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Abstract

We study a novel axiom for voting rules: the weak mutual majority criterion (WMM).
A voting rule satisfies WMM if whenever some k candidates receive top k ranks from
a qualified majority that consists of more than q = k/(k+1) of voters, the rule selects
the winner among these k candidates. WMM lies between the two standard axioms:
it is stronger than the majority criterion (here k = 1 and q = 1/2) and weaker
than the mutual majority criterion (MM, here for any k the size of majority is fixed
q = 1/2).
The widespread plurality rule satisfies WMM (but not MM). Moreover, for any k
the bound q = k/(k + 1) is tight. The plurality with runoff rule, the Dodgson’s rule,
the Condorcet least reversal rule, the Simpson’s rule, and the Young’s rule satisfy
WMM, for most of these rules we also find tight bounds on the size of the qualified
majority q.
The well-known Black’s rule and its positional version do not satisfy WMM: for
k > 1 its tight bound q = 1. We propose two modifications of the Black’s positional
rule that satisfy WMM: the qualified mutual majority rule with the tight bound q =
k/(k+ 1) and the convex median voting rule with the tight bound q = (3k−1)/(4k).

Keywords. Positional voting rules, single winner elections, plurality voting rule, plu-
rality with runoff, instant runoff voting, qualified mutual majority rule, mutual majority
criterion

1 Introduction

Plurality voting rule and its modifications are the most popular rules in political elections
across the world. In the single-winner elections two versions of the plurality rule are most
common: the instant-runoff voting (aka preferential vote or single transferable vote) and
the plurality with runoff voting (aka the two-round system). In the plurality with runoff
rule each voter first casts a vote, the two candidates with the highest number of votes
proceed to the second round where each voter casts a vote for one of them and the winner is
determined by a simple majority.1 In the instant-runoff rule each voter submits a ballot
with a rank-ordered list of the candidates. The candidate that gets the least number of
the first positions in the ballots is eliminated and his ballots are redistributed among other
candidates according to the second position, the candidates with the lowest number of the
first positions keep being eliminated one by one until there is a candidate that receives more
than half of votes.2

1A version of plurality with run-off is used for presidential elections in France and Russia. The US
Presidential election system with primaries also resembles the plurality with runoff rule given the dominant
positions of the two political parties.

2The instant runoff system is currently used in parliamentary elections in Australia, presidential elections
in India and Ireland; according to the Center of Voting and Democracy fairvote.org [13] the instant-runoff
and plurality with runoff rules have the highest prospects for adoption in the US.



One of the very basic criteria a voting rule is desired to satisfy is the majority criterion:
if one of the candidates gets more than half of votes he must be selected by the rule. Both the
instant-runoff rule and the two-round system satisfy the majority criterion as the majority
winner is chosen in the first round. The crucial issue arises when no candidate has received
more than half of votes.

In this case, a straightforward generalization of the majority criterion is the mutual
majority criterion: if more than half of voters prefer a group of some k candidates over
each other candidates (in any order), then the rule must select one of these k candidates.
Instant-runoff rule satisfies the mutual majority criterion: if the majority prefers some group
of candidates over all others, then when being eliminated the candidates from this group
will transfer their votes to other candidates from the group until some candidate from the
group gets a majority of votes.

In contrast, the plurality with runoff rule fails the mutual majority criterion. To see that
consider the following example. Let there be five candidates with the following percentage
of first positions: Bernie (17%), Donald (25%), Hillary (24%), John (17%), and Ted (17%).
Assume further that Bernie, John and Ted form the group preferred by a mutual majority:
51% of voters rank them higher than both Donald and Hillary. The mutual majority criterion
demands that either Bernie, John or Ted is selected, but in the plurality with runoff rule all
of them are eliminated in the first round and the winner is either Donald or Hillary.

In this paper we study where exactly – between majority and mutual majority – lies the
frontier of the plurality with runoff rule lie. To do that we consider a novel criterion that
is stronger than the majority criterion and weaker than the mutual majority criterion. The
weak mutual majority criterion requires that if there is a group of k candidates that
get top k positions by a qualified majority of more than quota q = k/(k + 1) of voters, then
the rule must select one of these k candidates.

We show that the plurality rule and the plurality with runoff rule satisfy the weak mutual
majority criterion. Moreover the bound of q = k/(k + 1) of voters is tight for the plurality
rule and q = k/(k + 2) for the plurality with runoff rule: for each smaller quota we find a
counterexample.

We further study other voting rules, which are popular in the literature, with respect to
the weak mutual majority criterion. We show that the Dodgson’s rule (aka Lewis Carroll’s
rule), the Young’s rule, the Condorcet least-reversal rule and the Simpson’s rule (aka max-
imin rule) satisfy the weak mutual majority criterion. We prove that the Black’s rule fails
this criterion. We also find the tight bounds on the size of the qualified mutual majority for
most of these rules.

We also study the weak mutual majority criterion for important type of voting rules –
positional voting rules – where the outcome of the elections depends only on the aggregate
data. Specifically, in a positional voting rule each voter casts a rank-ordered ballot,
and the winner is chosen based on how many first positions, second positions, etc. each
candidate receives (while the individual preferences do not matter anymore). The most
popular positional rule in the literature is the Black’s positional rule: it selects the
majority winner whenever possible3, otherwise selects the candidate with the highest average
position (i.e. the candidate with the highest Borda score). We show that the Black’s
positional rule does not satisfy the weak mutual majority criterion. We also show that this
can be fixed and we provide two modifications of the Black’s positional rule that satisfy
the weak mutual majority criterion: the convex median voting rule and the qualified mutual
majority voting rule. For these two rules we also find the tight bounds on the size of the
qualified mutual majority.

The summary of our results is presented in the table below. For each of the listed rules

3The Black’s (non-positional) rule selects the Condorcet winner whenever possible, that is the candidate
that beats any other candidate in pairwise majority comparisons.



we find a tight bound on the size q of the qualified mutual majority. If this bound equals 1/2
(as in the case of the instant-runoff rule), then the mutual majority criterion is satisfied. If
this bound is not higher than k/(k+1), then the weak mutual majority criterion is satisfied,
otherwise (as in the case of the Black’s rule with q = 1) the criterion is not satisfied.

Summary of results

Voting rule q(k), k > 1 supk q(k) reference
1 Instant-runoff rule 1/2 1/2 [38]
2 Condorcet least reversal rule (5k − 2)/(8k) 5/8 Theorem 3.6
3 Convex median rule (3k − 1)/(4k) 3/4 Theorem 4.3
4 Plurality with runoff rule k/(k + 2) 1 Theorem 3.3

5-6 Simpson’s rule (k − 1)/k 1 Theorem 3.4
5-6 Young’s rule (k − 1)/k 1 Theorem 3.5
7-8 Plurality rule k/(k + 1) 1 Theorem 3.1
7-8 Qualified mutual majority rule k/(k + 1) 1 Theorem 4.2
9 Black’s rule 1 1 Theorem 4.1

Notes. The voting rules are ordered according to the minimal size of the qualified majority q(k) for k > 4,
even k for Condorcet least reversal rule, and high enough number of candidates. These rules satisfy the
majority criterion and therefore q(1) = 1/2. The instant-runoff rule satisfies mutual majority criterion and
therefore q(k) = 1/2.

The paper proceeds as follows. Section 2 presents the model and the necessary defini-
tions. Section 3 presents voting rules that do not satisfy the mutual majority criterion but
satisfy the weak mutual majority criterion. The final section 4 presents results on positional
voting rules.

2 The Model

2.1 Voting problem

Consider a voting problem where n ≥ 1 voters I = {1, . . . , n} select one winner among
m ≥ 1 candidates (alternatives) A = {a1, . . . , am}. Let L(A) be the set of linear orders
(complete, transitive and antisymmetric binary relations) on the set of candidates A.

Each voter i ∈ I is endowed with a preference relation �i∈ L(A). Preference relation
�i corresponds to a unique ranking bijection Ri : A→ {1, . . . ,m}, where Ra

i is the relative
rank that voter i gives to candidate a,

Ra
i = |{b ∈ A : b �i a}|+ 1, a ∈ A, i ∈ {1, . . . , n}.

The collection of the individual preferences � = (�1, . . . ,�n) ∈ L(A)
n

as well as cor-
responding ranks (R1, . . . , Rn) are referred to as a preference profile. (There exist m!
different linear orders and (m!)n different profiles.)

Table 1 provides an example of preference profile for n = 7 voters over m = 5 candidates.
Here voters are assumed to be anonymous which allows to group voters with the same
individual preferences. Each column represents some group of voters, the number of voters
in the group is in the top row; the candidates are listed below according to the preference
of the group starting from the most preferred.

Table 1. Preference profile

2 2 2 1
a b c c
b a d d
c c a b
d d b a



Given a preference profile we determine function h(a, b) as the number of voters that
prefer candidate a over candidate b,

h(a, b) = |{i : a �i b, 1 ≤ i ≤ n}|, a, b ∈ A, a 6= b.

Matrix h with elements h(a, b) is called the tournament matrix. (Note that h(a, b) =
n− h(b, a) for each a 6= b.)

Table 2 provides the tournament matrix for the preference profile from Table 1.

Table 2. Tournament matrix

a b c d
a 4 4 4
b 3 4 4
c 3 3 7
d 3 3 0

We say that candidate a (weakly) dominates candidate b, or (weakly) wins in
pairwise majority comparison, if h(a, b) > n/2 (h(a, b) ≥ n/2). For arbitrary disjoint
subsets of candidates A1, A2 ∈ A we say that A1 dominates A2, if for each element a ∈ A1

and each element b ∈ A2 a dominates b.
For some subset B ⊆ A, a candidate is called the (weak) Condorcet winner [9],4

and is denoted as CW (B), if (weakly) dominates any other candidate in this subset,

CW (B) = {b ∈ B : h(b, a) > n/2 for all a ∈ B \ b}, B ⊆ A.

Similarly, Condorcet loser in some subset B ⊆ A is a candidate that loses in pairwise
comparisons to each candidate in this subset.

CL(B) = {b ∈ B : h(b, a) < n/2 for all a ∈ B \ b}, B ⊆ A.

It is easy to see that the set of Condorcet winners CW is either a singleton or empty.
Let the positional vector be the vector n(a) = (n1(a), . . . , nm(a)), where nl(a) is the

number of voters for whom candidate a has rank l in individual preferences,

nl(a) = |{i : Ra
i = l, 1 ≤ i ≤ n}|, a ∈ A, l ∈ {1, . . . ,m}.

The definition implies that the positional vector has nonnegative elements, nl(a) ≥ 0 for

each l, and the sum of elements is equal to the number of voters
m∑
l=1

nl(a) = n.

Let the cumulative standings be the vector N(a) = (N1(a), . . . , Nm(a)), where Nk(a)
is number of voters for whom candidate a is not below rank k in individual preference, i.e.
Nk(a) = n1(a) + . . . + nk(a).

Candidate a is called majority winner, if n1(a) > n/2.
The collection of positional vectors for all candidates is called positional matrix

(n(a1), . . . , n(am)) = n(�).
Table 3 provides positional matrix for preference profile in Table 1.

Table 3. Positional matrix

Rank a b c d
1 2 2 3 0
2 2 2 0 3
3 2 1 4 0
4 1 2 0 4

4The collection [27] contains English translations of original works by Borda, Condorcet, Nanson, Dodg-
son and other early researches.



A mapping C(B,�) that to each nonempty subset B ⊆ A and each preference profile
gives a choice set is called a social choice rule,

C : 2A \ ∅ × L(A)n → 2A,

where C(B,�) ⊆ B for any B; C(B,�) = B, if |B| = 1; and C(B,�) = C(B,�′), if
preference profiles �,�′ coincide on B.

A rule C is positional, if for each two preference profiles � and �′ with the same
positional matrices on some subset B ⊆ A, the choice sets also coincide, C(B,�) = C(B,�′).

One important class of social choice rules is the class of positional scoring rules,
where each candidate among m candidates gets s1, . . . , sm points for corresponding rank in
individual preference (scoring weight) and then these points are summed across all voters. If
s1 ≥ s2 ≥ . . . ≥ sm, and at least one inequality is strict, then the rule is called monotonic
scoring rule. The rule is called strictly monotonic scoring rule if s1 > s2 > . . . > sm.
(Note that the scoring weights can be defined separately for each subset B ⊆ A.)

2.2 Criteria for voting rules

This subsection defines the criteria that are critical for the results of the paper and the social
choice rules considered below. Note that the general criteria of universality, non imposition,
anonymity, neutrality, unanimity, and homogeneity are satisfied by all social choice rules
considered in this paper. These criteria are usually desired to be satisfied for any preference
profile.

Condorcet (C) criterion. For each preference profile, if some candidate is a Condorcet
winner, then the choice set is a singleton and coincides with this candidate.

Majority (Maj) criterion. For each preference profile, if some candidate is top-ranked
by more than half of voters, then the choice set is a singleton and coincides with this
candidate.

Mutual majority (MM) criterion [38]. For each preference profile, if more than half
of voters give to some k candidates (B = {b1, . . . , bk} 1 ≤ k < m) top k ranks in an arbitrary
order, then the choice set is included in B.

Weak mutual majority (WMM) criterion [24]. For each preference profile, if more
than k/(k + 1) of voters give to some k candidates (B = {b1, . . . , bk} 1 ≤ k < m) top k
ranks in an arbitrary order, then the choice set is included in B.

It is apparent from the definitions that weak mutual majority criterion follows from
mutual majority criterion, and at the same time weak mutual majority criterion implies
majority criterion.

For some preference profile, if for each strictly monotonic scoring rule candidate a gets
strictly higher score than candidate b, then we say that a positionally dominates b.

As shown in [24, 36], positional dominance is equivalent to the following definition based
on stochastic dominance. Candidate a positionally dominates candidate b if and only if
the cumulative standings for a are not less than for b, that is for each k = 1, . . . ,m− 1 we
have Nk(a) ≥ Nk(b) and at least one of the inequalities is strict.

Positional dominance criterion (PD) [16, 17, 24, 36]. For each preference profile
�∈ L(A)n, if candidate a positionally dominates candidate b, then candidate b is not in
the choice set b /∈ C(A,�). Moreover if candidate a positionally dominates each other
candidate, then the choice set is a singleton and coincides with it C(A,�) = {a}.

Strict monotonicity (SM) [18, 30, 35]. For each preference profile �∈ L(A)
n
, each

subset B ⊆ A and each candidate from the choice set a ∈ C(B,�), if some voter increases
the position of candidate a by one without changing positions of other candidates, then for
the new preference profile �′ this candidate remains in the choice set and also the choice
set becomes weakly smaller: a ∈ C(B,�′) ⊆ C(B,�).



Positive responsiveness (PR)5 [18, 26, 38]. For each preference profile �∈ L(A)
n
,

each subset B ⊆ A and each candidate from the choice set a ∈ C(B,�), if some voter
increases the position of candidate a by one without changing positions of other candidates,
then for the new preference profile �′ candidate a becomes the sole winner C(B,�′) = {a}.

3 Voting rules satisfying the majority criterion

For completeness of results, we should mention well-studied voting rules that satisfy the
mutual majority criterion: Nanson’s [27, 28], Baldwin’s [2], single transferable vote [21,
22], Coombs [10], sequential pairwise majority, maximal likelihood [23], ranked pairs [39],
beat paths [31], median voting rule [3], Bucklin’s, majoritarian compromise [33], q-approval
fallback bargaining [6], and any refinement of the top cycle [19, 32]. For interested readers
we advise [7, 15, 37, 38, 41, 44] for details.

This section considers the classic social choice rules that satisfy the majority criterion
but do not satisfy the mutual majority criterion. In case of only two candidates each rule
satisfying the majority criterion coincides with the simple majority rule where the winner
is the candidate that gets at least half of votes.6 In what follows we consider the case of
m > 2 candidates.

In the plurality (Pl) voting rule each voter casts a vote for her most preferred candidate,
and the candidate that receives the highest number of votes is declared to be a winner. This
rule is a monotonic scoring rule where the top candidate gets 1 point and other candidates
get 0 points,

Pl(A,�) = {a ∈ A : n1(a) ≥ n1(b) for all b ∈ A \ a}.

The lexicographic voting rule is a generalized scoring rule where the winner is deter-
mined by the number of top positions. In case of a tie, among the candidates with the same
number of top positions wins the candidate with the highest number of second positions,
and so forth.

Theorem 3.1. Plurality voting rule satisfies the weak mutual majority criterion; for each
m > k ≥ 1, q = k/(k + 1) is the tight bound.

Proof.
Let m ≥ 3, and let more than nk/(k + 1) of voters support some subset B ( A with

k candidates, m > |B| = k ≥ 1. Then all together candidates in B receive strictly more
than nk/(k + 1) of top positions, while candidates from A \ B all together receive strictly
less than n/(k + 1) top positions. Therefore, at least one of the candidates in B receives
strictly more than n/(k+1) of top positions, and each candidate from A\B receives strictly
less than n/(k + 1) of top positions. Therefore, the plurality voting rule can only select a
candidate from set B.

For any smaller quota q < k/(k + 1) we can always find the following counterexample.
Let the total number of voters be n = k + 1 and let k voters give candidates from set B top
k positions such that each of these candidates gets the top position exactly once. Let some
voter give the top position to some other candidate a /∈ B. Then the plurality voting rule
selects all candidates from the set B ∪ a. �

Corollary 3.2. The iterative7 plurality rule, lexicographic rule, and the iterative lexico-
graphic rule satisfy the weak mutual majority criterion.

5PR is one of the strongest forms of monotonicity criterion
6In case of only m = 2 candidates the simple majority rule is the most natural as it satisfies a number

of other important axioms according to May’s Theorem [26].
7If some rule is used repeatedly while the choice set is decreasing, this rule is called iterative.



The plurality with runoff (RV) voting rule proceeds in two rounds: first the two
candidates with the highest number of votes are determined, then the winner is chosen
between the two using simple majority.

Theorem 3.3. Plurality with runoff satisfies the weak mutual majority criterion; for each
m − 1 = k ≥ 1, q = 1/2 is the tight bound; for each m − 1 > k > 1, q = k/(k + 2) is the
tight bound.

Proof.
In case m = 3 the mutual majority criterion holds (q = 1/2).
In case k = m− 1, and q = 1/2, in the second round there is at least one candidate from

the supported k candidates, and this candidate wins.
Let m > 3, and let more than nk/(k + 2) of voters support some subset B ( A with k

candidates, m − 1 > |B| = k > 1. Then all together candidates in B receive strictly more
than nk/(k + 2) of top positions, while candidates from A \ B all together receive strictly
less than 2n/(k + 2) top positions. Therefore, at least one of the candidates in B and at
most one of the candidates in A \ B receive strictly more than n/(k + 2) of top positions.
Thus, in the second round there is at least one candidate from set B. Even if the second
candidate is from A \ B, this second candidate loses to the candidate from B by simple
majority. Hence, the winner is from B.

For any smaller quota q < k/(k + 2) we can always find the following counterexample.
Let the total number of voters be n = (k+2)n1+2 and let kn1 voters give k candidates from
set B top k positions such that each candidate in B gets the top position exactly n1 times.
Consider the other 2∗ (n1 +1) voters and two other candidates a1, a2 /∈ B. Let n1 +1 voters
top-rank candidate a1 and the other n1 + 1 voters top-rank candidate a2. Then candidates
a1 and a2 make it to the second round.

If we set n1 > 2q/(k − kq − 2q) then set B is supported by more than qn voters. �

According to the Simpson’s rule (also known as maximin voting rule) [34, 43] each
candidate receives points equal to the minimal number of votes that this candidate gets
compared to any other candidate,

Si(a) = min
b∈A\{a}

h(a, b).

The winner is the candidate with the highest number of points.

Theorem 3.4. Simpson’s rule satisfies the weak mutual majority criterion; for each m >
k > 1, q = (k − 1)/k is the tight bound.

Proof.
In case m = 3 the mutual majority criterion holds (q = 1/2).
Let m > 3, and more than n(k − 1)/k voters top-rank k ≥ 2 candidates, denote this

subset of candidates as B = {b1, . . . , bk}. It is easy to see that each candidate in A \B gets
less than n/k of Simpson’s scores (a candidate from A \B gets the highest score when it is
top-ranked by all voters that do not top-rank B).

Denote the number of the first positions of some candidate b ∈ B among all other
candidates in B as n1(b, B):

n1(b, B) = |{i : b �i b
′ for each b′ ∈ B \ b}|. (1)

Since the total number of first positions is fixed n1(b1, B) + . . . + n1(bk, B) = n, there
is a candidate b ∈ B with the number of top positions weakly higher than the average
n1(b, B) ≥ n/k.

Hence, there is a candidate that receives not less than n/k of scores, and each candidate
from A \B gets less than n/k and cannot be the winner.



To see that the bound q = (k − 1)/k is tight consider the following counterexample in
Table 4: each candidate b ∈ B receives exactly qn/k first positions, qn/k second positions
and so on from the qualified majority of qn voters, while all voters outside of the qualified
majority top-rank some other candidate a1 and also prefer all candidates in A \ B over
candidates in B.

Table 4. Preference profile
qn
k . . . qn

k
(1−q)n

k . . . (1−q)n
k

b1 . . . bk a1 . . . a1
b2 . . . b1 . . . . . . . . .
. . . . . . . . . am−k . . . am−k
bk . . . bk−1 b1 . . . bk
a1 . . . a1 . . . . . . . . .
. . . . . . . . . bk−1 . . . bk−2

am−k . . . am−k bk . . . bk−1
Notes. The qualified majority of qn voters give exactly qn/k first, second and so on positions to each
candidate bi ∈ B, all preferences over remaining alternatives A \B are the same. The other (1− q)n voters
prefer each candidate in A \B over each candidate in B, and have identical relative ordering of candidates
within these two sets. This type of cyclical preferences over B is known as a Condorcet k-tuple.

For each k > 1 we can set n = k2 and q = (k − 1)/k. Then set B is supported by
n(k− 1)/k voters, while each candidate from the set B ∪ a1 gets the same Simpson’s score.
�

Note that this tight bound q = (k−1)/k for the Simpson’s rule is closely related with the
tight bound of q-majority equilibrium [20, 25], and with the minimal quota, that guarantees
acyclicity of preferences [11, 14, 40].

By the Young’s rule [8, 43] the winner is the candidate that needs the least number of
voters to be removed for this candidate to become the (weak) Condorcet winner.

Theorem 3.5. Young’s rule satisfies the weak mutual majority criterion; for each m > k >
1, q = (k − 1)/k is the tight bound.

Proof.
In case m = 3 the mutual majority criterion holds (q = 1/2).
Let m > 3, and let more than n(k − 1)/k voters top-rank k ≥ 2 candidates, denote this

subset of candidates as B = {b1, . . . , bk}. For each candidate from A \ B to make him the
Condorcet winner, we need to remove more than n(k − 2)/k voters (i.e. at least the entire
qualified majority).

Consider some candidate b ∈ B with a higher than average number of top positions
n1(b, B) ≥ n/k (as defined in equation (1)). For b to win, at most n(k− 2)/k of voters have
to be removed.

The example from Table 4 shows that the bound (k − 1)/k is tight. �

According to the Condorcet least-reversal rule (the simplified Dodgson’s rule) [38]
the winner is, informally, the candidate a ∈ A that needs the least number of reversals in
pairwise comparisons in order to become the Condorcet winner. Formally, the winner d
minimizes the following sum of losing margins compared to each other candidate c:

pCLR
d =

∑
c∈A\d

max
{n

2
− h(d, c), 0

}
.

Theorem 3.6. Condorcet least-reversal rule satisfies the weak mutual majority criterion;
for each m > k ≥ 2 and for each even k, q = (5k − 2)/(8k) is the tight bound; for each
m > k ≥ 1 and for each odd k, q = (5k2 − 2k + 1)/(8k2) is the tight bound.



Proof.
Again we use the preference profile in Table 4. Let’s first show that it is the worst

possible profile for each candidate b ∈ B to win by the Condorcet least-reversal rule, i.e.
it has the maximum minimum score pCLR

b among all candidates b ∈ B. To maximize the
minimum score pCLR for candidates in B we can maximize the scores for the subset B
separately:

∑
c∈B\b

. This is true, because the another part
∑

c∈A\B
is zero whenever q ≥ 1/2.

According to Proposition 5 in [29], each tournament matrix with k candidates has unique
representation as the sum of its transitive matrix and its Condorcet k-tuple matrix. Thus,
the maximal element of the transitive matrix gets not more total scores pCLR than in the
k-tuple matrix only. Hence, the profile in Table 4 qualifies as the worst case.

Next we find the bound for the profile in Table 4. Each candidate a ∈ A\B gets at least
pCLR
a ≥ nk(2q − 1)/2 points.

Candidate b1 gets n/k, 2n/k, . . . , (k − 1)n/k pairwise majority wins against candidates
bk, . . . , b2 correspondingly. For even k the score for each b ∈ B is pCLR

b = n(k − 2)/8,
for odd k the score is pCLR

b = n(k − 1)2/(8k). Setting these scores equal to the score
pCLR
a1

= nk(2q − 1)/2 received by a1 we get the tight bounds. �

The classic Dodgson’s [8, 12, 27] winner is determined as the candidate that needs
the least upgrades by one position in individual preferences that makes him the Condorcet
winner. To satisfy homogeneity property such upgrades are allowed to perform for non
integer amount of voters in order to make a weak Condorcet winner.

Theorem 3.7. The Dodgson’s rule satisfies the weak mutual majority criterion; the tight
bound for the quota is not lower than (5k − 2)/(8k) in case of even k ≥ 2, and (5k2 − 2k +
1)/(8k2) in case of odd k ≥ 1.

Proof.
Let the qualified majority (more than k/(k + 1)) of voters support some subset B ( A

with k candidates. Then each candidate a ∈ A\B gets less than n/(k+ 1) votes in pairwise
comparison against each candidate in set B. Upgrading candidate a by one position in
the preference profile adds not more than one vote in a pairwise comparison against each
candidate in set B. Therefore candidate a needs more than k(n

2−
n

k+1 ) upgrades to become a
Condorcet winner. A candidate in B that gets more than n/(k+1) votes (i.e. top positions)
needs not more than (k− 1)(n

2 −
n

k+1 ) upgrades in the preference profile in order to become
a Condorcet winner. Since (k − 1)(n

2 −
n

k+1 ) < k(n
2 −

n
k+1 ), the Dodgson rule selects from

set B and thus satisfies the weak mutual majority criterion.
The second statement of the theorem follows from the calculations for profile in Table 4.

�

4 Black’s rule and its modifications

In this section we introduce the Black’s rule and the Black’s positional rule, show that they
do not satisfy the weak mutual majority criterion. Then we modify the Black’s positional
rule so that it satisfies the criterion.

4.1 Black’s rule

The Borda rule [5, 27] is a convex scoring rule where the first best candidate in an individual
preference gets m−1 points, the second best candidate gets m−2, . . . , the last gets 0 points.

The following facts will be helpful to establish the main result of this section.



Borda score can be calculated using the positional vector n(a) as follows:

Bo(a) =

m∑
i=1

ni(a)(m− i), a ∈ A. (2)

The candidate with the highest total score wins. The score can also be calculated using
the tournament matrix:

Bo(a) =
∑

b∈A\{a}

h(a, b), a ∈ A. (3)

The previous equation readily shows that the Borda score of a Condorcet loser is always
lower than the average of all candidates, Bo(CL(A)) ¡ n(m − 1)/2. Similarly, the Borda
score of a Condorcet winner is always higher than the average of all candidates, Bo(CW (A))
¿ n(m− 1)/2.

The Black’s rule [4] selects the Condorcet winner. If the Condorcet winner does not
exist, then the candidate with the highest Borda score (3) is selected.

The Black’s positional rule selects the majority winner. If the majority winner does
not exist, then the candidate with the highest Borda score (2) is selected.

Theorem 4.1. Black’s rule satisfies the weak mutual majority criterion in case of m ≤ 4
candidates. For each m ≥ 5, Black’s rule fails the weak mutual majority criterion; there is
a counterexample if and only if m > (k+ 1)2/2; for each m > k > 1, q = (2m− k− 1)/(2m)
is the tight bound.

In the theorem above, we actually find the tight bound of quota for the Borda rule. In
particular case k = 1, this quota equals q = (m− 1)/m, and also was calculated in [1].

4.2 Qualified mutual majority rule

In this section we generalize the definition of majority winner using the idea of the support
by a qualified majority.

We say that a (nonempty) subset of candidates B ⊆ A is positionally supported by
a qualified majority, if

1

s

s∑
i=1

∑
a∈B

ni(a) >
nk

k + 1
for each s = 1, . . . , |B|, (4)

where k = |B| ≥ 1.
If some subset of candidates is supported by a qualified majority, then condition (4) is

satisfied, therefore this subset is also positionally supported by a qualified majority.
Let’s define the qualified (mutual majority) set as the intersection of all subsets

positionally supported by a qualified majority,

QMM(�) =
⋂

B⊆A

B : B satisfies (4).

Theorem 4.2. For any number of voters n and candidates m the following statements are
true:
1) For each preference profile � the set QMM(�) is nonempty;
2) QMM(�) is a strictly monotonic choice rule ;
3) QMM(�) satisfies the weak mutual majority criterion; for each m > k ≥ 1, q = k/(k+1)
is the tight bound;
4) QMM(�) with tie-breaking based on Borda score satisfies positive response, positional



dominance, fails Condorcet criterion for m ≥ 3, and fails the mutual majority criterion for
m ≥ 4.
Remark 1. If we choose a smaller quota in condition (4) q < k/(k+1), then for each m > k
we can find a profile such that the qualified set is empty QMM = ∅. For instance, consider
a profile with n = k + 1 voters such that for the first voter a1 �1 a2 �1 . . . �1 ak+1, for the
second voter a2 �2 a3 �2 . . . �2 a1, . . ., for the last (k + 1)’th voter ak+1 �k+1 a1 �k+1

. . . �k+1 ak.

Remark 2. According to the incompatibility theorem in [24] in case of m ≥ 3 candidates the
qualified mutual majority set (with tie-breaking based on Borda score) does not satisfy the
continuity criterion [35, 42], independence of Pareto dominated candidates and independence
of clones [39].

4.3 Convex median voting rule

Based on truncated Borda score [24] defines the convex median voting rule (CM) in
the following way.

First for some positional vector n(a) and some real number t ∈ (0,+∞) define the
truncated Borda score [16] as

Bt(a) = t · n1(a)+(t−1)n2(a)+ . . .+(t−btc)nbtc+1(a), t ∈ (0,+∞),

where formally put ni(a) = 0 for i > m. The definition implies that Bm−1(a) = Bo(a),
Bk(a) = N1(a) + . . . + Nk(a) – cumulative standings for k = 1, . . . ,m− 1.

For each candidate a define the score of convex median using the following formula:

CM(a) =

{
m− 1− 1

2 max
{
t ∈ [1,2(m−1)] : Bt(a)

t ≤ n
2

}
, n1(a) ≤ n

2 ,

m− 2 + n1(a)
n , n1(a) > n

2 ,

The winner is the candidate with the highest value of the convex median, ties are broken
using Borda scores (2).

In [24] it is proved that the convex median satisfies positional dominance, positive re-
sponsiveness and weak mutual majority, but fails Condorcet and mutual majority criteria.
In this paper we find the tight bounds of the quota.

Theorem 4.3. The convex median voting rule satisfies the weak mutual majority criterion;
for each m > 2k, q = (3k − 1)/(4k) is the tight bound; for each m = k + 1, q = 1/2 is the
tight bound; for each 2k ≥ m > k+1, the tight bound q satisfies to inequality 1

2 < q < 3k−1
4k

and to equation

4k(m− k − 1)q2 + (5k2 + 5k − 2mk −m2 + m)q + m(m− 1− 2k) = 0.

5 Conclusions

We studied the novel axiom called the weak mutual majority criterion with respect to the
most popular voting rules. Our first focus was to study plurality rules and to find how well
they respect the preferences of the qualified majority. The instant-runoff rule respects the
qualified majority extremely well as it satisfies the mutual majority criterion. We show that
plurality with runoff does it slightly better than the simple plurality rule as it has a smaller
tight bound. According to this criterion, all other considered rules are located between the
instant-runoff rule and the plurality rule.

Our second focus was on positional rules. We show that the standard Black’s positional
rule does not satisfy the weak mutual majority criterion. We also show that positionallity



by itself does not preclude the weak mutual majority criterion and propose two positional
rules that satisfy it.

One specific open question arises from the incomplete result regarding the Dodgson’s
rule: in contrast to other results, Theorem 3.7 does not specify the tight bound on the size
of the qualified majority. The value of the tight bound seems to be a hard question, as the
Dodgson’s rule is known to be not very operational. It is not easy to check whether the
profile in Table 4 gives the worst case for each candidate in group of mutually supported
candidates B and at the same time the best case for some other candidate in A \B.

A more general open question is the analysis of the aggregative properties of voting rules
in practically-relevant scenarios. In this paper the main results are based on the worst-case
analysis. Future research can make use of more realistic scenarios inspired by theories of
individual decision-making, empirical results and experiments on voting.
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original published in Paris, 1972, by the Imprimerie Royale.

[10] Coombs, C. H. (1964). A theory of data. Wiley, New York.

[11] Craven, J. (1971). Majority voting and social choice. The Review of Economic Studies,
38(2), 265-267.

[12] Dodgson, C. L. (1876). A method of taking votes on more than two issues. Pamphlet
printed by the Clarendon Press.

[13] Single-winner Voting Method Comparison Chart available at
http://archive3.fairvote.org/reforms/instant-runoff-voting/irv-and-the-status-quo/irv-
versus-alternative-reforms/single-winner-voting-method-comparison-chart/



[14] Ferejohn, J. A., Grether, D. M. (1974). On a class of rational social decision procedures.
Journal of Economic Theory, 8(4), 471-482.

[15] Fischer, F., Hudry, O., Niedermeier, R. (2016). Weighted Tournament Solutions. In
Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (editors). Handbook of
Computational Social Choice. Cambridge University Press.

[16] Fishburn, P. C. (1974). Paradoxes of voting. American Political Science Review, 68(2),
537-546.

[17] Fishburn, P. C., Brams, S. J. (1983). Paradoxes of preferential voting. Mathematics
Magazine, 56(4), 207-214.

[18] Gardenfors, P. (1973). Positionalist voting functions. Theory and Decision, 4(1), 1-24.

[19] Good, I. J. (1971). A note on Condorcet sets. Public Choice, 10(1), 97-101.

[20] Greenberg, J. (1979). Consistent majority rules over compact sets of alternatives.
Econometrica, 47(3), 627-636.

[21] Hare, T. (1859). Treatise on the Election of Representatives, Parliamentary and Mu-
nicipal. London: Longman, Green, Reader, and Dyer.

[22] Homeshaw, J. (2001). Inventing Hare-Clark: The Model Arithmetocracy. In Elections:
Full, Free and Fair, ed. Sawer, M., 96-114. Annandale: The Federation Press.

[23] Kemeny, J. G. (1959). Mathematics without numbers. Daedalus, 88(4), 577-591.

[24] Kondratyev, A. Yu. (2017). Positional voting methods satisfying the weak mutual ma-
jority and Condorcet loser principles. Matematicheskaya Teoriya Igr i Ee Prilozheniya
(In Russian), 9(2), 3-38. ISO 690.

[25] Kramer, G. H. (1977). A dynamical model of political equilibrium. Journal of Economic
Theory, 16(2), 310-334.

[26] May, K. O. (1952). A set of independent necessary and sufficient conditions for simple
majority decision. Econometrica, 20(4), 680-684.

[27] McLean, I., Urken, A. B. (1995). Classics of social choice. University of Michigan Press.

[28] Nanson, E. J. (1882). Methods of Election. Transactions and Proceedings of the Royal
Society of Victoria, 19, 197240.

[29] Saari, D. G. (2000). Mathematical structure of voting paradoxes. Economic Theory,
15(1), 1-53.

[30] Sanver, M. R., Zwicker, W. S. (2012). Monotonicity properties and their adaptation to
irresolute social choice rules. Social Choice and Welfare, 39(2-3), 371-398.

[31] Schulze, M. (2011). A new monotonic, clone-independent, reversal symmetric, and
condorcet-consistent single-winner election method. Social Choice and Welfare, 36(2),
267-303.

[32] Schwartz, T. (1972). Rationality and the myth of the maximum. Nous, 6(2), 97-117.

[33] Sertel, M. R., Yilmaz, B. (1999). The majoritarian compromise is majoritarian-optimal
and subgame-perfect implementable. Social Choice and Welfare, 16(4), 615-627.



[34] Simpson, P. B. (1969). On defining areas of voter choice: Professor Tullock on stable
voting. The Quarterly Journal of Economics, 83(3), 478-490.

[35] Smith, J. H. (1973). Aggregation of preferences with variable electorate. Econometrica,
41(6), 1027-1041.

[36] Stein, W. E., Mizzi, P. J., Pfaffenberger, R. C. (1994). A stochastic dominance analysis
of ranked voting systems with scoring. European Journal of Operational Research,
74(1), 78-85.

[37] Taylor, A. D. (2005). Social choice and the mathematics of manipulation. Cambridge
University Press.

[38] Tideman, N. (2006). Collective decisions and voting: the potential for public choice.
Ashgate Publishing, Ltd.

[39] Tideman, T. N. (1987). Independence of clones as a criterion for voting rules. Social
Choice and Welfare, 4(3), 185-206.

[40] Usiskin, Z. (1964). Max-min probabilities in the voting paradox. The Annals of Math-
ematical Statistics, 35(2), 857-862.

[41] Wallis, W. D. (2014). The mathematics of elections and voting. Heidelberg: Springer.

[42] Young, H. P. (1975). Social choice scoring functions. SIAM Journal on Applied Math-
ematics, 28(4), 824-838.

[43] Young, H. P. (1977). Extending Condorcet’s Rule. Journal of Economic Theory, 16(2),
335-353.

[44] Zwicker, W. (2016). Introduction to the theory of voting. In Brandt, F., Conitzer,
V., Endriss, U., Lang, J., Procaccia, A. (editors). Handbook of Computational Social
Choice. Cambridge University Press.

APPENDIX
Theorem 4.1. Black’s rule satisfies the weak mutual majority criterion in case of m ≤ 4
candidates. For each m ≥ 5, Black’s rule fails the weak mutual majority criterion; there is
a counterexample if and only if m > (k+ 1)2/2; for each m > k > 1, q = (2m− k− 1)/(2m)
is the tight bound.

Proof.
In case m = 2, 3 the mutual majority criterion holds (q = 1/2).
Let’s show that the weak mutual majority criterion holds in case m = 4. If three

candidates are supported by a qualified mutual majority, then the fourth candidate is a
Condorcet loser and cannot get the highest Borda score. If two candidates are supported
by a qualified majority (in this case more than 2/3 of voters), then these two candidates get
a Borda score higher than 11n/3, and at least one of them gets more than 11n/6. Each of
the other two candidates gets at most 5n/3 and therefore cannot win.

Let’s show that the weak mutual majority criterion does not hold in case m = 5. Consider
the preference profile of n = 20 voters (Table 5), where two candidates {b1, b2} are supported
by a qualified majority (more than 2/3 of voters). There is no Condorcet winner in this
example, therefore the Black’s rule selects three candidates {b1, b2, a1} which Borda score
equals 52 points. (Note that candidates b1 and b2 are weak Condorcet winners.)



Table 5. Preference profile

7 7 3 3
b1 b2 a1 a1
b2 b1 a2 a2
a1 a1 a3 a3
a2 a2 b1 b2
a3 a3 b2 b1

For m > 5 one can construct an analogous example by adding new candidates directly
below a3 in each voter’s preference relation.

Moreover for m ≥ 9 one can provide an example where even weak Condorcet winner does
not exist. Consider the preference profile of n = 13 voters (Table 6), where three candidates
{b1, b2, b3} are supported by a qualified majority (more than 3/4 of voters). For candidates
b1, b2, b3 the Borda score is 73, while for candidate a1 it is 74.

Table 6. Preference profile

4 3 3 1 1 1
b1 b3 b2 a1 a1 a1
b2 b1 b3 a2 a2 a2
b3 b2 b1 a3 a3 a3
a1 a1 a1 a4 a4 a4
a2 a2 a2 a5 a5 a5
a3 a3 a3 a6 a6 a6
a4 a4 a4 b3 b1 b2
a5 a5 a5 b2 b3 b3
a6 a6 a6 b1 b2 b1

For each m > k > 1, one can find the tight bound for the quota q = q(k,m) using the
following equation:

(1− q)(m− 1) + q(m− k − 1) = q
m− 1 + m− k

2
+ (1− q)

k − 1

2
,

where the left part is the maximal Borda score for any a /∈ B, and the right part is the
minimal maximal Borda score for any b ∈ B.

Thus, a counterexample exists if and only if

q(k,m) = 1− k + 1

2m
>

k

k + 1
,

and it is equivalent to m > (k + 1)2/2.
�

Theorem 4.2. For any number of voters n and candidates m the following statements are
true:
1) For each preference profile � the set QMM(�) is nonempty;
2) QMM(�) is a strictly monotonic choice rule ;
3) QMM(�) satisfies the weak mutual majority criterion; for each m > k ≥ 1, q = k/(k+1)
is the tight bound;
4) QMM(�) with tie-breaking based on Borda score satisfies positive response, positional
dominance, fails Condorcet criterion for m ≥ 3, and fails the mutual majority criterion for
m ≥ 4.

Proof.



1) Let’s define the following rule

M(�) =
⋂

B⊆A

B :
∑
a∈B

n1(a) >
n|B|
|B|+ 1

.

Subsets B ⊆ A in the definition of rule M(�), are determined by the following condition:

n1(B) =
∑
a∈B

n1(a) >
n|B|
|B|+ 1

. (5)

From the definition of M it readily follows that for each profile � we have M(�) ⊆
QMM(�). Let’s show that M(�) is always nonempty.

Assume that among the subsets satisfying condition (5) the smallest power is k = 1. In
this case there is a majority winner, some candidate a : n1(a) > n/2. Each subset not
containing a has fewer than n/2 top positions and does not satisfy condition (5). Therefore,
QMM(�) = {a}.

Assume now that among the subsets satisfying condition (5) the smallest power is k = 2.
In step l = 1 consider set B1 that satisfies condition 5 and such that B1 = 2. Denote
∩1 = B1, where | ∩1 | = 2. Condition (5) implies n1(B1) > 2n/3, thus n1(A \ ∩1) < n/3,
and each B ⊆ A \ ∩1 has n1(B) < n/3. Thus, either each subset satisfying condition (5)
contains ∩1, and QMM(�) = ∩1, or in step l = 2 there exists some set B2 satisfying
condition (5) such that ∩2 = B1 ∩B2, and | ∩2 | = 1. Condition (5) implies n1(B2) > 2n/3,
therefore n1(B1)+n1(B2)+n1(A\∩2) ≤ 2n. Therefore, n1(A\∩2) < 2n/3, and each subset
B ⊆ A \ ∩2 contains n1(B) < 2n/3. Thus, each subset satisfying condition (5) contains ∩2,
and QMM(�) = ∩2.

Assume now that among the subsets satisfying condition (5) the minimum power is k,
such that 3 ≤ k ≤ m. In step l = 1 consider subset B1, such that B1 satisfies condition (5),
and |B1| = k. Denote ∩1 = B1, where |∩1 | = k. Condition (5) implies n1(B1) > kn/(k+1),
therefore n1(A\∩1) < n/(k+ 1), and each subset B ⊆ A \∩1 has n1(B) < n/(k+ 1). Thus,
either each subset satisfying condition (5) contain ∩1, and QMM(�) = ∩1, or we proceed
to the next step l = 2.

. . .
In step l ∈ {2, . . . , k − 1} there exists a subset B1 satisfying condition (5) such that

∩l = B1 ∩ . . . ∩ Bl, and 1 ≤ | ∩l | ≤ k − l + 1. Condition (5) implies n1(Bl) > kn/(k + 1),
therefore n1(B1) + . . . + n1(Bl) + n1(A \ ∩l) ≤ l · n. Thus, n1(A \ ∩l) < l · n/(k + 1), and
each subset B ⊆ A \ ∩l has n1(B) < l · n/(k + 1) ≤ kn/(k + 1). Thus, either each subset
satisfying condition (5) contains ∩l, and QMM(�) = ∩l, or in step l + 1 . . . in step
l = k there is a subset Bk satisfying condition (5) such that ∩k = B1 ∩ . . . ∩Bk, | ∩k | = 1,
n1(A \ ∩k) < kn/(k + 1), and QMM(�) = ∩k.

2) Consider a profile � and an arbitrary candidate a ∈ QMM(�). Consider now another
profile �′ derived from � by upgrading a by one position in the preference of some voter.
Each set satisfying condition (4) for the profile � contains candidate a and thus this subset
also satisfies condition (4) for the profile �′. Therefore set QMM(�′) is contained in the
original set QMM(�′) ⊆ QMM(�).

For a contradiction, assume that a /∈ QMM(�′). Then there is some set B′ satisfying
condition (4) for profile �′ such that a /∈ B′. But B′ also satisfies condition(4), which
contradicts that a ∈ QMM(�).

3) If the qualified majority supports some subset of candidates then this subset is con-
tained in the intersection from the definition of the qualified majority (4). For each smaller
coalition q < k/(k + 1) the counterexample is the same as in the proof of Theorem 3.1 for
the plurality rule.



4) Since the Borda rule satisfies positive response and the qualified set is strictly mono-
tonic, then the hybrid rule also satisfied positive response.

Each candidate a that positionally dominates some candidate b from the qualified set
also belongs to the qualified set. Candidate a gets a higher Borda score than candidate b
does, therefore the hybrid rule satisfies the positional dominance criterion. Then due to the
incompatibility Theorem [24] the Condorcet criterion is not satisfied for m ≥ 3.

Consider the preference profile for n = 7 voters and m = 4 candidates (Table 1) where
candidates {a, b} are mutually supported by a simple majority. According to condition (4)
the qualified set consists of three candidates {a, b, c}, which get 12, 11 and 13 Borda points
respectively. The example can be generalized to the case of m > 4 candidates where the
new candidates are added to the individual preferences below candidates a, b, c, d. Thus the
mutual majority criterion is not satisfied for m ≥ 4.

Let m = 3 and let candidates {a, b} be supported by a simple majority. Then candidate c
is a majority loser and gets the lowest Borda score Bo(c) < n < max{Bo(a), Bo(b)}.

If either of the subsets {a}, {b} or {a, b} satisfies condition (4), then either a or b wins. If
subset {a, c} satisfies condition (4), then, adding up the two inequalities in condition (4) we
get Bo(a) + Bo(c) > 2n. The latter inequality implies Bo(b) < n < Bo(a) and thus subset
{b, c} does not satisfy condition (4). Therefore the qualified set in this case is either {a, c}
or just {a} and candidate a is the winner. If the qualified set contains all three candidates,
then based on the Borda score we select either a or b. Thus for m = 3 the mutual majority
criterion is satisfied. �

Theorem 4.3. The convex median voting rule satisfies the weak mutual majority criterion;
for each m > 2k, q = (3k − 1)/(4k) is the tight bound; for each m = k + 1, q = 1/2 is the
tight bound; for each 2k ≥ m > k+1, the tight bound q satisfies to inequality 1

2 < q < 3k−1
4k

and to equation

4k(m− k − 1)q2 + (5k2 + 5k − 2mk −m2 + m)q + m(m− 1− 2k) = 0.

Proof.
Let qn voters (q > 0) mutually support some subset B = {b1, . . . , bk}. Then each

candidate a /∈ B gets the following truncated Borda score:

B2kq(a)

2kq
≤ (1− q)n +

(2kq − k)qn

2kq
=

n

2
.

Let m > 2k and q > (3k − 1)/(4k). It is sufficient to show that for some b ∈ B its
truncated Borda score is higher: B2kq(b)/(2kq) > n/2. For a contradiction assume the
opposite:

B2kq(b)

2kq
≤ n

2
for each b ∈ B.

Then
(2kq)n1(b) + . . . + (2kq − k + 1)nk(b)

2kq
≤ n

2
for each b ∈ B,

whence, after summing up k inequalities, we get:

qnk(4kq − k + 1)

4kq
<

nk

2
.

The latter inequality contradicts the assumption q > (3k − 1)/(4k).
To show that the bound is tight we again use the preference profile from Table 4.



Similarly we find a tight bound for the case 2k ≥ m ≥ k + 1:

min
�

max
b∈B

B2kq(b)

2kq
=

qn
k

(4kq−k+1)
2 k

2kq
+

(1−q)n
k

(4kq−m)
2 (2k −m + 1)

2kq
=

n

2
,

which leads to equation 5 and also to a special case m = k + 1, q = 1/2.
�


