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Abstract

The study of voting systems often takes place in the theoretical domain due to a lack of large
samples of sincere, strictly ordered voting data. We derive several million elections (more
than all the existing studies combined) from a publicly available data, the Netflix Prize dataset.
The Netflix data is derived from millions of Netflix users, who have an incentive to report
sincere preferences, unlike random survey takers. We evaluate each of these elections un-
der the Plurality, Borda, k-Approval, and Repeated Alternative Vote (RAV) voting rules. We
examine the Condorcet Efficiency of each of the rules and the probability of occurrence of
Condorcet’s Paradox. We compare our votes to existing theories of domain restriction (e.g.,
single-peakedness) and statistical models used to generate election data for testing (e.g., Impar-
tial Culture). Additionally, we examine the relationship between coalition size and vote deficit
for manipulations of elections under the Borda rule. We find a high consensus among the
different voting rules; almost no instances of Condorcet’s Paradox; almost no support for re-
stricted preference profiles, very little support for many of the statistical models currently used
to generate election data for testing, and very small coalitions needed to promote second-place
candidates to the winning position in elections.

1 Introduction
One of the most common methods of preference aggregation and group decision making in human
systems is voting. Many scholars wish to empirically study how often and under what conditions
individual voting rules fall victim to various voting irregularities [6, 9]. Due to a lack of large,
accurate datasets, many computer scientists and political scientists are turning towards statistical
distributions to generate election scenarios in order to verify and test voting rules and other decision
procedures [22, 25]. These statistical models may or may not be grounded in reality and it is an
open problem in both the political science and social choice fields as to what, exactly, election data
looks like [24]. As the computational social choice community continues to grow there is increasing
attention on empirical results (see, e.g., [25]) and we hope to address this problem with our study.

A fundamental problem in research into properties of voting rules is the lack of large data sets to
run empirical experiments [20,24]. There have been studies of several distinct datasets but these are
limited in both number of elections analyzed [6] and size of individual elections within the datasets
analyzed [9, 24]. While there is little agreement about the frequency with which different voting
paradoxes occur or the consensus between voting methods, all the studies so far have found little
evidence of Condorcet’s Voting Paradox [10] (a cyclical majority ordering) or preference domain
restrictions such as single peakedness [4] (where one candidate out of a set of three is never ranked
last). Additionally, most of the studies find a strong consensus between most voting rules except
Plurality [6, 9, 20].

We begin in Section 2 with a survey of the datasets that are commonly used in the literature.
We then detail in Section 3 our new dataset, including summary statistics and a basic overview
of the data. We then move into Section 4 which is broken into multiple subsections where we
attempt to answer many questions about voting. Section 4.1 details an analysis that attempts to
answer the questions “How often does Concert’s Paradox occur?”, “How often does any voting
cycle occur?”, and a look at the prevalence of single peaked preferences and other domain restricted
election profiles [4, 23]. Section 4.2 investigates the consensus between multiple voting rules. We
evaluate our millions of elections under the voting rules: Plurality, Copeland, Borda, Repeated



Alternative Vote, and k-Approval. In Section 4.3 we evaluate our new dataset against many of the
statistical models that are in use in the ComSoc and social choice communities to generate synthetic
election data. Section 5 details an experiment we preform to investigate, empirically, the relationship
between necessary coalition size and vote deficit for manipulations of the Borda rule. This paper
reports on an expanded analysis in terms of number of tests and amount of data used from the
previously published work by Mattei [13, 14].

2 Survey of Existing Datasets
The literature on the empirical analysis of large voting datasets is somewhat sparse, and many studies
use the same datasets [9, 24]. These problems can be attributed to the lack of large amounts of data
from real elections [20]. Chamberlin et al. [6] provided empirical analysis of five elections of the
American Psychological Association (APA). These elections range in size from 11,000 to 15,000
ballots (some of the largest elections studied). Within these elections there are no cyclical majority
orderings and, of the six voting rules under study, only Plurality fails to coincide with the others on
a regular basis. Similarly, Regenwetter et al. analyzed APA data from later years [21] and observed
the same phenomena: a high degree of stability among elections rules. Felsenthal et al. [9] analyzed
a dataset of 36 unique voting instances from unions and other professional organizations in Europe.
Recently, data from a series of elections in Ireland have been studied in a variety of contexts in social
choice [12]. Under a variety of voting rules Felsenthal et al. also found a high degree of consensus
between voting rules (with the notable exception of Plurality).

All of the empirical studies surveyed [6, 9, 16, 20, 21, 24] came to a similar conclusion: there
is scant evidence for occurrences of Condorcet’s Paradox [17]. Many of these studies find no oc-
currence of majority cycles (and those that find cycles find them in rates of much less than 1% of
elections). Additionally, each of these (with the exception of Niemi and his study of university elec-
tions, which he observes is a highly homogeneous population [16]) find almost no occurrences of
either single-peaked preferences [4] or the more general value-restricted preferences [23].

Given this lack of data and the somewhat surprising results regarding voting irregularities, some
authors have taken a more statistical approach. Over the years multiple statistical models have been
proposed to generate election pseudo-data to analyze (e.g., [20, 24]). Gehrlein [10] provides an
analysis of the probability of occurrence of Condorcet’s Paradox in a variety of election cultures.
Gehrlein exactly quantifies these probabilities and concludes that Condorcet’s Paradox probably will
only occur with very small electorates. Gehrlein states that some of the statistical cultures used to
generate election pseudo-data, specifically the Impartial Culture, may actually represent a worst-case
scenario when analyzing voting rules for single-peaked preferences and the likelihood of observing
Condorcet’s Paradox [10]

Tideman and Plassmann have undertaken the task of verifying the statistical cultures used to gen-
erate pseudo-election data [24]. Using one of the largest datasets available, Tideman and Plassmann
find little evidence supporting the models currently in use to generate election data. Additionally,
Tideman and Plassmann propose several novel statistical models which better fit their empirical data.

3 The New Data
We have mined strict preference orders from the Netflix Prize Dataset [2]. The Netflix dataset offers
a vast amount of preference data; compiled and publicly released by Netflix for its Netflix Prize [2].
There are 100,480,507 distinct ratings in the database. These ratings cover a total of 17,770 movies
and 480,189 distinct users. Each user provides a numerical ranking between 1 and 5 (inclusive) of
some subset of the movies. While all movies have at least one ranking, it is not the case that all
users have rated all movies. The dataset contains every movie rating received by Netflix, from its
users, between when Netflix started tracking the data (early 2002) up to when the competition was



announced (late 2005). This data has been perturbed to protect privacy and is conveniently coded
for use by researchers.

The Netflix data is rare in preference studies: it is more sincere than most other preference
data sets. Since users of the Netflix service will receive better recommendations from Netflix if
they respond truthfully to the rating prompt, there is an incentive for each user to express sincere
preference. This is in contrast to many other datasets which are compiled through surveys or other
methods where the individuals questioned about their preferences have no stake in providing truthful
responses.

We define an election as E(m,n), where m is a set of candidates, {c1, . . . ,cm}, and n is a set
of votes. A vote is a strict preference ordering over all the candidates c1 > c2 > · · · > cm. For
convenience and ease of exposition we will often speak in the terms of a three candidate election
and label the candidates as A,B,C and preference profiles as A > B >C. All results and discussion
can be extended to the case of more than three candidates. A voting rule takes, as input, a set of
candidates and a set of votes and returns a set of winners which may be empty or contain one or
more candidates. In our discussion, elections return a complete ordering over all the candidates
in the election with no ties between candidates (after a tiebreaking rule has been applied). The
candidates in our data set correspond to movies from the Netflix dataset and the votes correspond
to strict preference orderings over these movies. We break ties according to the lowest numbered
movie identifier in the Netflix set; these are random, sequential numbers assigned to every movie.

We construct vote instances from this dataset by looking at combinations of three movies. If
we find a user with a strict preference ordering over the three moves, we tally that as a vote. For
example, given movies A,B, and C: if a user rates movie A = 1, B = 3, and C = 5, then the user has
a strict preference profile over the three movies we are considering and hence a vote. If we can find
350 or more votes for a particular movie triple then we regard that movie triple as an election and
we record it. We use 350 as a cutoff for an election as it is the number of votes used by Tideman and
Plassmann [24] in their study of voting data. While this is a somewhat arbitrary cutoff, Tideman and
Plassmann claim it is a sufficient number to eliminate random noise in the elections [24]. We use
the 350 number so that our results are directly comparable to the results reported by Tideman and
Plassmann.

The dataset is too large to use completely (
(17770

3

)
≈ 1×1012) so we have subdivided it. We have

divided the movies into 10 independent (non-overlapping with respect to movies), randomly drawn
samples of 1777 movies. This completely partitions the set of movies. For each sample we search
all the

(17770
3

)
≈ 9.33×108 possible elections for those with more than 350 votes. For 3 candidate

elections, this search generated 14,003,522 distinct movie triples in total over all the subdivisions.
Not all users have rated all movies so the actual number of elections for each set is not consistent.
The maximum election size found in the dataset is 24,670 votes; metrics of central tendency are
presented in Tables 1 and 2.

Set 1 Set 2 Set 3 Set 4 Set 5
Median 610.0 592.0 597.0 583.0 581.0
Mean 964.8 880.6 893.3 843.3 829.9
Max. 18,270.0 19,480.0 19,040.0 17,930.0 12,630.0

Elements 1,453,012.0 1,640,584.0 1,737,858.0 1,495,316.0 1,388,892.0
Set 6 Set 7 Set 8 Set 9 Set 10

Median 584.0 585.0 580.0 600.0 573.0
Mean 853.2 868.4 841.3 862.7 779.2
Max. 20,250.0 24,670.0 21,260.0 17,750.0 13,230.0

Elements 1,344,775.0 931,403 1,251,478 1,500,040 1,260,164

Table 1: Summary statistics for 3 candidate elections.



Using the notion of item-item extension [11], we attempted to extend every triple found in the
initial search. Item-item extension allows us to trim our search space by only searching for 4 movie
combinations which contain a combination of 3 movies that was a valid voting instance. For each
set we only searched for extensions within the same draw of 1777 movies, making sure to remove
any duplicate extensions. The results of this search are summarized in Table 2. For 4 candidate elec-
tions, this search generated 11,362,358 distinct movie triples over all subdivisions. Our constructed
datasets contains more than 5 orders of magnitude more distinct elections than all the previous stud-
ies combined and the largest single election contains slightly more votes than the largest previously
studied election from data.

Set 1 Set 2 Set 3 Set 4 Set 5
Median 471.0 450.0 458.0 446.0 440.0
Mean 555.6 512.2 532.7 508.0 490.2
Max. 3,519.0 2,965.0 4,032.0 2,975.0 2,192.0

Elements 1,881,695.0 1,489,814.0 1,753,990 1,122,227.0 1,032,874
Set 6 Set 7 Set 8 Set 9 Set 10

Median 449.0 454.0 447.0 432.0 424.0
Mean 512.2 521.3 513.0 475.8 468.2
Max. 3,400.0 3,511.0 3,874.0 2,574.0 2,143.0

Elements 1,082,377.0 642,537 811,130 1,117,798 427,916

Table 2: Summary statistics for 4 candidate elections.

The data mining and experiments were performed on a pair of dedicated machines with dual-
core Athlon 64x2 5000+ processors and 4 gigabytes of RAM. All the programs for searching the
dataset and performing the experiments were written in C++. All of the statistical analysis was
performed in R using RStudio. The initial search of three movie combinations took approximately
36 hours (parallelized over the two cores) for each of the ten independently drawn sets. The four
movie extension searches took approximately 250 hours per set.

4 Analysis and Discussion
We have found a large correlation between each pair of voting rules under study with the exception
of Plurality (when m = 3,4) and 2-Approval (when m = 3). A Condorcet Winner is a candidate
who is preferred by a majority of the voters to each of the other candidates in an election [9].
The voting rules under study, with the exception of Copeland, are not Condorcet Consistent: they
do not necessarily select a Condorcet Winner if one exists [17]. Therefore, we also analyze the
voting rules in terms of their Condorcet Efficiency, the rate at which the rule selects a Condorcet
Winner if one exists [15]. In Section 4.2 we see that the voting rules exhibit a high degree of
Condorcet Efficiency in our dataset. The results in Section 4.1 show extremely small evidence for
cases of single peaked preferences and very low rates of occurrence of preference cycles. Finally,
the experiments in Section 4.3 indicate that several statistical models currently in use for testing new
voting rules [22] do not reflect the reality of our dataset. All of these results are in keeping with the
analysis of other, distinct, datasets [6, 9, 16, 20, 21, 24] and provide support for their conclusions.

4.1 Preference Cycles and Domain Restrictions
Condorcet’s Paradox of Voting is the observation that rational group preferences can be aggregated,
through a voting rule, into an irrational total preference [17]. It is an important theoretical and
practical concern to evaluate how often the scenario arises in empirical data. In addition to analyzing



instances of total cycles (Condorcet’s Paradox) involving all candidates in an election, we check for
two other types of cyclic preferences. We also search our results for both partial cycles, a cyclic
ordering that does not include the top candidate (Condorcet Winner), and partial top cycles, a cycle
that includes the top candidate but excludes one or more other candidates [9].

Table 3 summarize the rates of occurrence of the different types of voting cycles found in 4
candidate set (3 candidate table is omitted for space). The cycle counts for m = 3 are all equivalent
due to the fact that there is only one type of possible cycle when m = 3. There is an extremely low
instance of total cycles for all our data (< 0.11% of all elections). This corresponds to findings in
the empirical literature that support the conclusion that Condorcet’s Paradox has a low incidence of
occurrence. Likewise, cycles of any type occur in rates < 0.4% and therefore seem of little practical
importance in our dataset as well. Our results for cycles that do not include the winner mirror the
results of Felsenthal et al. [9]: many cycles occur in the lower ranks of voters’ preference orders in
the election due to the voters’ inability to distinguish between, or indifference towards, candidates
the voter has a low ranking for or considers irrelevant.

Set 1 Set 2 Set 3 Set 4 Set 5
Partial Cycle 4,088 (0.22%) 4,360 (0.29%) 3,879 (0.22%) 1,599 (0.14%) 1,316 (0.13%)
Partial Top 2,847 (0.15%) 3,042 (0.20%) 2,951 (0.17%) 1,165 (0.10%) 974 (0.09%)

Total 892 (0.05%) 1,110 (0.07%) 937 (0.05%) 427 (0.04%) 293 (0.03%)
Set 6 Set 7 Set 8 Set 9 Set 10

Partial Cycle 1,597 (0.15%) 1,472 (0.23%) 1,407 (0.17%) 1,274 (0.11%) 1,646 (0.38%)
Partial Top 1,189 (0.11%) 1,222 (0.19%) 1,018 (0.13%) 870 (0.08%) 1,123 (0.26%)

Total 325 (0.03%) 438 (0.07%) 331 (0.04%) 198 (0.02%) 451 (0.11%)

Table 3: Number of elections demonstrating various types of voting cycles for 4 candidate elections.

Black first introduced the notion of single-peaked preferences [4], a domain restriction that states
that the candidates can be ordered along one axis of preference and there is a single peak to the graph
of all votes by all voters if the candidates are ordered along this axis. Informally, the idea is that
every member of the society has an (not necessarily identical) ideal point along a single axis and
that, the farther an alternative is from the bliss point, the lower that candidate will be ranked. A
typical example is that everyone has a preference for the volume of music in a room, the farther
away (either louder or softer) the music is set, the less preferred that volume is.

This is expressed in an election as the scenario when some candidate, in a three candidate elec-
tion, is never ranked last. The notion of restricted preference profiles was extended by Sen [23] to
include the idea of candidates who are never ranked first (single-bottom) and candidates who are
always ranked in the middle (single-mid). Domain restrictions can be expanded to the case where
elections contain more than three candidates [1]. Preference restrictions have important theoretical
applications and are widely studied in the area of election manipulation. Many election rules become
easy to affect through bribery or manipulation when electorates preferences are single-peaked [5].

Table 4 summarizes our results for the analysis of different restricted preference profiles when
m = 3. There is (nearly) a complete lack (10 total instances over all sets) of preference profile
restrictions when m = 4 and near lack ( < 0.05% ) when m = 3. It is important to remember that
the underlying objects in this dataset are movies, and individuals, most likely, evaluate movies for
many different reasons. Therefore, as the results of our analysis confirm, there are very few items
that users rate with respect to a single dimension.

4.2 Voting Rules
We analyze our dataset under the voting rules Plurality, Borda, 2-Approval, and Repeated Alterna-
tive Vote (RAV). We assume the reader is familiar with the normal voting rules discussed here. We



Set 1 Set 2 Set 3 Set 4 Set 5
Single Peaked 29 (0.002%) 92 (0.006%) 624 (0.036%) 54 (0.004%) 11 (0.001%)

Single Mid 0 (0.000%) 0 (0.000%) 0 (0.000%) 0 (0.000%) 0 (0.000%)
Single Bottom 44 (0.003%) 215 (0.013%) 412 (0.024%) 176 (0.012%) 24 (0.002%)

Set 6 Set 7 Set 8 Set 9 Set 10
Single Peaked 162 (0.012%) 148 (0.016%) 122 (0.010%) 168 (0.011%) 43 (0.003%)

Single Mid 0 (0.000%) 0 (0.000%) 0 (0.000%) 0 (0.000%) 0 (0.000%)
Single Bottom 590 (0.044%) 147 (0.016%) 152 (0.012%) 434 (0.029%) 189 (0.015%)

Table 4: Number of 3 candidate elections demonstrating preference profile restrictions.

note that RAV is an extension of the alternative vote (AV) where the process is repeated (removing
the winning candidate at each step) to generate a total order over all the candidates. A more com-
plete treatment of voting rules and their properties can be found in Nurmi [17] or Arrow, Sen, and
Suzumura [1].

We follow the analysis outlined by Felsenthal et al. [9]. We establish the Copeland order as
“ground truth” in each election; Copeland always selects the Condorcet Winner if one exists and
many feel the ordering generated by the Copeland rule is the “most fair” when no Condorcet Winner
exists [9, 17]. After determining the results of each election, for each voting rule, we compare
the order produced by each rule to the Copeland order and compute the Spearman’s Rank Order
Correlation Coefficient (Spearman’s ρ) to measure similarity [9].

We have omitted the tables of our results for space considerations, see Mattei [13, 14] for addi-
tional details and results. For the elections with m = 3 and m = 4 we have Borda and RAV agreeing
with Copeland≈ 98% of the time, on average. For Plurality, when m = 3 we have≈ 92% agreement
with Copeland. This correlation drops to ≈ 87% when we move to m = 4. Plurality performs the
worst as compared to Copeland across all the datasets. 2-Approval does fairly poorly when m = 3
(≈ 90%) but does surprisingly well (≈ 96%) when m = 4. We suspect this discrepancy is due to
the fact that when m = 3, individual voters are able to select a full 2/3 of the available candidates.
All sets had a median value of 1.0 and small standard error 0.2 for plurality and much less for all
rules. Our analysis supports other empirical studies in the field that find a high consensus between
the various voting rules [6, 9, 21].

There are many considerations one must make when selecting a voting rule for use within a given
system. Merrill suggests that one of the most powerful metrics is Condorcet Efficiency [15]. We
eliminated all elections that did not have a Condorcet Winner in this analysis. All voting rules select
the Condorcet Winner a surprising majority of the time. For plurality, Borda, and RAV we have a
Condorcet Efficient of ≈ 95%, on average. The worst case is 2-Approval, when m = 3, as it results
in the lowest Condorcet Efficiency in our dataset (≈ 88%). The high rate of elections that have a
Condorcet Winner (> 80%) could be an artifact of how we select elections. By virtue of enforcing
strict orders we are causing a selection bias in our set: we are only checking elections where many
voters have a preference between any two items in the dataset.

Overall, we find a consensus between the various voting rules in our tests. This supports the
findings of other empirical studies in the field [6, 9, 21]. Merrill finds much lower rates for Con-
dorcet Efficiency than we do in our study [15]. However, Merrill uses statistical models to generate
elections rather than empirical data to compute his numbers and this is likely the cause of the dis-
crepancy [10].

4.3 Statistical Models of Elections
We evaluate our dataset to see how it matches up to different probability distributions found in
the literature. We briefly detail several probability distributions (or “cultures”) here that we test.



Tideman and Plassmann provide a more complete discussion of the variety of statistical cultures
in the literature [24]. There are other election generating cultures, such as weighted Independent
Anonymous Culture, which generate preference profiles that are skewed towards single-peakedness
or single-bottomness. As we have found no support in our analysis for restricted preference profiles
we do not analyze these cultures (a further discussion and additional election generating statistical
models can be found in [24]).

We follow the general outline in Tideman and Plassmann to guide us in this study [24]. For ease
of discussion we divide the models into two groups: probability models (IC, DC, UC, UUP) and
generative models (IAC, Urn, IAC-Fit). Probability models define a probability vector over each
of the m! possible strict preference rankings. We note these probabilities as pr(ABC), which is the
probability of observing a vote A > B > C for each of the possible orderings. In order to compare
how the statistical models describe the empirical data, we compute the mean Euclidean distance
between the empirical probability distribution and the one predicted by the model.

Impartial Culture (IC): An even distribution over every vote exists. That is, for the m! possible
votes, each vote has probability 1/m! (a uniform distribution).

Dual Culture (DC): The dual culture assumes that the probability of opposite preference orders
is equal. So, pr(ABC) = pr(CBA), pr(ACB) = pr(BCA) etc. This culture is based on the idea that
some groups are polarized over certain issues.

Uniform Culture (UC): The uniform culture assumes that the probability of distinct pairs of
lexicographically neighboring orders (that share the same top candidate) are equal. For example,
pr(ABC)= pr(ACB) and pr(BAC)= pr(BCA) but not pr(ACB)= pr(CAB) (as, for three candidates,
we pair them by the same winner). This culture corresponds to situations where voters have strong
preferences over the top candidates but may be indifferent over candidates lower in the list.

Unequal Unique Probabilities (UUP): The unequal unique probabilities culture defines the
voting probabilities as the maximum likelihood estimator over the entire dataset. We determine, for
each of the data sets, the UUP distribution as described below.

For DC and UC each election generates its own statistical model according to the definition of
the given culture. For UUP we need to calibrate the parameters over the entire dataset. We follow
the method described in Tideman and Plassmann [24]: first re-label each empirical election in the
dataset such that the order with the most votes becomes the labeling for all the other votes. This
requires reshuffling the vector so that the most likely vote is always A > B > C. Then, over all the
reordered vectors, we maximize the log-likelihood of

f (N1, . . . ,N6;N, p1, . . . , p6) =
N!

∏
6
r=1 Nr!

6

∏
r=1

pNr
r (1)

where N1, . . . ,N6 is the number of votes received by a vote vector and p1, . . . , p6 are the probabilities
of observing a particular order over all votes (we expand this equation to 24 vectors for the m = 4
case). To compute the error between the culture’s distribution and the empirical observations, we re-
label the culture distribution so that preference order with the most votes in the empirical distribution
matches the culture distribution and compute the error as the mean Euclidean distance between the
discrete probability distributions.

Urn Model: The Polya Eggenberger urn model is a method designed to introduce some cor-
relation between votes and does not assume a complete uniform random distribution [3]. We use a
setup as described by Walsh [25]; we start with a jar containing one of each possible vote. We draw
a vote at random and place it back into the jar with a ∈ Z+ additional votes of the same kind. We
repeat this procedure until we have created a sufficient number of votes.

Impartial Anonymous Culture (IAC): Every distribution over orders has an equal likelihood.
For each generated election we first randomly draw a distribution over all the m! possible voting
vectors and then use this model to generate votes in an election.

IAC-Fit: For this model we first determine the vote vector that maximizes the log-likelihood
of Equation 1 without the reordering described for UUP. Using the probability vector obtained for



m = 3 and m = 4 we randomly generate elections. This method generates a probability distribution
or culture that represents our entire dataset.

For the generative models we must generate data in order to compare them to the culture distri-
butions. To do this we average the total elections found for m = 3 and m = 4 and generate 1,400,352
and 1,132,636 elections, respectively. We then draw the individual election sizes randomly from the
distribution represented in our dataset. After we generate these random elections we compare them
to the probability distributions predicted by the various cultures.

IC DC UC UUP
Set 1 0.3064 (0.0137) 0.2742 (0.0113) 0.1652 (0.0087) 0.2817 (0.0307)
Set 2 0.3106 (0.0145) 0.2769 (0.0117) 0.1661 (0.0089) 0.2818 (0.0311)
Set 3 0.3005 (0.0157) 0.2675 (0.0130) 0.1639 (0.0091) 0.2860 (0.0307)
Set 4 0.3176 (0.0143) 0.2847 (0.0113) 0.1758 (0.0100) 0.2833 (0.0332)
Set 5 0.2974 (0.0125) 0.2677 (0.0104) 0.1610 (0.0082) 0.2774 (0.0300)
Set 6 0.3425 (0.0188) 0.3027 (0.0143) 0.1734 (0.0108) 0.3113 (0.0399)
Set 7 0.3043 (0.0154) 0.2704 (0.0125) 0.1660 (0.0095) 0.2665 (0.0289)
Set 8 0.3154 (0.0141) 0.2816 (0.0114) 0.1712 (0.0091) 0.2764 (0.0318)
Set 9 0.3248 (0.0171) 0.2906 (0.0130) 0.1686 (0.0100) 0.3005 (0.0377)

Set 10 0.2934 (0.0144) 0.2602 (0.0121) 0.1583 (0.0087) 0.2634 (0.0253)
Urn 0.6228 (0.0249) 0.4745 (0.0225) 0.4745 (0.0225) 0.4914 (0.1056)
IAC 0.2265 (0.0056) 0.1691 (0.0056) 0.1690 (0.0056) 0.2144 (0.0063)

IAC-Fit 0.0363 (0.0002) 0.0282 (0.0002) 0.0262 (0.0002) 0.0347 (0.0002)

Table 5: Mean Euclidean distance between the empirical data set and different statistical cultures
(standard error in parentheses) for elections with 3 candidates.

IC DC UC UUP
Set 1 0.2394 (0.0046) 0.1967 (0.0031) 0.0991 (0.0020) 0.2533 (0.0120)
Set 2 0.2379 (0.0064) 0.1931 (0.0042) 0.0975 (0.0023) 0.2491 (0.0127)
Set 3 0.2633 (0.0079) 0.2129 (0.0051) 0.1153 (0.0032) 0.2902 (0.0159)
Set 4 0.2623 (0.0069) 0.2156 (0.0039) 0.1119 (0.0035) 0.2767 (0.0169)
Set 5 0.2458 (0.0044) 0.2040 (0.0028) 0.1059 (0.0027) 0.2633 (0.0138)
Set 6 0.3046 (0.0077) 0.2443 (0.0045) 0.1214 (0.0040) 0.3209 (0.0223)
Set 7 0.2583 (0.0088) 0.2094 (0.0053) 0.1060 (0.0038) 0.2710 (0.0161)
Set 8 0.2573 (0.0052) 0.2095 (0.0034) 0.1059 (0.0023) 0.2508 (0.0145)
Set 9 0.2981 (0.0090) 0.2414 (0.0049) 0.1202 (0.0045) 0.3258 (0.0241)

Set 10 0.2223 (0.0046) 0.1791 (0.0035) 0.1053 (0.0021) 0.2327 (0.0085)
Urn 0.6599 (0.0201) 0.4744 (0.0126) 0.4745 (0.0126) 0.6564 (0.1022)
IAC 0.1258 (0.0004) 0.0899 (0.0004) 0.0900 (0.0004) 0.1274 (0.0004)

IAC-Fit 0.0463 (0.0001) 0.0340 (0.0001) 0.0318 (0.0001) 0.0472 (0.0001)

Table 6: Mean Euclidean distance between the empirical data set and different statistical cultures
(standard error in parentheses) for elections with 4 candidates.

Table 5 and Table 6 summarizes our results for the analysis of different statistical models used to
generate elections. In general, none of the probability models captures our empirical data. Uniform
Culture (UC) has the lowest error in predicting the distributions found in our empirical data. We
conjecture that this is due to the process by which we select movies and the fact that these are



ratings on movies. Since we require strict orders and, generally, most people rate good movies
better than bad movies, we obtain elections that look like UC scenarios. By this we mean that The
Godfather is an objectively good movie while Mega Shark vs. Crocosaurus is pretty bad. While
there are some people who may reverse these movies, most users will rate The Godfather higher.
This gives the population something close to a UC when investigated in the way that we do here.

The data generated by our IAC-Fit model fits very closely to the various statistical models.
This is most likely due to the fact that the distributions generated by the IAC-Fit procedure closely
resemble an Impartial Culture (since our sample size is so large). We, like Tideman and Plassmann,
find little support for the static cultures’ ability to model real data [24]

5 Manipulation of Borda Elections
In this section, we present empirical results for experiments involving algorithms given by Zuck-
erman et al. to manipulate elections under the Borda voting rule [27]. Much of the analysis of
manipulation and algorithms for manipulation takes place in the theoretical domain, including look-
ing at the frequency of manipulation relative to the total election size for scoring rules given by Xia
and Conitzer [26]. Additionally, Pritchard et al. have looked at the asymptotic and average set sizes
necessary to manipulate elections under a variety of rules [18, 19]. Unfortunately, Pritchard’s anal-
ysis is under the Impartial Culture assumption, which is an election distribution that we have seen
does not match our data.

Our experiment takes ballot data for an election under the Borda rule and a non-winning candi-
date, then adds manipulators one by one until the distinguished candidate wins. The question we ask
is, how many manipulators are needed? The algorithm greedily calculates the ballot for each manip-
ulator, given all of the unmanipulated ballots and the ballots of the previous manipulators. The next
manipulator’s ballot has the distinguished candidate first, and then lists the rest of the candidates in
reverse order of their total points so far [27]. This algorithm by Zuckerman et. al has been proven
to either find the optimal coalitional manipulation, or over-guess by one voter [27]. In a furthur em-
pirical study Davies et al. compared two additional algorithms for finding Borda manipulations to
Zuckerman et al.’s [8]. Davies et al. found that, while all three algorithms found the optimal manipu-
lation over 75% of the time, Davies et al.’s AVERAGE FIT algorithm found the optimal manipulation
over 99% of the time.
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Figure 1: Deficit vs. minimum coalition size for
Zuckerman’s algorithm
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Figure 2: Deficit vs. minimum coalition for pro-
moting third-place candidates

The size of the coalition is determined both by the distribution of votes and by the deficit of the
distinguished candidate, namely, the difference between the number of points assigned to the current
winner and the number of points assigned to the distinguished candidate. We ask a fundamentally
different question than the earlier experiments on Borda manipulation algorithms. At minimum, a
Borda manipulation requires a coalition size linear in the deficit size, d [8]. We want to know how



often, and under what conditions, do we have a linear coalition requirement versus when we require
a super-linear coalition.

Figure 1 shows the relationship of the initial deficit to the coalition size. For our experiment we
used 296,553 elections, ranging in size from 350 to 18,269 voters, from Set 1 (detailed in Section 3).
The average number of voters per election in this size is 991.68, and the median is 621. Each point
in the graph in Figure 1 represents the a coalition size for an election with that deficit, regardless of
which candidate was promoted. For 99% of the elections we tested, it took b d

2 c+1 coalition mem-
bers. Figure 2 shows coalition sizes as a function of deficit for promoting the third-place candidate
to a winner.

For those elections where promoting the 3rd-place candidate took a coalition of more than
b d

2 c+ 1, the average deficit for promoting the second-place candidate is 306, and the average cor-
responding coalition size is 154 (= b d

2 c+1). For those elections, the average deficit for promoting
the third-place candidate is 873, and the average corresponding coalition size is 572.

6 Conclusion
We have identified and thoroughly evaluated a novel dataset as a source of sincere election data.
We find overwhelming support for many of the existing conclusions in the empirical literature.
Namely, we find a high consensus among a variety of voting methods; low occurrences of Con-
dorcet’s Paradox and other voting cycles; low occurrences of preference domain restrictions such as
single-peakedness; a lack of support for existing statistical models which are used to generate elec-
tion pseudo-data; and some interesting differences between the sizes of coalitions needed to promote
a 2nd-place candidate and a 3rd-place candidate, using Zuckerman’s algorithm for Borda. Our study
is significant as it adds more results to the current discussion of what is an election and how often
do voting irregularities occur? Voting is a common method by which agents make decisions both
in computers and as a society. Understanding the unique statistical and mathematical properties of
voting rules, as verified by empirical evidence across multiple domains, is an important step. We
provide a new look at this question with a novel dataset that is several orders of magnitude larger
than the sum of the data in previous studies. This empirical work is very much in the spirit of the
overall ComSoc approach: we are using computational tools (data mining and access to extremely
large sets of preference data) to address concerns in the social choice community. It is our hope
that, with this dataset, we inspire others to look for novel datasets and empirically test some of their
theoretical results.

The collection and public dissemination of the datasets is a central point our work. We plan
to establish a repository of election data so that theoretical researchers can validate with empirical
data. We plan to identify several other free, public datasets that can be viewed as “real world”
voting data. The results reported in our study imply that our data is reusable as real world voting
data. Therefore, it seems that the Netflix dataset, and its > 1012 possible elections, can be used as a
source of election data for future empirical validation of theoretical voting studies. We would like to,
instead of comparing how voting rules correspond to one another, evaluate their power as maximum
likelihood estimators [7]. Additionally, we would like to expand our evaluation of statistical models
to include several new models proposed by Tideman and Plassmann, and others [24]. We will
continue to analyze manipulation algorithms from the literature on elections from this data set.
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