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Abstrat

This paper provides a �rst insight into ost sharing rules for the ontinuous knapsak

problem. Assuming a set of divisible items with weights from whih a knapsak

with a ertain weight onstraint is to be �lled, di�erent suh (lasses of) rules are

disussed. Those - based on individual approvals of the items - optimally �ll the

knapsak and share the ost of the knapsak among the individuals. Using various

reasonable properties of ontinuous knapsak ost sharing rules, we provide three

haraterization results.

1 Introdution

Cost alloation in ombinatorial optimization problems has been intensively disussed in

reent years (see [14℄ for a summary). The major fous has been on the minimum ost

spanning tree problem, the earliest and most widely investigated ost sharing problem in

this area (e.g. [3℄, [4℄, [10℄). There the interest lies mainly in the fair division of the ost

of reating a network in whih eah agent is onneted diretly or indiretly to a soure.

A seond emphasis has been on sheduling and queuing problems, i.e., on the problem of

optimally proessing jobs of di�erent lengths or weights on a single server (e.g. [8℄, [12℄,

[13℄).

The above problem of �nding minimum ost spanning trees has a major advantage among

ombinatorial optimization problems. Its optimal solution an be found in polynomial time.

Only then, i.e., in the ase of �nding suh an optimal solution �quikly�, does it seem to

make sense to talk about fairly sharing the osts, beause otherwise any hanges to the

setting ould make it impossible to �nd the new ost alloation in reasonable time. The

fous ould only be on �xed solutions.

Among the ombinatorial optimization problems, the knapsak problem is onerned with

e�iently �lling a weight-restrited knapsak with items from a set of items with possi-

bly di�erent weights and pro�ts. E�ieny in that respet means maximizing some pro�t

funtion based on the items' pro�ts. In ase of indivisible items, this problem is typially

NP-hard. One exeption is the ontinuous knapsak problem in whih the items are divisible

and therefore the solution ould ontain a ertain fration of one item.

In usual ost sharing problems suh as the bankrupty problem ([1℄, [16℄) or the minimum

ost spanning tree problem, �objetive� preferenes suh as osts or laims play a major role

in determining a fair ost alloation. This will be di�erent in our framework, where we fous

on the approval or disapproval of ertain items by individuals ([5℄). The soial welfare of a

set of items is simply de�ned by the total number of approvals for the single items in the

set ([6℄). This ould be seen as a �rst step towards using (binary) preferene information in

determining a fair ost alloation.

The setting used in this paper an be summarized as follows: we start with a ertain

knapsak (a apaity, time interval, et.) and a set of items over whih individuals have
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binary preferenes. Eah of the items has a (possibly di�erent) weight. First, the goal is to

�ll the knapsak suh that soial welfare, (i.e., the sum of approvals) is maximized. Then

the attempt is to fairly divide the ost of the knapsak (or maintaining the apaity, or

using the time) among the individuals.

As an example onsider a multi-national researh projet that has some pre-determined

ost. Spae and/or time onstraints might limit the number of researhers (out of a pool

of potential andidates) that an partiipate. In addition, the possible andidates might be

fored to use the provided resoure for their spei� researh for di�erent amounts of time.

The potential �naning ountries of the researh projet might approve and disapprove of

di�erent researhers. The question now is how to selet the set of researhers and how to

distribute the ost among the partiipating ountries.
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In priniple we are onerned with sharing the ost of a seleted set of non-rival items that

provides di�erent utilities or payo�s to the individuals. Cost alloation aspets in suh a

binary knapsak problem have been onsidered before by Dror [9℄ and ertain rules suh as

the Shapley value or the equal harge method have been suggested. In this paper we want

to introdue and haraterize (a family of) possibly interesting ontinuous knapsak ost

sharing rules.

The following setion establishes the formal framework, de�nes the ontinuous knapsak

problem, and introdues reasonable properties of ontinuous knapsak ost sharing rules.

Setion 3 �rst introdues a whole family of suh rules and then fouses on two rules of whih

haraterization results are provided. Setion 4 onludes the paper.

2 Preliminaries

Let N = {1, . . . , n} denote a set of individuals, and I = {1, . . . ,m} a set of items. With

eah item j ∈ I, we assoiate a positive weight wj ∈ R+. The weights are summarized by

the vetor ω ∈ R
m
+ , where the j-th entry ωj orresponds to wj .

Eah individual i ∈ N partitions the set I into a set Ai of items she approves of and a set

of items she disapproves of. For i ∈ N , the vetor representation ai ∈ {0, 1}m turns out to

be useful, where the j-th entry ai,j = 1 if individual i approves of item j, and ai,j = 0 if i
disapproves of j. These vetors are aptured by means of an n×m matrix A, whose rows
orrespond to the vetors ai; i.e., A = (ai,j)i∈N , j∈I .

A⊖ ai denotes the matrix resulting from A by deleting the row orresponding to ai. Let B
be a k ×m matrix for some k ∈ N. For some b ∈ {0, 1}m, B ⊕ b is the (k + 1)×m matrix

reated by onatenating to B a (k + 1)-st row β and setting β = b.
For j ∈ I, let Nj be the set of individuals of N who approve of j, i.e., Nj = {i ∈ N : j ∈ Ai}.
The value pj of item j ∈ I is de�ned as the number of individuals that approve of j. Formally,

pj := |{i ∈ N : j ∈ Ai}| = |Nj |.

Given a apaity onstraint (or weight bound) W , we an represent a knapsak ost sharing

problem as the quadruple (N , A, ω,W ). A solution to this problem assigns to eah individual

a ost share. However, one of the major problems in this ombinatorial optimization exerise

is its omputational omplexity, i.e., �nding an optimal knapsak is NP-hard. Hene, we

need to restrit ourselves to a speial setting of the knapsak problem. Therefore we assume

the items to be divisible, i.e., a solution may ontain frations of (at most) one item. This

is alled the ontinuous knapsak problem introdued in the following subsetion.
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2.1 The ontinuous knapsak

The following de�nition introdues a well-known optimization problem:

De�nition 2.1 (Continuous Knapsak Problem)

Given a set I = {1, . . . ,m} of items, and, for eah j ∈ I, positive real numbers pj and wj ,
the ontinuous knapsak problem is the following problem:

3

max
∑

j∈I pjxj
s.t.

∑

j∈I wjxj ≤W

xj ∈ [0, 1]

It is known that the ontinuous knapsak problem an be solved in polynomial time (see [11℄).

In what follows, we assume that the items are sorted in a way suh that

p1
w1

>
p2
w2

> . . . >
pm
wm

(1)

Note that in pratie, the strit inequalities in (1) are not a limitation, sine these may

always be reahed by arbitrarily small �perturbations� of the weights or by modifying the

auray of measurement. In theory (ompare [11℄), inequality (1) ensures that the unique

solution the entity hooses is determined by

xj :=











1 for j = 1, . . . , s− 1
1
ws

(W −
∑s−1
i=1 wi) for j = s

0 for j > s

(2)

where s is de�ned by

s−1
∑

j=1

wj < W and

s
∑

j=1

ws ≥W

The orresponding objetive funtion value z is given by z =
∑

j∈I pjxj =
∑s−1

j=1 pj +
ps
ws

(W −
∑s−1
i=1 wi).

Item s is alled split item.
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For an optimal solution X = (x1, x2, . . . , xm), we abbreviate

X+ = {j ∈ I : xj > 0} = {1, . . . , s}. In what follows, and in order to simplify notation,

xj is identi�ed with its value in the optimal solution of the onsidered ontinuous knapsak

problem.

2.2 Dividing a ontinuous knapsak

Let the quadruple (N , A, ω,W ) be given. From the previous setion we know that a solution

an be alulated in polynomial time. Now, the goal is to divide the ost of the optimally

paked knapsak among the individuals in a fair manner. In that respet, we �rst have to

determine the ost of the knapsak. In this paper, we assume that every unit of weight

imposes a ost of one, and therefore the total ost of the knapsak is equal to the weight

3
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onstraintW . However, dividing then the weight wj byW for eah j ∈ I and settingW = 1
does not hange the struture of the problem (and, in partiular, the optimal solutions of

the orresponding ontinuous knapsak problems are idential). Thus, in the major part of

the paper it is assumed that W = 1. In that ase, the ontinuous knapsak ost sharing

problem is denoted by the triple (N , A, ω), and we refer to the orresponding ontinuous

knapsak problem as the pair (A,ω).

In general, a ontinuous knapsak ost sharing rule is a funtion φ : (N , A, ω,W ) → R
n
+.

The i-th entry φi of φ is interpreted as the share of the ost that individual i has to arry.

In the following we de�ne some desirable properties for a ontinuous knapsak ost sharing

rule, trying to apture ertain aspets of fairness.

Properties of ost sharing rules.

The �rst requirement � frequently used in the literature in various ontexts � is that the

total ost of the knapsak should be alloated exatly.

E�ieny: A ost alloation rule φ is e�ient, if

∑n

i=1 φi(N , A, ω,W ) =W .

For the sake of readability, the remaining properties (exept additivity) are de�ned for the

ase W = 1. However, the de�nitions oinide with the ones for the general ase.

The seond property, widely used e.g. in sheduling problems ([13℄), represents the idea that

voters should not bene�t from �splitting� into several voters with disjoint sets of approved

items (or, the other way round, in ase their approved items are disjoint, �merging� into a

single voter). At the same time, the remaining voters should not be disadvantaged if ertain

voters �split up� (or �merge�). In priniple this should prevent the reation of fake identities,

i.e., the individual possibility to manipulate the fair division proess.
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To illustrate the idea of splitting, let voter i approve of items 1, 2, 3. Replaing voter i by
voters ij approving of item j only, 1 ≤ j ≤ 3, should have the result that the sum of the

ost shares of the three voters ij has to be equal to the ost share of voter i in the original

problem. In the following de�nition, given a set of individuals N ′
, A′

i′ refers to the set of

approved items of i′ ∈ N ′
(and a′i′ denotes the orresponding vetor of approvals).

Split-proofness: Let i ∈ N . Let N ′ = (N \ {i}) ∪ {i1, . . . , ir}, suh that sets A′
iℓ

form a

partition of Ai, i.e.,
⊎r

ℓ=1A
′
iℓ
= Ai. Let A

′ = A⊕ (a′i1 ⊕ . . .⊕ a′ir )⊖ ai.
A ost alloation rule φ is alled split-proof, if

• φi(N , A, ω) =
∑|Ai|

j=1 φij (N
′, A′, ω) and

• φh(N
′, A′, ω) ≤ φh(N , A, ω) for all h ∈ N \ {i}

Remark. Note that for a split-proof rule φ, the �rst of the above onditions implies that

∑

h∈N\{i} φh(N , A, ω) =
∑

h∈N\{i} φh(N
′, A′, ω). Thus, the mild seond ondition implies

that φh(N
′, A′, ω) = φh(N , A, ω) holds for all h ∈ N \ {i}. To see this, assume that the

share of an individual h beomes stritly smaller in problem (N ′, A′, ω). Then, for at least
one h′ ∈ N \ {j} we must have φh′(N ′, A′, ω) > φh′(N , A, ω), in ontradition to the above

de�nition.

Sine eah of the following two properties refers to an instane (N , A, ω), for the sake of

brevity we write φi instead of φi(N , A, ω) for i ∈ N .
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The �rst property re�ets the ompelling idea, well-known in the literature, that the ost

alloation should not depend on the label of the individual.

Anonymity: Let i, i′ ∈ N . A ost alloation rule φ is alled anonymous, if (Ai = Ai′ ⇒
φi = φi′).

The seond requirement is similar to the usual dummy-property. It states that an individual

who only approves of items not in the optimal solution, should not be harged. A �totally

unhappy� individual should not be fored to arry the knapsak or ontribute to its osts.

Dummy: If xj = 0 for all j ∈ Ai, then φi = 0.

The following property applies non-manipulability arguments to situations in whih pairs of

individuals, that only approve of one single item, try to improve their situation by swithing

their approvals. It requires their ost shares to be exatly the same, i.e., providing absolutely

no inentive to get involved into suh swithes.

Swith-proofness: Given (N , A, ω), let Ai = {j}, Ai′ = {j′} with xj = xj′ = 1. Let

(N , Ã, ω) with ãh = ah for all h ∈ N \ {i, i′} and ãf = ag for f, g ∈ {i, i′}, f 6= g. Then

φk(N , A, ω) = φk(N , Ã, ω) for all k ∈ N .

A further reasonable property requires the division proess to be independent of a possible

sequential struture, i.e., if the knapsak is divided into two di�erent and smaller knapsaks

that together have exatly the same weight onstraint as before, then applying the sharing

rule to eah of the smaller knapsaks separately should lead to the same total ost share as

applying the rule to the original knapsak. This property will be alled additivity and has

been used, e.g., by [7℄ w.r.t. rights problems.

Additivity: Let W (1),W (2) ∈ R+ with W (1) +W (2) = 1. Let φ(1) = φ(N , A, ω,W (1)), and
let X(1)

be the optimal solution of (A,ω,W (1)). Let Ã = (ãij)i∈N ,j∈I suh that, for i ∈ N ,

ãij = 0 if x
(1)
j = 1 and ãij = aij otherwise.

In addition, let ω̃ ∈ R
m
+ suh that ω̃j = (1 − x

(1)
j )ωj for j ∈ X

(1)
+ with 0 < x

(1)
j < 1, and

ω̃j = ωj otherwise. Let φ
(2) = φ(N , Ã, ω̃,W (2)). Then, φ is additive, if φ = φ(1) + φ(2).

The �nal property is onerned with the hanges in the ost shares given a minimal weight-

hange of a non-split item ontained in the optimal solution of the ontinuous knapsak

problem, keeping the remaining weights unhanged. It is exlusively onerned with situ-

ations in whih everyone approves of exatly one item. A minimal weight hange in that

respet is one in whih the optimal solution does not hange, i.e., the set of items in the

optimal solution before and after the weight hange is idential.

De�nition 2.2 Given (N , A, ω), let X be an optimal solution of the ontinuous knapsak

problem (A,ω) with X+ = {1, . . . , s} and xs < 1. For some j < s, let w̃j < wj and

ω̃ = (w1, . . . , wj−1, w̃j , wj+1, . . . , wm).

We all w̃j insigni�antly smaller than wj , if for the optimal solution X̃ of (A, ω̃), we have

X̃+ = X+.

Now, let the weight of j insigni�antly derease in the sense of the above de�nition, and

let eah individual approve of exatly one item. Then, weight-monotoniity states that all

those that approve of the item that beame insigni�antly smaller should fae a derease

in their ost share relative to the hange in the value of the objetive funtion. The formal

de�nition of this ondition is as follows:

Weight-monotoniity: Let w̃j be insigni�antly smaller than wj . Then, for all i ∈ N with

Ai = {j}, φi(N ,A,ω̃)
φi(N ,A,ω) = z

z̃
, where z̃ denotes the objetive funtion value of the optimal

solution of (A, ω̃).



3 Charaterizations

In what follows, we onsider a ontinuous knapsak ost sharing problem (N , A, ω) where (as
previously) X with X+ = {1, . . . , s} orresponds to the optimal solution of the ontinuous

knapsak problem (A,ω).

We now want to investigate, whether ertain ombinations of the previous properties an

be used to determine spei� reasonable ost sharing rules. Our �rst result establishes a full

desription of the family of e�ient rules, that satis�es the dummy property, split-proofness

and swith-proofness. As a seond result, we present the haraterization of a speial repre-

sentative of this family by adding weight-monotoniity. Finally, a haraterization of another

reasonable ost sharing rule is given.

Theorem 3.1 The e�ient rules that satisfy the dummy property, split-proofness and

swith-proofness are exatly the funtions φc with 0 ≤ c ≤ 1∑
i<s

pi
, de�ned by ( ∀i ∈ N )

φci (N , A, ω) = c ·
∑

j∈Ai

xj + 1Ai
(s) ·

1− cz

ps

Proof. First, we show that φci ≥ 0 holds for all i ∈ N , i.e., φc is indeed a ost sharing rule.

Sine c ≥ 0 holds, we obviously have φci ≥ 0 for i with s /∈ Ai. If s ∈ Ai, then

φci =
∑

j∈Ai\{s}
xjc+ xsc+

1−cz
ps

=
∑

j∈Ai\{s}
xjc+ xsc+ (

1−c
∑s−1

i=1 pi−cpsxs

ps
)

=
∑

j∈Ai\{s}
xjc+ (

1−c
∑s−1

i=1 pi
ps

)

Due to c ≥ 0, we have
∑

j∈Ai\{s}
xjc ≥ 0; in addition, 1 − c

∑s−1
i=1 pi ≥ 0 holds beause of

c ≤ 1∑s−1
i=1 pi

. Thus, φci ≥ 0 holds in the ase s ∈ Ai as well.

Now, it is shown that eah of the axioms is satis�ed by the proposed rule.

The dummy property is obviously satis�ed. Now, onsider

∑

i∈N φci =
∑

i∈N c
∑

j∈Ai
xj +

∑

i∈N 1Ai
(s) 1

ps
(1 − cz) = c

∑

i∈N

∑

j∈Ai
xj +

1
ps
(1 − cz)

∑

i∈N 1Ai
(s). Sine item j is ap-

proved by exatly pj individuals of N , it holds that

∑

i∈N

∑

j∈Ai
xj =

∑

j∈I pjxj = z, and
∑

i∈N 1Ai
(s) = ps. Hene,

∑n
i=1 φ

c
i = cz + 1

ps
(1 − cz)ps = 1, whih proves e�ieny.

For a �xed i ∈ N , let (N ′, A′, ω) be as desribed in the de�nition of split-proofness. Note

that the optimal solution X ′
of (A′, ω) is also the optimal solution of (A,ω), and the re-

spetive objetive funtion values z′ and z oinide. Thus,

r
∑

ℓ=1

φciℓ(N
′, A′, ω) =

r
∑

ℓ=1

(c
∑

j∈A′

iℓ

xj+1A′

iℓ

(s)
1

ps
(1−cz)) = c

r
∑

ℓ=1

∑

j∈A′

iℓ

xj+
1

ps
(1−cz)

r
∑

ℓ=1

1A′

iℓ

(s)

By onstrution,

∑r
ℓ=1

∑

j∈A′

iℓ

xj =
∑

j∈Ai
xj , and

∑r
ℓ=1 1A

′

iℓ

(s) = 1Ai
(s). Hene,

∑r

ℓ=1 φ
c
iℓ
(N ′, A′, ω) = c

∑

j∈Ai
xj + 1Ai

(s) 1
ps
(1− cz) = φci (N , A, ω). I.e., φc is split-proof.

For swith-proofness, let Ai = {j} and Ai′ = {j′} suh that xj = xj′ = 1. Let Ã be

built from A beause i and i′ �swith� their items (as in the de�nition of swith-proofness).

Then, φk(N , A, ω) = c = φk(N , Ã, ω) for k ∈ {i, i′}, sine the optimal solutions of (A,ω)
and (Ã, ω) oinide. The latter fat obviously implies φk(N , A, ω) = φk(N , Ã, ω) for all

k ∈ N \ {i, i′} as well.

On the other hand, assume there is a rule ψ that satis�es the stated onditions. Now in

order to reate the new instane (N ′, A′, ω) from (N , A, ω), replae eah voter i with the



voters i1, . . . , i|Ai| suh that |A′
iℓ
| = 1 for eah 1 ≤ ℓ ≤ |Ai| and

⋃|Ai|
ℓ=1 A

′
iℓ
= Ai. Beause of

split-proofness, we know that

|Ai|
∑

ℓ=1

ψiℓ(N
′, A′, ω) = ψi(N , A, ω) (3)

holds for eah i ∈ N .

Obviously, the optimal solutions of (A,ω) and (A′, ω) oinide; let X be suh an optimal

solution, with X+ = {1, . . . , s}. Note that the objetive funtion value is given by

z = p1x1 + . . . psxs = p1 + . . . ps−1 + psxs

First, we show that ψ is anonymous. Let i, j ∈ N with Ai = Aj . Starting with instane

(N ′, A′, ω), reate instane (N ′, Ã′, ω) by applying a �swith� between the individuals ik
and jk, k ∈ {1, . . . , |Ai|}, i.e., Ã′

g = A′
h holds for g, h ∈ {ik, jk}. Now, swith-proofness

and the fat that ψ is a funtion imply ψik(N , A′, ω) = ψik(N , Ã′, ω) = ψjk(N , A′, ω) for

all k ∈ {1, . . . , |Ai|}. Thus, ψi(N , A, ω) =
∑|Ai|
ℓ=1 ψiℓ(N

′, A′, ω) =
∑|Ai|

ℓ=1 ψjℓ(N
′, A′, ω) =

ψj(N , A, ω) is satis�ed; i.e., ψ is anonymous.

Let i, i′ ∈ N ′
with A′

i = {j}, A′
i′ = {j′} and j, j′ < s. Then, perform a swith between i

and i′ and all the new instane (N ′, A∗, ω). Beause of split-proofness, we an assume that

the last two rows of eah A and A∗
orrespond to a′i and a

′
i′ (in the same order). Note that

in A∗
, the row a′i displays A

∗
i′ and the row a′i′ displays A

∗
i respetively. Thus, sine ψ is

a funtion, we must have ψi(N ′, A′, ω) = ψi′(N ′, A∗, ω). However, swith proofness yields

that ψi′(N
′, A′, ω) = ψi′(N

′, A∗, ω). Hene, we must have ψi(N
′, A′, ω) = ψi′(N

′, A′, ω).
Therefore, for some c ≥ 0, ψg′(N ′, A′, ω) = c must hold for all g′ ∈ N ′

with A′
g′ = {h′} and

xh′ = 1.
Anonymity together with the dummy property implies that, for some cs, c ∈ R+ ∪ {0},

ψi′(N
′, A′, ω) =











cs if Ai′ = {s}

c if Ai′ = {j′ : j′ < s}

0 otherwise

(4)

E�ieny yields

1 =
∑

i′∈N ′

ψi′ (N
′, A′, ω) =

∑

i′∈N ′

s

ψi′ +
∑

j<s

∑

i′∈N ′

j

ψi′ (5)

Note that, by onstrution, for eah j ∈ I, |N ′
j | = pj . Equation (5) an hene be rewritten

as

1 = pscs + c · (p1 + p2 + . . .+ ps−1) (6)

Reall that z = p1+p2+ . . .+ps−1+xsps, or, equivalently,
∑s−1
i=1 pi = z−xsps. Substituting

the last equality in (6), we get

1− pscs = c(z − xsps)
⇔ cs = 1−cz

ps
+ xsc

(7)

With (3) and (4), we get ψi(N , A, ω) =
∑|Ai|

ℓ=1 ψiℓ(N
′, A′, ω) =

∑

j∈Ai\{s}
xjc+ cs · 1Ai

(s).

With (7), this yields

ψi(N , A, ω) =

{

∑

j∈Ai
xjc if s 6∈ Ai

∑

j∈Ai
xjc+

1−cz
ps

if s ∈ Ai



Analogously to the beginning of the proof, it follows that 0 ≤ c ≤ 1∑
i<s

pi
must hold for ψ

to be a ost sharing rule. Therewith, ψ = φc. �

A representative of the above family of rules is derived from the idea, that a voter's ost

share should exlusively depend on the total number of the items in the optimal knapsak

she approves of, relative to the total number of approvals for the entire knapsak (in eah

ase taking frational values into aount

6

). In partiular, if someone likes twie as many

items (inluded as a whole) from the knapsak than another individual, then she should

also be given a ost share twie as high. Obviously this ost sharing rule is not onerned

with weights of items or number of approvals for one spei� item. Formally, this rule an

be de�ned as follows:

De�nition 3.1 Given a problem (N , A, ω), the simple proportional ontinuous knapsak

ost sharing rule is de�ned as (∀i ∈ N)

φsoli (N , A, ω) =

∑

j∈Ai
xj

z

The rule φsol an be haraterized as follows.

Theorem 3.2 φsoli (N , A, ω) is the only e�ient and split-proof rule that satis�es dummy,

swith-proofness, and weight-monotoniity.

Proof. φsol belongs to the family φc (setting c = 1
z
. Hene, due to Theorem 3.1, it is

su�ient to show that φsol is the only among the rules φc that satis�es weight-monotoniity.

It is easy to verify that φsol satis�es weight-monotoniity. To proof the other diretion,

we follow the argumentation of the above proof. Consider instane (N ′, A′, ω) (of the above
proof) and assume xs < 1. Derease the weight of item j from wj insigni�antly to w̃j for

some j < s suh that x′s = 1 in the optimal solution X̃ (with objetive funtion value z̃ of

(A′, ω̃), where (N ′, A′, ω̃) denotes this new instane). Call the new shares (aording to (4))

c′s and c
′
; note that due to x′s = 1, with analogous arguments as in the proof of Theorem 3.1,

from swith-proofness we get c′s = c′.
From e�ieny, we thus get 1 = psc

′
s+c

′ ·(p1+p2+ . . .+ps−1) = c′(p1+p2+ . . .+ps) = c′ · z̃.

Therewith, c′ = 1
z̃
. Weight-monotoniity, however, implies

ψi(N
′,A′,ω)

ψi(N ′,A′,ω̃) = c′

c
= z

z̃
for i ∈ N ′

with Ai = {j}. Hene, c = 1
z
follows. Thus, ψ orresponds to φc with c = 1

z
, i.e., ψ = φsol. �

The above rule puts its fous purely on the proportion of individual approvals to total ap-

provals. This might seem unreasonable or ine�ient in ertain situations for two reasons:

First, where extensive weight di�erenes between the single items an be observed, a rule

being sensitive to weights and weight hanges might be preferable. Seond, the more individ-

uals approve of a ertain item in the knapsak, the lower should probably be their ost share,

if one assumes a non-rival good whose ost it imposes on the knapsak does not depend on

the number of approvals. Hene, if we replae swith-proofness and weight-monotoniity

with additivity, we haraterize a rule, that takes into aount the �ine�ieny�

wj

pj
of item

j ∈ I diretly. The ost sharing rule is de�ned as follows:

De�nition 3.2 Given a problem (N , A, ω), the weight-and-approval-based proportional on-
tinuous knapsak ost sharing rule is de�ned as (∀i ∈ N)

φei (N , A, ω) =
∑

j∈Ai

wj
pj
xj

6

I.e, if a fration of an item is inluded in the knapsak, then only the respetive fration of the approval

is taken into aount.



The rule φe an be haraterized as follows:

Theorem 3.3 φei (N , A, ω) is the only e�ient and split-proof rule that satis�es dummy,

anonymity, as well as additivity.

Proof. For readability, we write φ instead of φe within this proof. We �rst show that all

these axioms are satis�ed by φ.
∑

i∈N

φi =
∑

i∈N

∑

j∈Ai

wj
pj
xj =

∑

j∈I

∑

i∈Nj

wj
pj
xj =

∑

j∈I

pj
wj
pj
xj =

∑

j∈I

wjxj

However, the last sum in the above expression orresponds to 1 beause X is an optimal

solution of (A,ω); thus, φ is e�ient.

Split-proofness, dummy and anonymity are obviously satis�ed.

For additivity, let W (1),W (2) ∈ R+ with W (1) + W (2) = 1. Note that xj = 0 implies

x
(1)
j = 0 and x

(2)
j = 0. Thus, it is su�ient to onsider the items {1, . . . , s}. By onstrution,

X
(1)
+ = {1, ..., ℓ} for some ℓ ≤ s.

Case 1: x
(1)
ℓ = 1. By onstrution, this means that there is no voter that approves of any of

the items {1, ..., ℓ} in instane (N , Ã, ω̃,W (2)). Thus, x
(2)
j = 0 for all 1 ≤ j ≤ ℓ. Vie versa,

we have x
(1)
j = 0 and x

(2)
j = xj for all j ∈ {ℓ + 1, . . . , s}. In addition, w̃j = wj holds for

j ∈ {ℓ+ 1, . . . , s}. Hene, φ
(1)
i + φ

(2)
i =

∑

j∈Ai

wj

pj
x
(1)
j +

∑

j∈Ai

w̃j

pj
x
(2)
j =

∑

j∈Ai

wj

pj
xj = φi.

Case 2: 0 < x
(1)
ℓ < 1. Then, in instane (N , Ã, ω̃,W (2)), eah of the items {1, . . . , ℓ − 1}

has zero approvals. Thus the ranking analogous to (1) (restrited to the remaining items) is

pℓ
w̃ℓ

>
pℓ+1

w̃ℓ+1
> . . . >

ps
w̃s

> . . . >
pm
w̃m

beause the number of approvals of these items remains unhanged, and only the weight of

item ℓ has dereased (ompared to the original instane).

Case 2a: ℓ 6= s. By the hoie of xs and w̃ℓ, W
(2) =

∑s−1
k=ℓ w̃ℓ + xsws must hold. Thus,

X
(2)
+ = {ℓ, ℓ+ 1, . . . , s}, and x

(2)
ℓ = . . . = x

(2)
s−1 = 1 and x

(2)
s = xs. As in the above ase, by

onstrution for all ℓ + 1 ≤ j ≤ s we have w̃j = wj . Note that for j 6= ℓ, x
(1)
j + x

(2)
j = xj .

Thus, if ℓ /∈ Ai, we get

φ
(1)
i + φ

(2)
i =

∑

j∈Ai

wj
pj
x
(1)
j +

∑

j∈Ai

w̃j
pj
x
(2)
j =

∑

j∈Ai

wj
pj

(x
(1)
j + x

(2)
j ) =

∑

j∈Ai

wj
pj
xj = φi (8)

Let ℓ ∈ Ai. By onstrution, w̃ℓ = (1− x
(1)
ℓ )wℓ. With x

(2)
ℓ = 1, analogously to equation (8)

we get

φ
(1)
i + φ

(2)
i =

∑

j∈Ai\{ℓ}
wj

pj
(x

(1)
j + x

(2)
j ) + wℓ

pℓ
x
(1)
ℓ + w̃ℓ

pℓ
x
(2)
ℓ

=
∑

j∈Ai\{ℓ}
wj

pj
xj +

wℓ

pℓ
x
(1)
ℓ + wℓ

pℓ
(1− x

(1)
ℓ )

=
∑

j∈Ai

wj

pj
xj

= φi

Case 2b: ℓ = s. For 1 ≤ j ≤ s− 1, we thus have x
(1)
j = xj = 1 and x

(2)
j = 0.

By onstrution, w̃s = (1 − x
(1)
s )ws and W (2) = (xs − x

(1)
s )ws. Hene, x

(2)
s = 1

w̃s
W (2) =

1
w̃s

(xs − x
(1)
s )ws =

xs−x
(1)
s

1−x
(1)
s

. As a onsequene,

ws
ps
x(1)s +

w̃s
ps
x(2)s =

ws
ps

(

x(1)s + (1− x(1)s )
xs − x

(1)
s

1− x
(1)
s

)

=
ws
ps
xs



Therewith, φ
(1)
i + φ

(2)
i =

∑

j∈Ai

wj

pj
xj = φi holds in this ase as well. I.e., φ is additive.

Assume there is a rule ψ that satis�es e�ieny, split-proofness, dummy, anonymity, as well

as additivity. As in the above proofs, reate a new problem (N ′, A′, ω) from (N , A, ω) by
replaing eah voter i with the voters i1, . . . , i|Ai| suh that |A′

iℓ
| = 1 for eah 1 ≤ ℓ ≤ |Ai|

and

⋃|Ai|
ℓ=1 A

′
iℓ
= Ai. Sine ψ is split-proof, we get

|Ai|
∑

ℓ=1

ψiℓ(N
′, A′, ω) = ψi(N , A, ω) for all i ∈ N (9)

Sine ψ is e�ient and split-proof,

1 =
∑

i∈N

ψi(N , A, ω) =
∑

i∈N

|Ai|
∑

ℓ=1

ψiℓ(N
′, A′, ω) =

∑

k∈I

∑

i∈Nk

ψi(N
′, A′, ω) (10)

Beause ψ is anonymous, it holds that for eah j ∈ I, ψi(N ′, A′, ω) = ψi′(N ′, A′, ω) =: δj
for i, i′ ∈ Nj . Due to the dummy property, we have

δj = 0 ∀j > s (11)

Thus, (10) is equivalent to

1 =

s
∑

j=1

pj · δj (12)

In what follows, we make use of additivity. In the �rst step, let W (1) = w1 and W (2) =
∑s−1

j=2 wj+wsxs. Then, the optimal solution of (A′, ω,W (1)) is given by paking item 1 in the

knapsak, i.e., x
(1)
1 = 1 and x

(1)
j = 0 for j > 1. Anonymity implies that, for j ∈ I, there are

δ
(1)
j , δ

(2)
j ∈ R+ suh that δ

(1)
j = ψi(N ′, A′, ω,W (1)) and δ

(2)
j = ψi(N ′, Ã′, ω̃,W (2)) for i ∈ Nj .

Clearly, δ
(1)
j = 0 if j ≥ 2 beause of the dummy property. Hene, anonymity and e�ieny

imply p1δ
(1)
1 = w1, and thus δ

(1)
1 = w1

p1
. By onstrution, in instane (N , A′, ω̃,W (2)), there

is no voter who approves of item 1. By the dummy property, this means δ
(2)
1 = 0. Beause

of additivity, we have

δ1 = δ
(1)
1 + δ

(2)
1 =

w1

p1
(13)

In the seond step, let W (1) = w1 +w2 and W (2) =
∑s−1

j=3 wj +wsxs. The optimal solution

of (A′, ω,W (1)) is x
(1)
1 = x

(1)
2 = 1 and x

(1)
j = 0 for j > 2. The dummy property yields

δ
(1)
j = 0 for j > 2. This fat and e�ieny imply

w1 + w2 = p1δ
(1)
1 + p2δ

(1)
2 (14)

Note that there is no voter who approves of one of the items {1, 2} in instane

(N , A′, ω̃,W (2)). Thus, δ
(2)
j = 0 for j ∈ {1, 2}; beause of additivity, this means δj = δ

(1)
j

for j ∈ {1, 2}. In partiular, with δ1 = w1

p1
(see (13)), this turns equation (14) into

w1 + w2 = p1
w1

p1
+ p2δ2

⇔ δ2 = w2

p2



Repeating this argumentation, after a total of s − 1 steps we have δk = wk

pk
for all 1 ≤

k ≤ s − 1. Considering the instane (N , A′, ω), from (12) we know that 1 =
∑s

k=1 pkδk
holds (due to e�ieny). Thus, we have 1 =

∑s−1
k=1 wk + psδs. On the other hand, 1 =

∑s−1
k=1 wk+wsxs holds beause of the hoie of xs (see 2). Combining the two last equalities

yields psδs = wsxs, and thus δs =
wsxs

ps
. With (11), we have

δj =











wj

pj
for j < s

ws

ps
xs for j = s

0 for j > s

Hene, equation (9) and the de�nition of δj imply ψi(N , A, ω) =
∑

j∈Ai

wj

pj
xj . I.e., ψ and

φe oinide. �

4 Conlusion

In this paper we have investigated ost sharing w.r.t. the ontinuous knapsak problem. In-

stead of osts or laims, we used the number of approvals to determine the optimal solution.

To share the osts of the knapsak, we �rst introdued a whole family of ost sharing rules,

and then provided expliit haraterizations of two partiular rules. The �rst rule assumed

eah item in the knapsak to impose the same ost, and made the individuals pay purely

relative to their number of approved items. An interesting question in that respet would

be to analyse the inentives to state one's true preferenes. The seond rule, however, was

aware of both, the weight of the items in the knapsak and the number of individuals that

approve of eah item. It seems absolutely reasonable that those individuals who almost ex-

lusively approve of items in the knapsak and/or approve of heavier items in the knapsak

should arry a larger share of the ost. Based on various reasonable properties for ontin-

uous knapsak ost sharing rules, we provided haraterization results for the two solution

methods. Of ourse, the rules disussed in this paper are perhaps of an obvious kind, not

taking too muh are of the step of �nding the optimal solution. However, many exten-

sions seem possible and of interest for future researh. On the one hand, further di�erent -

and probably less obvious - sharing rules ould be introdued and analysed. On the other

hand, more preferene information, suh as omplete individual rankings, and - in addition

- di�erent types of objetive funtions ould be used in the proess of �nding the optimal

solution.
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