoline trash

deforestation

2(1)

2(1) 4(2)

Figure 1: An example where taking pairwise medians yields an inconsistent outcome. The
three figures on the left are the votes, and the right figure shows the (inconsistent) aggre-
gate outcome. The numbers on edges show the multiplicative tradeoff factors perceived by
different agents, and the numbers in parentheses are obtained by taking the logarithm with
base 2, representing the additive tradeoff values—to be interpreted as ideal differences in
quality. In the remainder of the paper we will focus only on the numbers obtained after
taking the logarithm, which are easier to work with; these can then be exponentiated to
return to the original interpretation.

a rule should satisfy. Somewhat unusually2 for a social choice context, instead of leading
to impossibility, the axioms uniquely pin down a single rule. This rule involves first taking
the logarithm of each tradeoff value. Hence, the consistency constraint changes from a
multiplicative one (a · b = c) to an additive one (log a + log b = log c), and the problem can
be thought of as follows. Each activity is to be assigned a number (its quality), and the
agents express for pairs of activities what they consider to be the ideal difference in quality
between these two activities. Then, aggregate qualities are chosen so that the sum of the
distances between the aggregate differences and the ideal differences expressed by the voters
is minimized.

Conitzer et al. [5] show that this problem can be formulated as a linear program, and
also give a hill-climbing heuristic that does not necessarily find an optimal solution. In
this paper, we show that the computational problem is in fact closely related to minimum-
cost circulation. Based on this insight, we provide a significantly improved (and, barring
breakthroughs on min-cost circulation, best possible) algorithm for the problem and evaluate
it experimentally.

2 Preliminaries

We first present the societal tradeoffs problem, which is the problem of determining the
aggregate tradeoffs according to the rule defined by Conitzer et al. [5]. Without loss of
generality and for presentational simplicity, we focus on the additive model (i.e., we assume
that logarithms have already been taken). Also, we assume that each agent (voter) only
votes on one pair of activities; this is also w.l.o.g., because a voter voting on multiple pairs
can equivalently be split up into multiple voters voting on one edge each.

2Of course, there are other results where a rule is uniquely pinned down by axioms—for example, the
Kemeny-Young rule was uniquely axiomatized by Young and Levenglick [15].

Definition 2.1 (Societal Tradeoffs). Given a set V of n activities and a set E of m voters,
each voter submits a vote of the form (ai, bi, ci, wi). Voter i believes the difference between
activities ai, bi ∈ V should be ci ≥ 0, and each voter is associated with a weight wi ≥ 0. The
Societal Tradeoffs Problem asks us to compute potentials x ∈ RV , such that the total loss
L(V,E, x) is minimized:

L(V,E, x) =
∑

(ai,bi,ci,wi)∈E

wi|xai − xbi − ci|.

Throughout this paper, we will use n for the number of vertices (activities) and m for
the number of edges (votes).

3 The Algorithm

We identify close connections between Societal Tradeoffs and classic combinatorial problems.
Based on these, we give an algorithm for Societal Tradeoffs that is best possible given what
is currently known about these classic problems.

3.1 Formulating the Problem as a Linear Program

Conitzer et al. [5] showed how to formulate Societal Tradeoffs as a linear program (LP). In
this subsection, we present an equivalent but slightly different linear program that makes it
easier to take the dual.

Recall that the problem asks to set xv for every v ∈ V to minimize L(V,E, x). For any
positive integer t, we denote the set {1, 2, . . . , t} by [t]. We can then formulate the problem
as the following LP, where `+

i being positive means that we deviate from the value ci in one
direction, and `−i being positive means we deviate in the other direction.

Linear Program 1.

minimize
∑

i∈[m] wi(`
+
i + `−i)

subject to `+
i ≥ xai

− xbi − ci ∀i ∈ [m]
`−i ≥ ci + xbi − xai ∀i ∈ [m]
`+
i ≥ 0, `−i ≥ 0 ∀i ∈ [m]

While we can solve this LP directly in polynomial time, for larger instances with thou-
sands of activities, we need much more efficient algorithms to solve the problem in a rea-
sonable amount of time.

3.2 Equivalence to Max-Cost Circulation

Consider the dual of Linear Program 1:

Linear Program 2.

maximize
∑

i∈[m] ci(f
−
i − f+

i)

subject to 0 ≤ f+
i ≤ wi ∀i ∈ [m]

0 ≤ f−i ≤ wi ∀i ∈ [m]∑
i:ai=v(f−i − f+

i) =
∑

i:bi=v(f−i − f+
i) ∀v ∈ V

Observe that for any i, f+
i and f−i only appear in the form f−i − f+

i . Let fi = f−i − f+
i .

We obtain the following LP:

x1 = 0 x2 = 1

x3 = −1

1

−1

1

3
1
−1 2

2
−2

Figure 2: Illustration of the primal and dual LPs based on activities and votes in Figure 1.
All votes/edges have unit weight/capacity. The cost of the edges (the ci) are the values
submitted by the three voters in Figure 1 (after taking log2). Optimal potentials (the xv)
are associated with the activities; the differences between these values necessarily constitute
a solution that is consistent, unlike the one at the right of Figure 1. Specifically, the bottom-
edge comparison between gasoline and trash becomes −1 instead of the 1 in parentheses at
the right of Figure 1 (and the other aggregate differences are the same as in that figure).
The flows on the edges from the dual LP (the fi) are always 1 and their directions are
indicated by the red/dashed arrows; note that the flows form a circulation. The total cost
of these flows is 12, which is equal to the loss of the primal solution, which proves both to
be optimal by weak LP duality.

Linear Program 3.

maximize
∑

i∈[m] cifi
subject to

∑
i:ai=v fi =

∑
i:bi=v fi ∀v ∈ V

−wi ≤ fi ≤ wi ∀i ∈ [m]

This LP has the following combinatorial interpretation. Consider each activity to be a
vertex in a directed graph, and each vote (ai, bi, ci, wi) to be an edge from ai to bi with
cost ci and capacity wi. We can interpret the fi variables as flows, so that the objective of
the LP corresponds to the total cost of the flows, and the two linear constraints reflect the
conservation and capacity constraints of circulations. (A circulation is a flow such that the
flow into each vertex is equal to the flow out of it.) Societal Tradeoffs is therefore closely
related (via linear programming duality) to the Undirected Max-Cost Circulation problem.

Definition 3.1 (Undirected Max-Cost Circulation). Given vertices V = [n] and edges
E = {(ai, bi, ci, wi)}mi=1, the Undirected Max-Cost Circulation problem seeks a flow f ∈ Rm

that satisfies

(1) Flow conservation:
∑

i:ai=v fi =
∑

i:bi=v fi,∀v, and

(2) Capacity constraints: for any i ∈ [m], |fi| ≤ wi,

such that the total cost of the flow,
∑

i∈[m] cifi, is maximized.

Strong duality immediately gives the following theorem.

Theorem 3.2. Fix V = [n], E = {(ai, bi, ci, wi)}mi=1. The following problems have the same
optimal objective value:

(1) Societal Tradeoffs with activities V and votes E.

(2) Max-Cost Circulation with vertices V and edges E.

Algorithm 1: Translation from an Undirected Max-Cost Circulation optimum to
a Societal Tradeoffs optimum.

Input : A circulation {fi} that maximizes the total cost on graph (V,E).
Output: Potentials x that minimize the loss of Societal Tradeoffs with activities V

and votes E.
Let S = (V, ∅) be an empty system of difference constraints with variables x ∈ RV .
for i ∈ [m] do

if fi > −wi then
Add constraint xai

− xbi ≤ ci into S.

if fi < wi then
Add constraint xai − xbi ≥ ci into S.

Solve S by running Single-Source Shortest Path from an arbitrary vertex in V , and
return the distance labels x.

3.3 Translation between Primal/Dual Solutions

Theorem 3.2 implies that, in order to find the value of an optimal solution to the Societal
Tradeoffs problem, it suffices to solve Max-Cost Circulation. Nevertheless, we are generally
not so much interested in this value, but rather in the solution itself. While some LP
algorithms solve for primal and dual solutions simultaneously, our goal is to avoid the use of
general LP algorithms. We next show that there are more efficient ways to translate optimal
solutions between Societal Tradeoffs (primal) and Max-Cost Circulation (dual).

From dual optima to primal optima. Algorithm 1 computes an optimal primal solu-
tion by solving a system of difference constraints. The difference constraints come from the
complementary slackness conditions of LP 2—for dual constraints that are not tight (which
correspond to unsaturated edges), we require the corresponding primal variables (i.e., `+

i or
`−i for edge i) to be 0.

Theorem 3.3. Given an optimal solution to Undirected Max-Cost Circulation, Algorithm 1
runs in time O(m+n+TSSSP(n,m,W)) and returns an optimal solution of the correspond-
ing Societal Tradeoffs instance. TSSSP(n,m,W) is the time required to solve Single-Source
Shortest Path with negative weights (SSSP) on a graph with n vertices, m edges, and maxi-
mum absolute distance W .

Proof. The time complexity follows from Algorithm 1 and fact that systems of difference
constraints can be efficiently solved using SSSP oracles [14, 1]. We focus on the correctness
of the algorithm.

First observe that S in Algorithm 1 is feasible, because no negative cycle exists in the
graph representation of S. Otherwise, flowing backward along the cycle increases the total
cost of the circulation, contradicting the optimality of f .

Next we show that the loss incurred by x is exactly the cost of f . The optimality of
x then follows from weak duality. For i ∈ [m] where |fi| < wi, the corresponding loss
wi|xai − xbi − ci| in the primal LP is zero, because Algorithm 1 added both constraints
xai
−xbi ≤ ci and xai

−xbi ≥ ci. Therefore, if we consider votes E′ = {(ai, bi, ci, w′i)} where
w′i = |fi|, the total loss of x on E and E′ are the same.

We then decompose f into sum of flows around directed cycles. For a cycle C =
(uC

1 , . . . , u
C
l(C)) of length l(C) with flow fC > 0, let dCi be the cost of edge (uC

i , u
C
i+1) where

uC
l(C)+1 = uC

1 . The cost of fC units of flow along C is fC
∑

i d
C
i . Note that we consider the

edges in the direction of the flow, and we always have xuC
i
− xuC

i+1
− dCi = ±(xa − xb − c).

Algorithm 2: Translation from a Societal Tradeoffs optimum to an Undirected
Max-Cost Circulation optimum.

Input : Potentials x that minimize the `1-loss of Societal Tradeoffs with activities
V and votes E.

Output: A circulation {fi} that maximizes the total cost on graph (V,E).
Let fi ← 0 for all i ∈ [m]. for i ∈ [m] do

if xai
− xbi − ci < 0 then

fi ← wi.

if xai
− xbi − ci > 0 then

fi ← −wi.

Let V0 ← V ∪ {s, t}, (E0, Es, Et)← (∅, ∅, ∅).
for v ∈ V do

dv =
∑

i:bi=v fi −
∑

i:ai=v fi.

if dv > 0 then
Es ← Es ∪ {(s, v, dv)}

if dv < 0 then
Et ← Et ∪ {(v, t,−dv)}

for i ∈ [m] do
if xai − xbi − ci = 0 then

E0 ← E0 ∪ {(ai, bi, wi), (bi, ai, wi)}.

Compute a maximum s-t flow f ′ on G0 = (V0, E0 ∪ Es ∪ Et).
Return f + f ′|E0 .

Moreover, the fact that fC > 0 means there are constraints of form xuC
i
− xuC

i+1
≥ dCi in S.

Therefore,

cost(f) =
∑
C

fC
∑

i∈[l(C)]

dCi

=
∑
C

fC
∑

i∈[l(C)]

(
dCi − xuC

i
+ xuC

i+1

)
=
∑
C

fC
∑
i

∣∣∣xuC
i
− xuC

i+1
− dCi

∣∣∣
=

∑
e=(a,b,c,w′)∈E′

∑
C:e∈C

fC |xa − xb − c|

=
∑

(a,b,c,w′)∈E′

w′|xa − xb − c|

= L(V,E′, x) = L(V,E, x).

From primal optima to dual optima. For completeness, we show that we can also effi-
ciently translate primal (Societal Tradeoffs) optima to dual (Max-Cost Circulation) optima.
Algorithm 2 first constructs a partial flow based on votes/edges with non-zero primal costs,
and then tries to balance the surplus at each activity/vertex using only votes/edges with 0
primal costs.

Theorem 3.4. Given any optimum of a Societal Tradeoffs instance, Algorithm 2 runs in
O(m+n+TMaxFlow(n,m,U)) time and returns an optimum of the corresponding Undirected

Max-Cost Circulation instance. TMaxFlow(n,m,U) is the time complexity of Undirected s-t
Max-Flow on a graph with n vertices, m edges, and maximal capacity U .

Proof. The time complexity follows from the description of Algorithm 2. We focus on the
correctness of the algorithm.

We first show that Algorithm 2 does output a circulation. In the first step, we assign
a positive saturating flow fi = wi to an edge (ai, bi, ci, wi) if xai

− xbi − ci < 0, and a
negative saturating flow fi = −wi if xai

− xbi − ci > 0. The surplus of each vertex v is
dv =

∑
i:bi=v fi −

∑
i:ai=v fi. The algorithm then tries to route the remaining surpluses on

the edges E0 = {(ai, bi, ci, wi) | xai
− xbi − ci = 0}, which have not been assigned any flow.

This attempt succeeds if the max flow f ′ on graph G0 saturates every edge from s (and
every edge to t). We now show this always happens when x is optimal.

Suppose the flow computed is not saturating. That is, there exists a cut C whose size is
smaller than

∑
v∈V :dv>0 dv. Let S, T ⊂ V be the vertices on the s-side and t-side of C. Let

∆ = E0 ∩ C be the edges/votes between S and T with 0 primal cost. The cut C includes
edges in ∆, as well as edges from S to t and s to T . From the assumption on the size of C,
we know that ∑

(ai,bi,ci,wi)∈∆

wi −
∑

v∈S:dv<0

dv +
∑

v∈T :dv>0

dv <
∑

v∈V :dv>0

dv.

Rearranging the terms gives D :=
∑

v∈S dv −
∑

(ai,bi,ci,wi)∈∆ wi > 0. Note that by the
construction of f in the beginning,

dv =
∑

i:ai=v,xai
−xbi

−ci>0

wi −
∑

i:ai=v,xai
−xbi

−ci<0

wi

+
∑

i:bi=v,xai
−xbi

−ci<0

wi −
∑

i:bi=v,xai
−xbi

−ci>0

wi.

We will show D is exactly the rate of improvement if we decrease xv for all v ∈ S simulta-
neously. Hence, D > 0 contradicts the optimality of x so f ′ must saturate all edges from s.
To see why this is true, observe that the rate at which the loss changes consists of two parts:
the change on nonzero edges across C and the change on zero edges across C. Decreasing
xv slightly for v ∈ S may decrease the loss on some nonzero edges, and increase the loss on
other nonzero edges. The total rate of this part of the change is exactly −

∑
v∈S dv. On the

other hand, changing xv in any way increases the loss on zero edges across C, and the total
rate of this part is simply the total weight of zero edges across C, namely

∑
(ai,bi,ci,wi)∈∆ wi.

The sum of the two parts is exactly D.
Finally, we show that the cost of the constructed circulation is equal to the loss in the

Societal Tradeoffs instance. For any unsaturated edge i ∈ E (i.e. |fi + f ′i | < wi), the
corresponding primal cost is 0 (i.e., xai − xbi − ci = 0). Hence, setting w′i = |fi + f ′i |
for these edges does not affect the primal or the dual cost. Let E′ be the edges after this
transformation. A similar cycle-decomposition argument to that in the proof of Theorem 3.3
yields cost(f) = L(V,E′, x) = L(V,E, x). The optimality follows from weak duality.

3.4 Implications on the Time Complexity of Societal Tradeoffs

A solid connection between Societal Tradeoffs and classic combinatorial problems has been
established in the foregoing sections. Based on this connection, we give a significantly
improved algorithm for Societal Tradeoffs, and prove that improving our algorithm would
give a faster algorithm for min-cost circulation.

First, we review the state of the art for Min-Cost Circulation and Single-Source Shortest
Path (SSSP) algorithms. Maximum Flow, Shortest Path, and other related graph problems

are core combinatorial optimization problems that have been studied extensively (see, e.g.,
[7, 10, 12, 3] and the references therein).

In this section, we will use n for the number of vertices (activities), m for the number
of edges (votes), U for the maximum capacity, and W for the maximum absolute value of
the cost (for Min-Cost Circulation) or distance (for SSSP).

Lemma 3.5 ([10]). There is an algorithm for Min-Cost Circulation and SSSP which runs
in time O(m1.5 log(nW)).

Lemma 3.6 ([3]). For unit-capacity graphs, there is an algorithm for Min-Cost Circulation

and SSSP which runs in time Õ(m10/7 logW).3

We can now state our main results. Theorem 3.7 follows immediately from Theorem 3.3
and Lemmas 3.5 and 3.6.

Theorem 3.7 (Better Algorithms for Societal Tradeoffs). Societal Tradeoffs can be solved
in time O(m1.5 log(nW)), where W is the maximum difference suggested by the voters. If all

voters have the same weight, then Societal Tradeoffs can be solved in time Õ(m10/7 logW).

We further show (in Theorem 3.9) that the above algorithm cannot be significantly
improved without giving faster Min-Cost Circulation algorithms. More specifically, any
algorithm whose dependency on m has a smaller exponent is considered significantly faster.
We first show that directed and undirected Min-Cost Circulations are essentially equivalent.

Lemma 3.8 (Folklore). Directed Min-Cost Circulation with n vertices, m edges and max-
imum absolute cost W can be reduced to Undirected Min-Cost Circulation with parameters
(n + 1, 3m,nW). The reduction takes O(m + n) time.

Proof. We construct an Undirected Min-Cost instance G′ = (V ∪ {v0}, E′) which preserves
the solution to any Directed Min-Cost Circulation instance G = (V,E). Without loss of
generality, we assume each capacity wi is an even integer. Otherwise, we first multiply all
capacities by 2, which does not change the nature of the instance. For each (directed) edge
(ai, bi, ci, wi) ∈ E, we add 3 (undirected) edges into E′:

• (ai, v0,−nW,wi/2),

• (v0, bi,−nW,wi/2), and

• (ai, bi, ci, wi/2).

Note that in any minimum cost circulation of G′, all edges with cost −nW must be
saturated. In other words, the optimum is a combination of two parts:

(1) a circulation consisting of wi/2 units of flow along directed cycles (bi, ai, v0), one for
each edge (ai, bi, ci, wi) ∈ E; and

(2) a min-cost circulation on the residual graph G.

Thus, a min-cost circulation of G can be recovered from a min-cost circulation of G′, by
subtracting the first part of the flow. This can be done in O(m + n) time.

Theorem 3.9 is a direct corollary of Theorem 3.2 and Lemma 3.8.

Theorem 3.9 (Improvement Gives Faster Flow Algorithms). Let U denote the maximum
weight of any voter (and maximum capacity), and let W denote the maximum difference
between activities (and maximum absolute cost). We have

TMCCValue(n,m,U,W) ≤ TSocietalTradeoffs(n + 1, 3m,U, nW) + O(m + n),

where TMCCValue denotes the time it takes to compute the value of the min-cost circulation.
3We use Õ(f(n)) as a shorthand for O(f(n) logO(1) f(n)).

Figure 3: Runtime of the 3 algorithms on inputs from different distributions. The top 3
figures plot the growth of running times when the number of votes grows, and the bottom
3 figures show the running times when the number of activities grows.

4 Limitations of Hill-climbing

In this section, we provide some insights to the hill-climbing algorithm proposed in [5]. The
hill-climbing heuristic works by picking one activity at a time and setting its potential to
a value that minimizes the loss given other potentials. It repeats this until no further such
local improvements are possible. Conitzer et al. [5] observed that hill-climbing can get stuck
at local optima. We give a simple example where hill-climbing gets stuck. In addition, we
show that even when the algorithm converges to optimality, sometimes this can take a very
long time.

Hill-climbing can get stuck in a local optimum. Consider an example with 6 ac-
tivities, and one complete vote (or equivalently, a vote for each pair of activities with unit
weight). For i ∈ {1, 2, 3}, the difference between xi and xi+3 should be 1, and the difference
between any other pair should be 0. The optimal solution is to assign every activity the
same value, say 0, with total loss 3.

Consider an initial value configuration (1, 1, 1, 0, 0, 0). This is a local optimum for hill-
climbing with loss 6, since changing the value of any single vertex cannot reduce the total
loss. To see this, consider activity 1. At this local optimum, its differences to activities x2,
x3, and x4 align with the vote, so 3 out of the 5 remaining activities prefer x1 to stay the
same. Similar arguments hold for other activities.

Hill-climbing can take arbitrarily long to terminate. Consider the same example
except that the voter now thinks the value of activity 1 should be ε higher than that of
activity 2. Again, we start from (1, 1, 1, 0, 0, 0). First we move x2 to 1 − ε, because this
improves the comparison with x1, x4, and x6 (but moving it any further would hurt the
comparison with x1). Then, we move x3 to 1− ε because this improves the comparison to
x2, x4, and x5. After that, we move x1 to 1−ε to improve the comparison to x3, x5, and x6.
Now we are back to a similar configuration to where we started, i.e., (1−ε, 1−ε, 1−ε, 0, 0, 0).
Following this pattern, it takes Ω(1/ε) time for hill-climbing to terminate. For arbitrarily

small ε, this time can be arbitrarily large.

5 Experiments

All experiments were done on a laptop computer with 8GB of memory and a 2.6 GHz Intel
Core i5 CPU. Results are obtained by averaging over 10 runs with different seeds.

5.1 Experimental Setup

For empirical evaluation, we implemented our algorithm based on the network simplex
algorithm from LEMON (an open-source library of graph algorithms). We evaluate our
flow-based algorithm against (1) an LP solver based on the GNU Linear Programming Kit
(GLPK), and (2) a hill-climbing heuristic. Both (1) and (2) were studied experimentally by
Conitzer et al. [5]. We generate input instances using 4 different distributions:

1. Uniform. For each voter and each pair of activities (u, v), we draw a number x ∈ [−1, 1]
uniformly at random, and let the voter’s tradeoff between u and v be x.

2. Spanning. For each voter, we sample a random spanning tree of the activities. For each
edge (u, v) of the spanning tree, we draw the voter’s tradeoff x uniformly at random
from [−1, 1]. We then fill in the voter’s tradeoff between other pairs of activities by
consistency.

3. Noise. We first draw a potential for each activity pv from [−10, 10] uniformly at
random. For each voter i and each pair of activities (u, v), let the voter’s tradeoff
between u and v be pu−pv+xi

uv, where xi
uv ∈ [−1, 1] is drawn independently uniformly

at random.

4. Random-graph-uniform. For each voter, we draw exactly one pair of activities (u, v)
and a number x from [−1, 1] uniformly at random. We then let the voter’s tradeoff
between u and v be x.

The first three distributions generate instances where each voter expresses a preference on
every pair of activities (i.e, the voting graph is a clique). The spanning tree distribution
always generates consistent votes; the others generally do not.

5.2 Results and Evaluation

As can be seen from Figure 3, GLPK is consistently slow, particularly on instances from
the spanning distribution.

Hill-climbing works reasonably well as a heuristic algorithm. As Table 1 shows, its
accuracy improves as the voting graph becomes denser. In particular, the solutions hill-
climbing generates are usually indistinguishable from the optimal solution when voters give
complete votes (i.e., tradeoffs between all pairs of activities).

In terms of runtime, hill-climbing beats our flow-based algorithm on the uniform and
spanning distributions. However, its runtime is worse under the noise model, when there is
an underlying ground truth. During our experiments, we sometimes observe instances on
which hill-climbing takes significantly more time than the flow-based algorithm. In contrast,
the flow-based algorithm shows remarkable robustness regardless of the distribution of the
input.

In general, our flow-based algorithm is robustly fast with a strong upper bound on
running time, and is guaranteed to produce an optimal solution. In contrast, the formerly
studied algorithms have notable flaws: GLPK produces optimal solutions but almost never

terminates on any instance with a reasonably large size, and hill-climbing, at the cost of
producing suboptimal solutions, is not too much faster and its runtime is extremely sensitive
to the structure of the input. These factors make our flow-based algorithm preferable both
in theory and in practice.4

Number of edges 100 200 300 400 500
Approximation ratio 2.04 1.20 1.06 1.04 1.02

Table 1: Approximation ratio of hill-climbing vs. density of the voting graph (random-
graph-uniform distribution with 100 nodes).

6 Discussion

Our algorithm for societal tradeoffs scales much better than the previously known linear
programming approach. Given the tight connection to min-cost circulation that we have
exhibited, it appears that there is little left to be done to improve this algorithm as far as
exact approaches go. Even when comparing to the previously known heuristic hill-climbing
approach, our algorithm is sometimes significantly faster in experiments—and of course it
comes with the benefits of exactness and provable running time guarantees.

The faster algorithm will allow us to scale to much larger sets of activities. In some
contexts, this will be critical for the methodology to succeed. For example, in the exam-
ples about autonomous vehicles and kidney exchanges discussed in the introduction, where
“activities” corresponds to different types of people, we face a combinatorial explosion in V
if many attributes are taken into account (e.g., in [9], one possible type is a young person
who drinks little alcohol but has skin cancer in remission). Of course even our improved
algorithm can only go so far in addressing such combinatorial explosions; at some point,
we will no longer be able even to enumerate V and a different representation scheme will
be needed. What scheme is appropriate, do we need a different rule for it, and are there
efficient algorithms for that rule? These are exciting questions for future research.

References

[1] Bengt Aspvall and Yossi Shiloach. A polynomial time algorithm for solving systems
of linear inequalities with two variables per inequality. In Foundations of Computer
Science, 1979., 20th Annual Symposium on, pages 205–217. IEEE, 1979.

[2] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia.
Handbook of Computational Social Choice. Cambridge University Press, 2015.

[3] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-
weight shortest paths and unit capacity minimum cost flow in õ (m 10/7 log w) time.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 752–771. Society for Industrial and Applied Mathematics, 2017.

[4] Vincent Conitzer, Markus Brill, and Rupert Freeman. Crowdsourcing societal tradeoffs.
In Proceedings of the Fourteenth International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 1213–1217, Istanbul, Turkey, 2015. Blue Sky
Ideas track.

4It is worth noting that when computing the outcomes of a rule in a social choice setting, computing
only an approximate solution is likely to lose the desirable properties of the rule, and it may raise concerns
about whether the outcome is legitimate.

[5] Vincent Conitzer, Rupert Freeman, Markus Brill, and Yuqian Li. Rules for choosing
societal tradeoffs. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[6] Vincent Conitzer, Walter Sinnott-Armstrong, Jana Schaich Borg, Yuan Deng, and Max
Kramer. Moral decision making frameworks for artificial intelligence. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, pages 4831–4835, San
Francisco, CA, USA, 2017. Blue Sky track.

[7] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[8] Ulle Endriss. Judgment aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang,
and A. D. Procaccia, editors, Handbook of Computational Social Choice, chapter 17.
Cambridge University Press, 2015.

[9] Rachel Freedman, Jana Schaich Borg, Walter Sinnott-Armstrong, John P. Dickerson,
and Vincent Conitzer. Adapting a kidney exchange algorithm to align with human
values. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2018.

[10] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network prob-
lems. SIAM Journal on Computing, 18(5):1013–1036, 1989.

[11] Jérôme Lang and Lirong Xia. Voting in combinatorial domains. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Com-
putational Social Choice, chapter 9. Cambridge University Press, 2015.

[12] Aleksander Madry. Navigating central path with electrical flows: From flows to match-
ings, and back. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 253–262. IEEE, 2013.

[13] Ritesh Noothigattu, Snehalkumar ‘Neil’ S. Gaikwad, Edmond Awad, Sohan D’Souza,
Iyad Rahwan, Pradeep Ravikumar, and Ariel D. Procaccia. A voting-based system
for ethical decision making. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, 2018.

[14] Vaughan Pratt. Two easy theories whose combination is hard. Technical report, Tech-
nical report, Massachusetts Institute of Technology, 1977.

[15] H. Peyton Young and Arthur Levenglick. A consistent extension of Condorcet’s election
principle. SIAM Journal of Applied Mathematics, 35(2):285–300, 1978.

Hanrui Zhang
Duke University
Durham, NC, USA
Email: hrzhang@cs.duke.edu

Yu Cheng
Duke University
Durham, NC, USA
Email: yucheng@cs.duke.edu

Vincent Conitzer
Duke University
Durham, NC, USA
Email: conitzer@cs.duke.edu

