
Preference Elicitation and Interview

Minimization in Stable Matchings

Joanna Drummond and Craig Boutilier
Department of Computer Science

University of Toronto
{jdrummond,cebly}@cs.toronto.edu

Abstract

While stable matching problems are widely studied, little work has investigated
schemes for effectively eliciting agent preferences using either preference (e.g., com-
parison) queries or interviews (to form such comparisons); and no work has addressed
how to combine both. We develop a new model for representing and assessing agent
preferences that accommodates both forms of information and (heuristically) min-
imizes the number of queries and interviews required to determine a stable match-
ing. Our Refine-then-Interview (RtI) scheme uses coarse preference queries to refine
knowledge of agent preferences and relies on interviews only to assess comparisons
of relatively “close” options. Empirical results show that RtI compares favorably to
a recent pure interview minimization algorithm, and that the number of interviews
it requires is generally independent of the size of the market.

1 Introduction

Due to its interesting structure and real-world importance, stable marriage/matching prob-
lems (SMPs) have generated considerable interest since Gale and Shapley’s [6] seminal pa-
per. In its most basic form, participants from each of two sides of a matching market (e.g.,
men and women, hospitals and residents) express preferences—in the form of a ranking—
over those on the other side. The aim is to find a bipartite matching (e.g., one-to-one in
marriage, many-to-one in resident matching) that is game-theoretically stable, i.e., robust to
deviation by any couple/pair. The problem has wide applicability, including school choice
and matching in residency (or other labor) markets [11]. Since Gale and Shapley’s [6] de-
ferred acceptance algorithm (DFA), numerous algorithmic developments have extended the
utility of this model.

One impediment to the use of DFA (and its extensions) is the requirement that agents
specify their complete preferences, in the form of a total order (or preorder) for their coun-
terparts on the other side of the market. This creates two difficulties. First, ranking all
options imposes a significant cognitive burden on agents, requiring a large number of (say)
pairwise comparisons. Many of these may in fact be unnecessary to the discovery of a stable
matching. Preference elicitation schemes, including DFA, that incrementally elicit only the
preference information deemed to be necessary to construct a stable matching, can help al-
leviate this burden. In the sequel, we draw heavily on the partial preference representation
and minimax-regret-based elicitation scheme devised in our previous work [5] (we refer to
this model and method as DB).

A second difficulty is that, even with efficient elicitation schemes, agents may be unable
to rank two options without engaging in additional information gathering activities. In
marriage markets, this might take the form of dating, while in labor markets, this takes the
form of interviews. Indeed, the National Residency Matching Program (NRMP) has served
as a centralized clearing house since 1952 to determine stable matchings of hospitals and
residents in the US [13]. However, preference assessment is very costly—residents spend

$1,000 to $5,000 to interview with an average of 11 programs each [2]. Since residents only
rank the programs with whom they interview, rankings submitted to NRMP will be strongly
influenced their choice of interviews.

Given their costly nature, interview minimization is critical. Rastegari et al. [14] ad-
dress this problem, showing that interview minimization is computationally intractable, but
developing a feasible method that is tractable if certain (rather restrictive) preference infor-
mation is provided a priori ; we refer to this model as RCIL in the sequel. Two weaknesses
of this approach are: the limited circumstances in which it works; and lack of assessment of
the elicitation requirements needed to provide the “prior” preferences.

In this work, we provide a unified model that allows for the assessment of preferences
using both direct queries and interviews. Specifically, we assume that direct comparisons
can be made by agents if two options are sufficiently distinct (i.e., well-spaced) in their true
(but partially latent) underlying ranking; but that such a comparison requires interviews
of both options if they are close in their ranking. Our method uses minimax regret to
determine robust solutions to matching problems given partial information, and generates
(a heuristically minimal number of) queries and interviews that are guaranteed to reach a
stable matching. In doing so, we: (i) extend the preference representations of both DB and
RCIL; (ii) extend the minimax-regret based approach of DB to accommodate interviews;
and (iii) provide a tractable (polytime) scheme for generating interviews (and queries) that
deals with more general partial preferences that RCIL. Experimental results demonstrate
the effectiveness of our scheme.

2 Background

We review stable matching problems (SMPs), focusing on one-to-one matchings (e.g., mar-
riages) for ease of exposition. We also discuss recent work on SMPs with partial preferences,
preference elicitation, and interview minimization, explicating key concepts upon which our
work is based.

Stable Matching Problems. We describe one-to-one SMPs using stable marriage
terminology. Assume a set of men M and women W , each of size n. Each person q provides
a strict total ordering �q over the set R(q), where R(q) is the “opposite side” of the market
(e.g., if q ∈ W , then R(q) = M) and a �q b means q prefers a to b. Let � be a preference
profile consisting of a ranking for each q ∈ M ∪W . A matching µ : M ∪W → M ∪W
requires µ(w) ∈ M,∀w ∈ W , µ(m) ∈ W, ∀m ∈ M , and µ(w) = m iff µ(m) = w. A blocking
pair for µ is a pair (m,w) s.t. w �m µ(m) and m �w µ(w) (i.e., m,w prefer to be with each
other than their partners in µ). We say µ is stable if it admits no blocking pairs.

The deferred acceptance algorithm (DFA) is a polynomial time algorithm for SMPs
[6]. Briefly, the (female-proposing) algorithm proceeds as follows: initially, everyone is
unmatched. During each round, all unmatched women propose to the man highest in their
ranking to whom they have yet to propose. A man receiving multiple proposals (including
any tentative partner) accepts his most preferred proposal (tentative partner). This contin-
ues until all women are tentatively matched, and this final tentative match µ is returned.
Despite its simplicity, DFA always returns a stable matching, and has many important prop-
erties (e.g., it is proposer optimal and strategy-proof). DFA can be applied to many-to-one
problems with a variety of real-world applications [15, 1] and extends to handle richer forms
of preferences (e.g., indifference, acceptability cutoffs).

Matching and Preference Elicitation. As discussed above, the burden of providing
a complete ranking of all potential partners can be considerable in large-scale matching
markets. Recent work has considered eliciting partial information about agent preferences,

just enough to ensure a stable match is found. In principle, DFA can be used as an elicitation
scheme, but rarely done so in practice. Biró and Norman [3] propose a stochastic matching
technique that can be interpreted as an elicitation scheme. However, it scales poorly and
requires far more rounds than the DB scheme we adopt below [5].

Drummond and Boutilier [5] propose a method for computing robust matchings, using
the notion of minimax regret, that are approximately stable given partial information about
agent preferences in the form of pairwise comparisons. They use this to drive an elicitation
scheme that asks “relevant” queries of agents to help determine stable matchings with
relatively little preference information—typically log2(n) queries per agent on average, much
less than elicited by DFA. We describe this model (hereafter dubbed DB) in detail, since we
draw on it later.

A partial preference ranking Pq for agent q is a consistent set of pairwise comparisons
(i.e., partial order) over R(q). We say Pq are partitioned preferences (PP) if it partitions
R(q) into subsets or blocks G1, . . . , Gk s.t. gi �q gj for any gi ∈ Gi, gj ∈ Gj , i < j, and
all gi ∈ Gi are uncompared. Let C(Pq) be the set of all consistent completions of Pq.
Such partial preferences reflect incompleteness of the knowledge of the matching mechanism,
hence the set of completions C(Pq) reflect the possible realizations of q’s preferences from the
perspective of the mechanism. In the DB model, one assumes all agents q have a complete
underlying ranking �q; and that q can compare any two alternatives r and r′ (i.e., determine
whether r �q r′ or r′ �q r) without gathering additional information. Of course, certain
comparisons may be more computationally or cognitively demanding than others; indeed,
DB also consider such cognitive costs, as we do below.

If the mechanism must select a matching given a profile P of partial preferences, stability
may not be guaranteed. DB use max regret to define the potential degree of instability of
a matching, assuming a worst-case completion of the profile, and propose minimax regret
as a robustness criterion for matching. Let s(r,�) = n− rank(r,�) be the (inverse Borda)
score of r in ranking �. DB define:

Regret(q, r′, r,�q) = sq(r
′,�q)− sq(r,�q) (1)

PMR(q, r′, r, Pq) = max�q∈C(Pq)sq(r
′,�q)− sq(r,�q) (2)

Inst(m,w, µ,�m,�w) = (3)

min{PMR(m,w, µ(m),�m),PMR(w,m, µ(w),�w)}
Inst(µ,�) = max

(m,w)
Inst(m,w, µ,�m,�w) (4)

MR(µ,P) = max
�∈C(P)

Inst(µ,�) (5)

MMR(P) = min
µ

MR(µ,P); µ∗P ∈ argmin
µ

MR(µ,P). (6)

The maximum regret MR(µ,P) of matching µ given partial profile P is the maximum incen-
tive any blocking pair has to defect from µ, under any realization of preferences consistent
with the partial profile P. The minimax-optimal matching µ∗ minimizes this max regret.
If MMR(P) = 0, then µ∗ is in fact stable, despite the incompleteness in preferences. While
computing µ∗ is NP-complete, DB devise polytime methods, known as PPGS, that offer
excellent results in practice.

DB also describe an elicitation scheme that uses the MMR-solution to guide the querying
process. Agent partial preferences are always of the partitioned form, and at each stage,
one or more agents is asked to refine one of its blocks by dividing it into a “top half”
(more preferred) and “bottom half” (less preferred). They show this scheme to be quite
effective, but again it assumes that agents can answer queries without additional information
gathering.

Interview Minimization. Rastegari et al.[14] (hereafter RCIL) investigate interview
policies that minimize total interview costs for SMPs from a theoretical perspective. Much
like the DB elicitation method, their aim is to find an interview policy that, beginning with

a partial profile, will provide enough preference information to ensure a stable matching can
be computed. RCIL define an interview to be an information gathering step taken by two
agents (say m, w), one on each side of the market. After the interview, m (resp. w) is able
to rank all options they have interviewed with, including w (resp. m). In other words, if
(say) q has interviewed with both r and r′, then q can definitively answer whether r �q r′
or r′ �q r. This is the form of interview we assume in this work as well.

RCIL show the general problem of interview minimization is NP-hard, even with the PP
model, and propose an MDP formulation to solve the problem (though one that is quite
impractical). They also consider the restricted case when the partitioned preferences of
agents on one side of the market have identical structure (i.e., identical blocks), and provide
a poly-time algorithm Lazy Gale-Shapley (LGS) to compute an interview-minimizing policy.
The method provides a proposer-optimal stable matching. However LGS restricts the true
underlying preferences, requires small blocks (i.e., considerable prior information) to ensure
small number of interviews, and does not analyze the method or costs needed to assess the
“prior” preferences.

3 Combining Elicitation and Interviews

In many settings, the practical assessment of preferences in matching markets requires both
direct preference elicitation—asking agents to compare or rank options about which they
have adequate information—and interviews—allowing agents to determine the properties
of specific options needed to make such comparisons. We outline a framework and elici-
tation scheme for doing just this. Our scheme is a direct extension of the DB elicitation
method, allowing agents to express uncertainty in the response to certain queries prior to
interviewing with specific options. It can also be viewed somewhat loosely as an extension of
the RCIL/LGS scheme, since it does not rely on restrictive preference assumptions of LGS;
and it provides a means for acquiring the prior preferences needed by the LGS scheme to
compute the minimal set of interviews.

We first describe our preference query model and assumptions about agents’ ability to
answer queries without interviews, as well as the representation of preferences. We then
describe a method for approximating minimax regret given a partial profile. Finally, we
describe a combined elicitation-interview protocol, Refine-then-Interview (RtI), that in some
sense unifies the DB and RCIL models.

3.1 Overlapping Partitioned Preferences

The DB model for representing partial preferences (and computing minimax regret) sup-
ports arbitrary pairwise comparisons. However, their elicitation scheme is based on halving
queries, which ensures that each partial preference is in fact partitioned. Let agent q have
true (latent) preference �q over n options, and let the mechanism’s knowledge of �q be a
PP G1, . . . , Gk. A halving query asks q to split one of the blocks Gj into a more preferred
half G+

j and a less preferred half G−j , leading to a refined PP G1, . . . , Gj−1, G
+
j , G

−
j , . . . , Gk.

This scheme assumes that q is able to answer arbitrary pairwise comparisons to refine any
block of the partition.

While many pairwise comparisons are relatively straightforward, others cannot be as-
sessed without engaging in an interview. To model this, let w ≤ n be a window size. We
assume q is able to state whether option a is preferred to b if |s(a,�q)− s(b,�q)| ≥ w in the
q’s latent ranking �q; otherwise we assume that interviewing with both options is needed
to distinguish them. For example, if the attributes of a and b are sufficiently distinct (e.g.,
East Coast vs. West Coast hospital), then q’s preference may be obvious; but if they are

similar, then q may need interviews to rank one over the other. Having rank-distance deter-
mine the difficulty of comparison (or odds of choosing incorrectly) is commonly assumed in
econometrics and psychometrics as well (e.g., as in the Luce-Shepard choice model [8, 16]).

In our query model below, we ask halving queries as in DB. However, we assume that
when splitting a block Gk of size g > w, q is able to determine the (g − w)/2 options she
knows to lie in the top half G+

k of G, and the (g − w)/2 options in the bottom half G−k
but the remaining w options form an uncertain middle tier, G?

k, all elements of which could
lie somewhere in the top or bottom half of Gk. We assume that distinguishing any two
of these options from each other—and from the w/2 least-ranked elements of G+

k and the
w/2 top-ranked elements of G−k —requires interviews. In particular, prior to interviews, q
believes the elements of G?

k lie in any of the middle 2w positions of Gk.
We fix the window size w, and assume that the top and bottom partitions have the same

size, i.e., |G−k | = |G
+
k | = (g − w)/2, for all agents and all queries. This is merely for ease of

exposition. Neither of these assumptions impact the algorithms below, and a model where
the window size and precise location of the resulting split varies across agents—and for a
given individual, across queries—can be addressed using the same techniques.

Our representation, the overlapping partitioned preferences (OPP) model, maintains a
set of blocks, as in the partitioned case, but also the set of eligible positions, p(Gk) =
(t(Gk), b(Gk)), that elements of any block Gk can occupy in the true ranking �q (where
t(Gk), b(Gk) are the top and bottom such positions). A response to a halving query for Gk
(with mid-point m(Gk)) thus refines that block into three blocks with the following sizes
and allowable positions:

|G+
k | = (|Gk| − w)/2, p(G+

k) = [t(Gk),m(Gk)− 1]

|G?
k|=w, p(G?

k)=

{
[m(Gk)−w,m(Gk)+w], if |Gk|≥2w

[t(Gk), b(Gk)], otherwise

|G−k | = (|Gk| − w)/2, p(G−k) = [m(Gk), b(Gk)]

We define t(a) = t(Gk) and b(a) = b(Gk) for all a ∈ Gk, i.e., denoting the top and bottom
positions an option a can take (given the block it occupies).

These constraints imply that no block of size less than w + 2 can be halved. To refine
agent preferences further, the mechanism proposes a bidirectional interview, which allows
agents to determine their relative preference for “close” options. For any agent q on one
side of the market, let I(q) be the set of options (from the other side) with who she has
interviewed. We assume that q is able to totally order all elements of I(q), so that �I(q)⊆�q.
Furthermore, we require p ∈ I(q) iff q ∈ I(p). When OPP is complemented by the interview
ordering constraints �I(q), we call this overlapping partitioned preferences with interviews
(OPPI).

Approximating Minimax Regret. As in the DB approach, we use minimax regret
(MMR) to compute robust matchings given a partial preference profile, where our profiles
take the OPPI form. We will use these solutions to drive the querying and interviewing
process in the next section. Of course, since DB show computing MMR is NP-hard even for
PP, and since OPP and OPPI include PP as a special case, the problem remains NP-hard
in our model. Following DB, we adopt the following strategy: given an partial profile P
in OPP or OPPI form, we assign each agent q some complete ranking �q consistent with
their partial preference Pq. (We discuss completion functions below.) We then run the GS
algorithm on this completion to determine a stable matching µ. The max regret MR(µ,P)
of µ provides an upper bound on MMR(P) (repeating with multiple completions can tighten
the bound). DB show this PPGS method is tractable by proving that pairwise max regret
PMR(q, r′, µ(q), Pq), see Eq. 2, is computable in polytime. These PMR terms can then be
used to compute MR(µ,P) using Eq. 5 over the O(n2) potential blocking pairs.

Unfortunately, computing PMR(q, r′, r, Pq) is somewhat more straightforward in the
PP model than in OPP or OPPI. Thus our primary goal is to show that PMR can be

Algorithm 1 Constructing Segments (|Gk| ≥ w, ∀k)

Require: Gq , I(q)
1: for Gk ∈ Gq
2: if k is odd
3: mid =

∑k−1
i=0 |Gi|+ |Gk|/2

4: t(S
G−

k
), b(S

G−
k

) = mid− w,mid− 1

5: t(S
G+

k
), b(S

G+
k

) = mid,mid + w − 1

6: else
7: prev mid =

∑k−2
i=0 |Gi|+ |Gk−1|/2

8: next mid =
∑k
i=0 |Gi|+ |Gk+1|/2

9: t(S
G−

k
), b(S

G−
k

) = prev mid, prev mid + w − 1

10: t(S
G+

k
), b(S

G+
k

) = next mid− w,next mid− 1

11: S
G−

k
= generate seg(Gk, t(SG−

k
), b(S

G−
k

))

12: S
G+

k
= generate seg(Gk, t(SG+

k
), b(S

G+
k

))

13: Sq [Gk] = S
G−

k
, S
G+

k

14: def generate seg(Gk, top,bottom)
15: //Generates segment s
16: t(s) = top, b(s) = bottom
17: s.dom = {Gx s.t. t(Gx) ≤ b(s) and b(Gx) ≥ t(s)}
18: s.boundaries = {(max(t(s), t(Gx)),min(b(s), b(Gx)) s.t. Gx ∈ dom}
19: s.required = populate required(s)
20: s.ordered req = s.required, s.t. it’s consistent with I(q)
21: def populate required(s)
22: push up = Gs.dom[0]

23: push down = Gs.dom[1]

24: s.required[dom[−1]] = |{x ∈ I(q) ∩Gs.dom[−1] s.t. ∃y ∈ push up s.t. x �I(q) y}|
25: s.required[dom[0]] = |{x ∈ I(q) ∩Gs.dom[0] s.t. ∃y ∈ push down s.t. y �I(q) x}|

computed efficiently in both models. We begin with OPP. For our purposes, we need
accurate calculation only when PMR ≥ 0 (if PMR < 0 we “cut it off” at 0). Using a variant
of Hall’s Theorem (see Demange, et al. [4]), we show, given OPPGq, that PMR(q, r′, r, Gq) =
max(b(r)−t(r′), 0). Intuitively, we recast PMR computation as an allocation problem, where
the options “bid” for a rank position, bidding on all eligible positions given their assigned
bounds. Each option must win exactly one spot. The two options used to compute PMR
are set by the adversary, and thus are pre-assigned their spots, which is represented by
a transformation function that removes the pre-assigned alternatives and now-unavailable
spots. We then show that there are no over-demanded sets after the transformation. A full
proof can be found in Appendix A.

PMR, hence MR(µ,P), can also be computed in polynomial time for OPPI, requiring
that we account for the interview ranking constraints. We calculate PMR for an agent q
with OPPI profile Gq and interview set I(q) via a subtractive counting scheme, where we
calculate the maximal possible distance between two options using positional information,
and then reduce this distance to account for interview-related information. For clarity,
we present only the core of the algorithm, deferring analysis of special cases to the full
specification, detailed in Appendix B.

We calculate PMR by computing segments Sq, a complementary set to Gq; while each
block in Gq is a disjoint set of alternatives (with overlapping positions), each segment in Sq
is a disjoint set of positions (with overlapping alternatives). Alg. 1 shows how to calculate
these segments. (For ease of exposition, we assume |Gk| ≥ w, ∀Gk ∈ Gq; see appendix for
details for other cases).

Segments are generated by first identifying the extremal, overlapping portions of each
block, and then characterizing them. Each block has two extremal positional segments—an
upper and lower segment (corresponding to its upper and lower bounds). When |Gk| ≥
w, ∀Gk ∈ Gq, each segment will be exactly of size w (when |Gk| < w, then |s| > w for

Algorithm 2 Calculating PMR for OPPI (|Gk| ≥ w, ∀k)

Require: Agent q’s OPPI profileGq , with interviews I(q), segments Sq , reversed input q−1, and alternatives
a, a′

1: if |I(q)| < 2
2: PMR(q, a′, a,Gq) = max(b(a)− t(a′), 0)
3: else
4: if a �I(q) a′ or b(a) < t(a′)
5: PMR(q, a′, a,Gq) = 0
6: else if k < j
7: Edge case (see appendix)
8: else
9: r(a′) = n− 1− find lower bound(a′, q−1)

10: r(a) = find lower bound(a, q)
11: PMR(q, a′, a,Gq) = max(r(a)− r(a′), 0)
12: def find lower bound(a, q)
13: if a /∈ Iq
14: seg up, seg down = Sq [Gk]
15: if placing a in seg down is legal
16: return b(a)
17: else //place in the bottom of upper segment
18: return b(seg up)
19: else //a ∈ I(q)
20: if a required to be in seg up
21: lowest a = b(seg up)− |{x ∈ I(q) s.t. a �I(q) x and p(x) ≥ b(seg up)}|
22: holes = # spaces not already required via I(q) between b(seg up), b(seg down)
23: else
24: s = seg down
25: lowest a = b(a)− |{x ∈ I(q) s.t. a �I(q) x and x ∈ seg down.req}|
26: holes = 0
27: free = |Gseg down.dom[−1] − I(q)|
28: mand = |seg down.req.dom[−1]|
29: return lowest a - max(0, w/2− (holes + mand + free)

one of its segments s). We identify these extremal positions using the partial preference
structure imposed by our elicitation scheme (Lines 2–13), though these upper and lower
positional bounds could be given as input. In our setting, the uncertain blocks (G?

j when
halving block Gj) partition the extremal segments. (All uncertain blocks have an odd index;
Lines 2–5.) All other blocks have their extremal positions defined by the odd blocks as well
(Lines 7–10).

Once the positions are determined (or given) for a segment, then all characteristic in-
formation is generated. The domain of the segment is every block Gx s.t. Gx overlaps the
segment’s bounds (Line 17). Each block in the domain has boundaries associated with it
that are the subset of positions an element in Gx is allowed to take in the segment—some
Gx may have tighter bounds than the segment itself (Line 18). Most importantly, some
constraints in I(q) require that certain elements from some domains must be placed in this
segment. This is what allows for us to quickly count the interview constraints when calculat-
ing PMR. Lines 21–25 describe the method for finding these required elements. Intuitively,
given some x in the less desirable block, and y in the more desirable block, if x �I(q) y, both
x and y must be in this segment.

We now examine these extremal segments to calculate PMR(q, a′, a,Gq) given chosen
option a and adversarial selection a′, as shown in Alg. 2 (again, see the paper for the full
algorithm). Note that, if |I(q)| < 2, calculating PMR for OPPI reduces to calculating PMR
on OPP preferences (Lines 1–2). Otherwise, we check if PMR(q, a′, a,Gq) is forced to be
zero either given available positional information (a′ must be placed below a) or interview
information (a �I(q) a′) (Lines 4–5). If not, the algorithm consists of two main cases using
the segments: a is in a more desirable block than a′, and the maximal positions of a and a′

must be calculated simultaneously; or, the maximal position of a and a′ can be calculated

independently (this is a simple, but tedious, argument by cases to ensure that no options
are double-counted). We note that calculating the best position a′ can take is equivalent to
calculating the worst position a′ can take for an agent q−1 with “reversed” preferences (Lines
9–11). Thus, the remainder of the PMR algorithm involves calculating this worst position,
which uses similar intuitions to those used to calculate a and a′’s positions simultaneously
(some edge cases must be considered to ensure that no double-counting occurs).

Computing the maximum (worst) position a can take (Lines 12–29) consists of two main
cases: a /∈ I(q) (i.e., a not interviewed) and a ∈ I(q) (i.e., a interviewed). If a /∈ I(q),
there are fewer constraints on a’s placement, though we still need to guarantee that a valid
ranking exists given a’s assigned placement. We want to place a as low as possible in its
bottom extremal segment. However, if I(q) requires too many options to be placed in this
bottom segment, we place a at the bottom of its top segment (Line 18). Otherwise, there
is room in the bottom segment, and with no constraints on a’s placement imposed by I(q),
we place a at its maximal position (Line 16).

When a ∈ I(q), we first compute the number of options that must lie between a and b(a)
dictated by I(q). We then count to check that placing a there still results in a valid ranking;
we subtract positions from a’s maximal position (i.e., move a higher in the ranking) until a
valid ranking is obtained. Since a ∈ I(q), either a is required to be in the upper extremal
segment given interview information I(q) or this is not implied by I(q). The former occurs
when there is some option x whose positional constraints require it to be in the upper
segment, and a �I(q) x. In either case, we compute the lowest position a is allowed to
take given I(q), a’s maximal position (Lines 21 and 25). As discussed above in segment
generation, w/2 options from the least-desirable block whose positional information allows
its members to be placed in the bottom segment must be placed in that segment (otherwise
a valid ranking does not exist). The remainder of the algorithm verifies that enough of the
options from this least-desirable block can be placed in the lower segment. Since we need to
ensure that there is space in the lowest segment for the w/2 options from the least-desirable
block, we may need to move a up in the ranking by as many as w/2 positions from its
maximal position. However, there are different ways in which we could place these w/2
options that do not affect a’s placement. Counting these ways, as we describe below, allows
the accurate computation of the lowest position that a can take while guaranteeing a valid
ranking is constructed.

If a ∈ I(q), the number of positions between a’s placement and b(a) may not form a
“dense set” (i.e., I(q) may not require that all of these positions be filled; Line 22). Such
“holes” allow us to place more of the w/2 required elements in the bottom segment without
changing a’s position. Furthermore, options in the least desirable block that do not have
their order fixed by I(q) (i.e., they have not been interviewed) can be placed above a, again
not changing a’s position (Line 27). All options that are required to be in the segment
have already been counted (via the number of “holes” and the lowest legal position of a),
and thus we must not double count them (Line 28). If all of these options account for the
w/2 required positions, the lowest possible position computed for a is valid and is returned.
Otherwise, we subtract from this the extra positions required to place the w/2 options in
the lowest segment, ensuring a valid ranking exists (Line 28). As we show in the appendix,
this results in a method that allows PMR(q, r′, r,Gq) to be computed in O(n3) time.

Finally, we require an efficiently computable completion function in order to use PPGS
to approximate MMR. Given OPPI profile P, we assume a reference ranking σM (resp., σW)
over each side of the market.1 Our completion function places, for any q, all interviewed
options in I(q) in the highest allowable position that results in a valid ranking, and fills
remaining positions with uninterviewed options within the relevant blocks (ties are broken

1When using Mallows models (see below), we use the reference ranking defining the Mallows model (i.e.,
the ranking with maximum prior probability). Otherwise, we use an arbitrary ranking.

Algorithm 3 Refine-then-Interview Elicitation Scheme

Require: OPPI profile G, threshold τ
loop

1: Compute (approximate) µ = µ∗(G), compute MR(µ,G).
2: if MR(µ,G) ≤ τ , done.
3: for each q ∈ RI (µ) s.t. q not queried this round
4: Q = {gk ∈ Gr s.t. |gk| > w + 1 ∧ ∃b ∈ BP(r)∪

{µ(r)} s.t. b ∈ gk}
5: Query (halve) every block in Q
6: if |Q| = 0 (i.e., no blocks were halved)
7: for b ∈ BP(r)
8: if b not queried this round:
9: Q = {gk ∈ Gr s.t. |gk| > w + 1 ∧ (r ∈ gk∨

µ(b) ∈ gk)}
10: Query (halve) every block in Q
11: if no blocks were halved this round
12: for r ∈ RI
13: if r not interviewed with this round
14: r interviews with BP(r) ∪ {µ(r)}
15: if r did not interview (BP(r) ∪ {µ(r)} ⊆ I(r))
16: for b ∈ BP(r)
17: b interviews with µ(b) (r ∈ I(b))

using σ). More formally: (i) Sort all blocks according to σ. (ii) For each position p, if no
interviewed options can be placed at p, place the next uninterviewed option at p. Otherwise,
count the number of uninterviewed options r that must lie before the next block boundary
b(G). If r+1 < b(G)−p, place an interviewed option at p. Otherwise, place an uninterviewed
option at p. This completion takes polynomial time.

3.2 Elicitation Scheme

We now define our Refine-then-Interview (RtI) elicitation scheme. Given a current OPPI
profile P, RtI computes an (approximately) regret-minimizing matching µ. This solution
is used to guide the choice of queries or interviews at each round with the aim or reducing
MMR as much as possible. The scheme focuses on Regret Inducing (RI) agents in µ, those
whose max regret (or instability) dictates the max regret MR(µ) of the matching. By
gathering additional information, through elicitation or interviews, about their preferences
or those of their blocking partners, we will reduce the regret of µ, and ideally MMR as well.

At any point we can ask an agent to either halve one of their blocks (which we take to
be less costly) or engage in one or more interviews (which we take to be more costly). Of
course, halving only works to the point where a block has been refined to size w; after that,
interviews are required to make further ranking distinctions. Thus, RtI, see Alg. 3, prioritizes
queries over interviews. Let RI (µ) denoting the set of all regret-inducing individuals in µ.
For any r ∈ RI (µ), let BP(r) be the set of r’s potential blocking partners. Intuitively,
RtI uses halving queries to determine roughly where in their preference ranking each agent
will be matched. Once their preferences have been refined in the “relevant” regions of
their rankings to the extent possible without interviews, RtI proposes interviews for the few
options with whom they could still form blocking pairs.

Since halving queries split a block into three smaller blocks, we expect between log3(n)
and log2(n) queries per agent. However, we expect the number of interviews to be indepen-
dent of n (the size of the market) and depend only on w (the degree to which agents can
make comparisons without interviews), in fact, to be at most approximately 2w. This is due
to the fact that halving will reduce the “relevant” blocks in any agent q’s preference (i.e.,
blocks containing viable partners) to size no greater than w; and at most two additional
blocks (one of which must be of size less than w) can contribute options to such a block.

RtI LGS RtI LGS
n φ interviews interviews rounds rounds

124 0.2 3.93 (0.09) 3.66 (0.07) 7.4 (1.3) 154.3 (6.0)
124 0.6 3.19 (0.18) 2.42 (0.09) 12.2 (2.9) 163.9 (3.4)
124 1.0 3.08 (0.16) 2.37 (0.06) 13.8 (2.7) 130.0 (1.8)

252 0.2 3.92 (0.05) 3.64 (0.05) 8.8 (0.9) 314.6 (0.1)
252 0.6 3.24 (0.16) 2.41 (0.09) 15.1 (3.0) 336.6 (7.8)
252 1.0 3.03 (0.11) 2.31 (0.04) 17.2 (2.1) 258.5 (3.2)

Table 1: RtI vs. LGS (identical input): interviews/person (std.).

4 Empirical Evaluation

We evaluate RtI on a variety of randomly generated matching problems, using several dif-
ferent probabilistic models as well as preferences derived from real-world ratings data. All
results are reported over 20 random matching instances.

Comparison to LGS. RtI and LGS solve slightly different problems, since LGS requires
very specific (more restrictive) prior preferences, but at the same time finds proposer-optimal
matchings (while RtI finds some stable matching). Nevertheless, we show that with the
same prior information, RtI generates almost as few interviews as LGS, and that it can
more effectively assess “prior” preferences.

Using markets of size n = 124, 252, and a window size of w = 4, we first compare the two
using partitioned preferences of the form needed by LGS: women’s (employers’) preferences
are drawn from a Mallows φ-model [9, 10] with dispersion φ and reference ranking σ, and
assign w options to each of n/w blocks. Men (applicants) must have identical blocks, so we
first partition all options into n/w blocks of size w, then create each man’s true preference
within each block by drawing a (smaller) ranking from a Mallows distribution (same φ and
projected σ). Results for varying dispersion values are shown in Table 1. We see that
LGS and RtI generate similar numbers of interviews, with RtI averaging less than one
interview per person more than LGS, despite its broader applicability (we note of course
that LGS is providing female (employer) optimal matchings and RtI is not). RtI also requires
far fewer rounds of interviews, meaning that many interviews can be run in parallel ; i.e.,
individual participants can work through their interviews without for additional input from
the matching mechanism (e.g., waiting for other participants to complete interviews). LGS
by contrast must run a large number of interviews sequentially (using prior interview results
before setting interviews at the current round).

We also compare RtI to LGS by analyzing the “total information” requirements of the
algorithms. To do so, we provide LGS the strict blocks it needs (as above), but provide RtI
with no prior preference information. We compare the number/cost of RtI’s queries with
the queries/cost needed to produce LGS’s prior blocks, as well as the number of interviews.
Table 2 shows that RtI performs well w.r.t. LGS. While RtI generates roughly twice as many
interviews as LGS, the strict block boundaries provided to LGS require pairwise comparisons
that in the RtI model cannot be assessed without interviews (hence, this comparison is
misleading). Despite the fact that RtI starts with no preference information (in contrast
to LGS’s blocks), RtI takes significantly fewer rounds of combined elicitation/interviews
than LGS needs for only interviews, except when φ = 1 (uniformly distributed preference
rankings).

Finally, we compare the (non-interview) elicitation requirements of both. The number
of halving queries used by RtI, as well as their cognitive cost is show in the table. Here we
measure the cognitive cost of a pairwise comparison using a Luce-Shepard model, see [5].
Given preferences �q, temperature γ ≥ 0, and threshold τ , the cost for q to compare r with
r′ is:

c(r, r′) = eγ(n−min(|sq(r,�q)−sq(r′,�q)|,τ)) (7)

We set γ = 0.5, τ = 5, and normalize reported cognitive cost by e(γn) (as in DB). To

RtI LGS RtI RtI RtI LGS
n φ interviews interviews queries cog cost rounds rounds

124 0.2 8.81 (0.26) 3.66 (0.07) 4.63 (0.17) 17.8 (0.3) 92.3 (11.1) 154.3 (6.0)
124 0.6 7.57 (0.30) 2.42 (0.09) 4.88 (0.19) 18.1 (0.4) 125.9 (12.9) 163.9 (4.1)
124 1.0 4.94 (0.15) 2.37 (0.06) 6.35 (0.07) 21.1 (0.1) 199.1 (22.9) 123.0 (1.8)

252 0.2 8.95 (0.23) 3.64 (0.05) 5.85 (0.22) 38.8 (0.6) 135.3 (9.0) 314.6 (7.1)
252 0.6 7.60 (0.26) 2.41 (0.09) 6.17 (0.3) 39.7 (0.8) 213.4 (22.4) 304.2 (7.8)
252 1.0 4.78 (0.16) 2.31 (0.04) 8.69 (0.1) 48.3 (0.4) 488.4 (48.0) 258.5 (3.2)

Table 2: RtI (with queries) vs. LGS: interviews, etc./person (std.).

Interviews Split Queries
w φ = 0.2 0.6 1.0 0.2 0.6 1.0

4 9.88 8.00 2.84 6.84 7.42 7.31
6 15.09 13.02 4.23 6.09 6.48 7.10
8 17.82 15.45 5.13 6.27 6.59 7.08

Table 3: RtI performance varying w; n = 300.

assess the cost of creating LGS blocks, we assume that agents can engage in partial Quick-
sort to create blocks and have access to “perfect” pivots at block boundaries. Again, this
assumes agents can accurately compare two “close” options without interviews (something
not allowed in RtI). RtI’s cost is computed similarly, but unanswerable comparisons have
cost 0. Eliciting LGS’s prior preferences, when n = 124 (resp., 252), requires 586 (resp.,
1445) comparisons, with a cognitive cost of 107.58 (resp., 241.61). Table 2 shows that the
cost of RtI’s queries is roughly 16% of that of LGS, and RtI needs about 55% fewer com-
parisons than LGS. Thus, while LGS requires fewer interviews—though we emphasize that
LGS obtains information without interviews that force interviews in our model—it needs
significantly more preference information overall.

Evaluation of RtI. We now evaluate RtI using random matching problems with pref-
erences generated using several different probabilistic preference models, varying both the
market size n and window size w. The models are the same as those used by DB: the Mal-
lows φ-model [9]; a riffled independence model [7] derived by riffling two Mallows models;
and preferences derived from MovieLens ratings data.2 In all instances, RtI begins with no
preference information.3

We first test RtI on a Mallows distributions, varying the degree of preference correlation
(or dispersion φ). Fig. 1 describes results for w = 4. As n increases, the number of
interviews (dashed line) remains virtually constant. The exception is when φ = 1.0 (i.e.,
no preference correlation, or impartial culture), where the number of interviews required
decreases, which occurs due to more heterogeneous preferences. With φ = 0.2, RtI generates
about 2.5w interviews/person, consistent with the conjecture that it will require between
w and 2w interviews. With highly correlated preferences, as expected, more interviews are
required (this also occurs with LGS). The average number of halving queries per person (solid
lines) increases logarithmically w.r.t. market size, and is unaffected by degree of preference
correlation. This mirrors results in the DB query model. Table 3 shows results as we vary
w (n = 300). As expected, the number of interviews increases with w (and peaks at about
2w–2.5w interviews/person when preferences are highly correlated), while the number of
queries is roughly constant. We note that w = 4, 6 results in a number of interviews similar
to the 11 that residents average in the NRMP [2].

Since approximately stable matches may be sufficient for many real world problems,
we show the anytime performance of RtI in Figs. 2a and 2b, plotting reduction in the
max regret (MR) of the induced matching as rounds (either queries or interviews) progress

2See http://www.grouplens.org/node/73, the 100K data set.
3Error bars are omitted (too small to be seen).

50 100 150 200 250 300 350 400

4
6

8
10

n

In
te

rv
ie

w
s/

Q
ue

rie
s

P
er

 P
er

so
n

0.2, Avg Queries
0.2, Avg Ints
0.6, Avg Queries
0.6, Average Ints
1.0, Avg Queries
1.0, Avg Ints

Figure 1: RtI: Avg. queries and interviews/person; varying n, φ.

(n = 300 and φ = 0.2, 1.0). Each point represents MR after a round of RtI, vs. the number
of queries/interviews to that point. We see that no costly interviews are generated until
MR has been significantly reduced via halving queries. Once MR is sufficiently small,
interviews are used drive MR of the matching to 0 (i.e., true stability), though occasionally,
new queries are required after some initial interviews (e.g., when the estimated matches
are changed significantly after some interviews). These trends are more obvious in Fig. 2b,
where few interviews are requested until 5 to 6 split queries per person have been asked,
and after interviews begin, relatively few split queries are generated.

 1 2 3 4 5 6 7 8 0
 2

 4
 6

 8
 10

 12

 0
 20
 40
 60
 80

 100
 120
 140
 160

MR

split queries

interviews

MR

(a) φ = 0.2

MR

(b) φ = 1.0

Figure 2: Anytime performance for RtI; n = 300.

Results on the riffle model, Fig. 3, exhibit the same trends as above. Comparing Mallows
results with φ = 0.2 to riffle results that merge two φ = 0.2 models, we see fewer interviews
are required in the riffle case; small perturbations in correlated preferences, combined with
two “types” of preferences (as we would expect in real-world data) induces enough hetero-
geneity to reduce the number of interviews.

Finally, we apply RtI to the MovieLens preference model, with n = 300, where agent

50 100 150 200 250 300 350 400

3
4

5
6

7
8

n

In
te

rv
ie

w
s/

Q
ue

rie
s

P
er

 P
er

so
n

0.2, Avg Queries
0.2, Avg Ints
0.6, Avg Queries
0.6, Average Ints
1.0, Avg Queries
1.0, Avg Ints

Figure 3: RtI (riffle model): Avg. queries and interviews/person; varying n, φ.

preferences are determined using an affinity score based on how similarly they rank movies
(see [5] for details). With more correlated affinities, RtI averages 4.95 interviews and 6.76
queries per person, while with less correlated affinities, it averages 2.34 interviews and 6.65
queries per person. These results, on a model based on real-world ratings data, are consistent
with the observations above.

5 Conclusions and Future Work

We have developed a new elicitation scheme, which uses both queries and interviews, to
assess agent preferences in stable matching problems. When compared with the interview-
minimizing LGS algorithm (which works on restricted preference structures), RtI requires a
similar number of interviews when given identical input, but generally requires significantly
less overall preference information. Our comparison has focused on cases with relatively
low preference uncertainty on the part of agents (i.e., small w). We hypothesize this level
of uncertainty is realistic in markets of the size studied here, since it generates a number
of interviews comparable to those seen in practice [2]. Of course, for markets with greater
participant uncertainty, RtI would require more interviews, as would LGS or any other
interview-minimizing scheme. RtI also scales well: the number of interviews increases with
the agent uncertainty (w), not with market size, and appears to require about 2w inter-
views/person on all probabilistic models tested. The number of (less expensive) halving
queries increases logarithmically with market size.

Many interesting questions remain. In many domains, agents naturally express their pref-
erences using option attributes (not ranked lists), requiring an extension of our elicitation
method to multi-attribute preferences (e.g., [12]). We also hope to analyze other proba-
bilistic preference models, and account for other objectives (e.g., social-welfare-maximizing
stable matchings) and constraints (e.g., matching with couples).

Acknowledgments. We acknowledge the support of NSERC. Drummond was supported
by OGS and a Microsoft Research Graduate Women’s Scholarship. Thanks to Ettore Dami-
ano for helpful discussions and the reviewers for their suggestions.

References

[1] Atila Abdulkadiroglu, P.A. Pathak, Alvin E. Roth, and Tayfun Sönmez. The boston
public school match. American Economic Review, 95(2):368–371, 2005.

[2] Kimberly D Anderson, Marsha M Dorough, Catherine R Stein, Scott A Optenberg,
Ian M Thompson, et al. The urology residency matching program in practice. The
Journal of urology, 163(6):1878–1887, 2000.

[3] Péter Biró and Gethin Norman. Analysis of stochastic matching markets. International
Journal of Game Theory, pages 1–20, 2012.

[4] Gabrielle Demange, David Gale, and Marilda Sotomayer. Multi-item auctions. Journal
of Political Economy, 94:863–872, 1986.

[5] Joanna Drummond and Craig Boutilier. Elicitation and approximately stable matching
with partial preferences. Beijing, 2013. to appear.

[6] D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

[7] Jonathan Huang and Carlos Guestrin. Riffled independence for ranked data. In Ad-
vances in Neural Information Processing Systems 21, pages 799–807, Vancouver, 2009.

[8] R. Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. Wiley, 1959.

[9] Colin L. Mallows. Non-null ranking models. Biometrika, 44:114–130, 1957.

[10] John I. Marden. Analyzing and Modeling Rank Data. Chapman and Hall, London,
1995.

[11] Muriel Niederle, Alvin E. Roth, and Tayfun Sonmez. Matching and market design. In
Steven N. Durlauf and Lawrence E. Blume, editors, The New Palgrave Dictionary of
Economics (2nd Ed.), volume 5, pages 436–445. Palgrave Macmillan, Cambridge, 2008.

[12] Enrico Pilotto, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Compact
preference representation in stable marriage problems. In Algorithmic Decision Theory,
pages 390–401. Springer, 2009.

[13] National Resident Matching Program. National resident matching program, results and
data: 2013 main residency match. 2013.

[14] Baharak Rastegari, Anne Condon, Nicole Immorlica, and Kevin Leyton-Brown. Two-
sided matching with partial information. In Proceedings of the Fourteenth ACM Con-
ference on Electronic Commerce, pages 733–750. ACM, 2013.

[15] Alvin E. Roth. The evolution of the labor market for medical interns and residents: A
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

[16] Roger N. Shepard. Stimulus and response generalization: A stochastic model relating
generalization to distance in psychological space. Psychometrika, 22(4):325–345, 1959.

A Expanded Proof for OPP PMR calculation

We claim that, given OPP profile Gq, PMR(q, a′, a,Gq) = max(b(a) − t(a′), 0), for w ≥ 2,
where p(a) = (t(a), b(a)) is the set of a’s allowable positions. We show this by first showing
that the bounds are valid (i.e., given a set of OPP bounds, a complete, valid ranking exists).
We then show that these bounds are valid even if, given two alternatives a and a′, we fix
r(a) = b(a), and r(a′) = t(a′). Again, OPP bounds are defined recursively in the following
manner, with m(Gk) = (

∑
Gs∈Gq ;s<k

|Gs|) + |Gk|/2. Given some Gk ∈ Gq, Gk is split as

follows:

|G+
k | = (|Gk| − w)/2, p(G+

k) = [t(Gk),m(Gk)− 1]

|G?
k|=w, p(G?

k)=

{
[m(Gk)−w,m(Gk)+w], if |Gk|≥2w

[t(Gk), b(Gk)], otherwise

|G−k | = (|Gk| − w)/2, p(G−k) = [m(Gk), b(Gk)]

Let A be the set of all options in Gq. If option a ∈ A is assigned position y, let r(a) = y.
We prove that the bounds are valid in the following manner: we use an extension of Hall’s

Marriage theorem, due to Demange, Gale, and Sotomayor [4]. We re-frame calculating PMR
as an allocation problem, where options “bidding” for their assigned ranking, bidding on all
positions they can occupy according to their allowable bounds. Each alternative needs to
win exactly one position. When calculating pairwise max regret, by fixing two alternatives’
positions, we pre-assign them their positions and thus remove them (and their positions)
from the bidding process. If there are no overdemanded sets after this process, then a valid
ranking exists. We first show there are no overdemanded sets given OPP’s boundaries, and
then show there are no overdemanded sets after forcing r(a′) = t(a′), r(a) = b(a).

We now define monotonicity for the bounds of an OPP profile Gq. We first define an
ordering for the blocks in profile Gq, and then define monotonicity for the blocks’ bounds.
Note that the elicitation scheme we use induces a natural ordering on the blocks of Gq; at
each step of the elicitation scheme, a parent block Gk ∈ Gq is chosen, and split into three
children blocks, G+

k , G?
k, and G−k . By definition of the scheme, all elements in G+

k are more
desirable than the elements in G−k , and the elements in G?

k are the uncertain middle. This
gives us a natural ordering of these three children blocks: G+

k < G?
k < G−k . (Note: 0 is

most desirable.) Because this is an iterative elicitation process, all blocks before and after
Gk will have been ordered, thus the new full ordering after this elicitation step will be:
G1, ..., Gk−1, G

+
k , G

?
k, G

−
k , Gk+1, ..., Gm (given m blocks). We thus say that the upper (resp.

lower) bounds of a profile Gq are monotonic if ∀Gj , Gk ∈ Gq s.t. j < k, t(j) < t(k) (resp.
b(j) < b(k)).

Note that, if for all options both the upper and lower bounds are monotonic, and for
∀a ∈ A, t(a) ≤ r(a) and b(a) ≥ r(a), this is sufficient to show that no overdemanded sets
exist. (Again, 0 is the most desirable position.) We call the latter the “45-degree” principle,
as graphing these constraints assures all lower bounds are below f(a) = a and all upper
bounds are above that line.

We first show that all bounds generated by querying are monotonic, and obey the 45-
degree principle. This shows that without allowing the adversary to assign any alternatives’
rankings, these bounds are valid. We then provide a transformation function T that trans-
forms Gq into G′q, a set of bounds with two fewer alternatives, that appropriately adjusts
the allowable positions to account for the pre-assignment r(a′) = t(a′), r(a) = b(a). We then
show that G′q is also monotonic and obeys the 45-degree principle.

First, we show all bounds in Gq are monotonic. As the elicitation process is iterative,
we use an inductive argument. We begin after exactly one split of q’s preferences, so Gq

will have exactly 3 blocks, with the following positional information:

p(G+
k) = [0, |A|/2− 1]

p(G?
k)=

{
[|A|/2−w, |A|/2+w], if |A|≥2w

[0, |A| − 1], otherwise

p(G−k) = [|A|/2, |A| − 1]

We first show that these bounds obey the 45-degree principle by constructing a ranking
r that does so. First order all a s.t., for a ∈ G+

k , b ∈ G?
k, c ∈ G−k , r(a) < r(b) < r(c)

(and ordered arbitrarily within each block). Note that ∀a ∈ G+
k , t(a) = 0 ≤ r(a), and

b(G+
k) = |A|/2− 1 ≥ (|A| −w)/2− 1 ≥ r(a), as required. (G?

k and G−k follow by symmetry.)
We then show monotonicity of these bounds. If |A| < 2w, clearly the bounds are

monotonic. For |A| ≥ 2w, starting with the upper bounds, since |A| ≥ 2w, |A|/2 − w ≥
2w/2 − w = 0, thus t(G?

k) ≥ t(G+
k). |A|/2 ≥ |A|/2 − w, thus t(G−k) ≥ t(G?

k), and thus the
upper bounds are monotonic as required. Again, for the lower bounds: |A|/2 + w − 1 ≥
|A|/2−1, thus b(G?

k) ≥ b(G+
k). Similarly, b(G−k) = |A|−1 = |A|/2+A/2+1 ≥ |A|/2+w−1 =

b(G?
k), as required. Thus, when |A| ≥ 2w, and no alternatives have pre-assigned positions,

no sets are overdemanded, and thus under these conditions, these bounds are valid. Then,
the base case does not have any overdemanded sets.

For the inductive step, we assume that the current set of indistinguishable alternatives
Gq generated by the querying scheme does not contain any overdemanded sets, so that all
bounds are monotonic and obey the 45-degree principle. We now wish to show that splitting
any Gk ∈ Gq (with |Gk| > w+ 1) into three segments G+

k , G
?
k, G

−
k (as in elicitation) creates

bounds that are monotonic and obey the 45-degree principle.
Note that t(G+

k) ≤ t(G?
k) ≤ t(G−k) (and thus monotonic), and all three obey the 45-

degree principle, by the same logic as in the base case (simply translate these indices down
to [0, |Gk|]). We then simply need to show that all of these new bounds are monotonic w.r.t.
the old bounds; we want to show:

t(Gk−1) ≤ t(G+
k) = t(Gk) (8)

b(G−k) = b(Gk) ≤ b(Gk+1) (9)

b(Gk−1) ≤ m(Gk)− 1 = b(G+
k) (10)

m(Gk) = t(G−k) ≤ t(Gk+1) (11)

Note that we do not need to further verify that the new bounds for G?
k violate monotonicity

for the following reason: if |Gk| ≥ 2w, then the bounds m(Gk) − w,m(Gk) + w cannot
cause G?

k to violate monotonicity via the same argument as above; if |Gk| < 2w, then
t(G?

k) = t(Gk) and b(G?
k) = b(Gk), so again, monotonicity is not an issue (as Gk does not

violate monotonicity).
Note that Eqs. 8 and 9 are true by construction; if either of these were false, the bounds

in Gk before we split would not have been monotonic. To show Eq. 10 is true, note that
b(Gk−1) ≤ (

∑k−1
i=0 |Gi|) + w/2 − 1, because, if we can split Gk, then |Gk| > w + 1, which,

because of the structure of the elicitation scheme, implies |Gk−1| = w, and by construction,

b(Gk−1) = m(Gk−1)+w/2. Let s =
∑k−1
i=0 |Gi|. So, b(G+

k) = m(Gk)−1 = s+|Gk|/2−1 ≥ s+
w/2− 1 = b(Gk−1) as required. Similarly, we show that t(G−k) = m(Gk) ≤ t(Gk+1). Again,
by construction, t(Gk+1) = m(Gk+1)− w/2 ≥ m(Gk) + |Gk|/2− w/2. Since |Gk| > w + 1,
this implies t(Gk+1) ≥ m(Gk) + w/2− w/2 = t(G−k) as required. Thus, for all queries that
follow the protocol, there are no overdemanded sets.

We now need to show that the transformation T is valid (i.e., it appropriately transforms
Gq into G′q such that Gq with alternatives a, a′ pre-assigned to positions t(a′), b(a) is equiv-
alent to G′q). Intuitively, this transformation removes two alternatives a, a′, and positions

t(a′), b(a) from Gq. First, note that if b(a) ≤ t(a′), PMR must be 0. Thus, we assume
t(a′) < b(a). Let e(Gk) be the set of alternatives OPP block Gk contains, and let p(Gk) be
the set of positions OPP block Gk is allowed to take. Transformation T is as follows; given
top alternative a′, bottom alternative a, and OPP profile Gq over alternative set A, define
T :

if b(Gk) > t(a′) :

e(T (Gk)) = e(Gk);

p(T (Gk)) = p(Gk) (12)

if a′ ∈ Gk, a /∈ Gk :

e(T (Gk)) = e(Gk)/{a′};
p(T (Gk)) = (t(Gk), b(Gk)− 1) (13)

if t(a′) < t(Gk) and b(a) > b(Gk) :

e(T (Gk)) = e(Gk);

p(T (Gk)) = (t(Gk)− 1, b(Gk)− 1) (14)

if a′, a ∈ Gk :

e(T (Gk)) = e(Gk)/{a′, a};
p(T (Gk)) = (t(Gk), b(Gk)− 2) (15)

if a ∈ Gk, a′ /∈ Gk :

e(T (Gk)) = e(Gk)/{a};
p(T (Gk)) = (t(Gk)− 1, b(Gk)− 2) (16)

if t(Gk) < b(a), b(Gk) > b(a), a /∈ Gk :

e(T (Gk)) = e(Gk);

p(T (Gk)) = (t(Gk)− 1, b(Gk)− 2) (17)

if t(Gk) > b(a) :

e(T (Gk)) = e(Gk);

p(T (Gk)) = (t(Gk)− 2, b(Gk)− 2) (18)

This transformation completely eliminates positions t(a′) and b(a), and alternatives a, a′,
translating |A| positions to |A| − 2 positions. Similarly, all Gk ∈ Gq containing exactly one
of t(a′) or b(a) as a feasible position are now of size |Gk| − 1; those Gk ∈ Gq containing
both t(a′) and b(a) are now of size |Gk| − 2; those containing neither are their original
size. Furthermore, ∀Gk, Gj ∈ Gq, all relative positions of t(Gk) and t(Gj) are the same,
accounting for t(a′) and b(a) eliminated. (Similarly for b(gk) and b(gj).) Thus, T is a valid
translation.

Showing that G′k = T (Gk) is monotonic and obeys the 45-degree principle will conclude
the proof. Because T is a valid transformation, if G′k is monotonic and obeys the 45-degree
principle, then there are no over-demanded sets, and thus there exists at least one valid
completion of the OPP profile such that p(a′) = t(a′) and p(a) = b(a), as required. We show
that T preserves these properties by going through all cases presented in Eqs. 12–18. For the
case stated in Eq. 12, T (Gk) = Gk, so monotonicity and the 45-degree principle hold. Given
any Gk ∈ Gq, we show that the 45-degree principle holds for Gk, and then show that Gk is
monotonic w.r.t. Gk−1. Note that the first block (k = 0) is a special case, but the only thing
that changes is we don’t need to test for monotonicity. For Case 13, note that we simply
have one less slot and one less item. Thus, the 45-degree principle still holds. Also note that
this case occurs at a boundary, where b(T (Gk−1)) = b(Gk−1) but b(T (Gk)) = b(t(Gk))− 1.
While we get monotonicity for t for free, b(T (Gk−1)) = b(Gk−1) ≤ m(Gk) ≤ m(Gk+1)−1 ≤

b(T (Gk)) as required. (Note that some of the special cases require a tighter bound than
b(Gk−1) ≤ m(Gk); these special cases are omitted for clarity, but the tighter bounds are easy
to calculate given the OPP structure.) Case 14 is trivial (because everything has only shifted,
nothing has changed), unless t(T (Gk−1)) = t(Gk−1). Then, we follow a similar argument to
prove monotonicity of t as above: t(Gk−1) ≤ m(Gk−1) − w < m(Gk−1) ≤ t(T (Gk)). Case
15, again removes the same number of options in Gk as positions, so the 45-degree principle
will still hold, as it held for Gk. Also, t is still monotonic, as t does not change. We use
the same argument as in Case 13 for b, but note that the essence of that argument is that
there’s always a padding of size at least w between b(Gk) and b(Gk−1). Since w ≥ 2, then
b(T (Gk)) ≥ b(T (Gk−1)). Cases 17 and 18 follow by the same style of argument.

B Full PMR Algorithm for OPPI Preferences

Given some agent q’s OPPI profile Gq with interview set I(q), computing PMR when
|I(q)| < 2 reduces to calculating PMR for OPP, and |I(q)| ≥ 2 requires a counting algo-
rithm. Algorithms 5 and 6 provide the counting method for calculating PMR in polynomial
time for this setting. For clarity, we do not include the cases when a, a′ ∈ g0, gf (where gf
is the last block in Gq); to include these cases, there are simply a few checks required to
make sure that placements do not go outside of the [0, n − 1] bounds imposed by the fact
that we only have n alternatives.

Algorithm 5 describes the counting scheme required for calculating PMR(q, a′, a,Gq)
when calculating a′’s minimal position and a’s maximal position can be done separately.
(This occurs when a′, a are sufficiently far apart in the preferences so that we do not double-
count any options.) The counting scheme works by analyzing the extremal portions of the
preferences that a′, a can occupy, where two blocks overlap. We call these extremal portions
segments, where a set of segments Sq can be thought of as a complementary set to Gq; while
each block in Gq is a disjoint set of alternatives, two blocks in Gq may have overlapping
positions they share. Each Sq segment, however, is a disjoint set of positions, but may have
overlapping alternatives that may be allowed to fill those positions.

The process for computing PMR is as follows: first, we update all Sq segments; the
algorithm for doing so is shown in Algorithm 4. Furthermore, this process is symmetrical;
we compute a reversed agent q−1, where all interviewed preferences of q are reversed, as are
all blocks and their positional information. We also compute the appropriate segments Sq−1

for q−1, and finally we compute r(a′) by computing the worst position for a′ in q−1. Note
that Sq and q−1 only change when the elicitation scheme provides new information regarding
q’s preferences; thus we only need to update these after new information is gathered.

Algorithm 4 describes how to generate segments for some OPPI profile Gq, I(q). There
are two main cases, and two main subcases for generating segments; given some block Gk,
if k is odd (i.e., Gk was one of our “uncertain” blocks in elicitation; shown in Lines 1–13) or
even (Lines 14–23); and when blocks of size |Gk| < w are involved or not. When |Gk| < w,
one large segment is generated that encompasses all positions from the previous block of size
w’s midpoint to the next group of size w’s midpoint, thus forming a segment with w+ |Gk|
positions. All other segments that bridge the overlap of two blocks (which are the segments
we’re interested in) are of size w.

After determining the top and bottom legal position of the segment, we associate the
remaining pertinent information with it. The domain of the segment simply is what blocks
are allowed to contribute alternatives to this segment (based on its boundaries). The bound-
aries are the top and bottom positions any block in the domain are allowed to take within
this segment. For each domain, required is the set of elements from that block that must
be in this segment because some other alternative is pushing them up or down into this

segment based on I(q); ordered req is simply this as an ordered list that is consistent with
I(q).

When calculating a′, a’s maximal positions separately, to find the worst position a is
allowed to occupy in q’s preferences, we simply keep trying the lowest positions possible
and see if they’re legal. If a /∈ I(q), a’s potential positions are less restricted (Lines 14–22).
We first check if placing a as low as possible is available; we must be able to place w/2
elements from the least desirable block in the positions available to the lower segment (Line
16). (Note that when |Gk| < w only one segment exists, and thus it is trivially true that we
can place in the lower segment.) If I(q) prevents us from doing this by requiring too many
elements in the lower segment, we must either place a above the highest position the least
desirable block is allowed to take, or at the bottom of the upper segment (Lines 19–22).

When a ∈ I(q), we first check if a gets pulled up into a higher part of the preferences
because of some element o in I(q) (Line 24). We then count how many elements in I(q) are
required to go between a and o, according to I(q). This sets the lowest possible position a
can legally take: b(o) minus the number of elements between them (Line 25). We will need
to guarantee that we can fit w/2 elements from the least desirable block whose elements are
allowed to be placed in this segment, and since a got pulled up, there may be some empty
spaces between a’s placement and b(a). We count this in Line 26. If a is not pushed up, we
similarly count a’s lowest plausible position constrained by I(q) and b(a) (Line 28). This is
guaranteed to be a dense set, so there are no holes (Line 29).

We finally check and make sure that we can guarantee that we can fit w/2 elements from
the least desirable block whose elements are allowed to be placed in this segment (Line 32).
There may be some alternatives unconstrained by I(q) that we could put above a (Line 30),
and we want to guarantee that we don’t count any elements in I(q) twice (Line 31), as these
have already been accounted for when calculating a’s lowest legal space. Subtracting these
finishes the counting algorithm for computing PMR separately.

We can compute PMR of a′, a separately if a ∈ Gk, a
′ ∈ Gj s.t. j ≥ k. Briefly, if

j > k + 2, PMR can be computed separately because any element that could be placed
in the same segment as a cannot be placed in the same segment as a′. The argument for
j = k is easily extendable to k + 2 ≥ j ≥ k. This argument is by cases. Upon inspecting
all combinations of a, a′ ∈ I(q), a, a′ /∈ I(q), and all possible Sq segments a, a′ could be
placed, note that when counting elements for placing a, we never count any elements in
Gj/I(q) (likewise for a′). Furthermore, all elements in Gj ∩ I(q) that we count are strictly
worse than a′, otherwise we would have simply returned 0. This guarantees that we do not
count a′ when calculating the lowest possible position for a (note that this condition does
not hold when k > j, thus we must compute them simultaneously). Finally, placing any
other element in such a way that it would help a′ would also help a, because the adversary
wants the elements as far apart as possible. Thus, we don’t double-count any elements by
computing r(a′) and r(a) separately.

Finally, to compute PMR when k > j (i.e., we need to compute PMR of a′, a at the
same time), see Algorithm 6. For brevity, we only present a, a′ ∈ I(q). For all other cases,
computing PMR is very similar to computing it independently; we simply need to be careful
that we don’t count a or a′ twice. Note that for all other PMR calculations, we find the
maximal position a (resp. a′) can take, and subtract to guarantee that we do not violate
any conditions on Gq, I(q). For calculating PMR when a, a′ ∈ I(q) and j > k, we use an
additive argument, where we find the minimal distance between a′ and a (as determined
by the number of elements between them in I(q)), and we then we place as many other
elements as possible in-between them without violating any conditions.

We also briefly discuss correctness. Note that, as our algorithm is a subtractive counting
scheme, the only error we could have is that PMR(q, a′, a,Gq) is miscalculated as larger
than it actually is. However, a simple (though lengthy) analysis shows these errors are not

possible. Given a ∈ Gk, only alternatives in the extremal segments could affect a’s place-
ment, because of how the both the segments and OPP profiles are constructed. After that,
a simple exploration of all possible cases for I(q)’s construction (e.g., number of required
elements, a ∈ I(q), a /∈ I(q), etc.), combined with OPP structure properties (e.g., a fixed
number of elements are allowed in any segment from each block, etc.) shows that all possible
cases where I(q) could affect a’s placement are accounted for in the algorithm.

Algorithm 4 Constructing Segments

Require: Gq, I(q)
1: for Gk ∈ Gq
2: if k is odd
3: mid =

∑k−1
i=0 |Gi|+ |Gk|/2

4: if |Gk−1| < w
5: t(S

G−
k

) = mid− w − |Gk−1|
6: else
7: t(S

G−
k

) = mid− w
8: b(S

G−
k

) = mid− 1

9: t(S
G+

k
) = mid

10: if |Gk+1| < w
11: b(S

G+
k

) = mid + w − 1 + |Gk+1|
12: else
13: b(S

G+
k

) = mid + w − 1

14: else
15: prev mid =

∑k−2
i=0 |Gi|+ |Gk−1|/2

16: next mid =
∑k
i=0 |Gi|+ |Gk+1|/2

17: if |Gk| < w
18: t(SGk) = prev mid
19: b(SGk) = next mid− 1
20: else
21: t(S

G−
k

) = prev mid

22: b(S
G−

k
) = prev mid + w − 1

23: t(S
G+

k
) = next mid− w

24: b(S
G+

k
) = next mid− 1

25: S
G−

k
= generate seg(Gk, t(SG−

k
), b(S

G−
k

))

26: S
G+

k
= generate seg(Gk, t(SG+

k
), b(S

G+
k

))

27: Sq[Gk] = S
G−

k
, S
G+

k

28: def generate seg(Gk, top, bottom)
29: //Generates segment s
30: t(s) = top, b(s) = bottom
31: s.dom = {Gx s.t. t(Gx) ≤ b(s) and b(Gx) ≥ t(s)}
32: s.boundaries = {(max(t(s), t(Gx)),min(b(s), b(Gx))) s.t. Gx ∈ dom}
33: s.required = populate required(s)
34: s.ordered req = s.required, s.t. it’s consistent with I(q)
35: def populate required(s)
36: if |s.dom| == 3
37: s.required[s.dom[1]] = Gs.dom[1]

38: push up = Gs.dom[0] ∪Gs.dom[1]

39: push down = Gs.dom[1] ∪Gs.dom[2]

40: else
41: push up = Gs.dom[0]

42: push down = Gs.dom[1]

43: s.required[dom[−1]] = |{x ∈ I(q) ∩Gs.dom[−1] s.t. ∃y ∈ push up s.t. x �I(q) y}|
44: s.required[dom[0]] = |{x ∈ I(q) ∩Gs.dom[0] s.t. ∃y ∈ push down s.t. y �I(q) x}|

Algorithm 5 Calculating PMR for OPPI

Require: Agent q’s OPPI profile Gq, with interviews I(q), alternatives a ∈ Gk, a′ ∈ Gj , segments
Sq, and reversed agent q−1

1: if |I(q)| < 2
2: PMR(q, a′, a,Gq) = max(b(a)− t(a′), 0)
3: else
4: if a �I(q) a′ or b(a) < t(a′)
5: PMR(q, a′, a,Gq) = 0
6: else
7: if k < j
8: Compute PMR(q, a′, a,Gq) simultaneously (Alg. 6)
9: else

10: r(a′) = n− 1− find lower bound(a′, q−1)
11: r(a) = find lower bound(a, q)
12: PMR(q, a′, a,Gq) = max(r(a)− r(a′), 0)
13: def find lower bound(a, q)
14: if a /∈ Iq
15: seg up, seg down = Sq[Gk]
16: if |seg down.required.domain[−1]| < w/2 or |Gk| < w (i.e., seg down is not full)
17: if placing a doesn’t push anyone from seg down.dom[−1] out of bounds
18: return b(a)
19: else
20: return t(seg down.dom[−1])− 1
21: else //place in the bottom of upper segment
22: return b(seg up)
23: else //a ∈ I(q)
24: if a gets pulled up into seg up (resp. top of seg if |Gk| < w) by some o ∈ I(q),

(thus o ∈ Gw; w < k)
25: lowest a = b(seg up)− |{x ∈ I(q) s.t. a �I(q) x and x must be above b(o)}|
26: holes = # spaces not already required via I(q) between lowest a and b(seg down)
27: else
28: lowest a = b(a)− |{x ∈ I(q) s.t. a �I(q) x and x must be above b(a)}|
29: holes = 0
30: free = |Gseg down.dom[−1]/I(q)|
31: mand = |seg down.required.dom[−1]|
32: return lowest a - max(0, w/2− (holes + mand + free))

Algorithm 6 Computing PMR dependently

Require: Gq, I(q), a, a′

//When a, a′ /∈ I(q) or a ∈ I(q), a′ /∈ I(q) or a /∈ I(q), a′ ∈ I(q), the argument is essentially the
same, but we are more careful not to double-count alternatives. Thus we only present when
a, a′ ∈ I(q), as this case is the most different.

1: if a, a′ ∈ I(q)
2: δ = |{x ∈ I(q) s.t. a′ �I(q) x �I(q) a}|+ 1
3: F = {x ∈ A s.t. x can be legally placed between a′ and a}
4: while |F | > 0 and placing one more item between a′, a does not invalidate boundaries
5: F = F/{x}, where x is a valid item to place between a′, a
6: δ = δ + 1
7: PMR(q, a′, a,Gq) = δ

