Computing a Condorcet winner of a 1-Euclidean election

Po-Ting Lin, Hung-Lung Wang, and Kun-Mao Chao

Abstract

In this paper, we are concerned with the problem of deploying public facilities via a 1-Euclidean election under the majority rule. In a 1-Euclidean election, voters and candidates can be mapped into \mathbb{R}^{1}, and each voter's preference is determined by the distances from the voter to the candidates. Specifically, each candidate considered in this work consists of arbitrary k points, and the winner is determined with Condorcet criterion. Given that k is fixed, we show that determining whether a Condorcet winner exists can be done in time linear to the number of voters.

1 Introduction

We start with the definition of the problem. The election considered in this paper consists of three things, voters, candidates, and how a voter prefers a candidate to another. In the 1 -Euclidean election we are concerned with, voters are n points in \mathbb{R}^{1}, and candidates are all subsets of \mathbb{R}^{1} of size k. Let $d(x, y)$ be the distance between x and y. The distance from a point x to a set Y is defined as

$$
\min \{d(x, y): y \in Y\}
$$

also denoted by $d(x, Y)$. A voter x prefers candidate Y to candidate Z if $d(x, Y)<d(x, Z)$. A Condorcet winner is a candidate such that no alternative can please more voters than it does. Our goal is to compute a Condorcet winner of a 1-Euclidean election if one exists, or report the non-existence.

Related work

For $k=1$, a Condorcet winner always exists and coincides with a median [5]. For $k=1$ and \mathbb{R}^{d} with $d>1$, Wu et al. [17] proposed an $O\left(n^{d-1} \log n\right)$-time algorithm. Later on, de Berg et al. [8] revised the time complexity to $O(n \log n)$. Respecting Condorcet winners for $k>1$, to our understanding, related results have been developed only in \mathbb{R}^{1}. Barberà and Beviá [3, 4] gave some properties of a Condorcet winner consisting of k points, namely the internal consistency, Pareto feasibility, and Nash stability. Hajduková [11] then developed an algorithm that verifies if a given decision is a Condorcet winner.

There are several results regarding the computation of a Condorcet winner on graphs. We refer the reader to $[2,12,13,16]$. Results regarding the structure of voters' preferences are also widely developed $[6,9,14,15]$. See $[10]$ for a brief survey. The reason why people pay attention to this kind of elections is that such elections have a natural interpretation, like locating facilities into the space to meet voters' demands. In this paper, we also call the k points that constitute a candidate the facilities.

In the rest of the paper, we first summarize some preliminary results in Section 2. Then, in Sections 3 and 4 we reduce the solution space so that an enumerative procedure is applicable. The analysis of the time complexity is given in Section 5. Omitted proofs are given in the appendix.

2 Preliminaries

Let $[n]$ be the set of integers $\{1, \ldots, n\}$, and let S be the set of voters. We assume $S=[n]$. For $i \in S$, the point that corresponds to i is denoted by p_{i}. We assume that $i<j$ implies $p_{i}<p_{j}$. A subset of voters is called a community. Let $P_{S}=\left\{p_{i}: i \in S\right\}$, the preference profile, by which one can determine how a voter prefers one candidate to another. An instance is a triple $\left(S, k, P_{S}\right)$, where k is the number of facilities that constitute a candidate.

For the instance $\left(S, k, P_{S}\right)$, an S / k-decision $\left(\left(x_{h}, S_{h}\right)\right)_{h=1}^{k}$ is a k-tuple of pairs, where $x_{h} \in \mathbb{R}$ with $x_{1}<\cdots<x_{k}$ and $\left(S_{1}, \ldots, S_{k}\right)$ is a partition of S. We use the term "decision" if there is no danger of misinterpretation. For a decision $d=\left(\left(x_{h}, S_{h}\right)\right)_{h=1}^{k}$, voter i is assigned to x_{j} if $i \in S_{j}$, denoted by $x_{j}=x(i, d)$. We refer to $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(S_{1}, \ldots, S_{k}\right)$ as d_{L} and d_{A}, respectively. For notational succinctness, d_{L} and d_{A} are also used as the sets with the corresponding elements.

For two points $x, y \in \mathbb{R}^{1}$, voter i prefers x to y, denoted by $y \prec_{i} x$, if $\left|x-p_{i}\right|<\left|y-p_{i}\right|$. Analogously, for two S / k-decisions d and d^{\prime}, voter i prefers d^{\prime} to d, denoted by $d \prec_{i} d^{\prime}$, if $x(i, d) \prec_{i} x\left(i, d^{\prime}\right)$.

Definition 1 (Condorcet winner). Given an instance $\left(S, k, P_{S}\right)$, an S / k-decision d^{*} is a Condorcet winner if there is no S / k-decision d such that

$$
\left|\left\{i \in S: d \prec_{i} d^{*}\right\}\right|<\left|\left\{i \in S: d^{*} \prec_{i} d\right\}\right| .
$$

Note that the definition relaxes the one given in the beginning of Section 1 since the partition of voters does not depend on the facilities. With the envy-freeness defined below, the sets of Condorcet winner of both formulations are identical.

An S / k-decision $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ is envy-free if for $i \in S$ and $j \in[k], x_{j} \preceq_{i} x(i, d)$. Decision d is internally consistent if for $i \in[k],\left(x_{i}, S_{i}\right)$ is a Condorcet winner of $\left(S_{i}, 1, P_{S_{i}}\right)$. In other words, a decision is internally consistent if x_{i} coincides with a median of $P_{S_{i}}$, for $i \in[k]$.
Proposition 1 (Barberà and Beviá [3, 4]). Given an instance $\left(S, k, P_{S}\right)$ and a decision $d=\left(\left(x_{h}, S_{h}\right)\right)_{h=1}^{k}$, if d is a Condorcet winner, then d is envy-free and internally consistent.
Proposition 1 gives necessary conditions for being a Condorcet winner. To determine whether a given decision is a Condorcet winner, Hajduková gave the notion of simple rival, which makes the verification feasible. Given an instance $\left(S, k, P_{S}\right)$, let d and d^{\prime} be two S / k decisions such that $d_{L}=\left(x_{1}, \cdots, x_{k}\right)$ and $d_{L}^{\prime}=\left(x_{1}^{\prime}, \cdots, x_{k}^{\prime}\right)$. Let $\Delta\left(d, d^{\prime}\right)=\left\{j \in[k]: x_{j} \neq\right.$ $\left.x_{j}^{\prime}\right\}$. The decision d^{\prime} is a potential rival of d if

- $\Delta\left(d, d^{\prime}\right) \neq \emptyset$;
- for $j_{1}<j_{2}<j_{3},\left\{j_{1}, j_{3}\right\} \subseteq \Delta\left(d, d^{\prime}\right)$ implies $j_{2} \in \Delta\left(d, d^{\prime}\right)$;
- for $i \in \Delta\left(d, d^{\prime}\right)$, either $x_{i}<x_{i}^{\prime}$ or $x_{i}^{\prime}<x_{i}$.

If d^{\prime} further satisfies

$$
\left|\left\{i \in S: d^{\prime} \prec_{i} d\right\}\right|<\left|\left\{i \in S: d \prec_{i} d^{\prime}\right\}\right|,
$$

then d^{\prime} is a simple rival of d. Figure 1 gives an example.
Proposition 2 (Hajduková [11]). For an instance (S, k, P_{S}), an S / k-decision d is a Condorcet winner if and only if d is envy-free and has no simple rival.

Note that a decision with no simple rival may not be envy-free (Figure 2). Hajduková's verification algorithm was developed based on Proposition 2. The envy-freeness can be verified in a straightforward manner, while determining the existence of a simple rival needs a careful counting on the gain and loss of the votes, as shown in Section 3.

Figure 1: An envy-free decision d with $d_{L}=(5,21,45)$. Decision d has a simple rival which is an envy-free decision d^{\prime} with $d_{L}^{\prime}=(21,42,47)$.

$$
\text { decision } d=((5,\{3,4,5,6\}),(12,\{7,10,12,14,16\}))
$$

Figure 2: A non-envy-free decision d with no simple rival. Decision d is not a Condorcet winner since more voters prefer decision $d^{\prime}=((5,\{3,4,5,6,7\}),(12,\{10,12,14,16\})$ to d.

3 The score of a decision

Consider the instance $\left(S, k, P_{S}\right)$. For two S / k-decisions d and d^{\prime}, let

$$
N\left(d^{\prime}, d\right)=\left|\left\{i \in S: d \prec_{i} d^{\prime}\right\}\right| .
$$

The margin of d^{\prime} with respect to d is defined as

$$
N_{d}\left(d^{\prime}\right)=N\left(d^{\prime}, d\right)-N\left(d, d^{\prime}\right)
$$

Let $d_{L}=\left(x_{1}, \cdots, x_{k}\right)$. Assume that $x_{0}=-\infty$ and $x_{k+1}=\infty$. For $0 \leq i \leq k$, let

$$
\left.N_{d}\left(d^{\prime}\right)\right|_{i}=\left|\left\{j \in S: p_{j} \in\left(x_{i}, x_{i+1}\right), d \prec_{j} d^{\prime}\right\}\right|-\left|\left\{j \in S: p_{j} \in\left(x_{i}, x_{i+1}\right), d^{\prime} \prec_{j} d\right\}\right| .
$$

Then we have

$$
\begin{equation*}
N_{d}\left(d^{\prime}\right)=\left.\sum_{i=0}^{k} N_{d}\left(d^{\prime}\right)\right|_{i}-\left|P_{S} \cap\left(d_{L} \backslash d_{L}^{\prime}\right)\right| \tag{1}
\end{equation*}
$$

Assume that d^{*} is an S / k-decision that maximizes $N_{d}(\cdot)$. Obviously, d is a Condorcet winner if and only if $N_{d}\left(d^{*}\right) \leq 0$.

Lemma 1. For $x<x^{\prime}<z^{\prime}<z$, the following statements are equivalent.

- $\left|x^{\prime}-z^{\prime}\right| \leq|x-z| / 2$.
- There is a point y such that any point w in $\left(x^{\prime}, z^{\prime}\right)$ satisfies $x \prec_{w} y$ and $z \prec_{w} y$.

Proof. Omitted.

With Lemma 1, we may compute $N_{d}\left(d^{*}\right)$ as follows. Note that by deploying the two facilities at $x_{i}+\epsilon$ and $x_{i+1}-\epsilon$, each voter in the interval prefers d^{*} to d.

Observation 1. There are at most two facilities of d^{*} in the interval $\left(x_{i}, x_{i+1}\right)$, for $0 \leq$ $i \leq k$.

For an instance $\left(S, k, P_{S}\right)$, we define the following scoring functions, c, f, g^{+}, and g^{-}.

$$
\begin{aligned}
c(x, y) & =\left|P_{S} \cap(x, y)\right| \\
f(x, z) & =\max \left\{c\left(\frac{x+y}{2}, \frac{y+z}{2}\right): y \in(x, z)\right\} \\
g^{+}(x, z) & =\max \left\{c\left(\frac{x+y}{2}, \frac{y+z}{2}\right)-c\left(x, \frac{x+y}{2}\right): y \in(x, z)\right\} \\
g^{-}(x, z) & =\max \left\{c\left(\frac{x+y}{2}, \frac{y+z}{2}\right)-c\left(\frac{y+z}{2}, z\right): y \in(x, z)\right\} .
\end{aligned}
$$

Since S is finite, the above functions are well-defined. With Observation $1,\left.N_{d}\left(d^{*}\right)\right|_{i}$ is determined as follows.

Proposition 3. Given an instance $\left(S, k, P_{S}\right)$ and an S / k-decision d with $d_{L}=\left(x_{1}, \ldots, x_{k}\right)$, let d^{*} be an S / k-decision that maximizes $N_{d}(\cdot)$. For $0 \leq i \leq k$, if $\left|\left\{x_{i}, x_{i+1}\right\} \cap d_{L}^{*}\right|=0$, then

$$
\left.N_{d}\left(d^{*}\right)\right|_{i}= \begin{cases}-c\left(x_{i}, x_{i+1}\right), & \text { if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=0 \\ 2 f\left(x_{i}, x_{i+1}\right)-c\left(x_{i}, x_{i+1}\right), & \text { if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=1 \\ c\left(x_{i}, x_{i+1}\right), & \text { if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=2\end{cases}
$$

Proposition 4. Given an instance $\left(S, k, P_{S}\right)$ and an S / k-decision $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$, let d ${ }^{*}$ be an S / k-decision that maximizes $N_{d}(\cdot)$. For $0 \leq i \leq k$, if $\left|\left\{x_{i}, x_{i+1}\right\} \cap d_{L}^{*}\right|=1$, then

$$
\left.N_{d}\left(d^{*}\right)\right|_{i}= \begin{cases}-n_{i}^{+} \text {or }-n_{i+1}^{-}, & \text {if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=0 \\ g^{+}\left(x_{i}, x_{i+1}\right) \text { or } g^{-}\left(x_{i}, x_{i+1}\right), & \text { if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=1 \\ c\left(x_{i}, x_{i+1}\right), & \text { if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=2\end{cases}
$$

where $n_{i}^{-}=\left|\left\{j \in S_{i}: p_{j}<x_{i}\right\}\right|$ and $n_{i}^{+}=\left|\left\{j \in S_{i}: p_{j}>x_{i}\right\}\right|$.
Proposition 5. Given an instance $\left(S, k, P_{S}\right)$ and an S / k-decisiond with $d_{L}=\left(x_{1}, \ldots, x_{k}\right)$, let d^{*} be an S / k-decision that maximizes $N_{d}(\cdot)$. For $0 \leq i \leq k$, if $\left|\left\{x_{i}, x_{i+1}\right\} \cap d_{L}^{*}\right|=2$, then

$$
\left.N_{d}\left(d^{*}\right)\right|_{i}= \begin{cases}0, & \text { if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=0 \\ f\left(x_{i}, x_{i+1}\right), & \text { if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=1 \\ c\left(x_{i}, x_{i+1}\right), & \text { if }\left|d_{L}^{*} \cap\left(x_{i}, x_{i+1}\right)\right|=2\end{cases}
$$

Propositions 3,4 , and 5 enable us to compute the maximum of $N_{d}(\cdot)$ by dynamic programming, as shown in Section 5. To find a Condorcet winner, we reduce the number of decisions to be tested. An essential observation is derived from the scoring functions.

Observation 2. Given that x is fixed, $f(x, z)$ is nondecreasing on z. Conversely, given x and $f(x, z)=\tau, z$ is bounded above depending on x and τ.

4 Bounding the position of a facility

To efficiently verify whether a decision is Condorcet, Hajduková further gave some necessary conditions. For a Condorcet winner $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ of an instance $\left(S, k, P_{S}\right), d$ satisfies

- $\forall_{i, j \in[k]}| | S_{i}\left|-\left|S_{j}\right|\right| \leq 2$.

Figure 3: A Condorcet winner of instance ($[8], 3,\{3,5,7,12,17,21,23,25\}$). The decision d with $d_{A}=(\{1,2,3\},\{4,5\},\{6,7,8\})$ and $d_{L}=\left(x_{1}, x_{2}, x_{3}\right)$ is a Condorcet winner. As shown in Section $4,12<x_{2}<17$. Since neither $x_{2} \neq 12$ nor $x_{2} \neq 17, x_{2}$ is singular.

Figure 4: A community S_{i}. In this example, $n_{i}^{-}=2$ and $n_{i}^{+}=3$

- $\forall_{i \in[k]}\left|S_{i}\right| \neq \min \left\{\left|S_{j}\right|: j \in[k]\right\} \Longrightarrow x_{i} \in P_{S}$.

In the remainder of this section, we assume that the decisions under consideration satisfy the above two conditions. Along with the internal consistency, we call such decisions regular decisions. For a Condorcet winner, the property of being regular guarantees that facilities coincide with some voters, except those belonging to the communities whose size is even and minimum. We call such a community S_{h} singular, i.e. $\left|S_{h}\right|=\min \left\{|T|: T \in d_{A}\right\}$ and $\left|S_{h}\right|$ is even. The facility x_{h} is referred to as a singular facility. Note that it is possible for a Condorcet winner to have singular facilities. See Figure 3 for an example.

Below are some notations, illustrated in Figure 4. Given a decision $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$, we denote the median of S_{i} by $\operatorname{med}\left(S_{i}\right)$, and for $i \in[k]$ we define the following.

- v_{i}^{+}and v_{i}^{-}are the minimal and maximal element of S_{i}, respectively.
- $n_{i}^{-}=\left|\left\{j \in S_{i}: p_{j}<x_{i}\right\}\right|$ and $n_{i}^{+}=\left|\left\{j \in S_{i}: p_{j}>x_{i}\right\}\right|$.
- $x_{i}^{-}=\max \left\{j \in S_{i}: p_{j}<x_{i}\right\}$ and $x_{i}^{+}=\min \left\{j \in S_{i}: p_{j}>x_{i}\right\}$.
- $m_{i}^{-}=\max \left\{j \in S_{i}: j \leq \operatorname{med}\left(S_{i}\right)\right\}$ and $m_{i}^{+}=\min \left\{j \in S_{i}: j \geq \operatorname{med}\left(S_{i}\right)\right\}$.

Let S_{h} be a singular community. If $h=1$, then moving x_{h} to $p_{m_{h}^{+}}$keeps the property of being a Condorcet winner.

Lemma 2. Let $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ be a Condorcet winner of $\left(S, k, P_{S}\right)$, where $p_{m_{1}^{-}}<x_{1}<$ $p_{m_{1}^{+}}$. If $d^{\prime}=\left(\left(x_{i}^{\prime}, S_{i}\right)\right)_{i=1}^{k}$ with

$$
x_{i}^{\prime}= \begin{cases}p_{m_{1}^{+}}, & \text {if } i=1 \\ x_{i}, & \text { otherwise },\end{cases}
$$

then d^{\prime} is a Condorcet winner of $\left(S, k, P_{S}\right)$.

Proof. Suppose to the contrary that d^{\prime} is not a Condorcet winner. First, d^{\prime} is envy-free since otherwise d is not a Condorcet winner. By Proposition 2, there is a simple rival of d^{\prime}. Let $d^{\prime \prime}$ be a decision that maximizes $N_{d^{\prime}}(\cdot)$. Since $P_{S} \cap\left(x_{1}, x_{1}^{\prime}\right)=\emptyset$, we may assume that $d_{L}^{\prime \prime} \cap\left[x_{1}, x_{1}^{\prime}\right)=\emptyset$. Then, we claim that $N_{d^{\prime}}\left(d^{\prime \prime}\right) \leq N_{d}\left(d^{*}\right)$, where d^{*} is a decision modified from $d^{\prime \prime}$.

Since $\Delta\left(d, d^{\prime}\right)=\{1\},\left.N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{i} \neq\left. N_{d}\left(d^{\prime \prime}\right)\right|_{i}$ implies $i=0$ or $i=1$. For $i=0$ or $x_{i}^{\prime} \notin d_{L}^{\prime \prime},\left|\left\{x_{i}, x_{i+1}\right\} \cap d_{L}^{\prime \prime}\right| \leq 1$. In this case, let $d^{*}=d^{\prime \prime}$, and by Propositions 3 and 4 $\left.N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{i}=\left.N_{d}\left(d^{\prime \prime}\right)\right|_{i}$.

For $i=1$ and $x_{i}^{\prime} \in d_{L}^{\prime \prime}$, either $\left|\left\{x_{i}^{\prime}, x_{i+1}\right\} \cap d_{L}^{\prime \prime}\right|=1$ or $\left|\left\{x_{i}^{\prime}, x_{i+1}\right\} \cap d_{L}^{\prime \prime}\right|=2$. From $d_{L}^{\prime \prime}$, we replace x_{1}^{\prime} with x_{1}, and let d^{*} be an envy-free decision with this set of facilities. By Propositions 4 and 5 it can be derived that $\left.N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{1} \leq\left. N_{d}\left(d^{*}\right)\right|_{1}$.

Thus, the claim follows, and

$$
0<N_{d^{\prime}}\left(d^{\prime \prime}\right) \leq N_{d}\left(d^{*}\right) \leq 0
$$

which is a contradiction.
Remark 1. Because of symmetry, x_{k} can be deployed at $p_{m_{k}^{-}}$.
For $1<h<k$, we show that x_{h} can be determined, depending on x_{h-1} and d_{A}. Let d^{\prime} be a decision with $\Delta\left(d, d^{\prime}\right)=\{h\}$. Assume that $x_{h}^{\prime}=b_{h}$, where the value b_{h} is to be determined. For a potential rival $d^{\prime \prime}$ of d^{\prime} which maximizes $N_{d^{\prime}}(\cdot)$, we show that $d^{\prime \prime}$ can be modified as a decision d^{*} so that $N_{d^{\prime}}\left(d^{\prime \prime}\right) \leq N_{d}\left(d^{*}\right)$. Then d is a Condorcet winner implies that d^{\prime} is also a Condorcet winner. It is clear that $\left.N_{d^{\prime}}(\cdot)\right|_{i} \leq\left. N_{d}(d)\right|_{i}$ for $i \neq h-1$. Consider $\left.N_{d^{\prime}}\left(d^{*}\right)\right|_{h-1}$. By Propositions 3, 4, and 5, this partial margin depends on $f\left(x_{h-1}, x_{h}\right)$, $g^{+}\left(x_{h-1}, x_{h}\right)$, or $g^{-}\left(x_{h-1}, x_{h}\right)$. In the following, we show how Observation 2 enables us to ensure the property of having no simple rival.

4.1 Scoring functions with respect to a Condorcet winner

We intend to give an upper bound on a singular facility of a Condorcet winner, where the upper bound depends on the scoring functions and a predecessor. First, we show that in a Condorcet winner, $f\left(x_{h-1}, x_{h}\right)$ depends on x_{h-1} and d_{A} only.

Lemma 3. Let $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ be a Condorcet winner of $\left(S, k, P_{S}\right)$. For $1<h<k$, if x_{h} is singular and $\left|S_{h}\right|<\left|S_{h-1}\right|$, then

$$
f\left(x_{h-1}, x_{h}\right)=n_{h-1}^{+}
$$

Proof. Clearly $f\left(x_{h-1}, x_{h}\right) \geq n_{h-1}^{+}$since by moving x_{h-1} to $x_{h-1}+\epsilon$, there are n_{h-1}^{+}voters prefer the newly deployed facility to the original one.

Suppose to the contrary that $f\left(x_{h-1}, x_{h}\right)>n_{h-1}^{+}$. If $\left|S_{h-1}\right|$ is odd, then $n_{h-1}^{+}+1=$ $\left(\left|S_{h-1}\right|+1\right) / 2$. By moving x_{h-1} and x_{h} towards right, a decision d^{\prime} can be constructed with $N\left(d^{\prime}, d\right) \geq\left(n_{h-1}^{+}+1\right)+\left|S_{h}\right| / 2=\left(\left|S_{h-1}\right|+\left|S_{h}\right|+1\right) / 2$. If $\left|S_{h-1}\right|$ is even and $x_{h-1}=p_{m_{h-1}^{-}}$, then $n_{h-1}^{+}+1=\left|S_{h-1}\right| / 2+1$. By moving x_{h-1} and x_{h} towards right, a decision d^{\prime} can be constructed with $N\left(d^{\prime}, d\right) \geq\left(n_{h-1}^{+}+1\right)+\left|S_{h}\right| / 2=\left(\left|S_{h-1}\right|+\left|S_{h}\right|\right) / 2+1$. If $\left|S_{h-1}\right|$ is even and $x_{h-1}=p_{m_{h-1}^{+}}$, then $n_{h-1}^{+}+1=\left|S_{h-1}\right| / 2$. By moving x_{h-1} and x_{h} towards left, a decision d^{\prime} can be constructed with $N\left(d^{\prime}, d\right) \geq\left|S_{h-1}\right| / 2+\left(n_{h-1}^{+}+1\right)=\left|S_{h-1}\right|$.

In all three cases, we have $N\left(d^{\prime}, d\right)+N\left(d, d^{\prime}\right)=\left|S_{h-1}\right|+\left|S_{h}\right|$ and $N\left(d^{\prime}, d\right)>\left(\left|S_{h-1}\right|+\right.$ $\left.\left|S_{h}\right|\right) / 2$. Hence, we know that $N\left(d^{\prime}, d\right)>N\left(d, d^{\prime}\right)$, which contradicts that d is a Condorcet winner.

A similar argument as in the proof of Lemma 3 can be applied to derive $f\left(x_{h-1}, x_{h}\right)$ for $\left|S_{h}\right|=\left|S_{h-1}\right|$. The result is stated in Lemma 4.
Lemma 4. Let $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ be a Condorcet winner of $\left(S, k, P_{S}\right)$. For $1<h<k$, if x_{h} is singular and $\left|S_{h}\right|=\left|S_{h-1}\right|$, then

$$
f\left(x_{h-1}, x_{h}\right)=\left|S_{h}\right| / 2
$$

Proof. Omitted.

By Lemmas 3 and 4, once x_{h-1} and d_{A} are given, the scoring function $f\left(x_{h-1}, x_{h}\right)$ can be determined. Recall from Observation 2 that x_{h} can be bounded above by given x_{h-1} and $f\left(x_{h-1}, x_{h}\right)$. When the regular decision under consideration is fixed, for $1<h<k$ such that S_{h} is singular, we define

$$
\tau(h)= \begin{cases}n_{h-1}^{+}, & \text {if }\left|S_{h}\right|<\left|S_{h-1}\right| \\ \left|S_{h}\right| / 2, & \text { otherwise }\end{cases}
$$

In addition, let

$$
\sigma_{h}=\min \left\{p_{j}-p_{i}: 1 \leq i<j \leq|S|,\left\{p_{i}, p_{j}\right\} \subseteq\left(x_{h-1}, p_{m_{h}^{+}}\right), j-i=\tau(h)\right\}
$$

Below we give upper bounds on x_{h}. The first two result from the property of having no simple rival.

Lemma 5. Let $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ be a Condorcet winner of $\left(S, k, P_{S}\right)$. For $1<h<k$, we have

$$
\left(x_{h}-x_{h-1}\right) / 2 \leq \sigma_{h}
$$

Proof. Omitted.
Lemma 6. Let $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ be a Condorcet winner of $\left(S, k, P_{S}\right)$. For $1<h<k$, if x_{h} is singular, then

$$
\left(x_{h}-x_{h-1}\right) / 2 \leq p_{m_{h}^{-}}-p_{v_{h-1}^{+}}
$$

Proof. Suppose to the contrary that $p_{m_{h}^{-}}-p_{v_{h-1}^{+}}<\left(x_{h}-x_{h-1}\right) / 2$. Since $x_{h}>p_{m_{h}^{-}}$, we have $x_{h}^{-}=m_{h}^{-}$. It follows that $p_{x_{h}^{-}}-p_{v_{h-1}^{+}}<\left(x_{h}-x_{h-1}\right) / 2$, and by Lemma 1 there is a point y such that the $1+n_{h}^{-}$voters in $\left[p_{v_{h-1}^{+}}, p_{x_{h}^{-}}\right]$prefer y to x_{h-1} and to x_{h}. Since $p_{m_{h}^{-}}<x_{h}$, we have $n_{h}^{+} \leq\left|S_{h}\right| / 2=n_{h}^{-}$. By moving x_{h} to y, we have a simple rival of d, which leads to a contradiction.

The last bound on singular facility x_{h} results from the envy-freeness of a decision.
Lemma 7. Let $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ be a decision of $\left(S, k, P_{S}\right)$. If d is envy-free, then for $1<i<k$

$$
x_{i} \leq 2 p_{v_{i}^{-}}-x_{i-1} .
$$

By Lemmas 5, 6 and 7, for a Condorcet winner $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$, if x_{h} is singular, then there is an upper bound b_{h}, derived as

$$
\begin{equation*}
b_{h}=\min \left\{x_{h-1}+2 \min \left\{\sigma_{h}, p_{m_{h}^{-}}-p_{v_{h-1}^{+}}\right\}, 2 p_{v_{h}^{-}}-x_{h-1}\right\} . \tag{2}
\end{equation*}
$$

4.2 A dominant decision

Given an instance $\left(S, k, P_{S}\right)$, let $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ and $d^{\prime}=\left(\left(x_{i}^{\prime}, S_{i}\right)\right)_{i=1}^{k}$ such that $\Delta\left(d, d^{\prime}\right)=$ $\{h\}$. If S_{h} is singular and $x_{h}<x_{h}^{\prime} \leq \min \left\{b_{h}, p_{m_{h}^{+}}\right\}$, we claim that the existence of a simple rival of d^{\prime} results in a simple rival of d. We assume that $\left|S_{h}\right|<\left|S_{h-1}\right|$, and leave the case $\left|S_{h}\right|=\left|S_{h-1}\right|$ to Appendix A.

Consider the scoring functions. By definition, we have

- $c\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=c\left(x_{h-1}, x_{h}\right)$
- $c\left(x_{h}^{\prime}, x_{h+1}^{\prime}\right) \leq c\left(x_{h}, x_{h+1}\right)$
- $f\left(x_{h}^{\prime}, x_{h+1}^{\prime}\right) \leq f\left(x_{h}, x_{h+1}\right)$
- $g^{+}\left(x_{h}^{\prime}, x_{h+1}^{\prime}\right) \leq g^{+}\left(x_{h}, x_{h+1}\right)$
- $g^{-}\left(x_{h}^{\prime}, x_{h+1}^{\prime}\right) \leq g^{-}\left(x_{h}, x_{h+1}\right)$.

It remains to consider the relations between $f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$ and $f\left(x_{h-1}, x_{h}\right), g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$ and $g^{+}\left(x_{h-1}, x_{h}\right)$, and $g^{-}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$ and $g^{-}\left(x_{h-1}, x_{h}\right)$.

Lemma 8. $f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=f\left(x_{h-1}, x_{h}\right)$.
Proof. By definition we have

$$
f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right) \geq f\left(x_{h-1}, x_{h}\right)
$$

To show that $f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$ is upper bounded by $f\left(x_{h-1}, x_{h}\right)$, recall the definition of x_{h}^{\prime}. It can be derived that

$$
\left(x_{h}^{\prime}-x_{h-1}^{\prime}\right) / 2 \leq \sigma_{h},
$$

which implies

$$
f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right) \leq \tau(h)
$$

Moreover, since x_{h} is a location of a singular facility, by Lemmas 3 and 4, we have

$$
\tau(h)=f\left(x_{h-1}, x_{h}\right)
$$

Lemma 9. $g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=g^{+}\left(x_{h-1}, x_{h}\right)$.
Proof. By definition, we have

$$
n_{h-1}^{+} \leq g^{+}\left(x_{h-1}, x_{h}\right) \leq g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right) \leq f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)
$$

and by Lemma 3, we have

$$
f\left(x_{h-1}, x_{h}\right)=n_{h-1}^{+} .
$$

Along with Lemma 8, the equalities hold.

Lemma 10. $g^{-}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=g^{-}\left(x_{h-1}, x_{h}\right)$.
Proof. By definition,

$$
f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right) \geq g^{-}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right) \geq g^{-}\left(x_{h-1}, x_{h}\right) \geq\left|S_{h}\right| / 2
$$

Since d is regular and is a Condorcet winner,

$$
f\left(x_{h-1}, x_{h}\right) \leq\left\lceil c\left(x_{h-1}, x_{h}\right) / 2\right\rceil \leq\left|S_{h}\right| / 2+1
$$

Along with Lemma 8, we have $f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right) \leq\left|S_{h}\right| / 2+1$. It follows that $g^{-}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=$ $\left|S_{h}\right| / 2+1$ only if $p_{m_{h}^{-}}-p_{v_{h-1}^{+}}<\left(x_{h}^{\prime}-x_{h-1}^{\prime}\right) / 2$. This implies that $p_{m_{h}^{-}}-p_{v_{h-1}^{+}}<\left(b_{h}-x_{h-1}^{\prime}\right) / 2$, which is a contradiction.

Remark 2. For $\left|S_{h-1}\right|=\left|S_{h}\right|$, all inequalities mentioned above hold except that for g^{+}. It is possible that $g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=g^{+}\left(x_{h-1}, x_{h}\right)+1$. For a simple rival $d^{\prime \prime}$ of d^{\prime}, if $\left.N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{h-1}=$ $g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$, we can modify $d^{\prime \prime}$ to be d^{*} so that $\left.N_{d}\left(d^{*}\right)\right|_{h-1} \geq g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$. Details are given in Appendix A.

Theorem 1. Given an instance $\left(S, k, P_{S}\right)$, let $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ and $d^{\prime}=\left(\left(x_{i}^{\prime}, S_{i}\right)\right)_{i=1}^{k}$ be two regular decisions such that $\Delta\left(d, d^{\prime}\right)=\{h\}$. If S_{h} is singular and $p_{m_{h}^{-}}<x_{h}<x_{h}^{\prime} \leq$ $\min \left\{b_{h}, p_{m_{h}^{+}}\right\}$, then d is a Condorcet winner implies that d^{\prime} is a Condorcet winner.
Proof. (sketch) Suppose to the contrary that d is a Condorcet winner but d^{\prime} is not. We may assume that d^{\prime} has a simple rival because the envy-freeness follows from Lemma 7 and the envy-freeness of d. Let $d^{\prime \prime}=\left(\left(x_{i}^{\prime \prime}, S_{i}^{\prime \prime}\right)\right)_{i=1}^{k}$ be a simple rival of d^{\prime} which maximizes $N_{d^{\prime}}(\cdot)$. By Eq (1),

$$
N_{d^{\prime}}\left(d^{\prime \prime}\right)=\left.\sum_{i=0}^{k} N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{i}-\left|P_{S} \cap\left(d_{L}^{\prime} \backslash d_{L}^{\prime \prime}\right)\right|
$$

Let d^{*} be an envy-free decision such that

$$
x_{i}^{*}= \begin{cases}x_{i}^{\prime \prime}, & \text { if } x_{i}^{\prime \prime} \neq x_{h}^{\prime} \\ x_{h}, & \text { otherwise }\end{cases}
$$

If $\left|S_{h-1}\right|>\left|S_{h}\right|$, by Lemmas 5,6 , and 7 , for $0 \leq i \leq k$ it can be derived from Propositions 3,4 , and 5 that

$$
\left.N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{i} \leq\left. N_{d}\left(d^{*}\right)\right|_{i}
$$

(with an exception indicated in Remark 3). In addition, $x_{h} \notin P_{S}$ implies $\left|P_{S} \cap\left(d_{L} \backslash d_{L}^{*}\right)\right| \leq$ $\left|P_{S} \cap\left(d_{L}^{\prime} \backslash d_{L}^{\prime \prime}\right)\right|$. It follows that

$$
0<\left.\sum_{i=0}^{k} N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{i}-\left|P_{S} \cap\left(d_{L}^{\prime} \backslash d_{L}^{\prime \prime}\right)\right| \leq\left.\sum_{i=0}^{k} N_{d}\left(d^{*}\right)\right|_{i}-\left|P_{S} \cap\left(d_{L} \backslash d_{L}^{*}\right)\right| \leq 0
$$

which is a contradiction. For $\left|S_{h-1}\right|=\left|S_{h}\right|$, as noted in Remark 2, a contradiction can also be derived.

Remark 3. The strict inequality $c\left(x_{h}^{\prime}, x_{h+1}^{\prime}\right)<c\left(x_{h}, x_{h+1}\right)$ implies $c\left(x_{h}^{\prime}, x_{h+1}^{\prime}\right)+1=$ $c\left(x_{h}, x_{h+1}\right)$. However, in this case $P_{S} \cap\left(d_{L} \backslash d_{L}^{*}\right)$ is a proper subset of $P_{S} \cap\left(d_{L}^{\prime} \backslash d_{L}^{\prime \prime}\right)$.
Theorem 1 leads to the following result.
Corollary 1. Let d be a Condorcet winner of an instance (S, k, P_{S}). There is a Condorcet winner d^{\prime} with $d_{A}^{\prime}=d_{A}$ and $d_{L}^{\prime} \subseteq\left\{p_{m_{h}^{-}}, p_{m_{h}^{+}}, b_{h}: h \in[k]\right\}$.
For the example given in Figure 3, we let $x_{2}=b_{2}=\min \{15,19\}=15$. This decision is a Condorcet winner. Note that there are a right rival and a left rival for $x_{2}=12$ and $x_{2}=17$, respectively.

5 Algorithm

Based on Corollary 1, for an instance (S, k, P_{S}) one may implement the following procedure to determine the existence of a Condorcet winner.

1. Enumerate all k-partitions of a given instance.
2. For each k-partition, enumerate all deployments of facilities from

$$
\left\{p_{m_{h}^{-}}, p_{m_{h}^{+}}, b_{h}: h \in[k]\right\}
$$

3. For a chosen decision, verify if it is a Condorcet winner.

For a Condorcet winner d, since d is regular, we have $\left|\left|S_{i}\right|-\left|S_{j}\right|\right| \leq 2$ for $\{i, j\} \subseteq[k]$, and thus the number of k-partitions is of $O\left(3^{k}\right)$. Step 2 shows that the number of possible deployments of facilities is at most 3^{k}, given a k-partition. Let $T(n, k)$ be the time complexity for verifying if a decision is a Condorcet winner, where $n=|S|$. We have that a Condorcet winner can be computed in $O\left(3^{2 k} \cdot T(n, k)\right)$ time if it exists.

To verify if a decision $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ is a Condorcet winner, we propose an algorithm based on dynamic programming. The envy-freeness of a decision can easily be checked. To determine if there is a simple rival of decision d, we compute the maximum of $N_{d}(\cdot)$ recursively as follows. Because of symmetry, we show how $N_{d}\left(d^{\prime}\right)$ is computed for d^{\prime} being a right rival of d.

Let $\operatorname{Margin}(i, j)$ be the margin that is the optimum of

$$
\begin{array}{ll}
\operatorname{maximize} & N_{d}\left(d^{\prime}\right) \\
\text { subject to } & d^{\prime} \text { is a right rival of } d \\
& \Delta\left(d, d^{\prime}\right)=\{i, i+1, \ldots, j\}
\end{array}
$$

For $1 \leq i \leq m<j$ and $\ell \leq m-i+1$, let $s(i, m, \ell, \mathrm{ub})$ be the maximum results from deploying ℓ facilities in $\left(x_{i}, x_{m+1}\right.$], with the restriction that one of the facilities coincides with x_{m+1} if $\mathrm{ub}=$ TRUE. Let

$$
\delta_{i}= \begin{cases}1, & \text { if } x_{i} \in P_{S} \\ 0, & \text { otherwise }\end{cases}
$$

By Propositions 3, 4 and 5, we have the following recursive formulae.

$$
\begin{aligned}
s(i, m, \ell, \text { TRUE })=\max \{ & s(i, m-1, \ell-1, \text { FALSE })-n_{m}^{+}, \\
& s(i, m-1, \ell-2, \text { FALSE })+g^{+}\left(x_{m}, x_{m+1}\right), \\
& s(i, m-1, \ell-3, \text { FALSE })+c\left(x_{m}, x_{m+1}\right), \\
& s(i, m-1, \ell-1, \text { TRUE }), \\
& s(i, m-1, \ell-2, \text { TRUE })+f\left(x_{m}, x_{m+1}\right), \\
& \left.s(i, m-1, \ell-3, \text { TRUE })+c\left(x_{m}, x_{m+1}\right)\right\} .
\end{aligned}
$$

$$
\begin{aligned}
s(i, m, \ell, \text { FALSE })=\max \{ & s(i, m-1, \ell, \text { FALSE })-c\left(x_{m}, x_{m+1}\right)-\delta_{m+1}, \\
& s(i, m-1, \ell-1, \text { FALSE })+2 f\left(x_{m}, x_{m+1}\right)-c\left(x_{m}, x_{m+1}\right)-\delta_{m+1}, \\
& s(i, m-1, \ell-2, \text { FALSE })+c\left(x_{m}, x_{m+1}\right)-\delta_{m+1}, \\
& s(i, m-1, \ell, \text { TRUE })-n_{m+1}^{-}-\delta_{m+1}, \\
& s(i, m-1, \ell-1, \text { TRUE })+g^{-}\left(x_{m}, x_{m+1}\right)-\delta_{m+1}, \\
& \left.s(i, m-1, \ell-2, \text { TRUE })+c\left(x_{m}, x_{m+1}\right)-\delta_{m+1}\right\} .
\end{aligned}
$$

If $i<j<k$,

$$
\begin{aligned}
\operatorname{Margin}(i, j)=\max \{ & s(i, j-1, j-i, \text { FALSE })+g^{+}\left(x_{j}, x_{j+1}\right), \\
& s(i, j-1, j-i-1, \text { FALSE })+c\left(x_{j}, x_{j+1}\right), \\
& s(i, j-1, j-i, \text { TRUE })+f\left(x_{j}, x_{j+1}\right), \\
& \left.s(i, j-1, j-i-1, \text { TRUE })+c\left(x_{j}, x_{j+1}\right)\right\} .
\end{aligned}
$$

If $i<j=k$,

$$
\begin{array}{r}
\operatorname{Margin}(i, j)=\max \left\{s(i, j-1, j-i, \mathrm{FALSE})+n_{j}^{+}\right. \\
\left.s(i, j-1, j-i, \mathrm{TRUE})+n_{j}^{+}\right\}
\end{array}
$$

The terminal conditions hold when $\ell=0$ or $i=m$, namely

$$
\begin{gathered}
s(i, m, 0, \mathrm{ub})= \begin{cases}-\sum_{y=i}^{m}\left|S_{y}\right|-n_{m+1}^{-}-\delta_{m+1}, & \text { if ub }=\text { FALSE } \\
-\infty, & \text { if ub }=\text { TRUE }\end{cases} \\
s(i, i, \ell, \mathrm{ub})= \begin{cases}-n_{i}^{-}+2 f\left(x_{i}, x_{i+1}\right)-c\left(x_{i}, x_{i+1}\right)-\delta_{i}-\delta_{i+1}, & \text { if } \ell=1 \text { and ub }=\text { FALSE } \\
-\left|S_{i}\right|, & \text { if } \ell=1 \text { and ub }=\text { TRUE } \\
-\infty, & \text { if } \ell \geq 2 .\end{cases} \\
\operatorname{Margin}(i, j)= \begin{cases}-n_{i}^{-}+g^{+}\left(x_{i}, x_{i+1}\right)-\delta_{i}, & \text { if } i=j<k \\
-n_{i}^{-}+n_{i}^{+}-\delta_{i}, & \text { if } i=j=k .\end{cases}
\end{gathered}
$$

Remark 4. By reversing the x-axis, the recursive formulae given above are applied to derive $N_{d}\left(d^{\prime}\right)$ for d^{\prime} being a left rival of d. For convenience, we use Margin' and s^{\prime} to differentiate.

Decision d has a simple rival if and only if

$$
\max _{1 \leq i \leq j \leq k} \operatorname{Margin}(i, j)>0 \quad \text { or } \quad \max _{1 \leq i \leq j \leq k} \operatorname{Margin}^{\prime}(i, j)>0 .
$$

For $0 \leq i \leq k$, the values $n_{i}^{-}, n_{i}^{+}, f\left(x_{i}, x_{i+1}\right), c\left(x_{i}, x_{i+1}\right), g^{+}\left(x_{i}, x_{i+1}\right)$, and $g^{-}\left(x_{i}, x_{i+1}\right)$ can be computed in $O(n)$ time. With this preprocessing, the computation can be done in $O\left(k^{3}\right)$ time, using dynamic programming. Thus, $T(n, k) \in O\left(n+k^{3}\right)$.

Theorem 2. Given an instance $\left(S, k, P_{S}\right)$, determining whether a Condorcet winner exists takes $O\left(3^{2 k}\left(n+k^{3}\right)\right)$ time, where $n=|S|$. Moreover, a Condorcet winner can be computed if it exists.

Note that the number of k-partitions is not of $\Omega\left(3^{2 k}\right)$, as to $k=n$ the n-partition is unique.

Acknowledgments

The authors thank the anonymous reviewers of COMSOC 2018 for valuable comments. Hung-Lung Wang was supported in part by MOST grants 106-2221-E-141-002-MY3.

References

[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn: Popular Matchings, SIAM J. Comput. 37 (2007) 1030-1045.
[2] H.J. Bandelt, Networks with Condorcet solutions, Eur. J. Oper. Res. 20 (1985) 314-326.
[3] S. Barberà and C. Beviá, Self-selection consistent functions, J. Econ. Theory 105 (2002) 263-277.
[4] S. Barberà and C. Beviá, Locating public facilities by majority: Stability, Consistency and group formation, Games Econ. Behav. 56 (2006) 185-200.
[5] S. Barberá, B. Moreno: Top monotonicity: A common root for single peakedness, single crossing and the median voter result. Games and Econ. Behav. 73 (2011) 345-359.
[6] J. Chen, K. Pruhs, G. J. Woeginger: The one-dimensional Euclidean domain: Finitely many obstructions are not enough, arXiv:1506.03838.
[7] L. Chen, L. Chen, X. Deng, Q. Fang and F. Tian, Condorcet winners for public goods, Ann. Oper. Res. 137 (2005) 229-242.
[8] M. de Berg, J. Gudmundsson, M. Mehr: Faster Algorithms for Computing Plurality Points, Proc. 32nd Int. Symp. Computational Geometry (SoCG 2016), pp. 32:1-32:15.
[9] E. Elkind, P. Faliszewski: Recognizing 1-Euclidean preferences: an alternative approach. Proc. 7th Int. Symp. Algorithmic Game Theory (SAGT 2014), pp. 146-157.
[10] E. Elkind, M. Lackner, D. Peters: Preference restrictions in computational social choice: recent progress. Proc. 25 th Int. Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 4062-4064.
[11] J. Hajduková, Condorcet winner configurations of linear networks. Optimization 59 (2010) 461-475.
[12] P. Hansen and M. Labbé, Algorithms for voting and competitive location on a network, Trans. Sci. 22 (1988) 278-288.
[13] P. Hansen and J.F. Thisse, Outcomes of voting and planning: Condorcet, Weber and Rawls locations, J. Public. Econ. 16 (1981) 1-15.
[14] H. Hotelling: Stability in competition. Econ. J. 39 (1929) 41-57.
[15] V. Knoblauch: Recognizing one-dimensional Euclidean preference profiles, J. Math. Econ. 46 (2010) 1-5.
[16] M. Labbé, Outcomes of voting and planning in single facility location problems, Eur. J Oper. Res. 20 (1985) 299-313.
[17] Y.-W. Wu, W.-Y. Lin, H.-L. Wang and K.-M. Chao, Computing plurality points and Condorcet points in Euclidean space. In: Proc. Int. Symp. Algorithms and Computation (ISAAC 2013), pp. 688-698.

A Scoring functions for $\left|S_{h}\right|=\left|S_{h-1}\right|$

Consider two regular decisions $d=\left(\left(x_{i}, S_{i}\right)\right)_{i=1}^{k}$ and $d^{\prime}=\left(\left(x_{i}^{\prime}, S_{i}\right)\right)_{i=1}^{k}$. Assume that $\Delta\left(d, d^{\prime}\right)=\{h\}, S_{h}$ is singular and $p_{m_{h}^{-}}<x_{h}<x_{h}^{\prime} \leq \min \left\{b_{h}, p_{m_{h}^{+}}\right\}$.
Lemma 11. If $\left|S_{h-1}\right|=\left|S_{h}\right|$ and $d^{\prime \prime}$ is a decision such that $N_{d^{\prime}}\left(d^{\prime \prime}\right)>0$ and $\left.N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{h-1}=$ $g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$, then

$$
g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=g^{+}\left(x_{h-1}, x_{h}\right)+1 \Longrightarrow d \text { is not a Condorcet winner. }
$$

Proof. Since $\left|S_{h-1}\right|=\left|S_{h}\right|$ by definition

$$
\frac{\left|S_{h}\right|}{2}-1 \leq g^{+}\left(x_{h-1}, x_{h}\right) \leq g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right) \leq f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right) \leq \frac{\left|S_{h}\right|}{2}
$$

The assumption $g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=g^{+}\left(x_{h-1}, x_{h}\right)+1$ implies

$$
\begin{equation*}
g^{+}\left(x_{h-1}, x_{h}\right)=\frac{\left|S_{h}\right|}{2}-1 \tag{3}
\end{equation*}
$$

and

$$
g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=\frac{\left|S_{h}\right|}{2}
$$

Moreover, Eq. (3) holds only if $x_{h-1}=p_{m_{h-1}^{+}}$, which implies

$$
c\left(x_{h-1}, x_{h}\right)=\left|S_{h}\right|-1
$$

Along with Lemma 8, we have

$$
f\left(x_{h-1}, x_{h}\right)=f\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=\frac{\left|S_{h}\right|}{2}
$$

We claim that there is a decision d^{*} such that $N_{d}\left(d^{*}\right)>0$. Since $\left.N_{d^{\prime}}\left(d^{\prime \prime}\right)\right|_{h-1}=$ $g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$, we may assume that there is exactly one facility $x_{j}^{\prime \prime}$ belonging to $\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)$, and $x_{j+1}^{\prime \prime}$ coincides with x_{h}^{\prime}. If $\left|\left\{i \in S_{h}: x_{j}^{\prime \prime} \prec_{i} x_{j+1}^{\prime \prime}\right\}\right|=0$, then let d^{*} be a decision modified from $d^{\prime \prime}$ by moving $x_{j}^{\prime \prime}$ towards right properly. The difference on the margin satisfies

$$
N_{d}\left(d^{*}\right)-N_{d^{\prime}}\left(d^{\prime \prime}\right)=2 f\left(x_{h-1}, x_{h}\right)-c\left(x_{h-1}, x_{h}\right)+\frac{\left|S_{h}\right|}{2}-g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)>0
$$

Otherwise, move both $x_{j}^{\prime \prime}$ and $x_{j+1}^{\prime \prime}$ into $\left(x_{h-1}, x_{h}\right)$, and it follows that

$$
N_{d}\left(d^{*}\right)-N_{d^{\prime}}\left(d^{\prime \prime}\right) \geq c\left(x_{h-1}, x_{h}\right)-\left(\frac{\left|S_{h}\right|}{2}-1\right)-g^{+}\left(x_{h-1}^{\prime}, x_{h}^{\prime}\right)=0
$$

In either case, the difference is nonnegative, and the claim follows.

B A remark on Hajduková's algorithm

To verify if a given decision is a Condorcet winner, Hajduková [11] developed an algorithm, where the envy-freeness and the existence of a simple rival are verified. In Hajduková's algorithm, the existence of a (right) simple rival is affirmed if one of the following holds: for $1 \leq i \leq j \leq k$

$$
\begin{gathered}
\sum_{h=i}^{j-1} f\left(x_{h}, x_{h+1}\right)+n_{j}^{+}>\frac{1}{2} \sum_{h=i}^{j}\left|S_{h}\right| \\
\sum_{h=i}^{j-1} f\left(x_{h}, x_{h+1}\right)+n_{j}^{+}=\frac{1}{2} \sum_{h=i}^{j}\left|S_{h}\right| \quad \text { and } \quad p_{v_{j+1}^{-}}-p_{x_{j}^{+}}<\left(x_{j+1}-x_{j}\right) / 2
\end{gathered}
$$

Nevertheless, the verification works correctly if and only if
d^{\prime} is a simple rival of d with $\Delta\left(d^{\prime}, d\right)=\{h \in[n]: i \leq h \leq j\}$

$$
\Longrightarrow \text { for } i \leq h \leq j, x_{h}^{\prime} \in\left(x_{h}, x_{h+1}\right) .
$$

Notice that the statement is not true, while the following is a counterexample.

The two figures demonstrate two decisions of an instance with $k=4$. The upper one, say d, is regular, envy-free, and supposed to have no simple rival according to Hajduková's algorithm. However, the lower one, with $x_{2}^{\prime} \in\left(x_{3}, x_{4}\right)$, is a simple rival of d.

C An algorithm for computing the votes of a potential rival

For a decision d, here we present in Algorithm 1 how $f\left(x_{h}, x_{h+1}\right), g^{+}\left(x_{h}, x_{h+1}\right)$ and $g^{-}\left(x_{h}, x_{h+1}\right)$ are computed. The values n_{h}^{-}, n_{h}^{+}, and $c\left(x_{h}, x_{h+1}\right)$ can be computed in $O(n)$ time straightforwardly.

```
Algorithm 1: Computing \(f\left(x_{h}, x_{h+1}\right), g^{+}\left(x_{h}, x_{h+1}\right)\) and \(g^{-}\left(x_{h}, x_{h+1}\right)\)
    Input: \(x_{h}, x_{h+1}\), voters located in ( \(x_{h}, x_{h+1}\) )
    Output: \(f\left(x_{h}, x_{h+1}\right), g^{+}\left(x_{h}, x_{h+1}\right)\) and \(g^{-}\left(x_{h}, x_{h+1}\right)\)
    begin
        \(f \longleftarrow 0\)
        \(g^{+} \longleftarrow 0\)
        \(g^{-} \longleftarrow 0\)
        \(\operatorname{ctr} \longleftarrow 0\)
        \(i \longleftarrow x_{h}^{+}\)
        \(j \longleftarrow i\)
        while \(p_{j}<x_{h+1}\) do
            \(\operatorname{ctr} \longleftarrow \operatorname{ctr}+1\)
            while \(p_{j}-p_{i} \geq\left(x_{h+1}-x_{h}\right) / 2\) do
                \(i \longleftarrow i+1\)
                \(\operatorname{ctr} \longleftarrow \operatorname{ctr}-1\)
            \(f \longleftarrow \max \{f, \operatorname{ctr}\}\)
            \(g^{+} \longleftarrow \max \left\{g^{+}, \operatorname{ctr}-i+x_{h}^{+}\right\}\)
            \(g^{-} \longleftarrow \max \left\{g^{-}, \operatorname{ctr}+j-x_{h+1}^{-}\right\}\)
            \(j \longleftarrow j+1\)
        return \(f, g^{+}, g^{-}\)
```

Po-Ting Lin
National Taiwan University
Taipei, Taiwan
Email: kevin255091@gmail.com
Hung-Lung Wang
National Taipei University of Business
Taipei, Taiwan
Email: hlwang@ntub.edu.tw
Kun-Mao Chao
National Taiwan University
Taipei, Taiwan
Email: kmchao@csie.ntu.edu.tw

