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Abstract

In a polarized committee, majority voting disenfranchises the minority. By allowing

voters to spend freely a fixed budget of votes over multiple issues, Storable Votes

restores some minority power. We study a model of Storable Votes that highlights

the hide-and-seek nature of the strategic game. With communication, the game

replicates a classic Colonel Blotto game with asymmetric forces. We call the game

without communication a decentralized Blotto game. We characterize theoretical

results for this case and test both versions of the game in the laboratory. We find

that, despite subjects deviating from equilibrium strategies, the minority wins as

frequently as theory predicts. Because subjects understand the logic of the game

— minority voters must concentrate votes unpredictably — the exact choices are of

secondary importance. The result is an endorsement of the robustness of the voting

rule.

Keywords: Storable Votes, Polarization, Colonel Blotto, Tyranny of the Majority, Commit-

tees

1 Introduction

How should political power be shared? Majoritarian democracy is desirable under many

criteria [8, 25, 27] but in polarized societies, where the same group is on the losing side on

all essential issues, it effectively disenfranchises the minority.1 Polarization can exist in rich

as well as poor countries, in old as well as new democracies, and can pre-date the democratic

institutions or be generated by the institutions themselves. For instance, polarization can

rest on the exogenous separation of the population into two main religions. But it can also

result from electoral competition in a winner-take-all system, in otherwise very different

countries.2 Emerson [11, 12], referring to Northern Ireland, the Balkans, and other places

plagued by civil wars, claims that majority rule is the problem, not a solution, and that

more consensual rules must be implemented.

In modern democracies, the main tool for power-sharing is representation. The complex-

ity of the political agenda, which unfolds over time and allows changing coalitions, logrolling,

and compromises makes representation in Parliament valuable even to a minority. When

group barriers are permeable, the minority can occasionally belong to the winning side. But

1Political philosophy has long recognized that the tyranny of the majority poses a fundamental challenge
to the legitimacy of majority voting [9].

2See Fiorina et al. [13], Jacobson [20] for the US case, or Eifert et al. [10], Kabre et al. [21], Reynal-Querol
[28] for African cases.



when preferences are fully polarized and the power of a cohesive majority bloc is secure, the

minority remains disenfranchised. In some instances, therefore, power-sharing is imposed

directly, and the constitution grants executive positions to specific groups, typically on the

basis of their ethnic or religious identity.3 The problem is that constitutional provisions

of this type are difficult to enforce and heavy-handed, unsuited to changing realities. We

argue that power-sharing in polarized societies could be achieved in a more subtle and more

flexible manner via the design of appropriate voting rules.4

The Storable Votes mechanism (henceforth SV) does just that: it allows the minority to

prevail occasionally and yet is anonymous and treats everyone identically [5]. In a setting

with a finite number of binary issues, the SV mechanism grants a fixed number of total votes

to each voter with the freedom to divide them as wished over the different issues, knowing

that each issue will be decided by simple majority. SV can apply to direct democracy in

large electorates, or to smaller groups, possibly legislatures or committees formed by voters’

representatives, as in the model we study in this paper.

Although easy to describe, SV poses a challenging strategic problem: how should the

votes best be divided? Testing whether voters are in fact able to use SV profitably is thus

central to recommending its use in concrete applications. We study the SV mechanism in

a model that highlights a central ingredient of the strategic environment: the hide-and-seek

nature of the game between majority and minority voters. If the majority spreads its votes

evenly, then the minority can win some issues by concentrating its votes on them, but if

the majority knows in advance which issues the minority is targeting, then the majority can

win those too.

Such strategic interaction is studied in the literature under the name of Colonel Blotto

game [3, 15], with two armies (here: groups) allocating soldiers (votes) on several battlefields

(issues), each battlefield being won by the army with the largest number of soldiers. The

SV model differs however on one important dimension: the game is decentralized, as the

votes of a given group (minority or majority) are controlled by several voters.

To our knowledge, the decentralized Blotto game has not been studied before. We first

stress the difference between the decentralized game and its centralized counterpart, and

we then provide theoretical results on the decentralized game. We experiment the game

in the laboratory, under two conditions: in a first phase, subjects cannot communicate,

and in a subsequent phase, subjects can communicate within their group before allocating

their votes. The analysis of the decentralized game serves as reference for the game without

communication, whereas the game with communication is well described by the centralized

game studied in Hart [17]. In both treatments, the essential logic of the game — the minority

needs to concentrate and randomize its votes — is immediately clear to minority players in

the lab.

3For example, in Lebanon [26, 31], in Mauritus [4], and occasionally elsewhere [24].
4Note that neither vetoes or supermajority requirements, nor log-rolling can overcome the problem posed

by a systematic minority. If on each issue there is a fixed majority of, say, 60 percent, versus a fixed minority
of 40 percent, then vetoes and supermajorities stall all voting, and logrolling has not role because the majority
is always winning.



The paper contrasts with previous models on SV [5, 6], which studied environments

where the strategic problem faced by the voters is simpler. More precisely, existing models

assume that voters have private information about their cardinal intensities of preferences,

and that intensities are uncorrelated across voters. In such a scenario, a voter’s optimal

strategy is to cast more votes on issues that the voter consider higher priorities (at a given

state). Because the intensity of one’s own preferences is instinctively focal, it is natural to

ask whether the good performance of the mechanism in the lab extends to more complicated

strategic settings. If intensities are commonly known, or if it is known that intensities are

correlated across groups, the minority’s need to be unpredictable returns and with it the

more complex equilibrium with randomization.5 In this paper, we abstract from cardinal

intensities and assume that each issue is judged equally important by all. The assumption

can be read literally, reflecting a lack of clear priorities. But more generally, it is the modeling

device we employ to give full weight to the strategic complexity of the hide-and-seek game.

As a result of this modeling choice, one could argue that minority victories are not justified

on normative utilitarian terms. Such a perspective, however, would be very narrow: in the

absence of different intensities, the fairness requirement of some minority representation can

be easily derived from a social welfare function that is concave in individual utilities, with

the degree of concavity mirroring the strength of the social planner’s concern with equality

[22, 23].6

Our experimental results also bear comparison to a small recent experimental litera-

ture on the asymmetric Colonel Blotto game. In line with Avrahami and Kareev [2] and

Chowdhury et al. [7], we observe that the minority concedes some battlefields in order to

win others. However, the key difference in our setting is the decentralization of decisions

in the non-communication treatment, which renders the game more complex. Rogers [30]

introduces some decentralization in a related game, whose payoffs differ from classical Blotto

payoffs along several dimensions.7 One side consists of two players fighting against a single

opponent, a structure that we examine in one of our treatments. Contrary to the conclusions

of that paper, we observe that decentralization need not be detrimental to the divided side.

2 The Model

A committee ofN individuals must resolveK ≥ 2 binary issues: they must decide whether to

pass or fail each of K independent proposals. The set of issues is denoted by K = {1, . . . ,K}.
The same M individuals are in favor of all proposals, and the remaining N −M = m are

opposed to all, with m ≤ M . We call M the majority group, and m the minority group,

and we use the symbol M (m) to denote both the group and the number of individuals in

5In a related symmetric game, for example, Hortala-Vallve and Lorente-Saguer (2012) show that when
priorities are known, pure strategy equilibria can exist only under very restrictive conditions.

6As pointed out in these papers, a normative basis for fairness also arises from individual utility functions
which are concave with respect to the individual frequency of wins.

7Some battlefields are easier to win for one side, some for the other side; a bonus is added for the side
winning a majority of battlefields; a bonus (resp. malus) is added for each winning (resp. losing) battlefield
according to the margin of victory (resp. defeat).



the group. The specific direction of preferences is irrelevant, what matters is that the two

groups are fully cohesive and fully opposed.

Each voter is endowed with K votes, that she can distribute freely among the different

issues. Each issue is decided according to the majority of votes cast — which, crucially,

can differ from the majority of voters. Voting on the K issues is contemporaneous, and all

individuals vote simultaneously. Ties are resolved by a fair coin toss. Each voter receives

utility 1 from any issue resolved in her preferred direction, and 0 otherwise. Thus each voter’s

goal is to maximize the fraction of issues resolved according to her — and her group’s —

preferences.

With undominated strategies voters vote sincerely: they never cast a vote against their

preferences. We simply assume that all m voters never vote in favor of a proposal and all

M voters never vote against. We focus instead on each voter’s distribution of votes among

the K issues.

The action space for each player is: S(K) =
{
s = (s1, . . . , sK) ∈ NK

∣∣∣ ∑K
k=1 sk = K

}
,

where sk is the number of votes cast on issue k. Let the minority players be ordered from

1 to m. For each minority-profile s = (s1, . . . , sm) ∈ S(K)m, the number of votes allocated

by the minority to issue k is: vmk (s) =
∑m
i=1 s

i
k. We denote by vm(s) = (vmk (s))k∈K ∈

S(mK) the allocation of votes by the minority group. Similarly, for each majority-profile

t = (t1, . . . , tM ) ∈ S(K)M , the number of votes allocated by the majority to issue k is:

vMk (t) =
∑M
i=1 t

i
k and we denote by vM (t) = (vMk (t))k∈K ∈ S(MK) the allocation of votes

by the majority group. For a given profile (s, t) ∈ S(K)m × S(K)M , the payoffs for each

member of the two groups, called gm and gM , are given by

gm(s, t) =
1

K

K∑
k=1

(
1{vmk (s)>vMk (t)} +

1

2
1{vmk (s)=vMk (t)}

)

gM (s, t) =
1

K

K∑
k=1

(
1{vMk (t)>vmk (s)} +

1

2
1{vMk (t)=vmk (s)}

)
= 1− gm(s, t),

where 1 is the indicator function.

Finally, we denote by Σ(K) = ∆ (S(K)) the set of all probability measures on S(K), i.e.

the set of mixed strategies. Then the expected payoff to the minority E [gm] equals pm, the

expected fraction of minority victories, and is defined on Σ(K)m×Σ(K)M as the multi-linear

extension of gm. Two (mixed strategy) group profiles (σ, τ ) ∈ Σ(K)m × Σ(K)M naturally

define two probability measures (V m, VM ) on the minority and majority allocations of votes

(vm, vM ) ∈ S(mK)×S(MK). Formally, our scenario corresponds to a decentralized Blotto

(DB) game, in contrast to the traditional, centralized Colonel Blotto (CB) game, in which

the “minority” colonel directly chooses vm ∈ S(mK), while the “majority” colonel chooses

vM ∈ S(MK).



3 Two Preliminary Remarks

With incentives fully aligned within each group, a natural question is whether the decentral-

ized Blotto game actually differs from the centralized game. We provide a positive answer in

our first remark. We say that an equilibrium of the CB game is replicated in the DB game if

there exists an equilibrium of the DB game which induces the same distribution on the total

minority and majority allocations of votes (vm, vM ). The most complete characterization

of equilibria of the CB game with discrete allocations is due to Hart [17].8

Remark 1 For any K and m, none of the equilibria of the CB game in Hart [17] can be

replicated in the DB game if M is larger than a finite threshold M(K).

Nevertheless, in many applications, the assumption of no communication may be too

strong. Consider then a modification of the model above where, before casting votes, each

voter can exchange messages freely with all other members of her group. The messages

are costless and non-binding (they are cheap talk), and we impose no constraint on their

content. With communication, the logic behind Remark 1 breaks down.

Remark 2 With communication, any equilibrium of the centralized Colonel Blotto game

can be replicated. Other equilibria exist, including chattering equilibria replicating the equi-

libria of the no-communication game.9

In this paper we study two different versions of the game, without and with commu-

nication. The first version is new and we derive results for that game, that we then use

as reference for our experimental treatment without communication. The equilibria of the

CB game in Hart [17] provide the theoretical benchmark for the second treatment, with

communication.

4 Theory: no communication

4.1 Equilibria

The game is a normal-form game with m+M players and finite strategy spaces. Therefore,

a Nash equilibrium always exists. In addition, it is easy to see that the voting rule fulfills

its fundamental purpose: if the size of the two groups is not too different, the smaller one

must win occasionally.

Theorem 1 If M < m + K, the expected share of minority victories is strictly positive at

any Nash equilibrium.

8Hart [17] does not characterize optimal strategies for all parameter values. Roberson [29] provides general
results for the CB game with continuous allocations. In our problem, we did not see obvious advantages
from abandoning the more realistic case of discrete votes.

9Other types of equilibria exist too. For example, asymmetric equilibria in which communication is
ignored by one group but not by the other, and thus one group coordinates its strategy while the other does
not.



The coordination problem within each of the two groups results in many equilibria. We

do not aim to characterize them all, we rather focus on equilibria that have a simple enough

structure to provide a plausible theoretical reference for the experiment. We delegate to the

appendix (Section A.3) a discussion on pure-strategy equilibria arising in that game.

If several minority members concentrate votes on a given issue, the minority may be

able to win it. But only if the majority does not know which specific issue is being targeted.

Thus, minority members need not only to concentrate their votes but also to randomly

choose the issues on which the votes are concentrated. We introduce a family of simple

strategies that achieve this goal. For any c factor of K, we define the strategy σc (noted τ c

for a majority player) as follows: choose randomly K/c issues,10 and allocate c votes to each

of the selected issues. Suppose for example K = 4, a value we will use in the experiment.

Then σ4 corresponds to casting all four votes on one single issue, chosen randomly; σ2 to

casting two votes each on two random issues; σ1 to casting one vote on each of the four issues.

Note that, in this family, the parameter c can be interpreted as the degree of concentration

of a player’s votes. We denote by σc (resp. τ c) the subgroup profile for which each minority

(resp. majority) player plays σc (resp. τ c).

Intuitively, we expect the minority to concentrate its votes, so as to achieve at least some

successes, and the majority to spread its votes, because its larger size allows it to cover, and

win, a larger fraction of issues. The intuition is confirmed by the following two propositions,

characterizing parameter values for which strategy profiles with such features are supported

as Nash equilibria: when the difference in size between the two groups is as small as possible

— either nil or one member — or when it is very large.

Proposition 1 Suppose K even and M is odd. Then (σ2, τ1) is an equilibrium if M ≤
m+ 1,11 with

pm =

{
1
2 if M = m
1
2 −

1
2m+1

(
m
m/2

)
if M = m+ 1.

When the difference in size between the two groups is larger, we expect minority members

to concentrate their votes even further. Indeed, as the next result shows, at large M/m there

exist equilibria in which each minority voter concentrates all of her votes on a single issue.

Majority voters continue to spread their votes.

Proposition 2 Suppose M is divisible by K. Then (σK , τ1) is an equilibrium if and only

if M ≥ mK
2 . In such an equilibrium:

pm =

{ ∑m
p=M/K+1

(
m
p

) (K−1)m−p

Km + 1
2

(
m

M/K

) (K−1)m−M/K

Km if M ≤ mK
0 if M > mK.

10I.e. choose each subset of K/c issues with equal probability 1/
( K
K/c

)
.

11The strategies in the proposition are also an equilibrium if M ≥ 2m + K − 1. This is a “trivial”
equilibrium in which the majority’s much larger size allows it to win all proposals (pm = 0). For K ≥ 4 and
M < 2m+K − 1, one can show that (σ2, τ1) is an equilibrium if and only if M ≤ m+ 1.



4.2 Beyond equilibrium: positive minority payoff with concentra-

tion and randomization

The equilibrium strategies characterized in Propositions 2 and 3 combine features that ap-

pear very intuitive (concentration and randomization for minority voters; less concentration

for majority voters) with others that are most likely difficult for players to identify (the exact

number of issues to target, the exact division of votes over such issues), or to achieve in the

absence of communication (the symmetry of strategies within each group). The question

we ask in this section is how robust minority victories are to deviations from equilibrium

behavior in these last two categories.

We introduce a definition of neutrality of a strategy to capture the randomization across

issues. The notion of neutrality is appealing in this game because the issues are identical

ex-ante.

Definition 1 A strategy σ is said to be neutral if for any permutation of the issues π and

any allocation s ∈ S(K), we have: σ(s) = σ(sπ), where sπ = (sπ(1), . . . , sπ(K)).
12

We assume that each minority voter concentrates her votes on a subset of issues, chosen

randomly and with equal probability. However, we do not specify the precise number of

issues targeted, do not require that votes be divided equally over such issues, and do not

impose symmetry within the minority group. In addition, we evaluate the probability of

minority victories by allowing for a worst-case scenario in which the majority jointly best

responds. We find that the probability of minority victories is surprisingly robust.

Proposition 3 For all M ≤ mK, there exists a number k ∈ {1, . . . ,K} such that if every

minority player’s strategy: (i) is neutral, and (ii) allocates votes on no more than k issues

with probability 1, then for any strategy profile of the majority τ ,

pm(σ, τ ) > 0.

The result of Proposition 3 is important because it is very broad, and its wide scope makes

us more optimistic about the voting rule’s realistic chances of protecting the minority. The

game is complex, and robustness to deviations from equilibrium behavior should be part of

the evaluation of the voting rule’s potential. The result will indeed play a role in explaining

our experimental data. In this particular game, studying deviations from equilibrium is

made easier by the intuitive salience of some aspects of the strategic decision (concentration

and randomization), and the much more difficult fine-tuning required by optimal strategies

(how many issues? How many votes?).13 To complement the result, we provide in the

appendix (Section A.7) an assessment of the magnitude of the minority payoff, showing

that it can be significant.

12Note that neutrality does not require that votes be cast in equal number on each issue.
13Note, for comparison, that Proposition 3 holds under the identical condition M ≤ mK for the centralized

game (with both discrete and continuous allocations).



5 The Experiment

5.1 Protocol

We designed the experiment to focus on two treatment variables: the size of the two groups,

m and M , and the possibility of communication within each group. Each experimental

session 14 consisted of 20 rounds with fixed values of m and M ; the first ten rounds without

communication, and the second ten with communication.

At the start of each session, each subject was assigned a color, either Blue or Orange,

corresponding to the two groups. Members of the two groups were then randomly matched

to form several committees, each composed of m Orange members and M Blue members.

Every committee played the following game. Each subject entered a round endowed with

K balls of her own color. She was asked to distribute them as she saw fit among K urns,

depicted on the computer screen, knowing that she would earn 100 points for each urn in

her committee in which a majority of balls were of her color. In case of ties, the urn was

allocated to either the Blue or the Orange group with equal probability. Figure 4 in the

appendix reproduces the relevant computer screen in one of our treatments for a Blue voter

who has already cast one ball.

After all subjects had cast their balls, the results appeared on the screen under each

urn: the number of balls of each color in the urn, the tie-break result if there was a tie, and

the subject’s winnings from the urn (either 0 or 100). The session then proceeded to the

next round. The first ten rounds were all identical to the one just described. Subjects kept

their color across rounds, but committees were reshuffled randomly. After the first round,

subjects could consult the history of past decisions before casting their balls. By clicking a

History button, each subject accessed a screen summarizing ball allocations and outcomes

in previous rounds, by urn, in the committee that in each round included her.

After ten rounds, the session paused and new instructions were read for the second

part. Parameters and choices remained unchanged and subjects kept the same color, but

now a chatting option was enabled: before casting their balls, subjects had two minutes to

exchange messages with other members of their committee who shared their color. They

could consult the history screen while chatting. The second part of the session again lasted

ten rounds, and again committees were reshuffled after each round but subjects kept the

same color.15 Thus each subject belonged to the same group, m or M , for the entire length

of the session, a design choice we made to allow for as much experience as possible with

a given role. Each session lasted about 75 minutes, and earnings ranged from $18 to $44,

14All sessions were run at the Columbia Experimental Laboratory for the Social Sciences (CELSS) in April
and May 2015, with Columbia University students recruited from the whole campus through the laboratory’s
Orsee site [14]. No subject participated in more than one session. In the laboratory, the students were seated
randomly in booths separated by partitions; the experimenter then read aloud the instructions, projected
views of the relevant computer screens, and answered all questions publicly. Two unpaid practice rounds
were run before starting data collection.

15In all sessions we ran first the ten rounds without the chat option to prevent subjects from learning
a coordinated strategy in the first part of the session and then trying to replicate it in the second — in
the absence of communication. Subjects used the two minutes available for chatting fully, but we have no
indication that they found the time too short.



with an average of $33 (including a $10 show-up fee).

We designed the experiment with two goals in mind. First, we wanted to learn how

substantive are minority victories in the lab and how well the theory predicts subjects’

behavior. We chose three sets of parameters: (m,M) ∈ {(1, 2); (2, 3); (2, 4)}, to make vary

the absolute and relative sizes of the two groups, while keeping the size of the committee

small — to maintain the possibility of conscious strategic choices by inexperienced players.

Second, we wanted to compare results with and without communication. We have thus six

treatments, denoted by mMD without chat, and mMC with chat.

Sessions m,M # Subjects # Committees # Rounds (no chat, chat)

s1, s2, s3 1, 2 12 × 3 4 × 3 10, 10

s4, s5, s6 2, 3 15 × 3 3 × 3 10, 10

s7, s8, s9 2, 4 18 × 3 3 × 3 10, 10

Table 1: Experimental Design

5.2 Parameter values and theoretical predictions

The theoretical predictions for the treatments are summarized in Table 2. The predicted

strategies are reported for the no-chat treatments; they follow16 the results of Section 4.1.

The predictions for the chat treatments are based on the results of Hart [17]. The precise

equilibrium strategies are described in the appendix (Section A.9).

Treatment Simple symmetric equilibrium pm

12D (σ2, τ1) 1/4

23D (σ2, τ1) 1/4

24D (σ4, τ1) 1/4

Treatment pm

12C 1/4

23C 1/3

24C 1/4

Table 2: Predictions for the experimental treatments

6 Experimental Results

6.1 Minority victories

We report in Figure 1 the realized fractions of minority victories in the six treatments —

the percentage of urns won by an orange team. The orange columns correspond to the

experimental data, and the grey columns to the theoretical equilibrium predictions.

16For our experimental parameters equilibria of the decentralized game exist in the family of simple
profiles (σc, τd), symmetric within groups, and within this family are unique. We select such equilibria as
theoretical reference for the experiment because of their intuitive simplicity.



Figure 1: Fractions of minority victories

Whether with or without communication, the fraction of minority victories in the data

is non-negligible, ranging from a minimum of 0.24 (in treatment 24D) to a maximum of 0.33

(in treatment 23C). Even more remarkable, realized values are very close to the theoretical

predictions, although the difference is more sizable in treatment 23D.17

6.2 Strategies (no communication)

In the absence of communication, equilibrium strategies are defined at the individual level.

Figure 2 reports the observed frequency of different ball allocations, across individual sub-

jects, in the treatments without communication. The horizontal axis lists all possible allo-

cations — with four balls and four urns there are five — and the vertical axis reports the

frequency of subjects choosing the corresponding allocation, over all rounds, committees,

and sessions of the relevant treatment.18 The panels are organized in two rows, correspond-

ing to the two groups, with the minority in orange in the upper row, and the majority in

blue in the lower row. The allocation denoted in bold and surrounded by two stars, on the

horizontal axis, corresponds to the equilibrium strategy in Table 2.

The figure teaches three main lessons. First, there is substantial deviation from equilib-

rium strategies: in all treatments and in both groups, at least forty percent of all individual

allocations do not correspond to equilibrium strategies. However — and this is the second

lesson — equilibrium predictions have some explanatory power for minority subjects. In all

treatments, the most frequently observed allocation for minority subjects corresponds to the

equilibrium strategy, a particularly clear result in treatment 12D and 24D, where more than

half of all observed allocations correspond to the predictions.19 Equilibrium predictions are

17The difference is not statistically significant. In treatment 23D there is an asymmetric equilibrium in
which pm = 11/32 ≈ 0.34 (v/s 0.33 in the data): all m members play σ4, one M member plays τ1, and two
play τ2. However, we do not see this equilibrium in the data. As mentioned above, random rematching at
each round means that subjects in general cannot coordinate on an asymmetric equilibrium.

18Thus, for example, the column corresponding to “0112” reports the frequency of subjects casting two
balls in one urn, and one ball each in two other urns.

19This need not be a best response, given the variability in the data and the more random behavior of



Figure 2: Frequency of individual ball allocations (no-chat treatments)

noticeably less useful for majority subjects. We are not sure why. We can speculate that the

difference may be due to the higher complexity of the majority members’ problem: Should

they spread their votes, or try to second-guess the minority?

Third, the theory’s qualitative predictions are mostly satisfied, both across treatments

and between the two groups. In all treatments, the distribution of minority allocations is

shifted to the right, relative to the majority distribution. We have ordered the five possible

ball allocations with concentration increasing progressively from left to right. Thus the

observation says that, predictably and in line with the theory, minority members tend to

concentrate balls more than majority members do.

A finer analysis of voters’ strategies at the individual level is provided in the appendix

(Section A.10), it confirms the main observations: most minority subjects concentrate their

votes on all rounds, and we observe more concentration in treatment 24D.

6.3 Further results

A description of group’s allocations in the treatments with communication is given in the

appendix (Section A.11). We observe that subjects do use communication to coordinate

their strategies within a group. Moreover, groups’ allocations are consistent with Nash

equilibrium for small committees (treatment 12C), but this hypothesis is clearly rejected for

larger committees (treatments 23C and 24C).

The main result of the theory (Proposition 3) states that minority victories can be guar-

anteed, if minority voters concentrate their votes, and do so unpredictably. Although the

concentration of allocations can be directly observed, the unpredictability of these alloca-

tions is not easy to measure — with rematching after each round, the serial correlation

majority subjects.



of allocations is not a good proxy for predictability. In the appendix (Section A.12), we

assess it indirectly, by computing each group’s guaranteed payoff at each session — this is

the payoff a group would have obtained, had the opposite group best replied to its strategy

(over the whole session). In our hide-and-seek game, a predictable allocation of the minority

group has a guaranteed payoff of 0. On the contrary, we observe in each treatment that the

minority guaranteed a positive and significant payoff, ranging from 0.16 in treatment 24D

to 0.28 in treatment 23C. This confirms that minority strategies were indeed unpredictable.

7 Conclusions

We have investigated the ability of the SV mechanism to protect a minority in a fully

polarized committee. Both in theory and in a laboratory experiment, we find that the

mechanism is effective: in line with equilibrium predictions, the fraction of minority victories

observed in the experiment varied from 25 percent in treatments in which the minority is

half the size of the majority, to 33 percent, when the minority’s relative size increases to

two thirds. Allowing voters to communicate before casting their votes does not alter our

conclusions.

A surprising aspect of our results is that experimental outcomes closely replicate the

theoretical predictions even though subjects often deviate from equilibrium strategies. The

reason is that the fundamental logic of the game — its hide-and-seek nature, requiring

minority voters to concentrate their votes and to do so unpredictably — seems to be im-

mediately clear to the experimental subjects. We see this in the experimental results, and

we establish it theoretically by studying the robustness of predicted outcomes to plausible

off-equilibrium behavior: as long as each minority voter concentrates her votes sufficiently

and randomizes the target issues, minority victories are guaranteed (in expectations). The

conclusion holds even if the number of target issues is not optimal, even if other minority

voters choose different degrees of concentration, and even if majority voters coordinate their

strategies and best-respond. We interpret this result as an encouraging check on the robust-

ness of the voting mechanism and on its potential to overcome the tyranny of the majority

in realistic applications. SV treat all individuals equally, avoid the inertia and obstruction

of supermajority rules and vetoes, and yet ensure that the minority voice is heard, even in

the difficult strategic environment studied here.



A Appendix

A.1 Proof of Remark 1

With the parameters of our model, the number of votes of each group is a multiple of the

number of issues, K. In that case, optimal strategies for the majority are identified in Hart

[17] if K is even and/or M is odd (by combination of his Theorem 4 and Proposition 6).

They are such that the marginal distribution of majority votes on each issue is uniform over

a set of consecutive odd integers: ∀k ∈ K, VMk ∼ U ({1, 3, . . . , 2M − 1}) .
Let us assume that this strategy is replicated by M independent lieutenants. We denote

by Si the allocation of lieutenant i on issue 1. We have:

M∑
i=1

Si = VM1 ∼ U ({1, 3, . . . , 2M − 1}) .

As we have ∀i = 1 . . .M, 0 ≤ Si ≤ K and E[VM1 ] = M , we obtain by Hoeffding’s

inequality [18]:

P
(
VM1 −M ≥M − 1

)
=

1

M
≤ exp

(
−2(M − 1)2

MK2

)
.

This inequality can be written Me−
2(M−1)2

MK2 ≥ 1, which is equivalent to

K ≥
√

2(M − 1)√
M log(M)

:= K(M).

Hence, we get a contradiction if K < K(M). As we have ∂K
∂M > 0, the function K is one-

to-one, and we denote its inverse by M(K) := K
−1

(K). As M is increasing, we have a

contradiction if M > M(K). �

A.2 Proof of Theorem 1

Consider a profile of (possibly mixed) strategies such that the majority wins all the deci-

sions with probability one. Consider any pure-strategy profile (s, t) played with positive

probability. Consider any minority player i. For each issue k ∈ K, let bk = vMk (t) − vmk (s)

be the margin (bias) by which the majority beats the minority on issue k, and let sik be the

number of votes allocated by i to issue k. As the average of the (bk)k∈K is M −m, while

the average of the (sik)k∈K is one, it follows that the average of the numbers (bk + sik)k∈K is

M −m+ 1. There must be an issue k′ ∈ K such that:

bk′ + sik′ ≤M −m+ 1.



Subtracting K from both sides:

bk′ − (K − sik′) ≤M −m+ 1−K.

The term (K− sik′) captures the amount by which i’s votes on k′ fall short of the maximum

possible, K. The left-hand side of the inequality equals the majority’s vote margin on k′

when i allocates all her votes to k′. But if M < m + K, M − m + 1 − K ≤ 0 , and the

majority cannot be winning with probability one. Either sik′ = K, and we have obtained a

contradiction. Or sik′ < K, and i has a profitable deviation; but then the initial profile is

not an equilibrium. �

A.3 Equilibria in pure strategies

We begin by remarking that the condition in Theorem 1 is tight: if M ≥ m + K, the

profile of strategies such that every player allocates one vote per issue is an equilibrium, and

the expected share of minority victories is zero. This same profile of strategies is also an

equilibrium if M = m, in which case pm = 1/2. More generally, we establish the existence

of an equilibrium in pure strategies when the committee is large enough.

Proposition 4 If M ≥ m ≥ 2 and M + m ≥ (K + 1)2/K, a pure-strategy equilibrium

always exists.

Proof. Assume that M ≥ m ≥ 2 and M +m ≥ (K + 1)2/K. We construct a pure-strategy

equilibrium for the DB game, based on a partition of the set of issues K = Km ∪ KM . We

note Km = #Km and KM = #KM = K −Km.

Step 1. There exists a partition of the set of issues K = Km ∪ KM satisfying Km ∈[
max

(
K −

⌊
MK
K+1

⌋
, 1
)
,min

(⌊
mK
K+1

⌋
,K − 1

)]
.

As M ≥ m ≥ 2, it is immediate that⌊
mK

K + 1

⌋
≥ 1 and K −

⌊
MK

K + 1

⌋
≤ K − 1.

As M +m ≥ (K + 1)2/K, we get
mK

K + 1
≥ K + 1− MK

K + 1
, and therefore

⌊
mK

K + 1

⌋
≥ K −

⌊
MK

K + 1

⌋
.

Step 2. For any such partition, any pure-strategy profile (s, t) for which{
vmk (s) ≥

⌊
mK
Km

⌋
if k ∈ Km

vmk (s) = 0 otherwise

{
vMk (t) ≥

⌊
MK
KM

⌋
if k ∈ KM

vMk (t) = 0 otherwise



is an equilibrium. In such equilibria, pm = Km/K.

As Km ≤
⌊
mK
K+1

⌋
≤ mK

K+1 , we have K ≤ mK
Km
− 1, which leads to

K <

⌊
mK

Km

⌋
.

We conclude that a majority player cannot upset the outcome of an issue in Km: she has

no profitable deviation.

As Km ≥ K −
⌊
MK
K+1

⌋
, we have KM ≤

⌊
MK
K+1

⌋
. We conclude as before that no minority

player has a profitable deviation.

This result clearly indicates that the DB game differs from the CB game, in which pure-

strategy equilibria generically fail to exist.20 The equilibria we construct are such that the

two groups target different issues: the majority only votes on a subset KM of issues, while

the minority votes on the remaining subset Km = K\KM . As each voter is small in a large

committee, no voter can upset the outcome of any given issue, and thus gain from deviating.

We note one surprising effect of decentralization: in these equilibria, it is possible for

the minority to win more frequently than the majority, whereas no such outcome exists in

the CB game.

Example 1 If m = 4, M = 5 and K = 3, there exists an equilibrium in which the minority

wins two of the three issues.

We also note that pure-strategy equilibria may not exist for small committees. The

following example describes a parametrization we use in the experiment.

Example 2 If m = 1, M = 2 and K = 4, there exists no pure-strategy equilibrium.

Proof. Note first that since 3 < 25/4, Proposition 4 does not apply. Consider an arbi-

trary pure-strategy profile (s, t). For each issue k ∈ K, let bk = vMk (t) − vmk (s), so that
1
4

∑4
k=1 bk = 1. Assume for simplicity that b1 ≤ b2 ≤ b3 ≤ b4.

We first remark that, if there is a tie, a majority player deviates. Assume that for some

issue k, bk = 0. Then, there must be some issue j for which bj ≥ 2. At least one majority

player can withdraw a vote from issue j and allocate it to issue k. This is a profitable

deviation.

We distinguish four cases:

(a) pm = 0. The average number of majority votes per proposal is 2. Thus, the minority

player can win a decision by allocating all her votes to an issue with no more than 2

majority votes. This is a profitable deviation.

20In the CB game, the profile for which every player allocates one vote per issue is an equilibrium only
when M = m = 1 or M > mK. Beyond these special cases, if K > 2, the CB game has no equilibria in pure
strategies. A pure-strategy equilibrium may exist in a non-zero sum variant in which the two sides attribute
heterogeneous and asymmetric values to the different issues [19].



(b) pm = 1/4 and b1 ≤ −3. The average number of majority votes on issues 2,3,4 is at

most 8/3. Thus, one of these issues (say k = 2) receives no more than 2 majority

votes. The minority player can withdraw 2 votes from issue 1, and allocate them to

issue 2 to obtain a tie. This is a profitable deviation.

(c) pm = 1/4 and b1 ≥ −2. The average of the (bk)k=2...4 on the issues won by the

majority is at least 2. This means that one of the two majority players can withdraw

2 votes from issues 2,3,4 at no cost. By allocating these 2 votes on issue 1, she obtains

at least a tie. This is a profitable deviation.

(d) pm ≥ 1/2. The minority wins issues 1 and 2. The average of the (bk)k=3...4 is at least

3. A majority player can withdraw 2 votes from issues 3 and 4, and cast the 2 votes

on the issue with the lowest number of minority votes among 1 and 2. On this issue,

there cannot be more than 2 minority votes, so the majority player obtains at least a

tie. This is a profitable deviation.

The fact that, unexpectedly, pure strategy equilibria may exist is interesting. How

empirically plausible they are, however, is open to question. The equilibria obtained in

Proposition 4 require a large extent of coordination, both within and across groups. In

addition, not only in those equilibria, but also in the “trivial” equilibrium with M ≥ m+K,

each voter has only a weak incentive not to deviate. This seems particularly problematic

when M ≥ m + K and the minority loses all decisions, under the equilibrium profile in

which each player allocates one vote per decision. Even non-strategic minority members

seem likely to realize that some concentration is called for.

A.4 Proof of Proposition 1

Deviations for an M-player We consider the point of view of an M -player, denoted by i.

On each issue k ∈ K, the total number of votes cast by the other M -players is vM−1k = M−1.

The total number of votes cast by the minority is denoted by vmk . The random variable

vmk /2 follows a binomial distribution of parameters m and 1
2 .

Let aik be the number of votes cast by voter i on issue k, and pik(aik) the payoff of i on

this issue:21

pik(aik) = P
(
vM−1k + aik > vmk

)
+

1

2
P
(
vM−1k + aik = vmk

)
.

In what follows, we omit to mention the subscript k in the computations, as all the strategies

21By convention, the payoff on issue k can take values between 0 and 1, and the overall payoff is the mean
of the payoffs over all the issues.



are symmetric across decisions. As M is an odd number, we have for all a ∈ {1, . . . ,K}:

pi(a)− pi(a− 1) =
1

2
P (vm = M − 1 + a) +

1

2
P (vm = M − 2 + a)

=
1

2
P
(
vm

2
=
M − 1

2
+
a

2

)
+

1

2
P
(
vm

2
=
M − 1

2
+
a− 1

2

)
=

1

2
P
(
vm

2
=
M − 1

2
+
⌊a

2

⌋)
=

1

2m+1

(
m

M−1
2 +

⌊
a
2

⌋)1{M−1
2 +b a

2 c≤m}.

For any a ∈ {1, . . . ,K}, we have M−1
2 +

⌊
a
2

⌋
≥ M−1

2 ≥ m
2 −

1
2 , this implies:(

m
M−1

2 +
⌊
a
2

⌋)1{M−1
2 +b a

2 c≤m} ≤
(

m
M−1

2

)
1{M−1

2 ≤m}.

Therefore pi(a)− pi(a− 1) ≤ pi(1)− pi(0). It follows that τ1 is a best reply for player i.

Deviations for an m-player. We consider a player j in team m. On a given decision, the

payoff of j, playing a ∈ {0, . . . ,K} is:

pj(a) = P
(
vm−1 + a > vM

)
+

1

2
P
(
vm−1 + a = vM

)
where vM = M and vm−1/2 is a random variable following a binomial distribution of

parameters (m− 1) and 1
2 . As M is an odd number, we have:

pj(a)− pj(a− 1) =
1

2
P
(
vm−1 = M − a

)
+

1

2
P
(
vm−1 = M + 1− a

)
=

1

2
P
(
vm−1

2
=
M − 1

2
−
⌊
a− 1

2

⌋)
=

1

2m

(
m− 1

M−1
2 −

⌊
a−1
2

⌋)1{0≤M−1
2 −b a−1

2 c≤m−1}.

In particular, pj(2)− pj(1) = pj(1)− pj(0) = 1
2m

(m−1
M−1

2

)
1{M≤2m−1}.

As M ≤ m + 1, for any a ∈ {3, . . . ,K}, we have M−1
2 −

⌊
a−1
2

⌋
≤ M−1

2 ≤ m−1
2 + 1

2 .

Therefore, pj(a)− pj(a− 1) ≤ pj(2)− pj(1) = pj(1)− pj(0). As a result, σ2 is a best reply

for j. �

A.5 Proof of Proposition 2

We assume that M ≤ mK. Indeed, if M > mK, the profile (σK , τ 1) is trivially an

equilibrium in which the majority wins all the decisions.

Deviations for an M-player We write, as before, for any a ∈ {0, . . . ,K}:

pi(a) = P (M − 1 + a > vm) +
1

2
P (M − 1 + a = vm) ,



where vm/K follows a binomial distribution of parameters m and 1/K. We get:

pi(a)− pi(a− 1) =
1

2
P (vm = M − 1 + a) +

1

2
P (vm = M − 2 + a) .

As M is a multiple of K, it is the only one in the set {M − 2, . . . ,M − 1 + K}. As vm

must be a multiple of K, we obtain pi(2)− pi(1) = pi(1)− pi(0) = 1
2P (vm = M) and for all

a ∈ {3, . . . ,K}, pi(a)− pi(a− 1) = 0. We conclude that τ1 is a best reply for player i.

Deviations for an m-player We write as before, for a ∈ {0, . . . ,K}:

pj(a) = P
(
vm−1 + a > M

)
+

1

2
P
(
vm−1 + a = M

)
,

where vm−1/K follows a binomial distribution of parameters (m− 1) and 1/K. We get:

pj(a)− pj(a− 1) =
1

2
P
(
vm−1 = M − a

)
+

1

2
P
(
vm−1 = M + 1− a

)
.

There are two multiples of K in {M −K, . . . ,M}, namely M −K and M . We obtain:

pj(1)− pj(0) =
1

2
P
(
vm−1 = M

)
∀a ∈ {2, . . . ,K − 1}, pj(a)− pj(a− 1) = 0

pj(K)− pj(K − 1) =
1

2
P
(
vm−1 = M −K

)
.

There are only two candidates for the best reply of voter j: playing one vote on every issue
or playing K votes on a single issue. It follows that the strategy σK is a best reply for player
j if and only if

pj(K) + (K − 1)pj(0) ≥ Kpj(1) ⇔ pj(K)− pj(1) ≥ (K − 1)
(
pj(1)− pj(0)

)
⇔ P

(
vm−1 = M −K

)
≥ (K − 1)P

(
vm−1 = M

)
.

We know that vm−1 = M (resp vm−1 = M −K) if exactly M/K m-players (resp. exactly
M/K − 1 m-players) play K on the considered issue. Thus:

P
(
vm−1 = M

)
=

(m− 1

M/K

)(
1

K

)M/K (
K − 1

K

)m−1−M/K

P
(
vm−1 = M −K

)
=

( m− 1

M/K − 1

)(
1

K

)M/K−1 (K − 1

K

)m−M/K

.

We obtain

P
(
vm−1 = M −K

)
(K − 1)P (vm−1 = M)

=
M/K

m−M/K
.

The strategy σK is a best reply for player j if and only if this ratio is larger than or equal

to 1, or equivalently M ≥ mK/2. �



A.6 Proof of Proposition 3

Assume that M ≤ mK, and define k ≡
⌊
Km
M

⌋
. Note that k ∈ {1, . . . ,K}.

Let σ be a minority profile satisfying the two conditions of the proposition. For each

player, and each allocation played with positive probability, there is at least one issue re-

ceiving at least K
k votes from this player. By symmetry across issues, each player allocates

with positive probability at least K
k votes on each issue. As a result, each issue receives at

least mK
k votes from the minority with positive probability.

Let τ be a majority profile and let vM be a majority allocation played with positive

probability. There exists at least an issue k receiving no more than M votes from the

majority. Since k ≤ Km
M , it follows that mK

k ≥ M . Hence the minority wins the issue k

with positive probability: pm(σ, τ ) > 0. �

A.7 Magnitude of the minority payoff

We can assess the magnitude of the minority payoff through simulations, under different

assumptions over the rules followed by each minority and majority voter. As an example,

we report here results obtained if the minority adopts the neutral σc strategies described in

the previous section. We set K = 4, M = 10, and m ∈ {1, .., 10}, and consider two cases,

with increasing concentration: c = 2 (each minority voter casts two votes each on half of

the issues, chosen with equal probability), and c = 4 (each minority voter casts all votes

on a single issue, again chosen randomly with equal probability). To establish plausible

bounds on the frequency of minority victories, we consider two rules for the majority: either

each majority voter casts his votes randomly and independently over all issues (an upper

bound on pm) or all majority voters together best respond to the minority rule (the lower

bound).22 Figure 3 reports such bounds for each value of m (on the horizontal axis) under

minority rules σ2 (in blue) and σ4 (in green).

m

pm

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

rule σ2

rule σ4

Figure 3: Minority payoffs for two minority rules (M = 10)

22We compute pmwhen the majority jointly best responds by considering all possible allocations of the
MK majority votes, and then selecting the minimum pm.



As expected, pm increases with m. In addition, strategy σ4, allocating all votes on a

single issue, outperforms σ2 for all values of m < M . As long as m > 2 (a threshold that

corresponds to the condition M ≤ mK in the proposition), σ4 always results into a positive

frequency of minority victories. Even for relatively large differences in size between the two

groups, the expected fraction of minority victories is significant: in a range between 0.14

and 0.21 when m = 6, and between 0.20 and 0.28 when m = 7 (that is, when the minority

is either 60 or 70 percent of the majority).

A.8 A screenshot

Figure 4: The Allocation screen

A.9 Predictions for the communication treatments

With communication within each group, we look at the equilibria of the centralized Blotto

game. As established by Hart [17], with discrete allocations the value of the Blotto game

(and thus pm at equilibrium) is unique, but the optimal strategies are not, even in the special

cases of our experimental parameters. And yet such strategies share a common intuitive

structure. In the continuous Blotto game, where allocations need not be integer numbers,

optimal strategies must be such that the marginal distribution of forces allocated to any one

battlefield is uniform: M allocates to any urn a number drawn from a uniform distribution

over [0, 2M ]; m allocates to any urn either no balls, with probability (1 − m/M), or a

number of balls drawn from the uniform distribution on [0, 2M ] [29]. With integer numbers,

the uniform requirement cannot be matched exactly, but is approximated. Using Hart’s

notation, we define as Uµo the uniform distribution over odd numbers with mean µ (i.e.



over {1, 3, .., 2µ − 1}), Uµe the uniform distribution over even numbers with mean µ (i.e.

over {0, 2, .., 2µ}), and Uµo/e the convex hull of Uµo and Uµe (i.e. the set λUµo + (1 − λ)Uµe ,

for all λ ∈ [0, 1]). Table 3 reports the marginal allocations (on each urn) associated to

Hart’s optimal strategies for our experimental parameters, as well as pm. Note that the

optimal strategies in Hart [17] may not be unique; for example we identified new ones in

the treatment 12C.23

Treatment Optimal strategies: marginal allocations pm

12C
m : 1/2{0}+ 1/2(U2

o/e
); 1/2{0}+ 1/2{2}; any combination

M : U2
o ; {2}; any combination

1/4

23C
m : 1/3{0}+ 2/3(U3

o/e
)

M : U3
o

1/3

24C
m : 1/2{0}+ 1/2(U4

o/e
)

M : U4
o

1/4

Table 3: Equilibria of the centralized game

The strategies can be implemented in different ways, as long as the equal probability

restriction embodied by the marginal distribution is satisfied.24 The important point of the

table is that optimal strategies are such that the marginal distributions on the targeted urns

must be uniform distributions or combinations of uniform distributions, for both groups, a

relatively easy requirement to check on the experimental data.

A.10 Experimental strategies by individual subjects (no communi-

cation)

Our theoretical results establish that the minority can guarantee itself a positive expected

fraction of victories, even when individual minority members follow different strategies, as

long as each concentrates her votes on a sufficiently small subset of urns and casts them

randomly. According to Proposition 3, on not more than k urns, where k = 2 in all our

experimental treatments. We look in more detail at the subjects’ behavior in the lab, keeping

this result in mind.

Figure 5 plots individual subjects’ average ball allocations in the three treatments with

no communication. The vertical axis in the figure is the average largest number of balls

cast in any one urn, a number that we denote by x4 and that ranges from 1 to 4; the

horizontal axis is the average second largest number, denoted by x3 and ranging from 0 to

2. Each dot in the figure is a single subject’s average ball allocation over the 10 rounds

23The strategies involving {2} in treatment 12C are not identified by Hart because they are not optimal
strategies of the General Lotto game. See Hart [17].

24For example, the majority strategy in 23C must correspond to mixing uniformly over {1, 3, 5} for each
urn, satisfying the budget constraint: in terms of specific allocations per urn, and keeping in mind that
each urn is chosen with equal probability, one such strategy is (1/3)(3, 3, 3, 3) + (2/3)(1, 1, 5, 5); another is
(2/3)(1, 3, 3, 5)+(1/3)(1, 1, 5, 5); in fact any combination of these two strategies also satisfies the requirement.



played, summarized by the subject’s average x4 and x3.25 Orange dots denote members of

the minority, and Blue dots members of the majority.

Figure 5: Individual subjects’ average ball allocations (no-chat treatments)

The vertices of each triangle in the figure correspond to three feasible allocations: (0, 4),

at the upper end, corresponds to casting all balls in a single urn; (1, 1), at the lower end,

corresponds to casting one ball in each urn, and (2, 2), at the right end, corresponds to

dividing the balls equally over two urns.26 In all three panels, the equilibrium strategy for

majority subjects is the (1, 1) vertex (marked by the large blue circle); for minority subjects

it is the (2, 2) vertex in the first two panels and the (0, 4) one in the third (marked by the

large orange circle).

The upper edge of the triangle, uniting (0, 4) and (2, 2), is the line segment described by

x4+ x3 = 4, conditional on x4 ≥ x3: all dots lying along this line represent subjects who

in every round divided their balls over at most two urns. Dots lying to the interior of the

line, on the other hand, represent subjects who in at least some rounds cast balls in more

than two urns. The boundary between the two grey areas corresponds to the line segment

x4 + 2 x3 = 4, again conditional on x4 ≥ x3. Dots below that line correspond to subjects

who must have cast balls in all four urns in at least some rounds.

Figure 5 can now be read at a glance and reveals several regularities. First, in all three

treatments, minority subjects almost unanimously concentrate balls in only two urns. Only

2 out of 12 minority subjects in treatment 12D, 2 out of 18 in 23D, and 3 out of 18 in 24D

ever cast balls in more than two urns, and in 4 of these 7 cases the dots are close to the

upper edge, implying that this occurred in a small number of rounds. Not only do minority

25For instance, if a subject plays 0022 on half of the rounds, and 0004 on the other half, her average
allocation will be represented with x4 = 3 and x3 = 1.

26The other two possible allocations, 0013 and 0112, correspond to points (1, 3) and (1, 2) in the figure,
and are, respectively, along the upper edge of the triangle, and along the line dividing the dark and light
grey areas.



subjects follow the intuitive prescription of concentrating balls in a subset of urns; they also

target not more than two urns. Second, there is much more variability in the number of

target urns among majority subjects. In all treatments, a non-negligible number of subjects

casts balls in all urns, but an equally large number casts balls in two or three urns only. A

possible reading is that majority subjects are divided between exploiting their larger size by

covering all urns (as equilibrium predicts), and second-guessing the minority, in the logic

of the hide-and-seek game. The role of this latter motivation is supported by the right-

most panel in Figure 5, and this is our third observation. Members of both groups tend

to concentrate their balls more in treatment 24D: although again there is large variability,

especially among majority subjects, the dots in the third panel tend to be shifted upward

along the outer edge, relative to the dots in the first two panels, indicating that, among the

two targeted urns, one is receiving an increasingly disproportionate share of balls. Minority

members’ incentive to concentrate their allocations more in treatment 24D is intuitive and

could be the trigger for the majority subjects’ own more frequent concentration.

A.11 Groups’ allocations (communication)

To what extent do allocations change when communication is allowed? The messages ex-

changed while chatting show clearly that the opportunity to communicate is actively ex-

ploited: the subjects are very involved in the game, they send relevant messages on how

to coordinate their actions, and then follow through.27 Thus we ignore the possibility of

chattering equilibria and compare the groups’ actions to the equilibrium strategies of the

CB game, summarized in Table 3. Note that only group-wide strategies are identified.

Figure 6 reports, for each treatment, the frequency of urns holding different numbers

of Orange and Blue balls (in orange and blue in the figure), averaged over all sessions,

groups and chat rounds of the same treatment.28 The figure includes in gray, as a matter

of comparison, the same frequencies computed for each of the no-chat treatments.

As in the no-communication treatments, the minority does concentrate its balls on a

fraction of urns, and does so more than the majority. In all treatments more than 40

percent of urns receive no minority balls, while less than 10 percent receive no majority

balls. The intuitive observation that a small budget demands concentration is reflected in

the data.

27For example, here is an edited but representative exchange between two minority members in round 13
of session 6, treatment 23C (using italics to distinguish one individual): “2200 for me. We can do 4400.”;
“Or i could do 1030.”; “2200. So we can do 4400”; “And what the blues tend to be doing is just putting
3 in each.”; “i was checking the history”; “2200”; “hi hi.” At the same time, the majority members in the
same committee were saying: “So, even for now. lets see what happens. if they get smarter we will change
next round.”; “i think theyve figured out they needa concentrate their balls since they have fewer players.”
; “do even distribution. orange members not smart enough to do 2 urns 4 balls.” Indeed, in this round and
group the minority group played 4400, the majority played 3333, and the minority won two urns.

28In principle, urns can contain up to MK majority balls in each treatment. However, by truncating the
figure at mK balls (the upper bound for the minority), we still report 99 percent of all majority data (for
chat and no-chat treatments), while making the figure much more readable. Note that casting more than
mK + 1 balls in one urn is a strictly dominated strategy for the majority (and we observe it exactly once,
out of a total of 1,200 urn allocations over the three chat treatments).



Figure 6: Frequency of group marginal allocations of balls

More precisely, in treatment 12C, the data are consistent with centralized equilibrium

behavior. The minority targets 48 percent of the urns; it casts two balls in two thirds of the

targeted urns, and one or three balls with very similar frequency, in line with the predictions

of Table 3. Similar observations hold for the majority: the frequency of 2-ball urns is 71

percent and the frequency of 1 and 3-ball urns is very similar, again in line with Table 3.29

Such consistency with equilibrium predictions, however, is not observed in the other two

treatments. In 23C and 24C, according to the optimal strategies in Table 3, the majority

should never cast an even number of balls, while the minority should cast two, four, and six

balls with the same frequency. For both groups, on the other hand, the data show a peak

at four balls.

In fact, in all three treatments, the modal number of balls cast by either group is 2m.

This coincides with optimal strategies in 12C, but does not in 23C and 24C. One plausible

conjecture is that the minority tends to target two urns, and the majority mimics the

minority. Although not always optimal, the strategy matches well the hide-and-seek nature

of the game.

29Note that in this treatment, for both groups the individual equilibrium strategies of the decentralized
game add up to a team equilibrium strategy of the centralized game. Thus the comparison to the no-chat
results is instructive. Communication is relevant only for the majority group, and the minority strategy
remains mostly unchanged. For the majority, however, communication brings a clear change: the team plays
2222 in 65 percent of all rounds (versus 13 percent with no-chat), and the frequency of 2-ball urns more
than doubles (from 32 to 71 percent).



A.12 Unpredictability and best replies

The theory makes predictions not only on how balls should be allocated across urns but also

on the randomness of the minority’s allocation. In our experimental design, with rematching

groups, an individual subject can maintain unpredictability while making balls allocations

that are correlated over time. To a more limited extent this remains true at the group level,

since there are multiple rematching committees in each experimental session.

An alternative approach is to evaluate unpredictability indirectly, by measuring the pay-

off gains available to each group, had it best responded to the opposite group’s experimental

actions. A fully predictable minority strategy, for example, means that there exists a ma-

jority best response that translates into zero minority victories.

By focusing on best responses, the approach we take here also allows us to quantify

the answer to a natural question: if the experimental subjects did not play equilibrium

strategies, how far were they from playing optimally? Note that the answer can be read

through two main perspectives. First, it tells us whether a group replied accurately to the

other: this is the best reply perspective. Second, it reveals what payoff a group guaranteed

to itself, by considering the worst-case scenario in which the opposite group best replies —

as in in Proposition 3.

For treatment T and session S, we fix the observed distribution of minority group’s al-

locations V mT,S , distinguishing across urns (with one observation per group and per round):

this is the “statistical strategy” of the minority. Then, we compute the best reply of the

majority BRM (V mT,S) assuming that majority members could coordinate, again distinguish-

ing across urns. The corresponding guaranteed payoff pm(V mT,S , BR
M (V mT,S)) is the minimal

payoff that the minority can obtain by playing statistically as in the experiment.30 We do

the same exercise for both groups.

Figure 7 summarizes the results, reported in terms of pm. Because we observe little

variation across sessions, for each treatment the results in the figure are averaged across

sessions.

The different panels correspond to the different treatments; the red lines indicate the

observed average frequency of minority victories in the data, and the blue traits the predicted

equilibrium frequency. In each panel, the arrow on the left side indicates the value of pm

when the majority best replies, and the arrow on the right side when the minority best

replies.

How should the figure be read? Consider for example treatment 12D, with average

pm = 0.26, slightly above the equilibrium prediction of 0.25. Given what the minority

statistically played, pm could have been as low as 0.22, had the majority best replied.

Conversely, given what the majority statistically played, pm could have been as high as

0.30. According to the best reply perspective, the length of a group’s arrow measures the

30For example, the three observations {(2, 1, 1, 0), (2, 2, 0, 0), (2, 0, 2, 0)} in treatment 1, 2 would correspond
to the following statistical strategy: urn 1: 2 balls with probability 1, urn 2: 0,1, or 2 balls, each with
probability 1/3; urn 3: 0,1, or 2 balls, each with probability 1/3; urn 4: 0 balls with probability 1. The
majority’s best response is (3, 2, 2, 1), implying pm = 1/12.
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Figure 7: Best-reply minority payoffs, computed for each group and treatment, averaged
across sessions

distance to the best reply. We see that the two groups were quite effective in maximizing

their payoffs, with each group falling short of its best achievable payoff by an amount of

0.04. Note that when the two arrows collapse, the profile is an equilibrium of the centralized

game. Thus, the length of the two arrows is also a measure of the distance from such an

equilibrium.

From the guaranteed payoff perspective, the effectiveness of a group’s play is measured

by the value corresponding to the opposite group’s best reply. The minority guaranteed

itself a payoff of 0.22, way above 0 and not far from the equilibrium payoff of 0.25; while

the majority guaranteed that pm would stay below 0.30.

Reading the figure across all treatments, we are led to three main conclusions. First, in

all treatments the minority was able to guarantee itself a significant fraction of victories,

ranging from a minimum of 0.16 in treatment 24D to a maximum of 0.28 in 23C. Note that

this observation does not depend on experimental majority allocations; rather, it reflects

the fact that the minority was able to make its actions sufficiently unpredictable.

Second, the majority was also able to limit its losses, guaranteeing itself an upper bound

on pm that ranged between 0.43 in treatment 23D to 0.29 in 12C. These observations give

us confidence on the robustness of the payoffs found in the experiment: although, on the

whole, subjects did not play equilibrium strategies, both groups secured worst-case payoffs

that were close to actual payoffs.31 The similarity of experimental and theoretical payoffs

observed in Figure 1 did not occur by chance: in precisely defined payoff terms, experimental

strategies were “close” to equilibrium.

Finally, for each minority and majority size, communication makes very little difference

not only to observed payoffs, but also to guaranteed payoffs. In our experimental data, any

difference between the two groups in the ability to communicate effectively and coordinate

is not reflected in payoffs.

31The largest difference appears for the majority in treatment 23D, where pm = 0.33 but could have been
0.44, had the minority best replied.
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