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Abstract

Social choice functions aggregate the different preferences of agents, choosing from
a set of alternatives. Most research on manipulation of voting methods studies
(1) limited solution concepts, (2) limited preferences, or (3) scenarios with a few
manipulators that have a common goal. In contrast, we study voting in plural-
ity elections through the lens of Nash equilibrium, which allows for the possibility
that any number of agents, with arbitrary different goals, could all be manipula-
tors. We do this through a computational analysis, leveraging recent advances in
(Bayes-)Nash equilibrium computation for large games. Although plurality has ex-
ponentially many pure-strategy Nash equilibria, we demonstrate how a simple equi-
librium refinement—assuming that agents very weakly prefer to vote truthfully—
dramatically reduces this set. We also use symmetric Bayes-Nash equilibria to in-
vestigate the case where voters are uncertain of each others’ preferences. Although
our refinement does not completely eliminate the problem of multiple equilibria, it
tends to predict an increased probability that a good candidate will be selected (e.g.,
the candidate that would win if voters were truthful, or a Condorcet winner).

1 Introduction

When multiple agents have differing preferences, voting mechanisms are often used to decide
among the alternatives. One desirable property for a voting mechanism is strategy-proofness,
i.e., that it is optimal for agents to truthfully report their preferences. However, the Gibbard-
Satterthwaite theorem [12; 27] shows that no non-dictatorial strategy-proof mechanism can
exist. Whatever other desirable properties a voting mechanism may have, there will always
be the possibility that some participant can gain by voting strategically.

Since voters may vote strategically (i.e., manipulate or counter-manipulate) to influence
an election’s results, according to their knowledge or perceptions of others’ preferences,
much research has considered ways of limiting manipulation. This can be done by exploit-
ing the computability limits of manipulations (e.g., finding voting mechanisms for which
computing a beneficial manipulation is NP-hard [2; 1; 30]), by limiting the range of prefer-
ences (e.g., if preferences are single-peaked, there exist non-manipulable mechanisms [10]),
randomization [13; 25], etc.

When studying the problem of vote manipulation, nearly all research falls into two cat-
egories: coalitional manipulation and equilibrium analysis. Much research into coalitional
manipulation considers models in which a group of truthful voters faces a group of ma-
nipulators who share a common goal. Less attention has been given to Nash equilibrium
analysis which models the (arguably more realistic) situation where all voters are potential
manipulators. One reason is that it is difficult to make crisp statements about this problem:
strategic voting scenarios give rise to a multitude of Nash equilibria, many of which involve
implausible outcomes. For example, even a candidate who is ranked last by all voters can be
unanimously elected in a Nash equilibrium—observe that when facing this strategy profile,
no voter gains from changing his vote.

Despite these difficulties, this paper considers the Nash (and subsequently, Bayes-Nash)



equilibria of voting games. We focus on plurality, as it is by far the most common voting
mechanism used in practice. We refine the set of equilibria by adding a small additional
assumption: that agents realize a very small gain in utility from voting truthfully; we call
this restriction a truthfulness incentive. We ensure that this incentive is small enough that
it is always overwhelmed by the opportunity to be pivotal between any two candidates: that
is, a voter always has a greater preference for swinging an election in the direction of his
preference than for voting truthfully. All the same, this restriction is powerful enough to
rule out the bad equilibrium described above, as well as being, in our view, a good model
of reality, as voters often express a preference for voting truthfully.

Dutta and Laslier [7] studied a somewhat similar model, where voters have a lexigraphic
preference for truthfulness. They demonstrated that for some voting mechanism, a small
preference for truthfulness can eliminate all pure-strategy Nash equilibria. We observed
a similar occurrence in our results with plurality (which is problematic voting methods
designed to reach an equilibrium by an iterative process, e.g., [21; 19]).

We take a computational approach to the problem of characterizing the Nash equi-
libria of voting games. This has not previously been done in the literature, because the
resulting normal-form games are enormous. For example, representing our games (10
players and 5 candidates) in the normal form would require about a hundred million
payoffs. Unsurprisingly, these games are intractable for current equilibrium-finding algo-
rithms, which have worst-case runtimes exponential in the size of their inputs. We over-
came this obstacle by leveraging recent advances in compact game representations and effi-
cient algorithms for computing equilibria of such games, specifically action-graph games [15;
14] and the support-enumeration method [28].

Our first contribution is an equilibrium analysis of full-information models of plurality
elections. We analyze how many Nash equilibria exist when truthfulness incentives are
present. We also examine the winners, asking questions like how often they also win the
election in which all voters vote truthfully, or how often they are also Condorcet winners.
We also investigate the social welfare of equilibria; for example, we find that it is very
uncommon for the worst-case result to occur in equilibrium.

Our second contribution involves the possibly more realistic scenario in which the infor-
mation available to voters is incomplete. We assume that voters know only a probability
distribution over the preference orders of others, and hence identify Bayes-Nash equilibria.
We found that although the truthfulness incentive eliminates the most implausible equilibria
(i.e., where the vote is unanimous and completely independent of the voters preferences),
many other equilibria remain. Similarly to Duverger’s law (which claims that plurality elec-
tion systems favor a two-party result [9], but does not directly apply to our setting), we
found that a close race between almost any pair of candidates was possible in equilibrium.
Equilibria supporting three or more candidates were possible, but less common.

1.1 Related Work

Analyzing equilibria in voting scenarios has been the subject of much work, with many
researchers proposing various frameworks with limits and presumptions to deal with both
the sheer number of equilibria, and to deal with more real-life situations, where there is
limited information. Early work in this area, by McKelvey and Wendell [20], allowed for
abstention, and defined an equilibrium as one with a Condorcet winner. As this is a very
strong requirement, such an equilibrium does not always exist, but they established some
criteria for this equilibrium that depends on voters’ utilities.

Myerson and Weber [23] wrote an influential article dealing with the Nash equilibria
of voting games. Their model assumes that players only know the probability of a tie
occurring between each pair of players, and that players may abstain (for which they have



a slight preference). They show that multiple equilibria exist, and note problems with
Nash equilibrium as a solution concept in this setting. The model was further studied and
expanded in subsequent research [4; 16]. Assuming a slightly different model, Messner and
Polborn [22], dealing with perturbations (i.e., the possibility that the recorded vote will be
different than intended), showed that equilibria only includes two candidates (“Duverger’s
law”). Our results, using a different model of partial information (Bayes-Nash), show that
with the truthfulness incentive, there is a certain predilection towards such equilibria, but
it is far from universal.

Looking at iterative processes makes handling the complexity of considering all players
as manipulators simpler. Dhillon and Lockwood [6] dealt with the large number of equilibria
by using an iterative process that eliminates weakly dominated strategies (a requirement
also in Feddersen and Pesendorfer’s definition of equilibrium [11]), and showed criteria for
an election to result in a single winner via this process. Using a different process, Meir et
al. [21] and Lev and Rosenschein [19] used an iterative process to reach a Nash equilibrium,
allowing players to change their strategies after an initial vote with the aim of myopically
maximizing utility at each stage.

Dealing more specifically with the case of abstentions, Desmedt and Elkind [5] examined
both a Nash equilibrium (with complete information of others’ preferences) and an iterative
voting protocol, in which every voter is aware of the behavior of previous voters (a model
somewhat similar to that considered by Xia and Contizer [29]). Their model assumes that
voting has a positive cost, which encourages voters to abstain; this is similar in spirit to our
model’s incentive for voting truthfully, although in this case voters are driven to withdraw
from the mechanism rather than to participate. However, their results in the simultaneous
vote are sensitive to their specific model’s properties.

Rewarding truthfulness with a small utility has been used in some research, though not
in our settings. Laslier and Weibull [18] encouraged truthfulness by inserting a small amount
of randomness to jury-type games, resulting in a unique truthful equilibrium. Dutta and
Laslier [7] attempted to inject truthfulness directly into a voting rule combined of approval
voting and veto, but only found a few existence results that show truthful equilibria exist in
that case. A more general result has been shown in Dutta and Sen [8], where they included
a subset of participants which, as in our model, would vote truthfully if it would not change
the result. They show that in such cases, many social choice functions (those that satisfy
the No Veto Power) are Nash-implementable, i.e., there exists a mechanism in which Nash
equilibria correspond to the voting rule. However, as they acknowledge, the mechanism is
highly synthetic, and, in general, implementability does not help us understand voting and
elections, as we have a predetermined mechanism.

2 Definitions

Before detailing our specific scenario, we first define elections, and how winners are deter-
mined.

Elections are made up of candidates, voters, and a mechanism to decide upon a winner:

Definition 1. Let C be a set of m candidates, and let A be the set of all possible preference
orders over C. Let V be a set of n voters, and every voter vi ∈ V has some element in A
which is his true, “real” value (which we shall mark as ai), and some element of A which
he announces as his value, which we shall denote as ãi.

Note that our definition of a voter incorporates the possibility of him announcing a value
different than his true value (strategic voting).

Definition 2. A voting rule is a function f : An → 2C \ ∅.



In this paper, we restrict our attention to plurality, where a point is given to each voter’s
most-preferred candidate, and the candidates with the highest score win.

Our definition of voting rules allows for multiple winners. However, in many cases what
is desired is a single winner; in these cases, a tie-breaking rule is required.

Definition 3. A tie-breaking rule is a function t : 2C → C that, given a set of elements in
C, chooses one of them as a (unique) winner.

There can be many types of tie-breaking rules, such as random or deterministic, lexical
or arbitrary. In this work, we use a lexical tie-breaking rule.

Another important concept is that of a Condorcet winner.

Definition 4. A Condorcet winner is a candidate c ∈ C such that for every other candidate
d ∈ C (d 6= c) the number of voters that rank c over d is at least dn2 e.

Condorcet winners do not exist in every voting scenario, and many voting rules—
including plurality—are not Condorcet-consistent (i.e., even when there is a Condorcet
winner, that candidate may lose). Note that our definition allows for the possibility of
multiple Condorcet winners in a single election, in cases where n is even. Conversely, a
Condorcet loser is ranked below any other candidate by a majority of voters.

To reason about the equilibria of voting systems, we need to formally describe them as
games, and hence to map agents’ preference relations to utility functions. More formally,
each agent i must have a utility function ui : An 7→ R, where ui(aV ) > ui(a

′
V ) indicates

that i prefers the outcome where all the agents have voted aV over the outcome where the
agents vote a′V . Representing preferences as utilities rather than explicit rankings allows
for the case where i is uncertain what outcome will occur. This can arise either because he
is uncertain about the outcome given the agents’ actions (because of random tie-breaking
rules), or because he is uncertain about the actions the other agents will take (either because
they are behaving randomly, or because they have committed to a strategy that agent i does
not observe). In this paper, we assume that an agent’s utility only depends on the candidate
that gets elected and on his own actions (e.g., an agent can strictly prefer to abstain when his
vote is not pivotal, as in [5], or to vote truthfully). Thus, we obtain simpler utility functions
ui : C ×A 7→ R, with an agent i’s preference for outcome aV denoted ui(t(f(aV )), ãi).

In this paper, we consider two models of games, full-information games and symmetric
Bayesian games. In both models, each agent must choose an action ãi without condi-
tioning on any information revealed by the voting method or by the other agents. In a
full-information game, each agent has a fixed utility function which is common knowledge
to all the others. In a symmetric Bayesian game, each agent’s utility function (or “type”) is
an i.i.d. draw from a commonly known distribution of the space of possible utility functions,
and each agent must choose an action without knowing the types of the other agents, while
seeking to maximize his expected utility.

We consider a plurality voting setting with 10 voters and 5 candidates (numbers chosen
to give a setting both computable and with a range of candidates), and with the voters’
preferences chosen randomly. Suppose voter i has a preference order of a5 � a4 � . . . � a1,
and the winner when voters voted aV is aj . We then define i’s utility function as

ui(f(t(aV )), ãi) = ui(a
j , ãi) =

{
j ai 6= ãi

j + ε ai = ãi,

with ε = 10−6.
In the incomplete-information case, we model agents as having one of six possible types

(to make the problem more easily computable), each corresponding to a different (randomly
selected) preference ordering. The agent’s type draws are i.i.d. but the probability of each
type is not necessarily uniform. Instead, the probability of each type is drawn from a uniform
distribution, and then normalized; thus, the probabilities ranged from 0.0002 to 0.55.
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Figure 1: An action graph game encoding of a simple two-candidate plurality vote. Each
round node represents an action that a voter can choose. Dashed-line boxes define which
actions are open to a voter given his preferences; in a Bayesian AGG, an agent’s type
determines the box from which he is allowed to choose his actions. Each square node is an
adder, tallying the number of votes a candidate received.

3 Method

Before we can use any Nash-equilibrium-finding algorithm, we need to represent our games in
a form that the algorithm can use. Because normal form games require space exponential in
the number of players, they are not practical for games with more than a few players. The
literature contains many “compact” game representations that require exponentially less
space to store games of interest, such as congestion [26], graphical [17], and action-graph
games [15]. Action-graph games (AGGs) are the most useful for our purposes, because
they are very compactly expressive (i.e., if the other representations can encode a game in
polynomial-space then AGGs can as well), and fast tools have been implemented for working
with them.

Action-graph games achieve compactness by exploiting two kinds of structure in a game’s
payoffs: anonymity and context-specific independence. Anonymity means that an agent’s
payoff depends only on his own action and the number of agents who played each action.
Context-specific independence means that an agent’s payoff depends only on a simple suffi-
cient statistic that summarizes the joint actions of the other players. Both properties apply
to our games: plurality treats voters anonymously, and selects candidates based on simple
ballot counts.

Encoding our voting games as action-graph games is relatively straightforward. For
each set of voters with identical preferences, we create one action node for each possible way
of voting. For each candidate, we create an adder node that counts how many votes the
candidate receives. Directed edges encode which vote actions contribute to a candidate’s
score, and that every action’s payoff can depend on the scores of all the candidates (see
Figure 1).

A variety of Nash-equilibrium-finding algorithms exist for action-graph games [15;
3]. In this work, we used the support enumeration method [24; 28] exclusively because it
allows Nash equilibrium enumeration. This algorithm works by iterating over possible sup-
ports, testing each for the existence of a Nash equilibrium. In the worst case, this requires
exponential time, but in practice SEM’s heuristics (exploiting symmetry and conditional
dominance) enable it to find all the pure-strategy Nash equilibria of a game quickly.

We represented our symmetric Bayesian games using a Bayesian game extension to
action-graph games [14]. Because we were concerned only with symmetric pure Bayes-Nash
equilibria, it remained feasible to search for every equilibrium with SEM.



4 Pure-Strategy Nash Equilibrium Results

To examine pure strategies, we ran 1, 000 voting experiments using plurality with 10 vot-
ers and 5 candidates. Such a game might ordinarily have hundreds of thousands of Nash
equilibria. However, adding a small truthfulness incentive (ε = 10−6) lowers these numbers
significantly. Not counting permutations of voters with the same preferences, every game
had 25 or fewer equilibria; counting permutations, the maximum number of equilibria was
still only 146. Indeed, an overwhelming number of these games (96.2%) had fewer than 10
equilibria (27 with permutations). More surprisingly, a few (1.1%) had no pure Nash equi-
libria at all.1 To gauge the impact of the truthfulness incentive, we also ran 50 experiments
without it; every one of these games had over a hundred thousand equilibria, without even
considering permutations.
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Figure 3: Empirical CDF of social welfare

3 Social Welfare Results

Without the ✏ preference for truthful voting, every outcome is always possible
in some PSNE. (This implies that the price of anarchy is unbounded, while
the price of stability is one.) With it, the worst case-outcome is almost always
impossible in PSNE (92.8%). Sometimes (29.7%) the best case outcome is also
impossible (29.7%). The gap between best and worst PSNEs can be very large,
though both can lead to the worst-case outcome. (Thus, the price of anarchy and
price of stability are unbounded if I normalize social welfare from worst to best
outcome. I think I need a new way of normalizing.) In the majority of games
(59%), truthful voting will lead to the best possible outcome. Nevertheless, the
best-case PSNE still stochastically dominates truthful voting.

In games where truthfulness is a PSNE, truthfulness is closer to the best-
case PSNE, but still stochastically dominated. In games where truthfulness is
not a PSNE, the equilibrium outcomes and truthful outcomes tend to be worst
than went it is.

Note: for welfare results I omit the games with no PSNEs.

4 Condorcet Winners

Of the 1000 games tested, 931 games had a Condorcet winner. In fact, 204
games had multiple Condorcet winners. (See Figure 5.) As with social welfare,
when comparing the relative probability of having a Condorcet winner win the
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Figure 2: Equilibria and social welfare in Plurality

We shall examine two aspects of the results: the preponderance of equilibria with victors
being the voting method’s winners,2 and Condorcet winners. Then, moving to the wider
concept of social welfare of the equilibria (possible due to the existence of utility functions),
we examine both the social welfare of the truthful voting rule vs. best and worse possible
Nash equilibria, as well as the average rank of the winners in the various equilibria.

1This is especially relevant to voting procedures relying on the existence of pure Nash equilibrium, and
seeking to “find” one, such as the one proposed in [21].

2This, when expanded to more voting rules, may be an interesting comparative criterion between voting
mechanisms.



For 63.3% of the games, the truthful preferences were a Nash equilibrium, but more
interestingly, many of the Nash equilibria reached, in fact, the same result as the truthful
preferences: 80.4% of the games had at least one equilibrium with the truthful result, and
looking at the multitudes of equilibria, the average share of truthful equilibrium (i.e., result
was the same as with truthful vote) was 41.56% (out of games with a truthful result as an
equilibrium, the share was 51.69%). Without the truthfulness incentive, the average share
of truthful equilibrium was 21.77%.

Looking at Condorcet winners, 92.3% of games had Condorcet winners, but they were
truthful winners only in 44.7% of the games (not a surprising result, as plurality is far
from being Condorcet consistent). However, out of all the equilibria, the average share of
equilibria with a victorious Condorcet winner was 40.14% (of games which had a Condorcet
winner the average share is 43.49%; when the Condorcet winner was also the truthful winner,
its average share of equilibria is 56.96%).

Looking at the wider picture (see Figure 2c), the addition of the truthful incentive made
possible games with very few Nash equilibria. They, very often, resulted in the truthful
winner. As the number of equilibria grows, the truthful winner part becomes smaller, as
the Condorcet winner part increases.

Turning to look at the social welfare of equilibria, once again, the existence of the
truthfulness incentive enables us to reach “better” equilibria. In 92.8% of the cases, the
worst-case outcome was not possible at all (recall that without the truthfulness incentive,
every result is possible in some Nash equilibrium), while only in 29.7% of cases, the best
outcome was not possible. We note that while truthful voting led to the best possible
outcome in 59% of cases, it is still stochastically dominated by best-case Nash equilibrium
(see Figure 2b).

When looking at the distribution of welfare throughout the multitudes of equilibria,
one can see that the concentration of the equilibria is around high-ranking candidates, as
the average share of equilibria by candidates with an average ranking (across all voters in
the election) of less than 1 was 56.38%. Even if we exclude Condorcet winners (as they,
on many occasions, are highly ranked), the average ranking of less than 1 was 46.56%
(excluding truthful winners resulted in 27.48% with average ranking less than 1). Fully
71.65%, on average, of the winners in every experiment had above (or equal) the median
rank, and in more than half the experiments (52.3%) all equilibria winners had a larger score
than the median. As a comparison, the numbers from experiments without the truthfulness
incentive, are quite different: candidates—whatever their average rank—won, with minor
fluctuations, about the same number of equilibria (57% of winners, were, on average, above
or equal to the median rank).

5 Bayes-Nash Equilibria Results

Moving beyond the full-information assumption, we considered plurality votes where the
agents have incomplete information about each other’s preferences. In particular, we as-
sumed that the agents have i.i.d. (but not necessarily uniformly distributed) preferences, and
that each agent knows only his own preferences and the commonly-known prior distribu-
tion. Again, we considered the case of 10 voters and 5 candidates, but now also introduced
6 possible types for each voter. For each of 50 games, we computed the set of all symmetric
pure-strategy Bayes-Nash equilibria, both with and without the ε-truthfulness incentive.

Our first concern was studying how many equilibria each game had and how the truth-
fulness incentive affected the number of equilibria. The set of equilibria was small (< 28 in
every game) when the truthfulness incentive was present. Surprisingly, only a few equilibria
were added when the incentive was relaxed. In fact, in the majority of games (76%), there
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were exactly five new equilibria: one for each strategy profile where all types vote for a
single candidate (see Figure 4).

Looking into the structure of these equilibria, we found two interesting, and seemingly
contradictory, properties: most equilibria (95.2%) only involved two or three candidates
(i.e., voters only voted for a limited set of candidates), but every candidate was involved
in some equilibrium. Thus, we can identify an equilibrium by the number of candidates it
involves (see Figure 5). Notably, most equilibria involved only two candidates, with each
type voting for their most preferred candidate of the pair. Further, most games had 10 such
equilibria, one for every possible pair. There were two reasons why some pairs of candidates
did not have corresponding equilibria in some games. First, sometimes one candidate Pareto-
dominated the other (i.e., was preferred by every type). Second, sometimes the types that
liked one candidate were so unlikely to be sampled that close races were extremely low
probability (relative to ε); in such cases, agents preferred to be deterministically truthful
than pivotal with very small probability.3 This observation allowed us to derive a theoretical

3There were two outlier games where one of the types had a very low probability (< 0.001). Because
of this, the probability of a realization where half the agents had this type approached machine-ε. Thus,
any pure strategy profile where this type votes one way and all the other types vote another way will result
in a 2-candidate equilibrium (20 such 2-candidate combinations exist, so these games had 20 additional
two-candidate equilibria.)



Figure 5: Every instance had many equilibria, most of which only involved a few candidates.

result about when a 2-candidate equilibrium will exist.
Let ` be the minimal difference between the utility of 2 different candidates, across all

voters (in our scenarios, this minimal difference is 1).

Proposition 5. In a plurality election with a truthfulness incentive of ε, as long as
( 1
n )b

n
2 c` ≥ ε, for every c1, c2 ∈ C, either c1 Pareto dominates c2 (i.e., all voters rank

c1 higher than c2), or there exists a pure Bayes-Nash equilibrium in which each voter votes
for his most preferred among these two candidates.

Due to space constraints, we provide only proof sketch.

Proof sketch. Let us define a strategy as follows: every voter that prefers c1 over c2 votes for
c1; otherwise, he votes for c2. Obviously, if c2 is Pareto dominated, every individual voter
believes that he will be better off voting truthfully, and this may not be an equilibrium.
However, if c2 is not Pareto dominated, then there is a probability larger than (or equal to)
1
n that there is a voter who prefers c2 to c1. Hence, the probability that a voter who prefers

c1 to c2 will be pivotal is at least ( 1
n )b

n
2 c. If the benefit to all voters from being pivotal in

this way is larger than ε, the value of the truthfulness incentive, the voter will not deviate
from that strategy. Thus, when ( 1

n )b
n
2 c` ≥ ε they do not deviate.

These two-candidate equilibria have some interesting properties. Because they can in-
clude any two candidates that do not Pareto-dominate each other, it is possible for them
to exclude a third candidate that Pareto-dominates both. In this way, it is possible for
two-candidate equilibria to fail to elect a Condorcet winner. However, because every two-
candidate equilibrium is effectively a pairwise runoff, it is impossible for a two-candidate
equilibrium to elect a Condorcet loser.

Equilibria supporting three or more candidates are less straightforward. Which 3-
candidate combinations are possible in equilibrium (even without ε-truthful incentives) can
depend on the specific type distribution and the agents’ particular utilities. Also, in these
equilibria, agents do not always vote for their most preferred of the three alternatives (again,
depending on relative probabilities and utilities). Finally, 3-candidate equilibria can elect a
Condorcet loser with non-zero probability.

6 Discussion and Future Work

Our work approaches the issues of voting manipulation by combining two less-common
approaches: assuming all voters are manipulators, rather than just a subset with a shared



goal, and looking at Nash equilibria as a whole, rather than searching for other solution
concepts or a specific equilibrium. We utilized only a small and realistic assumption—that
users attach a small value to voting their truthful preferences. Using the AGG framework
to analyze the Nash equilibria and symmetric Bayes-Nash equilibria of plurality, we can
extrapolate from the data and reveal properties of such voting games.

We saw several interesting results, beyond a reduction in the number of equilibria, due
to our truthfulness incentive. One of the most significant was the “clustering” of many
equilibria around candidates that can be viewed as resembling the voters’ intention. A very
large share of each game’s equilibria resulted in winners that were either truthful winners
(according to plurality) or Condorcet winners. Truthful winners were selected in a larger
fraction of equilibria when the total number of equilibria was fairly small (as was the case in
a large majority of our experiments), and their share decreased as the number of equilibria
increased (where we saw, in cases where there were Condorcet winners, that those equilibria
took a fairly large share of the total).

Looking at social welfare enabled us to compare equilibrium outcomes to all other pos-
sible outcomes. We observed that plurality achieved nearly the best social welfare possible
(a result that did not rely on our truthfulness incentive). While another metric showed the
same “clustering” we noted above, most equilibrium results concentrated around candidates
that were ranked, on average, very high (on average, more than 50% of winners in every ex-
periment had a rank less than 1). This, in a sense, raises the issue of the rationale of seeking
to minimize the amount of manipulation, as we found that manipulation by all voters very
often results in socially beneficial results.

In the Bayes-Nash results, we saw that lack of information generally pushed equilibria
to be a “battle” between a subset of the candidates—usually two candidates (as Duverger’s
law would indicate), but occasionally more.

There is much more work to be done in the vein we have introduced in this paper. This
includes examining the effects of varying the number of voters and candidates, changing
utility functions, as well as looking at more voting rules and determining properties of
their equilibria. Voting rules can be ranked according to their level of clustering, how
good, socially, their truthful results are, and other similar criteria. Furthermore, it would
be worthwhile to examine other distributions of preferences and preference rules, such as
single-peaked preferences. Computational tools can also be useful to assess the usefulness of
various strategies available to candidates (e.g., it might be more productive for a candidate
to attack a weak candidate to alter the distribution).
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