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Abstract

In certain situations, such as elections in the Euclidean domain, it is possible to spec-
ify clear requirements for the operation of a multiwinner voting rule, for it to provide
committees that correspond to some desirable intuitive notions (such as individual
excellence of committee members or their diversity). We formally describe several
such requirements, which we refer to as “utopias”. Supplied with such utopias, we
develop an optimization-based mechanism for constructing committee scoring rules
that provide results as close to these utopias as possible; we test our mechanism on
weakly separable and OWA-based rules. Using our method we recovered some be-
lieved connections between known multiwinner voting rules and certain applications
and got other interesting insights.

1 Introduction

Multiwinner voting is a formalism for selecting a set of items (a committee), based on the
preferences of a group of agents (the voters) [26, 16, 25]. For example, a group of judges
may need to select a set of finalists of a competition, a hiring committee may need to select
a set of people to invite for on-site interviews, and an Internet store may need to decide
which items to present on its homepage (depending on how the preferences of its customers
are perceived). In each of these examples, we need committees with different properties; the
judges should select individually best candidates, the Internet store should select a diverse
set of items that covers interests of as many of its customers as possible, and the hiring
committee should balance these two requirements (we should invite as good candidates as
possible, but we also should maintain some diversity among the profiles of the interviewees).

More generally, following the recent overview of Faliszewski et al. [25], multiwinner elec-
tions might be categorized into three classes, based on what their goals are: Individual
Excellence, for selecting individually best candidates; Proportional Representation, for ac-
curately and proportionally representing the electorate views; and Diversity, for reflecting
the wide spectrum of voters’ views.

So far, to address these varied goals and needs researchers typically analyzed existing
multiwinner voting rules, studied their computational complexity [33, 29, 7, 4, 12, 36],
analyzed their axiomatic properties [16, 38, 2, 34, 22], evaluated them experimen-
tally [14, 15, 24, 39, 9], and—based on this evidence—argued which rules are best for which
application (e.g., the k-Borda rule [13] is seen as appropriate for choosing individually ex-
cellent candidates, whereas the Chamberlin–Courant rule [10] is appropriate for identifying
diverse committees that cover a wide spectrum of opinions).1 In other words, typically,
researchers analyzed existing rules and checked which ones behave appropriately for a given
setting. There are also cases where researchers hand-designed multiwinner rules to achieve
their goals (e.g., for situations such as the hiring committee above, Faliszewski et al. [24]
designed a spectrum of rules achieving various levels of compromise between the goals of
excellence and diversity; Elkind et al. [18], Aziz et al. [3] and Sekar et al. [36] proposed
multiwinner variants of the Condorcet rule).

1The references above are meant to present the wide range of results obtained, and are certainly not
complete. We point readers interested in more systematic treatment to the survey of Faliszewski et al. [25].
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In this paper we take a radically different approach from the previous ones: Given a spec-
ification of the kind of committees one is interested in, we use an optimization algorithm to
automatically design—in a principled way—rules that match this specification. (Related to
our approach, we mention the position paper of Xia [41], which takes a normative approach
and suggests the use of machine learning to automatically design voting rules.)

Our work is driven by two main motivations. The first one, suggested above, is that we
wish to develop a methodology for designing voting rules which would satisfy certain desired
properties. There are many multiwinner rules (such as k-Borda [13], Bloc, Chamberlin–
Courant [10], Proportional Approval Voting [40], Monroe [30], and many others) that seem
to have good properties for some idealized goals (recall the three types of multiwinner
elections discussed above), but here we wish to develop a general mechanism that, when
supplied with any arbitrary goal (specified in an appropriate way), can output a multiwinner
rule appropriate for this goal. Indeed, designing voting rules which satisfy certain properties
is in the heart of social choice. As a proof of concept, in this paper we focus on (two
subclasses of) the class of committee scoring rules [16] and design an algorithm that searches
for appropriate rules among them. We focus on the rules from these classes because they are
parameterized through sets of numeric parameters that we can tweak to manipulate their
properties; this aspect is important for our optimization-based approach.

The idea of designing voting rules tailored to have specific properties is not new. For
example, it has already motivated the view of voting rules as maximum likelihood estimators
(see, e.g., the work of Conitzer et al. [11]), where the rules are meant to recover ground truth
from noisy data, or the distance-rationalization approach (see, e.g., the work of Elkind et
al. [17]), where the rules are viewed as seeking consensus. Our work can also be seen as
providing means of specifying voting rules by non-experts (and, in this sense, it is related
to the work of Cailloux and Endriss [8]).

Our second motivation relates to the richness of the class of committee scoring rules.
So far, researchers have analyzed the general structure of committee scoring rules [38],
considered a few of their subclasses [16, 23, 22], and studied several specific rules [16, 37, 2]
or spectra of rules [24]. However, as there are so many committee scoring rules, it might
be that, in spite of the effort outlined above, some important rules might have been missed.
Our mechanism of designing rules tailored for particular goals explores specified subclasses
of committee scoring rules and, for each setting, either finds one of the already-known rules
(thus confirming that it is highly appropriate for a given setting) or discovers a new rule.

2 Preliminaries

An election E = (C, V ) consists of a set of candidates C = {c1, . . . , cm} and a collection of
voters V = (v1, . . . , vn), where each voter vi has a linear order �vi , ranking the candidates
from the one that vi appreciates most to the one that vi appreciates least. We refer to
�vi as the preference order of voter vi (and, sometimes, as the vote of vi). For a voter v
and a candidate c, we write posv(c) to denote the position of c in v’s preference order (the
top-ranked candidate has position 1, the next one has position 2, and so on). A multiwinner
voting rule is a function R that, given an election E = (C, V ) and an integer k, 1 ≤ k ≤ |C|,
outputs a family of size-k subsets of C (i.e., a family of committees) that win this election.

For each integer t, we write [t] to denote the set {1, . . . , t}. In particular, if m is the
number of candidates, we often interpret [m] as the set of positions that candidates may take
in a preference order. A single-winner scoring function (for an election with m candidates)
is a non-increasing function γm : [m] → R that associates each position in a vote with a
score value. We define the γm-score of a candidate c in an election E = (C, V ) to be
γ-scoreE(c) =

∑
v∈V γm

(
posv(c)

)
. We use normalized scoring functions, so that γm(1) = 1
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and γm(0) = 0. For example, the Borda scoring function is defined as βm(i) = m−i/m−1,
and the t-Approval scoring function (denoted αt, where t ∈ [m] is a parameter) is a function
that associates score 1 with the first t positions, and score 0 with the remaining ones.

Committee scoring functions are defined analogously to the single-winner ones, but for
a generalized notion of a position. Let us fix committee size k. Then, given a committee
S and a vote v, we define the position of S in v, denoted posv(S), to be the sequence of
positions of the members of S in v, sorted in the increasing order (i.e., we obtain posv(S)
by sorting the set {posv(s) | s ∈ S} in the increasing order). We write [m]k to denote
the set of all length-k increasing sequences of elements from [m] (and we interpret elements
of [m]k as committee positions). We say that committee position I = (i1, . . . , ik) weakly
dominates committee position J = (j1, . . . , jk), denoted I � J , if for each t ∈ [k] it holds
that it ≤ jt. A committee scoring function (for m candidates and committee size k) is a
function fm,k : [m]k → R, such that for each two committee positions I, J ∈ [m]k, if I � J
then f(I) ≥ f(J). The fm,k-score of committee S in election E = (C, V ) is defined as∑
v∈V fm,k

(
posv(S)

)
. For a family f = (fm,k)k≤m of committee scoring functions (one for

each number of candidates and committee size), we define the committee scoring rule Rf as
follows: Given an election E = (C, V ) with m candidates and committee size k, it outputs
all size-k committees S with the highest fm,k-score.

Example 2.1. Let us fix an election E with m candidates and committee size k. The SNTV
rule is defined by committee scoring functions of the form f sntvm,k (i1, . . . , ik) = α1(i1). This
means that the rule selects a committee of k candidates that are ranked first most frequently
(or several such committees, in case of ties). The Bloc rule uses functions of the form
fblocm,k (i1, . . . , ik) = αk(i1) + · · ·+ αk(ik), which can be interpreted as saying that each voter
gives one point to each of his or her k most favorite candidates, and the k candidates with
the highest score form the winning committee. The k-Borda rule chooses k candidates with
the highest Borda scores and is defined through the functions fkbm,k(i1, . . . , ik) = βm(i1) +
· · ·+βm(ik). The Chamberlin–Courant rule (the CC rule) uses scoring functions of the form
f ccm,k(i1, . . . , ik) = βm(i1). This means that given a committee S, each voter associates it
with the Borda score of this member of S that he or she ranks highest (this candidate is
called the representative of the voter). Finally, the Harmonic-Borda rule [24] (the HB rule)
uses the scoring function f ccm,k(i1, . . . , ik) = βm(i1) + 1/2βm(i2) + · · ·+ 1/kβm(ik).

Consider a setting with m candidates, where the desired committee size is k, and where
R is a committee scoring rule:

1. We say that R is weakly separable if its committee scoring function is of the form
f(i1, . . . ik) = γ(i1) + · · ·+ γ(ik), where γ is a single-winner scoring function.

2. We say that R is OWA-based if its committee scoring function is of the form
f(i1, . . . , ik) = λ1γ(i1) + · · · + λkγ(ik), where Λ = (λ1, . . . , λk) is a sequence of non-
negative real numbers and γ is a single-winner scoring function (we refer to the vector
Λ as the OWA vector).

Note that every weakly separable rule is OWA-based (with the all 1s OWA vector). For
the purpose of this paper, we normalize OWA vectors, so that λ1 is always 1. We say that
a committee scoring rule is OWA/Borda-based if it is OWA-based, uses the Borda scoring
function and a non-increasing OWA-vector. All the rules from Example 2.1 are OWA-based.

3 Methodology

In this section we describe our technique of designing voting rules. The technique is based
on minimizing the distance between election results, computed for 1-dimensional Euclidean
elections, and certain prespecified distributions (which we call utopic distributions).
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k-Borda Bloc SNTV

Borda scoring
(1, 98/99, . . . , 0)

SNTV’s scoring
(1, 0, . . . , 0)

Bloc’s scoring
(1, . . . , 1︸ ︷︷ ︸

10

, 0 . . . , 0︸ ︷︷ ︸
90

)

Figure 1: Visualization of example weakly separable rules (k-Borda, Bloc, and SNTV).
Plot (a) shows the scoring functions, plots (b) show example election results on a 1D interval,
plots (c) show histograms for the interval election model, and plots (d) show scatter plots
for the disc model.

(a)

(b)

(c)

(d)

k-Borda CC HB

OWA for k-Borda
(1, . . . , 1)

OWA for HB
(1, 1/2, . . . , 1/10)

OWA for CC
(1, 0, . . . , 0)

Figure 2: Visualization of example OWA/Borda-based rules (k-Borda, CC, and HB).
Plot (a) shows the OWA vectors used, whereas plots (b)–(d) have the same meaning as
in Figure 1.

3.1 Euclidean Elections

In the t-dimensional Euclidean model of elections, each individual u (i.e., each candidate
and each voter) is represented by a point p(u) ∈ Rt in the t-dimensional space. Intuitively,
the coordinates of this point may correspond to u’s position regarding some t issues [19, 20].
Each voter forms his or her preference order by sorting the candidates in increasing order
of the distances of the candidates’ ideal points from the voter’s ideal point (i.e., the closer
a candidate is to a voter, the higher the voter ranks the candidate).

In our computations, we use either 1-dimensional Euclidean elections, where we generate
the ideal points of candidates and voters by drawing them uniformly at random from the [0, 1]
interval, or 2-dimensional elections, where we draw the ideal points uniformly at random
from a disc centered at point (0.5, 0.5) with radius 0.5. We refer to the former as the interval
model and to the latter as the disc model. We always generate elections with 100 candidates
and 100 voters, and we seek committees of size 10. We chose these parameters to ensure
that our results are comparable to those already present in the literature [15, 24, 21]. We
use the interval model throughout the whole process of designing voting rules, and we use
the disc model to check whether the rules that we produce maintain their features after
changing (and, in a sense, generalizing) the setting.
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Following Elkind et al. [15], we present the results of our elections visually. For a given
voting rule R and a given election model (interval or disc), we generate a number of elections
according to the model (1000 elections for the interval model and 2000 elections for the disc
model), compute the R winning committee for each election (if there are ties, we break
them arbitrarily), and—depending on the model—present them as follows:

1. For the interval model, we partition the [0, 1] interval into 40 subintervals, count how
many times a candidate from a given subinterval was in a winning committee, and
present these numbers as a histogram. We do not normalize the histograms; different
ones have different scales as their point is to show the “shape” of the election results.

2. For the disc model, we show a scatter plot, where each member of a winning committee
is indicated as a blue dot (thus, as opposed to the work of Elkind et al. [15], our plots
for the disc model are not histograms2). In addition to the blue dots, we also show
the gray disc from which the candidates’ and voters’ points are drawn.

In Figures 1 and 2 we show visualizations of the results for the rules from Example 2.1.
For weakly separable rules, we show plots of their scoring functions (so on the x-axis we
have the 100 possible positions in a vote), and for OWA/Borda-based rules, we show their
OWA vectors (so on the x-axis we have 10 entries); k-Borda is shown in both plots as it
belongs to both classes of rules.

To compute results of weakly separable rules, we use their direct polynomial-time algo-
rithms. For OWA/Borda-based rules, we compute winning committees by solving integer
linear programs (ILPs) provided for this task by Peters [32] (we use the CPLEX ILP solver).
Peters showed that using his formulations gives a polynomial-time algorithm for the case of
single-peaked elections; since elections generated for the interval model are single-peaked,
we enjoy this guaranteed efficiency (however, this no longer holds for the disc model).

3.2 Utopic Distributions and Distance Measures

We use probability distributions (which we call utopic distributions) to represent how, ide-
ally, we would like the winners of our interval elections to be distributed (or, roughly speak-
ing, how we would like their 1D histograms to look like). For example, the utopic distribution
that models the goal of individual excellence associates the whole probability mass with the
center of the interval, whereas the distribution associated with covering the whole spectrum
is, simply, the uniform distribution over the interval.

Let U be some utopic distribution. Given a committee W = {w1, . . . , wk} for some
interval election, we define dW , the distribution associated withW , so that for each x ∈ [0, 1]:

dW (x) = ‖{wi | p(wi) = x}‖/k.

To measure how closely W fits utopia U , we use the intuitions underlying the Earth mover’s
distance [31]: We view the probability mass associated with each point (each interval) as
the number of “grains of sand” that lie on this point (this interval). Moving a grain of
sand from point x to point y costs |x − y|. The distance between two distributions is the
lowest possible cost of moving the “grains of sand” needed to transform one of them into the
other. While this intuition is discrete in its nature, our utopic distributions are sometimes
continuous (in other words, sometimes we consider probability density functions). Instead
of providing a general definition of our distance, below we describe the utopic distributions

2Our plotting tool draws the blue dots as “partially transparent,” so areas with fewer winners appear in
lighter shade of blue, whereas areas with high concentration of winners appear as dark blue. The reason to
use scatter plot instead of 2D histograms is that, similarly to the histograms, it provides a good intuition
on how the given rule behaves, but it requires far fewer election results.
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that we consider and for each we derive the appropriate distance measure (they are defined
so their values are comparable among each other, even though such comparisons are not
necessary). In the descriptions below, we let k be the committee size and W = {w1, . . . , wk}
be a committee, whose members have ideal points p(w1) . . . , p(wk) ∈ [0, 1]. We assume that
these points are sorted, i.e., p(w1) ≤ p(w2) ≤ · · · ≤ p(wk).

0.50 1

(a) Individual Excellence utopia

0.25 0.750 0.5 1

(b) 0.25-Twin Peaks utopia

0 10.167 0.333 0.5 0.667 0.833

(c) Diversity utopia (k = 6)

0.2 0.80 10.3 0.4 0.5 0.6 0.7

(d) 0.2-Diversity utopia (k = 6)

0
0.33 0.42 0.5 0.58 0.67

0.1 0.9 1

(e) 0.1-Triangle utopia (k = 6)

Figure 3: Utopic distributions.

Individual Excellence (UIE). The individual ex-
cellence utopic distribution, UIE , is defined as con-
centrating all the probability mass in the center of the
interval, at point 0.5; see Figure 3a (this is inspired
by the k-Borda rule, which is regarded as very good
for the excellence goal, and which chooses candidates
in the center). We define the distance between UIE
and dW to be EMD(U , dW ) =

∑k
i=1

1/k|p(wi)− 0.5|.
That is, for each member of the committee we pay
the cost of moving him or her to the center of the
interval (we multiply each |p(wi)−0.5| by 1/k as each
member of the committee is associated with proba-
bility mass 1/k).

Twin Peaks (Uε
TP). The Bloc rule motivates the

study of the twin peaks utopic distributions (see Fig-
ure 1). An ε-twin peaks utopic distribution for pa-
rameter ε, denoted UεTP , places half of the probability
mass on point ε and half on point 1−ε; see Figure 3b.
We let the distance between UεTP and dW be:

EMD(UεTP , dW ) =
∑k/2
i=1

1/k|p(w1)− ε|

+
∑k
i=k/2+1

1/k|p(w1)− (1− ε)|

(we assume that k is even); we we assign the left half of committee members to the left
peak, and the right half to the right peak (recall that they are sorted).

Diversity (UD). The diversity (or, coverage) utopic distribution, denoted as UD and
defined to be the uniform distribution over [0, 1], models the idea that a diverse committee
should cover the whole interval as uniformly as possible. Our reasoning for the distance
EMD(UD , dW ) is that the committee members are supposed to be distributed evenly along
the interval [0, 1] and, so, each of them is responsible for covering a 1/k-length subinterval.
We assign the subintervals to committee members so that w1 is assigned to [0, 1k ], w2 is
assigned to [ 1k ,

2
k ] and so on; see Figure 3c.

Let ` = 1/k be the length of the subintervals. For each wi, we define the cost of “spread-
ing” his or her probability mass from dW over the assigned subinterval [`(i− 1), `i] so:

1. If the committee member is to the left of his or her interval (i.e., p(wi) < `(i−1)), then
we need to pay the cost (`(i−1)−p(wi))` for moving his or her probability mass (which

also is equal to `) to the point `(i−1), and then the cost 1/2`2 =
∫ `
`(i−1)

(
1− x−`(i−1)

`

)
dx

for “spreading” his or her weight over the interval (note that this latter cost equals to
the area of a triangle). If the committee member is to the right of his or her interval,
we proceed analogously.

2. If the committee member is in his or her interval (i.e., `(i− 1) ≤ p(wi) ≤ `i), then it

suffices to “spread” the p(wi)−`(i−1)
` fraction of his or her probability mass to the part

of the interval left of him, at cost 1
2 (p(wi) − `(i − 1))2 (analogously to the previous
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cases, this can be expressed as the area of a right triangle, with two sides of length
p(wi) − `(i − 1)), and the remaining mass, to the part of the interval to the right of
him or her, at cost 1

2 (`i− p(wi))2.

Overall, the cost associated with wi is:

cost(wi) =


(`(i− 1)− p(wi))`+ `2

2 for p(wi) ≤ `(i− 1)
(p(wi)−`(i−1))2+(`i−p(wi))

2

2 for `(i− 1) < p(wi) < `i

(p(wi)− `i)`+ `2

2 for `i ≤ p(wi)

and we define EMD(UD , dW ) to be
∑k
i=1 cost(wi).

Diversity/Excellence Compromises (Uε
D and Uε

T ). We also consider two families
of utopic distributions that achieve a certain level of compromise between the ideals of
individual excellence and diversity. Let ε be a number in [0, 0.5]. We define the ε-diversity
utopic distribution, denoted by UεD , to be the uniform distribution over the interval [ε, 1−ε].;
see Figure 3d. Each committee member wi is responsible for covering interval Ii = [ε+ `(i−
1), ε+ `i] of length ` = 1/k(1− 2ε).

Our second way of capturing a compromise between individual excellence and diversity
is via a distribution whose probability density function, for a given ε ∈ [0, 0.5], is a triangle
with a peak at 0.5, set over the interval [ε, 1 − ε] (the area of the interval is always one).
We call it the ε-triangle utopic distribution and denote it by UεT . We derive the values
EMD(UεD , dW ) and EMD(UεT , dW ) following the same logic as in the case of EMD(UD , dW )
(omitted due to space restriction).

3.3 Search Algorithms

The final component of our method is an algorithm that, given a utopic distribution U and
one of our two families of committee scoring rules, finds a rule R as close to U as possible.

For m candidates, a weakly separable rule is defined via a non-increasing vector X =
(x1, . . . , xm), such that x1 = 1 and xm = 0; the vector X specifies the values of the
underlying single-winner scoring function γ for the possible positions in a preference order.
Given a committee size k, an OWA/Borda-based rule is defined by its non-increasing OWA
vector (λ1, . . . , λk), where λ1 = 1. Correspondingly, given a vector Y of appropriate size,
we write RY to denote the rule defined by this vector (when we consider weakly separable
rules, Y gives the score values; when we consider OWA/Borda-based rules, it is the OWA
vector). Given a vector Y ′, by normalizing it we mean sorting it, setting its first coordinate
to 1, replacing all > 1 values with 1s and all < 0 values with 0, and—for weakly separable
rules—setting its last coordinate to 0 (so that the vector describes a legal rule from the
relevant class).

Let us fix the class of rules and the utopic distribution U . Our goal is to find a vector
Y so that the winning committees under RY follow U as closely as possible. To make
this notion precise, our algorithm first computes a given number N of interval elections
E1, . . . , EN (these are fixed throughout the whole optimization process). To evaluate the
rule RY , for each election Ei we compute the winning committee Wi (if there are ties, then
we break them arbitrarily). Then we compute the average distance of these committees

from the utopia, EMD(U ,RY ) = 1/N
∑N
i=1 EMD(U , dWi

); this value is referred to as the
score of the rule (the lower, the better).

To find a good vector Y , we use a local search algorithm that is similar to simulated
annealing, but that never accepts worse solutions (we found local minima to not pose prob-
lems for our search space, and our approach turned out to be more effective). We use the
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following parameters: (a) the number of iterations T , (b) the probability ω(i) ∈ [0, 1] of
changing a given vector’s coordinate, depending on the iteration number i, (c) the range
parameter r(i) ∈ [0, 1], specifying how much vector coordinates can change depending on
the iteration number i. The algorithm works as follows:

1. Draw vector Y with coordinates from [0, 1] uniformly at random and normalize it.

2. Repeat the following steps T times:

(a) Create a vector Y ′ using the following procedure. Set Y ′ = Y . Then, for each
of its coordinates y′i, compute y′′i by adding to y′i a value drawn uniformly at
random from [−r(i), r(i)]. With probability ω(i), replace the value of y′i with y′′i .
Normalize Y ′.

(b) Replace Y with Y ′ if EMD(U , RY ′) < EMD(U ,RY ); otherwise, keep Y as is.

3. Output the rule RY .

For weakly separable rules, we use T = 3000 iterations, ω(i) = max(T−i2T , 0.05), r(i) =
0.5ω(i), and N = 400 test elections. For OWA/Borda-based rules, we use T = 300 iterations,
ω(i) = max(T−i2T , 0.1), r(i) = 0.3 · max(T−i2T , 0.05), N = 40 test elections. To speed up
the algorithm for the case of OWA/Borda-based rules, we first run it for elections with
50 candidates, 50 voters, and committee size 10, and only then we re-run it for full-sized
elections (with 100 candidates, 100 voters, and committee size 10), using the result of the
first run as the input for the second one. The algorithm does not provide any guarantees
regarding the quality of the results, but we compared its performance to a brute-force search
for small elections and it achieved very good results.

4 Results

We used our search algorithm to find the best weakly separable and OWA/Borda-based
rules for the individual excellence, ε-diversity (with ε ∈ {0, 0.1, 0.2}), ε-twin peaks (with
ε ∈ {0.167, 0.25, 0.333}), and ε-triangle (with ε ∈ {0, 0.1, 0.2}) utopic distributions.

The results are given in Table 1 (where we show EMD distances for the best rules we
computed using our algorithm, and for the five rules from Example 2.1) and in Figures 4–9.
Each figure shows results for four utopic distributions: the individual excellence utopia,
which can be seen as a border case for each of the other distributions, and either ε-diversity,
ε-twin peak, or ε-triangle distributions, for appropriate values of ε. The largest plot on
the left of each figure, marked (a), shows vectors computed for the respective four utopias.
Next to it, as Plot (b), we show graphical representation of the respective utopia (drawn
as a gray area over the [0,1] interval) and a sample result of a single interval election (the
blue dots). As Plot (c), we show the 1D histograms achieved by the computed rules (we
remind the reader that different histograms have different y-axis scales, as they only show
the “shape” of the result). Finally, as Plot (d), we show the scatter plots computed for disc
elections according to our four rules. The vectors computed for the utopias are marked with
a number (1–4) and the respective figures in (b)–(d) are marked with matching numbers.

EMD Results Versus Histograms. The EMD results in Table 1 show that generally
our best OWA/Borda-based rules are much closer to respective utopias than our best weakly
separable rules. While this is in agreement with intuition, it may sometimes be surprising
that weakly separable rules achieve far more visually appealing histograms for some settings
than the OWA/Borda-based ones (e.g., for the twin-peaks distributions), in spite of having
worse EMD values. The reason for this discrepancy is that weakly separable rules achieve
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good histograms “in the aggregate” (averaged over many elections), whereas OWA/Borda
rules perform well (but not great) for every election instance.

Utopia W. Sep. OWA/Borda SNTV Bloc Borda CC HB

UD 0.104 0.042 0.092 0.215 0.227 0.044 0.094
U0.1

D 0.098 0.042 0.100 0.205 0.178 0.059 0.053
U0.2

D 0.073 0.044 0.126 0.210 0.130 0.100 0.044

U0.167
TP 0.235 0.135 0.159 0.237 0.307 0.140 0.172
U0.25

TP 0.185 0.060 0.144 0.222 0.224 0.124 0.116
U0.333

TP 0.135 0.081 0.156 0.221 0.141 0.136 0.093

UT 0.139 0.043 0.113 0.213 0.150 0.082 0.043
U0.1

T 0.136 0.045 0.137 0.220 0.127 0.116 0.051
U0.2

T 0.122 0.054 0.174 0.238 0.105 0.160 0.083

UIE 0.041 0.049 0.248 0.264 0.049 0.244 0.168

Table 1: EMD values for the best weakly separable and
OWA/Borda-based rules computed for our utopias, and
for the rules from Example 2.1 for the same utopias.

Weakly Separable Rules.
Next we discuss specific results
for weakly separable rules. For in-
dividual excellence (see Figure 4)
we obtained a nearly linear vector,
very close to the Borda scoring
function (vector 4). On the
other extreme, for the diversity
utopia, we found a rule very close
to SNTV (vector 1, which is 0
for most positions, then slowly
increases, and jumps to value 1
for the first position; in fact, it is
a bit closer to UD than SNTV is).
We view it as a negative result:
our hope was to find a weakly
separable rule that would robustly
implement the diversity utopia, but apparently such rule does not exist (SNTV does not
implement this utopia robustly as its results seem to be a statistical artifact: SNTV chooses
candidates from areas with lower density of candidates and increased density of voters,
which, statistically, happens equally often in each area of the interval).

Perhaps the most interesting results are those achieved for 0.1-diversity and 0.2-diversity
(vectors 2 and 3), as they show rules that, if at all, are very rarely discussed in the literature.
Both vectors 2 and 3 resemble functions of the form γ(i) = (1 − x)α1(i) + xβm(i), where
x ∈ [0, 1] is a parameter (and, in our case, is close to 0.2). In other words, these functions
give score 1 to position 1, score ≈0.2 to position 2, and then decrease linearly to 0. One
could say that their Borda-score component is too small to be relevant, but this is not so.
In our 1D elections we have 100 voters, which means that there are only 100 points to be
distributed for being ranked on the first place, while there are ≈1000 points to be distributed
for being ranked on the following places. This way, the rules described by vectors 2 and 3
achieve a compromise between SNTV and Borda.

The results for the ε-twin peaks utopic distribution (Figure 5) are quite spectacular.
For each ε ∈ {0.167, 0.25, 0.333} we find a rule whose 1D histogram matches the respective
utopic distribution very well (but only in the aggregate; see Table 1). The twin-peaked
distributions were inspired by the results for the Bloc rule (recall Figure 1); indeed, we find
vectors consisting of several 1s followed by 0s (with a very rapid transition). However, as
opposed to Bloc, our vectors have many more 1s (Bloc would have k of them, i.e., 10 in our
case, but our rules have between 20 and 40). Apparently, this is the reason why our rules
match the twin-peaked utopias better than Bloc, which selects more candidates “between the
peaks”. A final remark regarding the twin peaks distributions regards individual excellence:
Our results show that, as we put the peaks closer to each other, we obtain vectors of more
1s, followed by fewer 0s, but when the peaks finally coincide, we should obtain the linear
function. Either there is some sort of phase transition between these two extremes, or we
did not put the peaks close enough to each other to observe a smooth transition.

For the triangle utopias (see Figure 6), we seem to find rules whose scoring vectors
resemble the shape of the harmonic sequence 1, 1/2, . . . , 1/m. These rules, indeed, seem to
achieve a compromise between individual excellence (i.e., choosing winners from the center)
and diversity (choosing winners from the whole interval/disc). Further, on the intuitive level,
these rules are more appealing than the SNTV/Borda compromise obtained for ε-diversity.
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Indeed, this suggests that studying a variant of k-Borda that uses harmonic numbers instead
of linearly decreasing scores might be interesting.

OWA/Borda-Based Rules. For individual excellence (see, e.g., Figure 7), our algorithm
very quickly finds OWA vector of all 1s; thus, we obtain the k-Borda rule. For diversity
(Figure 7, vector 1), we find a vector close to that of Chamberlin–Courant (a single 1 followed
by 0s). For 0.1-diversity and 0.2-diversity we find, respectively, vector 2 that resembles (but,
admittedly, quite poorly) the harmonic sequence and linearly decreasing vector 3. These
two results are intriguing. First, the linear vector is a very natural solution to finding a
compromise between excellence and diversity (which, in this case, would mean finding a
compromise between k-Borda and Chamberlin–Courant) that has not been considered in
the literature yet (even though Faliszewski et al. [24] look for rules that achieve such a
compromise, they do not study this rule). On the other hand, the harmonic vector has
received extensive treatment, both for Harmonic Borda [24] and for the PAV rule [40, 2, 26,
27] (which is approval-based and has motivated the study of Harmonic Borda). In fact, the
OWA vectors that we have obtained for the triangle distributions (see Figure 9) seem to be
closer to the harmonic sequence. This confirms the intuition of Faliszewski et al. [24] that
this sequence achieves a good excellence/diversity compromise.

Finally, we consider the results for the twin peaks distributions (Figure 8). We find
OWA vectors that consist of 1s followed by 0s. This means that the rules that we found are,
in essence, the t-Borda rules of Faliszewski et al. [24] (for a given t, the t-Borda rule uses
Borda scoring function and OWA vector of t 1s followed by 0s). Faliszewski et al. studied
these rules in their search for excellence/diversity compromises, but concluded that they do
not seem to work well for this case. The fact that they implement the twin peaks utopic
distribution supports this conclusion.

Results for Disc Elections. Generally, our rules behave similarly on interval and disc
elections, with the only exception of the rule from Figure 8 (1), which creates three peeks
in the interval elections, but which does not select winners from the center in disc elections.

5 Conclusions

We have developed a methodology for designing multiwinner voting rules whose winning
committees have properties specified via distributions on a 1D interval. Testing our method
on weakly separable and OWA/Borda-based committee scoring rules, we confirmed many
intuitions about the applicability of certain rules for certain tasks and discovered new rules.

Our work is a proof of concept and shows that our approach is indeed feasible. In
particular, we have focused entirely on generating our rules using 1D Euclidean elections
where voters’ and candidates’ ideal points are selected uniformly at random. In certainly
would be interesting to consider how the results change when we vary these distributions
(for the goals of individual excellence and diversity we would not except much difference,
but modeling, e.g., proportionality might require more involved distributions).

One of the main motivations for our work was to seek rules that find diverse commit-
tees. Promoting diversity is an important thread in recent research in computational social
choice [5, 25], not only in voting theory [1, 6, 35, 28], and it may be useful to merge the
ideas from various papers that arise in this context.

Acknowledgments. Piotr Faliszewski was supported by the National Science Centre,
Poland, under project 2016/21/B/ST6/01509. Stanis law Szufa was supported by the Na-
tional Science Centre, Poland, under project 2016/21/B/HS5/00437.
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Figure 4: Results for weakly separable rules and utopic distributions (1) UD , (2) U0.1
D ,

(3) U0.2
D , and (4) UIE . Plots (a)–(d) have meaning as in Figure 1.
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Figure 5: Results for weakly separable rules and utopic distributions (1) U0.167
TP , (2) U0.25

TP ,
(3) U0.333

TP , and (4) UIE . Plots (a)–(d) have meaning as in Figure 1.
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Figure 6: Results for weakly separable rules and utopic distributions (1) U0
T , (2) U0.1

T ,
(3) U0.2

T , and (4) UIE . Plots (a)–(d) have meaning as in Figure 1.
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Figure 7: Results for OWA/Borda-based rules and utopic distributions (1) UD , (2) U0.1
D ,

(3) U0.2
D , and (4) UIE . Plots (a)–(d) have meaning as in Figure 2.
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Figure 8: Results for OWA/Borda-based rules and utopic distributions (1) U0.167
TP , (2) U0.25

TP ,
(3) U0.333

TP , and (4) UIE . Plots (a)–(d) have meaning as in Figure 2.
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Figure 9: Results for OWA/Borda-based rules and utopic distributions (1) U0
T , (2) U0.1

T ,
(3) U0.2

T , and (4) UIE . Plots (a)–(d) have meaning as in Figure 2.
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